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Abstract. — We define and study jet bundles in the geometric orbifold category. We show
that the usual arguments from the compact and the logarithmic settings do not all extend
to this more general framework. This is illustrated by simple examples of orbifold pairs of
general type that do not admit any global jet differential, even if some of these examples
satisfy the Green–Griffiths–Lang conjecture. This contrasts with an important result of
Demailly (2010) proving that compact varieties of general type always admit jet differentials.
We illustrate the usefulness of the study of orbifold jets by establishing the hyperbolicity of
some orbifold surfaces, that cannot be derived from the current techniques in Nevanlinna
theory. We also conjecture that Demailly’s theorem should hold for orbifold pairs with
smooth boundary divisors under a certain natural multiplicity condition, and provide some
evidences towards it.
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The main goal of this paper is to define and study the hyperbolicity of orbifold pairs
in the spirit of the program developed in [Cam04]. A smooth orbifold pair is a pair
(X,∆), where X is a smooth projective variety and where ∆ is a Q-divisor on X with
only normal crossings and with coefficients between 0 and 1. An orbifold pair (X,∆)
such that the canonical bundle KX + ∆ is big is said to be of general type. Let us explain
why orbifold structures arise very naturally in the study of the hyperbolic properties of
complex projective manifolds.

Let F : Y→ X be a holomorphic fibration between complex projective manifolds. Let
|∆| ⊂ X be the union of all codimension one irreducible components of the locus over
which the scheme-theoretic fibre of F is not smooth. For each component ∆i of |∆|, let
Di B

∑
j∈J mi, jDi, j be the union of all components of F∗∆i that are mapped surjectively onto
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∆i by F. Then one defines the multiplicity of F along ∆i by mi B m(F,∆i) B inf{mi, j, j ∈ J}
and the Q-divisor

∆(F) B
∑
i∈I

(1 − 1/mi)∆i.

The pair (X,∆(F)) is called the orbifold base of the fibration F. The fibration is said to be
of general type if its orbifold base is of general type. A manifold Y is said to be special if
there is no fibration of general type F : Y→ X with dim X > 0. Equivalently Y is special
if, for any p > 1, any rank-one coherent subsheaf L ⊂ Ω

p
Y has Iitaka dimension κ(Y,L) < p.

Then one has the following fundamental structure result:

Theorem ([Cam04]). — There exists a unique (up to birational equivalence) fibration, called
the core map, cX : X→ C(X) such that the general fiber of cX is special, cX is constant if X is
special and cX is a fibration of general type otherwise.

This construction arises naturally in the study of the birational classification of
varieties. Conjecturally, it also describes the behaviour of entire curves (or more
generally the Kobayashi metric) in X, as we shall now explain. On the one hand, it
is conjectured in [Cam04] that the Kobayashi pseudometric of a complex projective
manifold Y identically vanishes if and only if Y is special, on the other hand, we have the
following natural generalization to the orbifold category of the Green–Griffiths–Lang
conjecture, that will be the common thread of this paper.

Conjecture A. — If (X,∆) is an orbifold pair of general type, then there exists a proper algebraic
subvariety Z ( X containing the images of all nonconstant orbifold entire curves f : C→ (X,∆).

Here, we consider orbifold entire curves f : C→ (X,∆) i.e. (nonconstant) entire curves
f : C→ X such that f (C) 1 |∆| and multt( f ∗∆i) > mi for all i and all t ∈ C with f (t) ∈ ∆i.
In a modern point of view, these curves are nothing but the morphisms (C,∅)→ (X,∆)
in the orbifold category. But these are actually also the central objects of the Nevanlinna
theory of values distribution. These curves have hence been studied extensively since
the beginning of the 20th century.

Assuming Conjecture A, one obtains that (“usual”) entire curves C → X are either
contained in the fibers of the core map or in the inverse image by the core map of a
proper algebraic subvariety. In particular, this would prove that if there is a Zariski
dense entire curve in X, then X is special. In other words, if dim C(X) > 0, then any
nonconstant entire curve C → X is algebraically degenerate. The varieties of general
type satisfy dim C(X) = dim(X).

Using the above core map theorem, one can also reformulate a famous conjecture of
Lang: a smooth projective variety should be Brody-hyperbolic (i.e. does not contain any
entire curve) if and only if it does not contain any special subvariety. The right-to-left
implication is an easy corollary of the Green–Griffiths–Lang conjecture. More generally,
without the hyperbolicity assumption, all entire curves C→ X should be contained in
the union of the special subvarieties of X.

Since the seminal works of Bloch and Green–Griffiths [GG80], one successful approach
to study hyperbolicity problems in the usual (i.e. compact or logarithmic) settings is the
use of jet differentials vanishing on an ample divisor, which can be viewed as algebraic
differential equations satisfied by nonconstant entire curves (see [Dem97] and [DL01]).
It is most natural to define orbifold jet differentials to be the logarithmic jet differentials
acting holomorphically on orbifold entire curves (see Sect. 2).

Using jet differentials, we provide new positive results towards the orbifold Green–
Griffiths–Lang conjecture. The control of the cohomology of orbifold jet differentials
tends to be much more difficult than in the usual (i.e. compact or logarithmic) settings.
Nevertheless, for surfaces, we show that jet differentials combined with the theory of
holomorphic foliations can be used to prove hyperbolicity results, in situations where
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the tools of Nevanlinna theory (e.g. Cartan’s Second Main Theorem) cannot be used in
the current state of the art. As an illustrative example, in Sect. 4, we prove the following.

Theorem. — On X B P2, let ∆ consist of 11 lines in general position with orbifold multiplicity
2, then the orbifold Green–Griffiths–Lang conjecture holds. More precisely, any orbifold entire
curve C→ (X,∆) is constant.

More generally, we give numerical conditions for which the Riemann–Roch approach
yields the existence of orbifold jet differentials vanishing on an ample divisor and we
study various interesting geometric settings (see Sect. 4). As an example:

Theorem. — Let (X,∆) be a smooth orbifold surface such that KX is trivial and |∆| is a smooth
ample divisor. If the orbifold multiplicity is m > 5 and if c1(|∆|)2 > 10c2(X), then (X,∆) admits
orbifold jet differentials vanishing on an ample divisor.

In the direction of the Green–Griffiths–Lang conjecture in the compact case (∆ = ∅),
the jet differential approach culminates with the following remarkable recent theorem of
Demailly [Dem11]:

Theorem (Demailly). — If a variety X is of general type, it admits nonzero global jet differen-
tials vanishing on an ample divisor. (The converse holds too, by [CP15].)

This does not hold anymore in the general orbifold setting! We show that it is
actually necessary to strengthen the general type assumption in order to get orbifold jet
differentials (see Sect. 5). As an illustrative example, we prove that on P2, if ∆ is smooth
of arbitrary degree, with orbifold multiplicity 2, there is no nonzero global jet differential.
More generally, we prove the following.

Theorem. — On Pn, if ∆ is smooth of arbitrary degree, with orbifold multiplicity m 6 n, there
is no nonzero global jet differential.

Given a pair (X,∆) with ∆ =
∑

(1−1/mi)∆i, we introduce new natural orbifold structures
on X:

∆(k) B
∑
i∈I

(
1 − k/mi

)+
∆i

where x+ B max{x, 0}, and we propose the following conjecture, for which we can
provide some evidences.

Conjecture B. — A smooth orbifold (X,∆) of dimension n > 2 with smooth boundary divisor
admits nonzero global jet differentials vanishing on an ample divisor if and only if (X,∆(n)) is of
general type.

The right-to-left implication should hold without the smoothness assumption on the
boundary divisor. It holds at least (trivially) for the graded bundle associated to the
Green–Griffiths filtration of the bundle of jet differentials (cf. Proposition 2.9 and above
it for all notation):

Gr•Ek,NΩπ,∆ =
⊕

`∈(Z>0)k : ‖`‖=N

S`1Ωπ,∆(1) ⊗ S`2Ωπ,∆(2) ⊗ · · · ⊗ S`kΩπ,∆(k) .

We prove the left-to-right implication for abelian varieties (see Sect.5.2).

Theorem. — Let X be an abelian variety of dimension n > 2, and let ∆ be a smooth ample
divisor. If (X,∆) admits nonzero global jet differentials vanishing on an ample divisor then
(X,∆(n)) is of general type.
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It is then noteworthy that most known results towards Conjecture A coming from
Nevanlinna theory can be a posteriori reformulated in terms of the positivity of a pair
(X,∆(α)) (see Sect. 1). This confirms the naturality of these pairs (and also shows the
necessity to work with rational orbifold multiplicities).

The striking examples towards Conjecture B that we provide shed light on the
impossibility to solve the Green–Griffiths–Lang conjecture using only jet differentials,
and shows again the relevance of the orbifold framework to test the standard techniques
in a broader natural setting.

Acknowledgements. E.R. would like to thank Mihai Păun and Nessim Sibony for
fruitful discussions related to this article.

1. Orbifold hyperbolicity

1.1. Orbifold entire curves. — Let us consider smooth orbifold pairs (X,∆) for which
the orbifold divisor ∆ can be written

∆ B
∑
i∈I

(
1 − 1/mi

)
∆i,

where
∑

i∈I ∆i is a normal crossing divisor on X and where mi ∈ Z>0 ∪ {∞} are at first
(possibly infinite) integers. To study hyperbolicity in this setting, one shall define orbifold
entire curves. Two definitions could be considered.

Definition 1.1. — An orbifold entire curve is a (nonconstant) entire curve f : C → X
such that f (C) 1 |∆| and such that for all i ∈ I and for all t ∈ Cwith f (t) ∈ ∆i,
classical orbifold curves : the multiplicity multt( f ∗∆i) at t is a multiple of mi.
geometric orbifold curves : the multiplicity multt( f ∗∆i) at t is at least mi.

The first definition fits well with the category of orbifolds in the stacky sense (or
classical orbifolds) but is usually unsuitable for applications to hyperbolicity questions
as we shall illustrate now.

Examples constructed in [Cam05] consist in smooth and simply connected projective
surfaces S admitting a fibration g : S → P1 of general type. In the classical orbifold
category, the orbifold base of these fibrations is defined using gcd instead of inf in the
computation of the fibre multiplicities. Although the multiple fibres consist of several
components, they are constructed in such way that the “classical” orbifold base is trivial
(i.e. there are no “classical” multiple fibres). Indeed, some components have multiplicity
2, while others have multiplicity 3 (this would be impossible for elliptic fibrations).

Recall that there is no nonconstant orbifold entire curve C→ C (for both definitions)
with values in an orbifold curve (C,∆) of general type (the orbifold curve is said
hyperbolic, see Corollary 3.6 for a proof). An idea to study the hyperbolicity of the
surface S above is thus to look at the composed maps of the entire curves f : C→ S with
the fibration g.

– Working in the category of classical orbifolds, the curves g ◦ f : C→ P1 will certainly
be orbifold for the (here trivial) orbifold structure induced by the fibration, but we do
not get any restriction on f .

– However, working in the category of geometric orbifolds, the curves g ◦ f : C→ P1

will be orbifold for the general type orbifold curve (P1,∆(g)). By hyperbolicity of the
base, one obtains the expected algebraic degeneracy of any entire curve f in the fibers of
the fibration g.

More generally, without assumption on the dimension, one obtains easily algebraic
degeneracy (in the fibers of the fibration) for all fibrations of general type on a curve (see
[Cam05]).
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According to these considerations, in all this paper we will consider orbifold curves
only in the sense of the second definition. Using this definition, we can also consider
rational orbifold multiplicities mi ∈ Q. We will denote f : C → (X,∆) an entire curve
f : C → X which is orbifold for the structure (X,∆). As already mentioned in the
introduction, these curves are also the curves studied in the well-established Nevanlinna
theory of values distribution.

1.2. Hyperbolicity. — Let us study the question of hyperbolicity of orbifold pairs (X,∆).
Namely, we want to study the geometry of entire curves f : C→ (X,∆) and obtain some
results towards Conjecture A. Almost all known results in this direction come from
Nevanlinna theory, more precisely from truncated Second Main Theorems.

Projective spaces. — The first striking result, due to Cartan ([Car28],[Kob98, Cor. 3.B.46]),
can be reformulated in the following way in our terminology:

Theorem 1.2 (Cartan). — Let H1, . . . ,Hc be c hyperplanes in general position in Pn and
consider the orbifold divisor ∆ B

∑c
i=1(1 − 1/mi)Hi. If (Pn,∆(n)) is of general type, then every

orbifold entire curve f : C→ (Pn,∆) is linearly degenerate.

Note that the positivity condition involved in the statement is a strengthening of the
assumption of general type. It is typical of the kind of positivity conditions that we will
encounter.

Several generalizations of Cartan’s theorem have been obtained (see for example
[Ru09]) but applications to orbifolds are not so useful because of bad truncation levels.
Very recently a second main theorem with truncation level one has been obtained in
[HVX17], which implies the following:

Theorem 1.3. — Let H be a generic hypersurface of degree d > 15(5n + 1)nn. If m > d then
every orbifold entire curve f : C→ (Pn, (1 − 1/m)H) is algebraically degenerate.

We see that in these results one needs either many components or high lower bounds
on multiplicities. One of the goal of this work is to develop techniques which will enable
to obtain statements on orbifold entire curves without such strong conditions. Moreover,
once algebraic degeneracy of orbifold entire curves is established, it is sometimes possible
to look at stronger statements such as hyperbolicity, i.e. nonexistence of nonconstant
orbifold entire curves. This is illustrated by the following result.

Theorem 1.4 ([Rou10, Cor. 4.9]). — Let H1, . . . ,Hc be c general hypersurfaces of degrees di
in Pn and consider the orbifold divisor ∆ B

∑c
i=1(1 − 1/mi)Hi. If

∑c
i=1(1 − 1/mi)di > 2n, then

every orbifold entire curve f : C→ (Pn,∆) contained in an algebraic curve is constant.

Let us return to the example of the introduction, where we consider 11 lines in general
position in P2, with multiplicities 2. In this case, KP2 + ∆(2) = KP2 < 0, so the theorem
of Cartan cannot be applied. However, once one knows algebraic degeneracy of entire
curves (this is done in Corollary 4.3), Theorem 1.4 yields even the hyperbolicity of the
pair (cf. Corollary 4.5).

Abelian varieties. — After Cartan, one important result in the same direction is the
truncated second main theorem on (semi)-abelian varieties due to works of Noguchi,
Winkelmann and Yamanoi. In particular, one obtains the following confirmation of
Conjecture A (see for example [Yam04b]):

Theorem 1.5. — Let A be an abelian variety, let D be a smooth ample divisor and let m > 1.
Then every orbifold entire curve f : C→ (A, (1 − 1/m)D) is algebraically degenerate.
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Quotients of bounded symmetric domains. — A last class of examples is given by quotients
of bounded symmetric domains. Let D be a bounded symmetric domain such that the
Bergman metric has holomorphic sectional curvature bounded from above by −1/γ, and
Γ < Aut(D) be a neat arithmetic subgroup. Then X B D/Γ is a smooth quasi-projective
algebraic variety and admits a smooth toroidal compactification X with normal crossings
boundary H. In this setting, Aihara and Noguchi have obtained the following result
[AN91]:

Theorem 1.6. — If KX + (1 − γ/m)H is big, then every orbifold entire curve

f : C→ (X, (1 − 1/m)H)

is algebraically degenerate.

2. Orbifold jet bundles

Let us now provide more detail on the definition of orbifold jet differentials. For the
logarithmic cotangent bundle we refer to Noguchi [Nog86] and for the logarithmic jet
bundles we refer to Dethloff–Lu [DL01].

2.1. Adapted coverings. — We consider smooth orbifold pairs (X,∆). Such pairs are
studied using their orbifold cotangent bundles ([CP15]). Following the presentation
used notably in [Cla15], it is natural to define these bundles on certain Galois coverings,
the ramification of which is partially supported on ∆.

An orbifold divisor ∆ can be written uniquely

∆ B
∑
i∈I

(
1 − 1/mi

)
∆i,

where
∑

i∈I ∆i is a normal crossing divisor on X and where for each i ∈ I, mi = ai/bi, for
integers ai > bi > 0 that are coprimes if bi > 0. If bi = 0, by convention ai = 1.

A smooth projective Galois covering π : Y→ X will be termed adapted for the pair
(X,∆) if

– for any component ∆i of |∆|, π∗∆i = piDi, where pi is an integer multiple of ai and Di
is a simple normal crossing divisor;

– the support of π∗∆+Ram(π) has only normal crossings, and the support of the branch
locus of π has only normal crossings.
There always exists such an adapted covering ([Laz04, Prop. 4.1.12]).

Remark that if a covering is adapted for a divisor
∑

i∈I(1 − bi/ai)∆i, it is adapted for
any divisor

∑
i∈I(1 − b′i/a′i)∆i with a′i | ai. In particular, one could use a presentation of

orbifold pairs with ai and bi nonnecessarily relatively prime. In what follows, we will
not make this assumption anymore. It is sometimes also convenient to allow ai = bi.

For k ∈N ∪ {∞}, it will be useful to denote

∆(k) B
∑
i∈I

(
1 − k/mi

)+
∆i,

where x+ B max{x, 0}. As we shall soon illustrate, the “multiplicities” (mi−k)+ ∈ Z>0∪{∞}

appearing in the numerators of ∆(k) shall be interpreted geometrically as the minimal
multiplicities of the kth derivative of an orbifold curve along the components ∆i (see
Definition 1.1). However, the orbifold multiplicity of ∆(k) along ∆i is mi/min(k,mi).

By what preceeds, if π is an adapted covering for the pair (X,∆), it is adapted for all
the pairs (X,∆(k)). Note that ∆(1) = ∆ is the original orbifold divisor, that ∆(0) =

∑
i∈I ∆i

contains the support |∆| =
∑

i∈I : ai>bi
∆i of ∆ (round-up), and that ∆(∞) =

∑
i∈I : bi=0 ∆i is the

logarithmic part of ∆ (round-down).
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Let π : Y → X be a ∆-adapted covering. For any point y ∈ Y, there exists an open
neighbourhood U 3 y invariant under the isotropy group of y in Aut(π), equipped with
centered coordinates wi such that π(U) has coordinates zi centered in π(y) and

π(w1, . . . ,wn) = (zp1
1 , . . . , z

pn
n ),

where pi is an integer multiple of the coefficient ai of (zi = 0). Here by convention, if zi is
not involved in the local definition of ∆ then ai = bi = 1.

2.2. The orbifold cotangent bundle. — If ∆ = ∆(0), for any ∆-adapted covering π : Y→
X, we denote

Ωπ,∆ B π∗ΩX(log ∆).
Then the argument of [Cla15, Sect. 2.2] can be directly adapted to nonstrictly adapted
coverings to define the orbifold cotangent bundle to be the vector bundle Ωπ,∆ fitting in
the following short exact sequence:

(1) 0→ Ωπ,∆ ↪→ Ωπ,∆(0)
res
−→

⊕
i∈I : mi<∞

Oπ∗∆i/mi
→ 0.

Here the quotient is the composition of the pullback of the residue map

π∗res : π∗ΩX(log ∆(0))→
⊕

i∈I : mi<∞

Oπ∗∆i

with the quotients Oπ∗∆i � Oπ∗∆i/mi
([Cla15, loc. cit.]).

Alternatively, the sheaf of orbifold differential forms adapted to π : Y→ (X,∆) is the
subsheaf Ωπ,∆ ⊆ Ωπ,|∆| locally generated (in coordinates as above) by the elements

wpi/mi
i π∗(dzi/zi) = w−pi(1−1/mi)

i π∗(dzi).

Accordingly, Ωπ,∆( j) is the subsheaf locally generated by the elements

wmin( j,mi)pi/mi
i π∗(dzi/zi) = w−pi(1− j/mi)+

i π∗(dzi).

For any j > 1, one has the inclusion of sheaves

Ωπ,∆(∞) ⊆ Ωπ,∆( j+1) ⊆ Ωπ,∆( j) ⊆ Ωπ,|∆| ⊆ Ωπ,∆(0) .

The orbifold tangent bundle Ω∨π,∆ is defined to be the dual of Ωπ,∆, locally generated
by the elements

wpi(1−1/mi)
i π∗(∂/∂zi).

Clearly, for any j > 1, one has the inclusion of sheaves

Ω∨π,∆(0) ⊆ Ω∨π,|∆| ⊆ Ω∨π,∆( j) ⊆ Ω∨π,∆( j+1) ⊆ Ω∨π,∆(∞) .

2.3. Orbifold jet differentials. — We will now define orbifold jet differentials of order
k, that generalize orbifold symmetric differentials and coincide with these at order 1.

In a local trivialization as above, the coordinate system zi induce jet-coordinates d jzi on
JkX corresponding to the Taylor expansion of germs of holomorphic curves C→ X (note
that many authors use the normalization where jet-coordinates behave as derivatives
but it is preferable to rather consider the normalization where these behave as Taylor
coefficients).

Definition 2.1. — The sheaf of orbifold jet differentials of order k is the sheaf of OY-
algebras generated in local coordinates as above by the elements

w−pi(1− j/mi)+

i π∗(d jzi),

for 1 6 i 6 dim(X) and 1 6 j 6 k.
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Note that for a change of (centered) local adapted coordinates w↔ w̃ on Y, for any i with
mi > 1, up to reordering of the coordinates, one can assume that Di = (wi = 0) = (w̃i = 0).
Hence there is a fonction ϕi : Cn

→ C with ϕi(0) , 0 such that wi = w̃i · ϕi(π(w̃)) and
zi = z̃i · (ϕi(z̃))pi . One can then check that our definition in local coordinates indeed makes
sense, since a simple computation yields

w−pi(1−k/mi)+

i π∗(dkzi) =

k∑
j=0

dk− j(ϕpi
i ) ◦ π(w̃)

(ϕi ◦ π(w̃))pi(1−k/mi)+︸                    ︷︷                    ︸
with no pole in π∗ JkX

w̃−pi(1−k/mi)+

i π∗(d jz̃i)︸                  ︷︷                  ︸
pole order 6pi(1− j/mi)+

.

The sheaf of orbifold jet differentials of order k is naturally a sheaf of graded algebras
whose graded pieces are denoted Ek,NΩπ,∆, the sheaf of orbifold jet differentials of
order k and of weighted degree N. Explicitely, Ek,NΩπ,∆ is the locally free subsheaf of
π∗Ek,NΩX(log|∆|) generated in local coordinates as above by elements

dim(X)∏
i=1

(
π∗d1zi/wpi(1−1/mi)+

i

)αi,1
· · ·

(
π∗dkzi/wpi(1−k/mi)+

i

)αi,k
,

such that ‖α‖ B
∑

i, j jαi, j = N. As an example, one has E1,NΩπ,∆ = SNΩπ,∆.
It is clear from Definition 2.1 that orbifold jet differentials are logarithmic jet differentials

ω ∈ π∗Ek,NΩX(log(|∆|)) satisfying certain cancelations along D B
∑

i∈I : mi>1
pi
mi

Di, as shown
by the following rewriting of the former elements

dim(X)∏
i=1

w
pi
mi

(αi,1 min(mi,1)+···+αi,k min(mi,k))

i π∗(dzi/zi)αi,1 · · ·π∗(dkzi/zi)αi,k .

Note that the direct image of the sheaf of Aut(π)-invariant sections of Ek,NΩπ,∆

Ek,NΩX,∆ B π∗((Ek,NΩπ,∆)Aut(π)) ⊆ Ek,NΩX(log|∆|),

which is a subsheaf of logarithmic jet differentials, does not depend on the choice of
π. Explicitely, Ek,NΩX,∆ is the locally free subsheaf of Ek,NΩX(log|∆|) generated in local
coordinates as above by elements

dim(X)∏
i=1

zi

⌈
(αi,1 min(mi,1)+···+αi,k min(mi,k))/mi

⌉
(dzi/zi)αi,1 · · · (dkzi/zi)αi,k .

2.4. Orbifold jet spaces. — Next, we define the jet spaces, which have the crucial
property that every orbifold entire curve lifts to the orbifold jet spaces, in a suitable
sense.

Definition 2.2. — The orbifold jet space is defined as Jk(π,∆) B Spec
⊕

N Ek,NΩπ,∆.

In local adapted coordinates (w1, . . . ,wn) on U ⊆ Y,

Jk(π,∆)|U = U × Spec
(
C
[
w−pi(1− j/mi)+

i π∗(d jzi)
])
� U × Cnk.

The space Jk(π,∆) is the total space of a fiber bundle over X, with the natural projection,
but for k > 1 it is not a vector bundle. It is a subsheaf of π∗JkX. For any two integers k > `,
the restriction of the projection π∗JkX� π∗J`X to Jk(π,∆) yields a natural surjective map
Jk(π,∆)� J`(π,∆). For k = 1, of course, J1(π,∆) = Ω∨π,∆ is the orbifold tangent bundle.

Let f : (D, 0)→ (X, x) be a germ of holomorphic curve and let π : Y→ X be an adapted
covering for (X,∆). We can construct a Riemann surface V with a proper surjective
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holomorphic map ρ : V → D such that there is a holomorphic lifting g : V → Y of f :

(?)

V

ρ

��

g
// Y

π
��

D
f
// (X,∆)

.

Let t be a coordinate onD. Then we can lift the vector field ∂/∂t as a meromorphic
vector field on V, which we still denote ∂/∂t. Then (∂/∂t, . . . , 1/k!∂k/∂tk) is a meromorphic
section of Jk(V) and we can consider (π◦ g)∗(∂/∂t, . . . , 1/k!∂k/∂tk) to define a meromorphic
lifting j?k (g) : V d Jk(Y) d π∗Jk(X). In a local trivialization of π∗Jk(X) around π−1(x):

j?k (g) B
(
g, f ′ ◦ ρ, . . . , f (k)

◦ ρ
)
.

Hence j?k (g) : V → π∗Jk(X) is actually holomorphic.
Recall that a holomorphic curve f : D → X is termed orbifold for the pair (X,∆) if

f (D) * |∆| and if for t ∈ D such that f (t) ∈ ∆i, multt( f ∗∆i) > mi.

Proposition 2.3. — f : (D, 0) → (X, x) be a germ of holomorphic curve. The following
statements are equivalent.
(1) The curve f is orbifold for the pair (X,∆).
(2) For any (for one) commutative diagram (?) and for any orbifold form ω ∈ H0(U,Ωπ,∆) on
U ⊃ g(V), the meromorphic function (g∗ω/ρ∗ dt) is holomorphic.
(3) For any (for one) commutative diagram (?), one has for any (for some) k > 1

j?k (g) ∈ Jk(π,∆).

Proof. — The problem being local, we can reduce to the following situation

u ∈ D
ρ
��

g
// D 3 w

π
��

t ∈ D
f
// D 3 z

,

where f (t) = tαϕ(t) with ϕ(0) , 0 , g(u) = uβψ(u) with ψ(0) , 0, and ρ(u) = ur, π(w) = wp.
In particular, we have αr = βp.

A section ω of Ωπ,∆ is locally of the form

ω = w−p(1−1/m)π∗ dz = pw(p/m)−1 dw,

with 1 6 m 6 ∞. One infers that g∗ω vanishes at order β((p/m)− 1) + (β− 1) = (α/m)r− 1.
Therefore g∗ω/ρ∗ dt is holomorphic if and only if α > m. This proves the equivalence of
(1) and (2).

Now we prove the equivalence between (2) and (3) for a fixed diagram (?). Recall
that by definition, j?k (g) belongs to Jk(π,∆) if and only if ω( j?k (g)) is holomorphic for all
jet differentials ω. Such a jet differential being locally of the form∑

aα
(
π∗d1z/wp(1−1/m)+

)α1
· · ·

(
π∗dkz/wp(1−k/m)+

)αk
,

it is necessary and sufficient to check the holomorphicity of

ω j( j?k (g)) =
(
π∗d jz/wp(1− j/m)+

)
(g, f ′ ◦ ρ, . . . , f (k)

◦ ρ).

When m = ∞, one has a standard logarithmic derivative:

ω j( j?k (g)) =
f ( j)
◦ ρ

gp =
f ( j)

f
◦ ρ.

It coincides with g∗ω1/ρ∗ dt for j = 1. The vanishing order r((α − j) − α) is indeed non
negative if and only if α = ∞.
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When m is finite, if j > m, there is nothing to check. Else, a straightforward computation
shows that:

ω j( j?k (g)) =
f ( j)
◦ ρ

gp(1− j/m)
=

p!
j!(p − j)!p j ·

(
(ρ′) j f ( j)

◦ ρ

(g′) jπ( j) ◦ g

)
·

(
g∗ω1

ρ∗ dt

) j

,

(note that j 6 m < p). In particular, for j = 1, by commutativity of (?) one has

ω1( j?k (g)) = g∗ω1/ρ
∗ dt.

More generally, since (ρ′) j f ( j)
◦ ρ and (g′) jπ( j)

◦ g appear both in the development of the
jth derivative of f ◦ ρ = π ◦ g, these have the same vanishing order. Therefore ω j( j?k (g))
is holomorphic if and only if (g∗ω1/ρ∗ dt) is holomorphic. �

Note that conversely, any point of Jk(π,∆) can be obtained as j?k (g) for some diagram
(?). Hence, we record the following natural fact, for completeness.

Proposition 2.4 (Differentials of an orbifold morphism). — Letϕ : (X,∆)→ (X′,∆′) be
an orbifold morphism (see [Cam11]). Then for any commutative diagram

Y

π
��

ϕ̃
// Y′

π′

��
(X,∆)

ϕ
// (X′,∆′)

,

where the vertical maps are adapted coverings, there is a canonical map ϕ∗ : Jk(π,∆)→ Jk(π′,∆′),
coinciding with the (lift of the) kth differential of ϕ outside of ∆. At a point corresponding to the
kth jet of a diagram

V

ρ

��

g
// Y

π
��

D
f
// (X,∆)

,

it is locally given by(
g, f ′ ◦ ρ, . . . , f (k)

◦ ρ
)
7→

(
ϕ̃ ◦ g, (ϕ ◦ f )′ ◦ ρ, . . . , (ϕ ◦ f )(k)

◦ ρ
)
.

Proof. — The morphism ϕ ◦ f is an orbifold entire curve. �

Remark 2.5. — This allows one to define the pullback of orbifold jet differentials by
orbifold morphisms, in the obvious way.

Proposition 2.3 allows one to evaluate jet differentials on orbifold curves, or on their
holomorphic liftings, as follows.

Definition 2.6. — Let (X,∆) be a smooth orbifold pair and let π : Y→ X be an adapted
covering. For a holomorphic lifting g of an orbifold entire curve as in (?), and a global
orbifold jet differential P ∈ H0(Y,Ek,NΩπ,∆), we denote by g∗P the holomorphic function

g∗P B P( j?k (g)) : V → C.

Remark 2.7. — Now, note that if f : C → (X,∆) is an orbifold entire curve and if
P ∈ H0(X,Ek,NΩX,∆) is a global orbifold jet differential defined on X, for any diagram (?),
the function g∗(π∗P) is constant in the fibers of ρ. We hence get a holomorphic function
f ∗P : C→ C, that moreover does not depend on the diagram (?). It is of course nothing
but f ∗P = P( jk( f )).

Remark 2.8. — Beware that, as an example, we will from now on denote plainly by g∗ω
the function that was until now denoted by (g∗ω/ρ∗ dt).
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2.5. Filtration of jet differential bundles. — For each q = 1, . . . , k, one can define a
weighted degree ‖·‖q on (Z>0)n×k by

‖(αi, j)‖q B
q∑

j=1

n∑
i=1

jαi, j.

For q = k, it corresponds to the usual weighted degree ‖·‖. It induces a weighted degree
on meromorphic sections of π∗Ek,NΩX using the formula∥∥∥∥∥∥ ∑

‖α‖=N
uα(w)

∏
i, j

(
π∗z( j)

i

)αi, j

∥∥∥∥∥∥
q

B min(‖α‖q : uα . 0).

Proposition 2.9 (Green–Griffiths filtration). — There is a natural filtration of Ek,NΩπ,∆

induced by the weighted degrees ‖·‖k−1 . . . , ‖·‖1, with associated graded bundle

Gr•Ek,NΩπ,∆ =
⊕

`∈(Z>0)k : ‖`‖=N

S`1Ωπ,∆(1) ⊗ S`2Ωπ,∆(2) ⊗ · · · ⊗ S`kΩπ,∆(k) .

Proof. — We proceed by induction on the length of tensor products in the summand: we
will prove that there is a natural filtration of Ek,NΩπ,∆ induced by the weighted degrees
‖·‖k−1 . . . , ‖·‖p, with associated graded bundle

Grp
•Ek,NΩπ,∆ =

⊕
p`p+···+k`k6N

Ep,N−p`p−···−k`kΩπ,∆ ⊗ S`pΩπ,∆(p) ⊗ · · · ⊗ S`kΩπ,∆(k) .

Since E1,`Ωπ,∆ = S`Ωπ,∆, the sought statement corresponds indeed to the case p = 1.
The weighted degree ‖·‖k−1 induces a descending filtration by subbundles

Ek−1,NΩπ,∆ � FN
k−1 ⊂ · · · ⊂ Fw+1

k−1 ⊂ Fw
k−1 ⊂ · · · ⊂ F0

k−1 = Ek,NΩπ,∆

of Ek,NΩπ,∆, with

Fw
k−1 B

{
ω ∈ Ek,NΩπ,∆ | ‖ω‖k−1 > w

}
.

Note that these are indeed subbundles because in a coordinate change, the weighted
degree ‖·‖k−1 can only increase. This is an easy corollary of the upper-triangularity of the
Faà di Bruno formula.

We claim that the graded pieces are

Fw
k−1/F

w+1
k−1 �

0 if k - N − w,
Ek−1,wΩπ,∆ ⊗ S`kΩπ,∆(k) if w = N − k`k,

and the announced result follows. The proof of the claim is standard. Let us simply
point out that it relies on the simple observation that if one mods out by jet-coordinates
of order less than k, dk(φ ◦ z) = (φ′ ◦ z) · dkz; hence, in the filtration, polynomials in
jet-coordinates of order k behave under coordinates changes φ in the exact same way as
symmetric differential forms (i.e. polynomials in jet-coordinates of order 1) do. Here the
slight subtelty is that we consider orbifold jet differentials: the pole order of a kth jet
coordinate w−pi(1−k/mi)+

i π∗dkzi for the pair (X,∆) is not the same as the pole order of the

1st jet-coordinate w−pi(1−1/mi)
i π∗ dzi for the pair (X,∆) but rather the same as the pole order

of the 1st jet-coordinate w−pi(1−k/mi)+

i π∗ dzi for the pair (X,∆(k)) (cf. Definition 2.1). �

Remark 2.10. — Notice that for k� 1, one has ∆(k) = ∆(∞), the logarithmic part of ∆.
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2.6. Euler characteristic of the Green–Griffiths bundle. — Following Green–Griffiths,
we now use the graduation obtained in Proposition 2.9 and the Riemann–Roch formula
to compute the Euler characteristic of Ek,NΩπ,∆.

Proposition 2.11. — The Euler characteristic of Ek,NΩπ,∆ has the asymptotic expansion in N,
for fixed k:

χ
(
Ek,NΩπ,∆

)
=

N(k+1)n−1

(k!)n((k + 1)n − 1)!
χk(π,∆) + O

(
N(k+1)n−2

)
,

where

χk(π,∆) B (−1)n
∑

q∈Nk : |q|=n

sq1(Ωπ,∆(1))
1q1

· · ·
sqk(Ωπ,∆(k))

kqk
.

Proof. — We follow in spirit Green and Griffiths [GG80, Prop. 1.10]. By Proposition 2.9

ch Ek,NΩπ,∆ =
∑
‖`‖=N

ch(S`1Ωπ,∆(1)) ch(S`2Ωπ,∆(2)) · · · ch(S`kΩπ,∆(k)).

For i = 1, . . . , k, the orbifold cotangent bundle Ωπ,∆(i) is a vector bundle of rank n. Let
λ(i)

1 , . . . , λ
(i)
n be a set of Chern roots for it. In terms of these Chern roots, we get

ch Ek,NΩπ,∆ =
∑

∑k
i=1

∑n
j=1 ixi, j=N

exp
( k∑

i=1

n∑
j=1

xi, jλ
(i)
j

)
.

Using the sum-integral formula yields

ch Ek,NΩπ,∆ = Nkn−1
∫

∑k
i=1

∑n
j=1 ixi, j=1

exp
( k∑

i=1

n∑
j=1

Nxi, jλ
(i)
j

)
dω + O(Nkn−2).

Expanding the exponential:

ch Ek,NΩπ,∆ = N(k+1)n−1
∫

∑k
i=1

∑n
j=1 ixi, j=1

(∑k
i=1

∑n
j=1 xi, jλ

(i)
j

)n

n!
dω + O(N(k+1)n−2).

Rescaling:

ch Ek,NΩπ,∆ = N(k+1)n−1
∫

∑k
i=1

∑n
j=1 xi, j=1

(∑k
i=1

∑n
j=1 xi, j

λ(i)
j

i

)n

n!
dω

(k!)n + O(N(k+1)n−2).

Using multinomial formula, one gets

ch Ek,mΩπ,∆ = N(k+1)n−1
∑

∑
qi, j=n

(λ(1)
1 )q1,1 · · · (λ(k)

n )qk,n

1
∑

q1, j · · · k
∑

qk, j

∫
∑k

i=1
∑n

j=1 xi, j=1

xq1,1
1,1

q1,1!
· · ·

xqk,n

k,n

qk,n!
dω

(k!)n +O(N(k+1)n−2).

For any q’s with
∑

qi, j = n, by calculus:∫
∑k

i=1
∑n

j=1 xi, j=1

xq1,1
1,1

q1,1!
· · ·

xqk,n

k,n

qk,n!
dω =

1
((k + 1)n − 1)!

.

Factorizing:

ch Ek,NΩπ,∆ =
N(k+1)n−1

(k!)n((k + 1)n − 1)!

∑
∑

qi, j=n

(λ(1)
1 )q1,1 · · · (λ(k)

n )qk,n

1
∑

q1, j · · · k
∑

qk, j
+ O(N(k+1)n−2).
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By plain linear algebra manipulations, one then gets

ch Ek,NΩπ,∆ =
N(k+1)n−1

(k!)n((k + 1)n − 1)!

∑
∑

qi=n

hq1(λ(1)) · · · hqk(λ
(k))

1q1 · · · kqk
+ O(N(k+1)n−2),

where hq is the qth complete symmetric function. It remains to note that a definition of
Segre classes is

sq(Ωπ,∆(i)) = (−1)qhq(λ(i)).

This proves the sought formula for the asymptotic Euler characteristic, by the Riemann–
Roch theorem. �

For large jet orders, the asymptotic Euler characteristic is controlled by the canonical
bundle of the logarithmic part of ∆.

Proposition 2.12. — For an adapted covering π : Y→ (X,∆) of a smooth orbifold pair,

χk(π,∆) =

(
KX + ∆(∞)

)n

n!
(log k)n + O

(
(log k)n−1

)
.

Proof. — We follow again Green–Griffiths [GG80], with some slight modifications.
Recall that one can fix some i such that ∆(p) coincides with ∆(∞) for p > i. Then:

∑
q1+···+qk=n

sq1(Ωπ,∆(1)) · · · sqk(Ωπ,∆(k))

1q1 · · · kqk
=

∑
q1+···+qi+q=n

sq1(Ωπ,∆(1)) · · · sqi(Ωπ,∆(i))
1q1 · · · iqi

∑
qi+1+···+qk=q

sqi+1(Ωπ,∆(∞)) · · · sqk(Ωπ,∆(∞))
(i + 1)qi+1 · · · kqk

 .
Reasoning in the exact same way as in [GG80]:

∑
q1+···+qk=n

sq1(Ωπ,∆(1)) · · · sqk(Ωπ,∆(k))

1q1 · · · kqk
=

∑
q1+···+qi+q=n

sq1(Ωπ,∆(1)) · · · sqi(Ωπ,∆(i))
1q1 · · · iqi︸                         ︷︷                         ︸

O(1)

(
(log k)q

q!
s1(Ωπ,∆(∞))q + O

(
(log k)q−1

))
.

Hence, keeping only the term in (log k)n (for which q1 = · · · = qi = 0),

(−1)n
∑

q1+···+qk=n

sq1(Ωπ,∆(1)) · · · sqk(Ωπ,∆(k))

1q1 · · · kqk
=

(log k)n

n!
c1(Ωπ,∆(∞))n + O

(
(log k)n−1

)
.

This finishes the proof. �

Remark 2.13. — Note that, in contrast with the compact setting and the logarithmic
setting, here the condition (KX + ∆(∞))n > 0 does not coincide with the condition of
orbifold general type, since e.g. it reduces to (KX)n > 0 when ∆ , 0 but ∆(∞) = 0. This
tends to show that in order to treat the orbifold Green–Griffiths conjecture one should
also deal with higher order cohomology spaces.
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3. Tautological inequalities and vanishing theorems

3.1. Nevanlinna Theory and the tautological inequality. — We first recall useful
results of Nevanlinna theory, following the point of view of Yamanoi in [Yam04a] (see
also the more recent [Yam15] and [PS14]). It shall soon appear that the orbifold setting
fits perfectly with this point of view (cf. Theorem 3.5). Let Y be a smooth projective
manifold. We consider holomorphic curves g : V → Y, where V is a Riemann surface
with a proper surjective holomorphic map ρ : V → C (which may be the identity):

(2)
V
ρ
��

g
// Y

C

.

Let t be the standard complex coordinate on C and recall that we denote by ∂/∂t the
meromorphic lifting to V of the vector field ∂/∂t.

For a real r > 0, let V(r) B {v ∈ V | |ρ(v)| < r}. Recall the main Nevanlinna functions.
For an effective divisor D B (σ = 0) on Y, and a hermitian metric ‖·‖ on O(D),

– the proximity function to D of g is defined as

mg(r,D) B
1

2πdegρ

∫
∂V(r)

log+ 1
‖σ ◦ g‖

· ρ∗ dt;

– the counting function of D is defined as

N(r, g∗D) B
1

degρ

∫ r

1

 ∑
u∈V(s)

ordu g∗D

 ds
s

;

– the truncated counting function of D is defined as

N1(r, g∗D) B
1

degρ

∫ r

1

 ∑
u∈V(s)

min{1, ordu g∗D}

 ds
s
.

Lastly, for a line bundle L on Y, the height function of g with respect to L is defined as

Tg(r,L) B
1

degρ

∫ r

1

(∫
V(s)

g∗c1(L)
)

ds
s

+ O(1).

Recall that the height function enjoys boundedness, additivity and functoriallity proper-
ties.

The Nevanlinna functions are related by the following fundamental result.

Theorem 3.1 (First Main Theorem). — Assume that g(V) 1 SuppD. One has

Tg(r,O(D)) = N(r, g∗D) + mg(r,D) + O(1).

Let us next recall the classical Lemma on logarithmic derivatives.

Theorem 3.2 ([Nog85, Yam04a]). — Let ξ be a meromorphic function on V considered as a
holomorphic function V → P1. Then for any ` > 1, one has

1
2πdegρ

∫
∂V(r)

log+

∣∣∣∣∣∣∣
∂`

∂t`ξ

ξ

∣∣∣∣∣∣∣ · ρ∗ dt 6 O(log+ Tξ(r, [∞])) + O(log r) ‖.

The symbol ‖ means that the inequality holds for r > 0 outside a set of finite linear measure and
log+ x = max{log x, 0}.

A geometrical consequence of the Lemma on logarithmic derivatives is McQuillan’s
“tautological inequality”. In the non-orbifold setting: let g[1] denote the canonical lifting
of a nonconstant holomorphic map g : V → Y to P(ΩY). From Vojta [Voj11, Th. 29.6]
(see also [PS14]), in the classical setting (without boundary):
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Theorem 3.3 (Tautological Inequality). — For an ample line bundle A→ Y, one has:

Tg[1](r,OP(ΩY)(1)) 6 N(r,Ram(ρ)) + O(log+ Tg(r,A)) + O(log r) ‖.

We will now extend this classical result to the orbifold setting. Let (X,∆) be a smooth
orbifold pair and letπ : Y→ X be a ∆-adapted Galois covering. We consider holomorphic
liftings g : V → Y of orbifold entire curves f : C→ (X,∆), where V is a Riemann surface
with a proper surjective holomorphic map ρ : V → C. Namely the curves f and g fit in
the following commutative diagram:

(3)

V

ρ

��

g
// Y

π
��

C
f
// (X,∆)

.

According to Proposition 2.3, using this diagram, one can then define j?1 (g) : V →
J1(π,∆) = Ω∨π,∆ and thus g[1] : V → P(Ωπ,∆). We fix this notation for later use. Recall also
that g∗P refers to the holomorphic function introduced in Definition 2.6.

Viewing any jet differential as a polynomial in the orbifold jet coordinates with
holomorphic coefficients, one obtains the following important intermediate result.

Corollary 3.4 (Lemma on logarithmic derivatives for orbifold jet differentials)
Let P ∈ H0(Y,Ek,mΩπ,∆) be an orbifold jet differential. Let A→ X be an ample line bundle. If

g∗P . 0, then one has:

1
2πdegρ

∫
∂V(r)

log+
|g∗P| · ρ∗ dt 6 O(log+ Tg(r, π∗A)) + O(log r) ‖.

Proof. — We refer to the proof of Theorem A7.5.4 in [Ru01], which can easily be adapted.
In order to use Theorem 3.2, remind that the orbifold jet coordinates of g are obtained by
applying ∂`/∂t` to π ◦ g coordinatewise. �

A key feature of the orbifold tautological inequality is that, using the orbifold cotangent
bundle instead of the usual cotangent bundle, one is able to get rid of the ramification
term N(r,Ram(ρ)) for the maps g stemming from orbifold entire curves:

Theorem 3.5 (Orbifold Tautological Inequality). — Let g : V → Y be the holomorphic
lifting of an orbifold entire curve f : C→ (X,∆). For an ample line bundle A→ X, one has:

Tg[1](r,OP(Ωπ,∆)(1)) 6 O(log+ Tg(r, π∗A)) + O(log r) ‖.

Proof. — We follow the approach used by Vojta [Voj11], to which we refer for the
geometric interpretation of the proof. The rough idea is to see the integral in the Lemma
on logarithmic derivatives for jet differentials as a proximity function to infinity, in an
appropriate compactification. Let S be the total space of Ω∨π,∆ and let S = P(Ωπ,∆ ⊕ OY).
Let [∞] denote the divisor S \ S. Let p : P→ S be the blow-up of S along the image [0] of
the zero section, let E denote its exceptional divisor and let q : P→ P(Ωπ,∆). There is a
lifting g�[1] of g in P(Ωπ,∆ ⊕OY) and a lifting φ to P. To sum up, one has the commutative
diagram:

P
q

{{

p

%%
V

ρ

��

g[1]

22

g

77

g�[1]

88

φ
11

P(Ωπ,∆) // Y P(Ωπ,∆ ⊕ OY)oo

C
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One has then (cf. [Voj11] for more details):

p∗OP(Ωπ,∆⊕OY)(1) � q∗OP(Ωπ,∆)(1) ⊗ O(E) � q∗O([∞]) ⊗ O(E).

Hence:

Tg[1](r,OP(Ωπ,∆)(1)) = Tφ(r, q∗OP(Ωπ,∆)(1)) + O(1) = Tg�[1]
(r, [∞]) − Tφ(r,E) + O(1).

Now, since g is nonconstant, φ(V) 1 E, and Tφ(r,E) is bounded from below. It remains
to control Tg�[1]

(r, [∞]), using the First Main Theorem. From the Lemma on logarithmic
derivatives, mg�[1]

(r, [∞]) is bounded from above by O(log+ Tg(r, π∗A)) + O(log r). Lastly,
since g is the holomorphic lifting of an orbifold curve, the map g�[1] is holomorphic (cf.
Prop. 2.3), and therefore Ng�[1]

(r, [∞]) = 0. This ends the proof. �

As an immediate corollary, one recovers the hyperbolicity of orbifold curves of general
type.

Corollary 3.6. — Let (X,∆) be a smooth orbifold curve and let A→ X be an ample line bundle.
For any orbifold entire curve f : C→ (X,∆), one has:

T f (r,KX + ∆) 6 O(log+ T f (r,A)) + O(log r) ‖.

In particular, if KX + ∆ = A > 0 then there is no entire curve f : C→ (X,∆).

Proof. — For curves, the projection p : P(Ωπ,∆) → Y is an isomorphism and O(1) �
p∗Ωπ,∆ � p∗π∗(KX + ∆). Therefore by Theorem 3.5, one has:

T f (r,KX + ∆) 6 O(log+ T f (r,A)) + O(log r) ‖. �

3.2. A vanishing theorem for orbifold jet differentials. — Another immediate appli-
cation of the tautological inequality is the following vanishing theorem for orbifold
symmetric differentials vanishing on an ample divisor.

Corollary 3.7. — Let (X,∆) be a smooth orbifold pair, and let π : Y → X be an adapted
covering. If P ∈ H0(Y,S`Ωπ,∆ ⊗ π∗A∨) is a global orbifold symmetric differential vanishing on
an ample divisor A→ X, then for any holomorphic lifting g : V → Y of an orbifold entire curve
f : C→ (X,∆), one has g∗P ≡ 0.

Proof. — Considering the projectivization p : P(Ωπ,∆)→ Y, the symmetric differential P
can be seen as a global section P̃ ∈ H0(P(Ωπ,∆),L), whereL B OP(Ωπ,∆)(`)⊗ p∗(π∗A∨). Let
g[1] be the lifting to P(Ωπ,∆) of g (such that g = p ◦ g[1]). Should g∗P = P̃(g[1]) not vanish,
then, by the boundedness, additivity and functoriallity properties of the height function,
one would get that

Tg[1](r,L) = ` · Tg[1](r,O(1)) − Tg(r, π∗A)

is bounded from below, which would contradict Theorem 3.5. �

We shall now extend this result to higher order jet differentials. Let us first settle the
case of orbifold curves, in which the existence of orbifold jet differentials gives us an
even stronger conclusion.

Lemma 3.8. — If an orbifold pair (X,∆) is not of general type, then

H0(Y,Ek,NΩπ,∆ ⊗ π
∗A∨) = {0},

for any adapted covering π : Y→ X, for all k > 1 and N > 1, for any ample line bundle A→ X.
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Proof. — Recall the graduation obtained from the Green–Griffiths filtration:

Grad• Ek,NΩπ,∆ ⊗ π
∗A∨ =

⊕
‖`‖=N

S`1Ωπ,∆ ⊗ S`2Ωπ,∆(2) ⊗ · · · ⊗ S`kΩπ,∆(k) ⊗ π∗A∨,

and remark that for j = 1, . . . , k, one has S` jΩπ,∆( j) ⊆ S` jΩπ,∆ ⊆ (Ωπ,∆)⊗` j . Recall also
from [CP15] that if for some integer q > 0 and some ample line bundle A, the vector
bundle (Ωπ,∆)⊗q

⊗ π∗A∨ has a nonzero global section, then the pair (X,∆) is of general
type. One infers that under the assumption of the Lemma, for any `, the graded bundle
Grad• Ek,NΩπ,∆ ⊗ π∗A∨ has no global section. This fact holds a fortiori for the bundle
Ek,NΩπ,∆ ⊗ π∗A∨ itself. �

Corollary 3.9. — If an orbifold curve (X,∆) admits a nonconstant orbifold entire curve
f : C→ (X,∆), then

H0(Y,Ek,NΩπ,∆ ⊗ π
∗A∨) = {0},

for any adapted covering π : Y→ X, for all k > 1 and N > 1, for any ample line bundle A→ X.

Proof. — From [CW09] we have that (X,∆) contains an orbifold entire curve f : C→ (X,∆)
if and only if deg(KX + ∆) 6 0. �

Now, we can extend the fundamental vanishing theorem of the jet differentials theory
to the orbifold setting.

Theorem 3.10. — Let (X,∆) be a smooth orbifold pair, and letπ : Y→ X be an adapted covering.
If P ∈ H0(Y,Ek,NΩπ,∆ ⊗ π∗A∨) is a global orbifold jet differential vanishing on an ample divisor
A→ X, then for any holomorphic lifting g : V → Y of an orbifold entire curve, one has g∗P ≡ 0.

Proof. — We follow the classical proof (see for example Theorem A7.5.5 in [Ru01]). Let
us see that f has to extend to a rational curve. Then, one gets an orbifold morphism
f̄ : (P1,D) → (X,∆), where D is necessarily supported at infinity, together with a
holomorphic lifting ḡ. By Corollary 3.9, it follows without difficulty that g∗P ≡ 0.

To show that f extends to a rational curve, by a classical result, it suffices to establish
that T f (r,A) = O(log r), or equivalently that Tg(r, π∗A) = O(log r).

Since P vanishes on A, viewing g∗P as a holomorphic function V → P1, one has

Tg(r, π∗A) 6 O(Tg∗P(r, [∞])).

Now, recall from Definition 2.6 that the function g∗P : V → C is holomorphic. Hence
Ng∗P,[∞] ≡ 0. Furthermore, applying Corollary 3.4, one obtains that the proximity function
to infinity of g∗P satisfies:

mg∗P(r, [∞]) = O(log+ Tg(r, π∗A)) + O(log r) ‖.

Therefore, one has

Tg(r, π∗A) 6 O(log+ Tg(r, π∗A)) + O(log r).

It follows that Tg(r, π∗A) = O(log r), which ends the proof. �

A second version of the vanishing theorem, expressed directly on X, is the following.

Corollary 3.11. — If P ∈ H0(X,Ek,NΩX,∆ ⊗ A∨) is a global orbifold jet differential vanishing
on an ample divisor A→ X, then for any orbifold entire curve f : C→ (X,∆), one has f ∗P ≡ 0.

Proof. — It follows at once from Remark 2.7 and from Theorem 3.10. �
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3.3. Orbifold curves tangent to holomorphic foliations. — In this section, we will
extend to the orbifold setting McQuillan’s degeneracy results for entire curves tangent
to foliations on surfaces of general type [McQ98] (see also [EG03] for the logarithmic
setting and [PS14] for related results in the setting of parabolic Riemann surfaces).

Theorem 3.12. — Let (X,∆) be a smooth orbifold surface of general type with a holomorphic
foliation F . Any orbifold entire curve tangent to F is algebraically degenerate.

Let D B d∆e and f[1] : C→ P(ΩX(log D)) be the lifting of f . We shall use the following
tautological inequality due to McQuillan (see [Voj11]):

(4) T f[1](r,O(1)) 6 N1(r, f ∗D) + O(log+ T f (r,A)) + O(log r) ‖,

where A is an ample line bundle on X.
Let us recall the construction of Ahlfors currents associated to entire curves. Let

η ∈ A2(X) be a 2-form. Let Tr(η) B
T f ,η(r)
T f ,ω(r) . This defines a family of positive currents of

bounded mass from which one can extract a closed postive current T B limrn Trn .

Proof. — We suppose that f : C→ (X,∆) is a Zariski-dense orbifold curve. Let us prove
that

T(KX + ∆) 6 0,
thus contradicting that (X,∆) is of general type.

Let S ⊂ P(ΩX(log D)) be the surface induced by the foliation F and let π : S→ X be
the projection. S contains f[1](C) and , supposing that S dominates X, S is equipped with
a foliation F0. After some blow ups, we obtain a foliated smooth surface (Sm,Dm,Fm)→
(S, π−1(D),F0), i.e Sm is smooth, Dm is normal crossing and Fm has reduced singularities.
Let Dm = C + B where C is the invariant part of Dm by Fm. We have an exact sequence

0→N ∗(C)→ T∗Sm
(log Dm)→ KFm(B).IZ → 0,

where IZ is an ideal supported on the singularity set Z of Fm.
Now, we apply the logarithmic tautological inequality (4) which gives

T fm[1]
(r,L) 6 N1(r, f ∗mDm) + O(log+ T f (r,A) + log r) ‖,

where L = OP(ΩS̃(log Dm))(1), fm and fm[1] are the lifts of f .
We have

L|Y = p∗KFm(B) ⊗ O(−Em),
where L|Y denotes the restriction of L to the graph Y of the foliation, p : Y → Sm the
projection and Em is the exceptional divisor.

Therefore we obtain

T f ,KX+D(r) 6 T fm,KSm +Dm(r) 6 N1(r, f ∗D)+T fm[1]
(r,Em)+T fm(r,N ∗(C))+O(log+ T f (r,A)+log r) ‖.

Since f is an orbifold curve, we have

miN1(r, f ∗∆i) 6 N(r, f ∗∆i) 6 T f (r,∆i).

This gives
T(KX + ∆) 6 T′m(Em) + Tm(N ∗(C)),

where T′m is the current associated to fm[1].
To finish the proof, we shall now use the two following results of Brunella [Bru99]:

Tm(N ∗(C)) 6 0 and Tm(Em)→ 0 as m→∞ i.e. performing infinitely many blow ups. �

Let us say that a holomorphic foliation F on X is a ∆-foliation if π?F is a subsheaf of
the orbifold tangent bundle Tπ,∆ := Ω∨π,∆.

Theorem 3.13. — Let (X,∆) be a smooth orbifold surface of general type with a ∆-holomorphic
foliation F with reduced singularities, then any (orbifold or not) entire curve tangent to F is
algebraically degenerate.
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Proof. — We suppose that f : C → X is a Zariski-dense curve tangent to F . We have
the exact sequence 0→ F → TX →N . We have T(KF ) 6 0 by a result of McQuillan (see
[Bru99]). We also have T(N∗(∆)) 6 T(N∗(d∆e)) 6 0 by the already mentioned result of
Brunella. Therefore we obtain, T(KX +∆) = T(KF +N∗(∆)) 6 0, giving a contradiction. �

Corollary 3.14. — Let (X,∆) be a canonical orbifold surface of general type (i.e. the pair (X,∆)
has canonical singularities). If F is a ∆-holomorphic foliation then any entire curve tangent to
F is algebraically degenerate.

Proof. — By Seidenberg’s theorem we can do some blow ups such that on X̃ the induced
foliation F̃ has only reduced singularities. Let us denote ∆̃ the strict transform of ∆.
Then (X̃, ∆̃) is a smooth orbifold of general type thanks to the hypothesis that (X,∆) is
canonical. Therefore we can apply Theorem 3.13 to conclude. �

4. Existence of orbifold jet differentials on varieties of general type

4.1. Order-one jet differentials. — An immediate application of Theorem 3.12 is the
following result (see also [Rou10]).

Theorem 4.1. — Let (X,∆) be a smooth orbifold surface of general type. If one has

H0
(
X,

⊕
N>1SNΩX,∆ ⊗ L∨

)
, {0},

for some ample line bundle L on X, then there exists a proper subvariety Z ( X such that every
nonconstant orbifold entire curve f : C→ (X,∆) satisfies f (C) ⊆ Z.

As a consequence, one obtains the following orbifold version of results of Bogomolov
and Mc Quillan [McQ98] (see also [Rou12]).

Theorem 4.2. — A smooth orbifold surface of general type (X,∆) such that

χ1(π,∆) =
(
c1(Ωπ,∆)2

− c2(Ωπ,∆)
)
> 0

satisfies the orbifold Green–Griffiths–Lang conjecture A.

An interesting application of the preceding result is the following one, already
discussed in the introduction.

Corollary 4.3. — Let X = P2 and ∆ =
∑c

i=1

(
1 − 1

2

)
Li where Li are lines in general position.

If c > 11 then (X,∆) satisfies Conjecture A.

More generally, we get:

Corollary 4.4. — Let ∆ be an orbifold divisor on P2 with orbifold multiplicities mi > 2. If ∆
has either

– at least 4 components of degree at least 11,
– at least 5 components of degree at least 6,
– at least 6 components of degree at least 4,
– at least 7 components of degree at least 3,
– at least 8 components of degree at least 2,
– or at least 11 components (of arbitrary degrees),

then (P2,∆) satisfies Conjecture A.

Proof. — Considering the conjecture and the definition of orbifold curves, one can
always remove some components (i.e. take mi = 1), and one can always assume that all
remaining orbifold multiplicities are equal to 2. Let us thus consider an orbifold divisor
with c components, of respective degrees d1, . . . , dc, having all orbifold multiplicity 2. By
Theorem 4.2, it is then sufficient to prove that the orbifold pairs under consideration are
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of general type and satisfy χ1 = s2(Ωπ,∆) > 0. Namely, these have to satisfy d1 + · · ·+dc > 6
and

χ1 = deg(π)

6 − 3
∑

16i6c di

2
+

∑
16i< j6c did j −

∑
16i6c d2

i

4

 > 0.

The first condition is clearly satisfied. The partial second derivative with respect to di of
the second expression is (-1/2), whence it is a concave function. Let dm be the minimum of
the di’s and dM their maximum. On the convex set {dm 6 di 6 dM∀i} ⊆ Rc, the minimum
of the concave function under consideration is attained in an extremal point. At this
point, cm of the di’s have the value dm and the others have the value dM. The minimum
value is then

6 − 3cm
dm

2
− 3(c − cm)

dM

2
+ cm(cm − 3)

d2
m

8
+ cm(c − cm)

dmdM

4
+ (c − cm)(c − cm − 3)

d2
M

8
.

Moreover, the derivative of this value with respect to dM must be nonnegative, and the
derivative with respect to dm must be nonpositive, namely:

(c−cm)
(
−3
2

+ cm
dm

4
+ (c − cm − 3)

dM

4

)
> 0 and cm

(
−3
2

+ (cm − 3)
dm

4
+ (c − cm)

dM

4

)
6 0.

One infers that if cm < {0, c} then:

3
4

(dm − dM) =

(
−3
2

+ cm
dm

4
+ (c − cm − 3)

dM

4

)
−

(
−3
2

+ (cm − 3)
dm

4
+ (c − cm)

dM

4

)
> 0.

Therefore dm = dM. Hence in any case, the minimum is attained in a point where all
degrees are equal. We can thus assume that all degrees are d. Then

χ1 = deg(π)
(
6 −

3c
2

d +
c(c − 3)

8
d2

)
.

It remains to check that this polynomial in d has a positive leading coefficients for c > 4,
that its discriminant is negative for c > 12, and to compute the largest root for 4 6 c 6 12.
These are easy computations. �

Up to passing to general hypersurfaces, we can strengthen the conclusion of Corol-
lary 4.4 using Theorem 1.4, since in all the considered cases

∑
(1 − 1/mi)di > 4.

Corollary 4.5. — If ∆ is a general orbifold divisor on P2 satisfying the same assumptions, then
all orbifold entire curves C→ (P2,∆) are constant.

4.2. Existence of orbifold jet differentials on surfaces. — We will now consider higher
order jet differentials. We shall use the following vanishing theorem for orbifold tensors
recently obtained by Guenancia and Păun.

Theorem 4.6 ([GP16]). — Consider an adapted covering π : Y→ (X,∆) of a smooth orbifold
pair with KX + ∆ ample. For all r > s one has

H0
(
Y, (Ω∨π,∆)⊗r

⊗ (Ωπ,∆)⊗s
)

= {0}.

This result allows us to use the Riemann–Roch approach on surfaces.

Corollary 4.7. — Consider an adapted covering π : Y→ (X,∆) of a smooth orbifold surface of
general type. For each integer k such that KX + ∆(k) is ample:

dim H0
(
Y,Ek,NΩπ,∆

)
>

N�1
χ(Ek,NΩπ,∆).
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Proof. — Since we are in the surface case, it is sufficient to prove that for large N,
H2(Y,Ek,NΩπ,∆

)
= {0}. We use the graduation induced by the Green–Griffiths filtration

Grad• Ek,NΩπ,∆ =
⊕
‖`‖=N

S`1Ωπ,∆(1) ⊗ S`2Ωπ,∆(2) ⊗ · · · ⊗ S`kΩπ,∆(k) .

This shows that it actually sufficient to prove that for all ` ∈Nk with ‖`‖ = N

H2
(
Y,S`1Ωπ,∆(1) ⊗ S`2Ωπ,∆(2) ⊗ · · · ⊗ S`kΩπ,∆(k)

)
= {0}.

Using Serre duality, this is equivalent to

H0
(
Y,S`1Ω∨π,∆(1) ⊗ S`2Ω∨π,∆(2) ⊗ · · · ⊗ S`kΩ∨π,∆(k) ⊗ O(KY)

)
= {0}.

Now, we remark that we have an injection

S`1Ω∨π,∆(1) ⊗ S`2Ω∨π,∆(2) ⊗ · · · ⊗ S`kΩ∨π,∆(k) ↪→ (Ω∨π,∆(k))⊗|`|.

On the other hand, choosing p such that p · π∗(KX + ∆(k)) − KY > 0, we obtain

O(KY) ↪→ O(p · π∗(KX + ∆(k))) ↪→ (Ωπ,∆(k))⊗2p.

From Theorem 4.6, we see that

S`1Ω∨π,∆(1) ⊗ S`2Ω∨π,∆(2) ⊗ · · · ⊗ S`kΩ∨π,∆(k) ⊗ O(KY) ↪→ (Ω∨π,∆(k))⊗|`| ⊗ (Ωπ,∆(k))⊗2p

has no global sections as soon as |`| > 2p. Since |`| > N
k , this is achieved as soon as N is

large enough. �

4.3. Projective plane. — We derive the following result on P2, for smooth boundary
divisors.

Proposition 4.8. — Every entire curve f : C → P2 which ramifies over a smooth curve C
of degree d > 12 with sufficiently high order (> amin depending on d) satisfies an algebraic
differential equation of order 2.

d amin d amin d amin d amin
12 107 16 19 20–21 12 31–38 8
13 44 17 16 22–23 11 39–60 7
14 29 18 15 24–25 10 61–245 6
15 22 19 13 26–30 9 246–∞ 5

Table 1. Minimal ramification orders for Prop.4.8

Proof. — If a > 2d/(d − 3) then KP2 + ∆(2) > 0, which allows us to apply Corollary 4.7.
Now, for k = 2, a > 2, Proposition 2.11 yields

χ
(
E2,NΩ(π,∆)

)
=

N5

1920
deg(π)

a2

(
(48 − 27d + 2d2)a2

− 12(d − 3)da + 12d2
)

+ O
(
N4

)
.

The result follows. �

Remark 4.9. — By Proposition 5.1 below, jet order 2 is minimal for orbifold surfaces
with smooth boundaries.

Remark 4.10. — We have seen the asymptotic formula

χ
(
Ek,NΩπ,∆

)
=

N(k+1)n−1

(k!)n((k + 1)n − 1)!

(
c1(Ωπ,∆(∞))n

n!
(log k)n + O

(
(log k)n−1

))
+ O

(
N(k+1)n−2

)
.

Since c2
1(P2) > 0, this Euler characteristic is always positive for k large enough. However,

it is impossible to guarantee KX + ∆(k) > 0 for such asymptotic jet orders k.
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4.4. Surfaces with trivial canonical bundle. — We shall now implement the Riemann–
Roch approach in the interesting case of orbifold surfaces when the ambient surface has
trivial canonical bundle.

Theorem 4.11. — If (X,∆) is a smooth orbifold surface with KX ≡ 0, ∆ ample and χk(π,∆) > 0,
then for any ample line bundle L→ X,

H0
(⊕

N>1Ek,NΩπ,∆ ⊗ L∨
)
, {0}.

Proof. — The case k = 1 follows at once from Proposition 2.11 and Corollary 4.7.
Assume now that χk(π,∆) > 0 for k > 1. Since H0(⊕N>1Ek−1,NΩπ,∆ ⊗ L∨) ↪→

H0(⊕N>1Ek,NΩπ,∆ ⊗ L∨), reasoning by induction, one can moreover assume that
χk−1(π,∆) 6 0. We then claim that KX + ∆(k) > 0, and the result follows by Corollary 4.7.

Indeed, if not, then KX + ∆(k)
≡ 0, i.e. ∆(k) = ∅ and

χk(π,∆) = χk−1(π,∆) +

k−1∑
i=1

s1(Ωπ,∆(i))
i

s1(Ωπ,∆(k))

k
+

s2(Ωπ,∆(k))

k2 = χk−1(π,∆) +
s2(ΩX)

k2 .

But by the classification of surfaces with trivial canonical bundle, s2(ΩX) = −c2(X) 6 0
and this yields a contradiction, since then 0 < χk(π,∆) 6 χk−1(π,∆) 6 0. �

Corollary 4.12. — Let (X,∆) be a smooth orbifold surface such that KX is trivial and |∆| is a
smooth ample divisor. If the orbifold multiplicity is m > 5 and if c1(|∆|)2 > 10c2(X) then for any
ample line bundle L→ X,

H0
(⊕

k,N>1Ek,NΩπ,∆ ⊗ L∨
)
, {0}.

Proof. — Recall that for k big enough, the positivity of the Euler characteristic is given
by the positivity of the coefficient

χk(π,∆) B (−1)n
∑

q∈Nk : |q|=n

sq1(Ωπ,∆(1))
1q1

· · ·
sqk(Ωπ,∆(k))

kqk
.

Now, from the residue short exact sequence:

s(Ωπ,∆) = s(ΩX)
∏

i

(1 − c1(Di))
(1 − c1(Di)/mi)

.

If X is a surface with trivial canonical bundle, a formal computation yields that for
k > mi,∀i:

χk(π,∆) = −
∑

16 j6k

(
1
j2

)
c2(X)+

∑
i1<i2

 ∑
26 j16mi1

1
j1

∑
26 j26mi2

1
j2

 c1(Di1)c1(Di2)+

∑
i

 ∑
26 j1< j26mi

1
j1 j2
−

(mi − 1)
2mi

 c1(Di)2.

Recall that c2(X) > 0. In the one component case one gets:

χk(π,∆) >

 ∑
26 j1< j26m

1
j1 j2
−

(m − 1)
2m

 c1(D)2
−
π2

6
c2(X).

A numerical exploration shows that the coefficient cm of c1(D)2 becomes positive for
m > 5 and that then π2/(6cm) 6 10. �
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Remark 4.13. — The same proof shows that the result also holds e.g. if |∆| has several
components ∆i with multiplicities mi = 2 such that

c1(D)2
−

∑
i

3c1(Di)2 >
4π2

3
c2(X).

(Anticipating the next section, notice that this of course never holds in the 1 component
case.)

5. Non-existence of orbifold jet differentials on varieties of general type

The following results give some support to Conjecture B.

5.1. Projective spaces. — We start with Pn, with a suitable smooth boundary divisor,
giving examples of orbifolds of general type without any nonzero global jet differentials.
To see this, we first establish the following vanishing theorem for orbifold jet differentials,
in the spirit of Diverio [Div08].

Proposition 5.1. — Take X = Pn and ∆ = (1 − 1/m) H, for a smooth hypersurface H of degree
d > 3. If m 6 n, then for any adapted covering π : Y→ (X,∆), for k > 1 and for N > 1, one has
H0(Y,Ek,NΩπ,∆) = {0}. This vanishing holds without the assumption m 6 n when k < n.

Proof. — Suppose that for some k and N, H0(Y,Ek,NΩπ,∆) , 0. Then one infers from
Proposition 2.9 that for some `1, . . . , `k with ‖`‖ = N

S`1Ωπ,∆(1) ⊗ S`2Ωπ,∆(2) ⊗ · · · ⊗ S`kΩπ,∆(k)

has some nonzero global sections. Note that Ωπ,∆(∞) = π∗ΩPn . Since Ω∨Pn is globally
generated, one obtains nonzero global sections of

S`1Ωπ,∆(1) ⊗ · · · ⊗ S`pΩπ,∆(p)

for the largest p 6 k such that p < m (i.e. for which ∆(p) > ∆(∞) = ∅).
Remark that a nonzero section σ of Ek,NΩπ,∆ can be made invariant to yield a nonzero

section of Ek,gNΩX,∆, where g is the order of the Galois group of the coveringπ : Y→ (X,∆).
It is obtained by taking the pushforward along π of the product of the Galois conjugates
of σ, which are all nonzero. Applying this result for k = 1, one deduces the existence of
some nonzero global sections of

Sg`1ΩX,∆(1) ⊗ · · · ⊗ Sg`pΩX,∆(p) ⊆ Sg`1ΩPN (log H) ⊗ · · · ⊗ Sg`pΩPN (log H).

Since there are less than n factors, this yields the sought contradiction, by the vanishing
theorem of Brückmann–Rackwitz [BR90] (see [Div08, Div09]). �

Example 5.2. — Take X = P2 and ∆ = (1 − 1/2)C, where C is a smooth curve of degree
d > 7. It is a pair with ample canonical bundle such that H0

(
Y,

⊕
k,N>1 Ek,NΩπ,∆

)
= {0},

for any adapted covering π : Y→ (X,∆).

5.2. Abelian varieties. — Let A be an abelian variety of dimension n > 2 and let D be a
smooth divisor on A. We start again by proving a vanishing theorem for the logarithmic
tangent bundle.

Proposition 5.3. — One has

H0(A,Sλ(ΩA(log D)) ⊗ L∨) , {0}

for an ample line bundle L→ A if and only if Sλ(ΩA(log D)) = (KA(log D))⊗λ1 .
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Proof. — Let us first observe that ΩA(log D) is nef. Since ΩA is globally generated, one is
reduced to verify the nefness over D. On D, one has the following short exact sequence:

0→ ΩD → ΩA(log D)|D → OD → 0.

Here, as a quotient of ΩA|D, the vector bundle ΩD is nef. Thus, as an extension of nef
vector bundles, ΩA(log D)|D is nef.

Consider now a partition λ, and recall (e.g. [Dem88, Man94]) that the Schur bundle
Sλ(ΩA(log D)) is then the direct image of a nef line bundle L on the flag bundle associated
to λ. Namely, let 1 6 j1 < j2 < · · · < jm 6 n be the jumps of λ, for a certain m 6 n
(i.e. λi > λi+1 ⇐⇒ i ∈ { j1, . . . , jm}), and let F be the bundle of flags of subspaces with
codimension j1, . . . , jm in the fibers of ΩA(log D). Let U j0 , . . . ,U jm+1 be the universal
subbundles of codimension j0 < j1 < . . . < jm 6 jm+1 on F, where by convention j0 B 0
and jm+1 B n. Then

L B
m⊗

p=1

det(U jp−1/U jp)⊗λ jp .

We will now study the bigness of L . To prove that L is not big, it is sufficient to observe
that the Segre number sn(L ) is zero. Using the Gysin formula from [DP17, Prop. 1.2] for
the flag bundle F→ A (we transform a little bit), one gets the following expression for
sn(L ):

(−1)n[tn
1 · · · t

1
n]

(λ1t1 + · · · + λntn)n
m∏

p=1
(t jp+1 · · · t jp+1)− jp ∏

16i< j6n
(ti − t j)

∏
16i6n

tis1/ti
(ΩA(log D))

 ,
where for a monomial m and a Laurent series P in the formal variables t1, . . . , tn, [m](P)
means the coefficient of m in P.

Now, the residue exact sequence on A reads as follows:

0→ ΩA → ΩA(log D)→ OD → 0.

Therefore, by the Whitney sum formula, we obtain the equality of total Segre classes:

s(ΩA(log D)) = s(ΩA) · s(OD) = s(ΩA) · c(O(−D)).

The last equality follows again from the Whitney sum formula applied on the short
exact sequence 0→ OA(−D)→ OA → OD → 0. The bundle ΩA being trivial we obtain
s(ΩA(log D)) = 1 − c1(D). Replacing in the above expression, the number sn(L ) becomes:

(−1)n[tn
1 · · · t

1
n]

(λ1t1 + · · · + λntn)n
m∏

p=1
(t jp+1 · · · t jp+1)− jp ∏

16i< j6n
(ti − t j)

∏
16i6n

(ti − c1(D))

 .
This coefficient is clearly a linear combination of 1, . . . , c1(D)n but, for dimensional
reasons, the only such number that is nonzero on A is c1(D)n. In other words

sn(L ) = [tn
1 · · · t

1
n]

(λ1t1 + · · · + λntn)n
m∏

p=1
(t jp+1 · · · t jp+1)− jp ∏

16i< j6n
(ti − t j)

 c1(D)n.

The degree of the polynomial under consideration is n(n + 1)/2 −
∑m

p=1( jp+1 − jp) jp.
As a consequence, if

∑m
p=1( jp+1 − jp) jp > 0, the coefficient of tn

1 · · · t
1
n is 0. To conclude, it

remains to observe that
∑m

p=1( jp+1 − jp) jp = 0 if and only if Sλ(ΩA log D) is a tensor power
of the canonical bundle (i.e. j1 = n = jm+1).

Now, since L is relatively ample and p∗L = SλΩA(log D), where p : F→ A:

∃L ample, H0(A,SλΩA(log D) ⊗ L∨) , 0 =⇒ L big.

The only if direction follows directly from the fact that (A,D) is of log general type. �
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Remark 5.4. — Note that in general the bigness of L is not equivalent to the bigness
of the Serre line bundle on P(Sλ(ΩA(log D))). The first one is related to the sections
of SmλΩA(log D) which is only a direct factor in Sm(SλΩA(log D)) and also these line
bundles could lie on bases with different dimensions. It is clear that if λ has n parts,
Sλ(ΩA(log D)) is big. Indeed

Sλ(ΩA(log D)) = (KA(log D))⊗λn ⊗ S(λ1−λn,...,λn−1−λn)(ΩA(log D)),

which is the product of a big line bundle by a nef vector bundle.

As an immediate corollary, we obtain examples of orbifolds of general type satisfying
the Green–Griffiths–Lang Conjecture A without any nonzero global jet differentials
vanishing on an ample divisor.

Corollary 5.5. — Let A be an abelian variety of dimension n > 2 and D a smooth ample divisor
on A. Then, for any 1 < m 6 n, the orbifold (A, (1 − 1/m)D) satisfies the Green–Griffiths–Lang
Conjecture A but has no nonzero global jet differentials vanishing on an ample divisor.

Proof. — From Theorem 1.5, we know that (A,∆) B (A, (1 − 1/m)D) satisfies conjecture
A.

Let π : Y→ (A,∆) be an adapted covering for the pair (A,∆). Suppose that for some
k and N, H0(Y,Ek,NΩπ,∆ ⊗ π∗L∨) , 0 for some ample line bundle L. Then, since m 6 n,
one infers from Proposition 2.9 and from the triviality of Ωπ,∆(n) = π∗ΩA that for some
`1, . . . , `n−1

S`1Ωπ,∆(1) ⊗ · · · ⊗ S`n−1Ωπ,∆(n−1) ⊗ π∗L∨

has some nonzero global sections. This would imply that

Sg`1ΩA(log D) ⊗ · · · ⊗ Sg`n−1ΩA(log D) ⊗ (Lgn−1
)∨

has nonzero global sections (g B |Aut(π)|)). Combined with the previous proposition,
this yields a contradiction because according to the Pieri rule Sg`1ΩA(log D) ⊗ · · · ⊗
Sg`n−1ΩA(log D)⊗ (Lgn−1

)∨ is the direct sum of some Schur powers Sλ(Ω1(log D))⊗ (Lgn−1
)∨

for partitions λ with at most n − 1 parts. �

5.3. Kummer and “general” K3 surfaces. — We now show that the vanishing of
orbifold jet differentials for Abelian surfaces gives a similar conclusion for Kummer K3
surfaces and for “general” K3 surfaces equipped with big and nef smooth divisors.

We first describe the situation and data relevant to the case of Kummer surfaces.
Let p0 : A0 → S0 be the double cover from an Abelian surface A0 onto its associated

Kummer quotient surface S0. Let D0 ⊂ S0 be a smooth irreducible ample divisor on S0
which avoids its 16 singular points. Let α : A→ A0 (resp. β : S→ S0) be the blow-up of
the 16 corresponding points on A0 (resp. S0), and p : A→ S the induced double cover.
Let D ⊂ S the inverse image of D0 in S, and D′0 ⊂ A0,D′ ⊂ A its inverse images there.
Write ∆0 B (1 − 1

2 )D0, and similarly for its inverse images ∆,∆′0,∆
′ on S,A0,A.

Let π0 : Y0 → S0 be a cover adapted to (S0,∆0), so chosen that its ramification
locus avoids the 16 singular points of S0. By base-changing with the relevant covers
or blow-ups, we obtain covers π : Y → S, π′0 : Y′0 → A0, π′ : Y′ → A′ respectively
adapted to (S,∆), (A0,∆′0) and (A,∆′). To simplify notation, we still denote with
β : Y→ Y0, p : Y′ → Y, α : Y′ → Y′0 the maps induced by these base-changes.

For each k,N > 0, we thus also get natural injective sheaf maps: p∗ : Ek,NΩπ,∆ →

Ek,NΩπ′,∆′ and α∗ : Ek,NΩπ′0,∆
′

0
→ Ek,NΩπ′,∆′ which are isomorphic outside of the inverse

images of the 16 singular points of S0.
We now denote by H0 a very ample line bundle on S0, and H,H′,H′0 its inverse images

on S,A,A0.



ORBIFOLD HYPERBOLICITY 26

Proposition 5.6. — The notations being as above, let B be an ample line bundle on S, and BY
its inverse image on Y. Then: for any k,N > 0, H0(Y,Ek,NΩπ,∆ ⊗ B−1

Y ) = {0}.

Proof. — The natural map:

p∗ : H0(Y,Ek,NΩπ,∆ ⊗ B−1
Y )→ H0(Y′,Ek,NΩπ′,∆′ ⊗ p∗(B−1

Y ))

is obviously injective, and by Hartogs theorem, the natural map:

α∗ : H0(Y′0,Ek,NΩπ′0,∆
′

0
⊗ B′−1

0 )→ H0(Y′,Ek,NΩπ′,∆′ ⊗ α
∗(B′−1

0 ))

is isomorphic, for any ample line bundle B′0 on A0 (its inverse image on Y′0 being written
in the same way). From the (proof of the) preceding Corollary 5.5, we know that
H0(Y′0,Ek,NΩπ′0,∆

′

0
⊗ B′−1

0 ) = {0}. This implies the claimed vanishing, since k.α∗(B′0)− p∗(B)
is effective, for k big enough. �

We know consider the preceding orbifold pair (S,∆), together with a marking for
H2(S,Z). Notice that the class [D] of D = 2.∆ in H2(S,Z) is what is called a ‘pseudo-
polarisation’ (i.e. a big an nef class) in [Bea85]. Associated to the pair (S, [D]) is a
(nonseparated) fine moduli space of marked projective K3 surfaces (St, [Dt]), t ∈ T. Let
f : Σ→ T be the associated family of K3 surfaces, together with the line bundleD′ on Σ′

inducing Dt on St, for each t ∈ T′ (base-changing from T to P( f∗(D)) B T′), indicated
with a ‘prime’ subscript. The map f ′ being locally projective, we can (locally) construct
a simultaneous cover π′ : Y′ → Σ′ adapted to D′. We now consider the direct image
sheaves Ek,N B ( f ′ ◦π′)∗(Ek,NΩπ′,∆′T

⊗B
−1), forB relatively ample onY′, and ∆′T B

1
2 ·D

′.
By the preceding Proposition 5.6, these sheaves all vanish for t = 0, with (S,∆)t=0 our
initial Kummer orbifold pair. We thus deduce that these sheaves all vanish for t “general”
in T′ (that is: outside of a countable union of Zariski closed subsets of T′).

Remark 5.7. — One can of course wonder whether this result holds for all pairs (S, 1
2 ·D)

with S an arbitrary K3 surface and D an ample smooth divisor, or even for (X, 1
m ·D) for

X projective with KX trivial, D smooth ample, and m 6 n B dim(X). For the “general”
member of the known families of Hyperkähler manifolds, the preceding argument can
probably be adapted, but it were more interesting to have an intrinsic, deformation-free,
argument.

Remark 5.8. — Example 5.2, Corollary 5.5 and Proposition 5.6 show clearly that in the
general orbifold situation, one cannot expect to fully establish the Green–Griffiths–Lang
conjecture by using only the approach of jet bundles. Corollary 5.5 proves the left-to-right
direction of Conjecture B for abelian varieties.

Remark 5.9. — Corollary 4.3 and Corollary 5.5 also illustrate that Nevanlinna theory
and the theory of orbifold jet differentials introduced in this paper produce positive
complementary results towards the orbifold Green-Griffiths-Lang conjecture.
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