
DEGENERACY OF HOLOMORPHIC MAPS VIA ORBIFOLDS

ERWAN ROUSSEAU

Abstract. We use orbifold structures to deduce degeneracy statements for holomorphic
maps into logarithmic surfaces. We improve former results in the smooth case and generalize
them to singular pairs. In particular, we give applications on nodal surfaces and complements
of singular plane curves.

1. Introduction

It is now classical that the properties of holomorphic maps in compact complex manifolds
are closely related to the properties of the canonical line bundle. More precisely, one can
expect following Green-Griffiths that the following is true

Conjecture 1.1. Let X be a projective manifold of general type, i.e. its canonical line bundle
KX is big. Then there exists a proper subvariety Y ( X which contains every non-constant
entire curve f : C→ X.

It can be observed that positivity properties of the canonical bundle can be generalized to a
more general situation than the usual compact setting, and still give properties of degeneracy
for holomorphic maps. For example, a classical result of Nevanlinna is

Theorem 1.2 ([24]). Let a1, . . . , ak ∈ P1 and m1, . . . ,mk ∈ N ∪∞. If

k∑
i=1

(
1− 1

mi

)
> 2,

then every entire curve f : C → P1 which is ramified over ai with multiplicity at least mi is
constant.

Following Green-Griffiths’ philosophy, this degeneracy property should correspond to the
positivity property of some canonical line bundle. Here one easily observes that the right
canonical line bundle to consider is

KP1 +
k∑
i=1

(
1− 1

mi

)
ai,

which can be seen as the canonical line bundle of the pair (P1,∆) where ∆ =
∑k

i=1

(
1− 1

mi

)
ai.

More generally, following Campana [5], a pair (X,∆), consisting of a complex manifold X

and a Q-divisor ∆ =
∑k

i=1

(
1− 1

mi

)
Zi, is called a geometric orbifold. Positivity properties of

1
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the orbifold canonical line bundle, KX +∆, should provide degeneracy statements for orbifold
entire curves f : C → X, i.e. entire curves which ramifies with multiplicity at least mi over
Zi.

In this paper we shall study the case of surfaces improving and generalizing results of a
previous work [25]. The point of view we adopt here consists in working with the different
notions of orbifolds that have appeared in the literature: the V -manifolds of Satake, the
orbifolds of Thurston, the algebraic stacks of Grothendieck, Deligne and Mumford, and the
geometric orbifolds of Campana.

In particular, as initiated in [7], we extend to the orbifold setting the strategy of Bogomolov
[2] which uses symmetric differentials to obtain hyperbolicity properties for surfaces which
satisfy c2

1− c2 > 0. More precisely, we use Kawasaki-Toën’s Riemann-Roch formula on stacks
([15], [28]) to produce orbifold symmetric differentials.

Then, in the case of smooth (geometric) orbifolds (i.e. X is smooth and d∆e, the support
of ∆, is a normal crossing divisor), we obtain using moreover McQuillan’s techniques [20] as
in [25]

Theorem A. Let (X,∆) be a smooth projective orbifold surface of general type, i.e KX +∆ is
big, ∆ =

∑
i(1−

1
mi

)Ci. Denote gi := g(Ci) the genus of the curve Ci and c1, c2 the logarithmic

Chern classes of (X, d∆e). If

(1.1) c2
1 − c2 −

n∑
i=1

1

mi

(2gi − 2 +
∑
j 6=i

CiCj) +
∑

1≤i≤j≤n

CiCj
mimj

> 0,

then there exists a proper subvariety Y ( X such that every non-constant entire curve f :
C → X which is an orbifold morphism, i.e ramified over Ci with multiplicity at least mi,
verifies f(C) ⊂ Y .

One advantage of this new approach is that we can generalize it to the singular case, for
example when the orbifold surface (X,∆) is Kawamata log terminal, following the terminology
of the Mori Program (see for example [18]). This point of view unifies several former results
(e.g. [9], [13] and [4]) where people have noticed that singularities can help to prove degeneracy
statements on holomorphic maps. The key point here is to realize that singularities help to
produce orbifold symmetric differentials on the stack associated to the orbifold.

As applications, we obtain as a first example (compare with [9] and [13])

Theorem B. Let C ⊂ P2 be a curve of degree d ≥ 4 with n nodes and c cusps. If

−d2 − 15d+
75

2
+

1079

96
c+ 6n > 0,

then there exists a curve D ⊂ P2 which contains any non-constant entire curve f : C→ P2\C.

The above numerical conditions should be seen as the equivalent of c2
1 − c2 > 0 in the

orbifold setting. A second example is the case of nodal surfaces X ⊂ P3 of general type of
degree d with l nodes where we recover a result of [4] giving the existence of orbifold symmetric
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differentials as soon as l > 8
3
(d2 − 5

2
d), which is unfortunately not satisfied for d = 5 where

the maximum number of nodes is 31.
We extend our study to higher order orbifold jet differentials and obtain, towards the

existence of an hyperbolic quintic,

Theorem C. Let X ⊂ P3 be a nodal quintic with the maximum number of nodes, 31. Then
every classical orbifold entire curve satisfies an algebraic differential equation of order 3.

The paper is organized as follows. In section 2, we recall the basic facts on orbifold struc-
tures. In section 3, we describe orbifold symmetric differentials and orbifold morphisms.
Then, in section 4, we recall Kawasaki-Toën’s Riemann-Roch formula on orbifolds. In sec-
tion 5, we study the smooth case and in section 6, the singular case. In section 7, we give
applications to complements of plane curves and nodal surfaces. Finally, in section 8, we give
definitions and applications of orbifold jet differentials.

Acknowledgements. The approach using stacks has been suggested to us by Philippe
Eyssidieux and Michael McQuillan, so we would like to thank them warmly for their interest
in this work. We also thank Frédéric Campana for many interesting discussions.

2. Orbifolds as pairs

As in [12] (or [10], §14) we look at orbifolds as a particular type of log pairs. (X,∆) is a
log pair if X is a normal algebraic variety (or a normal complex space) and ∆ =

∑
i diDi is

an effective Q-divisor where the Di are distinct, irreducible divisors and di ∈ Q.
For orbifolds, we need to consider only pairs (X,∆) such that ∆ has the form

∆ =
∑
i

(
1− 1

mi

)
Di,

where the Di are prime divisors and mi ∈ N. These pairs are called geometric orbifolds by
Campana in [5] and [6].

Definition 2.1. An orbifold chart on X compatible with ∆ is a Galois covering ϕ : U →
ϕ(U) ⊂ X such that

(1) U is a domain in Cn and ϕ(U) is open in X,
(2) the branch locus of ϕ is d∆e ∩ ϕ(U),
(3) for any x ∈ U ′′ := U \ ϕ−1(Xsing ∪∆sing) such that ϕ(x) ∈ Di, the ramification order

of ϕ at x verifies ordϕ(x) = mi.

Definition 2.2. An orbifold X is a log pair (X,∆) such that X is covered by orbifold charts
compatible with ∆.

Remark 2.3. (1) In the language of stacks, we have a smooth Deligne-Mumford stack
π : X → X, with coarse moduli space X

(2) Geometric orbifolds (X,∆) of Campana [5] are more general since they are not sup-
posed to be locally uniformizable. We have an injective mapping X → (X,∆) but
most pairs (X,∆) are not in the image.
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(3) One can also take infinite mi. The components with mi =∞ are added in the quasipro-
jective case to compactify X.

Example 2.4. Let X be a complex manifold and ∆ =
∑

i(1 −
1
mi

)Di with a support d∆e
which is a normal crossing divisor, i.e. for any point x ∈ X there is a holomorphic coordinate
system (V, z1, . . . , zn) such that ∆ has equation

z
(1− 1

m1
)

1 . . . z
(1− 1

mn
)

n = 0.

Then (X,∆) is an orbifold. Indeed, fix a coordinate system as above. Set

ϕ : U → V, ϕ(x1, . . . , xn) = (xm1
1 , . . . , xmnn ).

Then (U,ϕ) is an orbifold chart on X compatible with ∆.
Equivalently, we have a smooth Deligne-Mumford stack π : X → X, with coarse moduli

space X, described locally as follows. For every open polydisk D ⊂ X with local coordinates

(z1, . . . , zn), such that ∆ has equation z
(1− 1

m1
)

1 . . . z
(1− 1

mn
)

n = 0 we have:

X ×X D = [D′/G],

where G =
∏n

j=1 Z/mjZ acts on the polydisk D′ by (ζ1, ..., ζn).(y1, . . . , yn) = (ζ1y1, ..., ζnyn)

where we identify Z/mjZ and the group of mj-th root of unity.

Remark 2.5. The orbifolds of the previous example are said to be smooth (see [6]).

More examples of orbifolds are obtained looking, in the case of surfaces, at different classes
of singularities that naturally appear in the logarithmic Mori program (see for example [18]).

Definition 2.6. Let (X,∆), ∆ =
∑

i

(
1− 1

mi

)
Ci, be a pair where X is a normal surface and

KX + ∆ is Q-Cartier. Let π : X̃ → X be a resolution of the singularities of (X,∆), so that

the exceptional divisors, Ei and the components of ∆̃, the strict transform of ∆, have normal
crossings and

K eX + ∆̃ +
∑
i

Ei = π∗(KX + ∆) +
∑
i

aiEi.

(1) We say that (X,∆) is log canonical if ai ≥ 0 for every exceptional curve Ei.
(2) We say that (X,∆) is klt (Kawamata log terminal) if mi < ∞ and ai > 0 for every

exceptional curve Ei.

The classification of log canonical singularities can be found in [16]. The important point
is that if (X,∆, x) is a germ of a klt surface, then it is analytically equivalent to the quotient
of C2 by a finite subgroup G ⊂ GL(2,C) and the Ci correspond to the components of the
branch locus of the quotient map p = C2 → C2/G. The ramification index over a component
Ci is equal to mi.

So, we obtain new examples of orbifold surfaces ([30], [16], [23]):

Example 2.7. Let (X,∆), ∆ =
∑

i

(
1− 1

mi

)
Ci, be a log canonical pair with X a surface,

where all points which are not klt lie on b∆c, then (X,∆) is an orbifold.
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3. Orbifold morphisms and orbifold symmetric differentials

3.1. The smooth case. Let (X,∆) be a smooth orbifold, i.e X is a smooth complex manifold
and ∆ =

∑
i(1−

1
mi

)Zi has a support d∆e which is a normal crossing divisor.

Complex hyperbolic aspects of one-dimensional orbifolds have been studied in [8] and, in
[25], we have started the investigation of the higher dimensional case.

We want to study orbifold holomorphic maps f : C→ (X,∆). They are defined following
[6] as

Definition 3.1. Let (X,∆) be a smooth orbifold with ∆ =
∑

i(1−
1
mi

)Zi, D = {z ∈ C/|z| < 1}
the unit disk and h a holomorphic map from D to X.

(1) h is a (non-classical) orbifold morphism from D to (X,∆) if h(D) * supp(∆) and
multx(h

∗Zi) > mi for all i and x ∈ D with h(x) ∈ supp(Zi). If mi = ∞ we require
h(D) ∩ Zi = ∅.

(2) h is a classical orbifold morphism from D to (X,∆) if h(D) * supp(∆) and multx(h
∗Zi)

is a multiple of mi for all i and x ∈ D with h(x) ∈ supp(Zi). If mi = ∞ we require
h(D) ∩ Zi = ∅.

In the compact or logarithmic setting, symmetric differentials turned out to be key objects
for such a study (see for example [2], [20]). Let (x1, . . . , xn) be local coordinates such that ∆
has equation

x
(1− 1

m1
)

1 . . . x
(1− 1

mn
)

n = 0.

Let us recall the definition of sheaves of differential forms on orbifolds (see [6] for details).

Definition 3.2. For N a positive integer, SNΩ(X,∆) is the locally free subsheaf of SNΩX(logd∆e)
generated by the elements

x
d α1
m1
e

1 . . . x
d αn
mn
e

n

(
dx1

x1

)α1

. . .

(
dxn
xn

)αn
,

such that
∑
αi = N , where dke denotes the round up of k.

Remark 3.3. One motivation for this definition is that these orbifold symmetric differentials
act on orbifold morphisms, i.e. for every orbifold morphism h : D → (X,∆), h∗SNΩ(X,∆) ⊂
SNΩD. Moreover, this property characterizes orbifold morphisms [6].

Now we consider the smooth Deligne-Mumford stack π : X → X, with coarse moduli
space X, as in example 2.4 above, and remark that

Proposition 3.4.

π∗S
NΩX = SNΩ(X,∆).

Proof. Note first that π∗SNΩ(X,∆) ⊂ SNΩX . Then the isomorphism between π∗S
NΩX and

SNΩ(X,∆) can be verified locally. Take

yα1
1 . . . yα1

n (dy1)β1 . . . (dyn)βn ,
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where αi ≥ 0 for all i. Then the assertion is equivalent to the fact that the preceding form
is invariant under G =

∏n
j=1 Z/mjZ if and only if mi|αi + βi and αi+βi

mi
≥ d βi

mi
e. This follows

immediately from the definition of the action. �

Moreover Rqπ∗S
NΩX = 0 for q > 0 (see [19]). Therefore

χ(X , SNΩX ) = χ(X,SNΩ(X,∆)).

Towards the existence of global sections of SNΩ(X,∆), we will compute χ(X , SNΩX ) using
Kawasaki-Toën’s Riemann-Roch formula ([15], [28]) in the case of orbifold surfaces.

3.2. The general case. Following the philosophy of the previous section, we can extend the
above definitions to any orbifold (X,∆). We denote π : X → X the Deligne-Mumford stack
associated to (X,∆).

Definition 3.5. Let (X,∆) be an orbifold. For N a positive integers, the sheaf SNΩ(X,∆) of
orbifold symmetric differentials is defined to be

SNΩ(X,∆) := π∗S
NΩX .

Definition 3.6. Let (X,∆) be an orbifold.

(1) A holomorphic map f : D → (X,∆) is a classical orbifold map if it admits a lift

f̃ : D→X to the Deligne-Mumford stack associated to (X,∆).
(2) A holomorphic map f : D→ (X,∆) is a (non-classical) orbifold map if f ∗(SNΩ(X,∆)) ⊂

SNΩD for all positive integers N .

4. Kawasaki-Toën’s Riemann-Roch formula

We want to prove the existence of global orbifold symmetric differentials. For this, we shall
apply Riemann-Roch on orbifolds. This was done in [15] and generalized in [28] to more
general Deligne-Mumford stacks. We shall follow the latter approach.

Let us recall briefly Toën’s Riemann-Roch formula on Deligne-Mumford stacks following
[28] and [29]. There is an étale cohomology theory on stacks which enables to define Chern
classes and Todd classes (see [28]). For this theory, if p : X → X is the projection from
a stack to its moduli space, there is an isomorphism p∗ : A(X ) ' A(X). The key point
of Toën’s formula is that the correct cohomology to work with is that of the inertia stack,
defined below. The components of the inertia stack give correction terms to the standard
Riemann-Roch formula.

Definition 4.1. Let X be a Deligne-Mumford stack. The inertia stack IX associated to X
is defined to be the fiber product

IX := X ×X ×X X .

Locally one may describe IX as follows. If X is a variety, H a finite group acting on X
and F = [X/H] the quotient stack then

IF '
∐

h∈c(H)

[Xh/Zh],
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where Xh ⊂ X is the fixed locus by h, Zh the centralizer of h in H and c(H) the conjugacy
classes of H.

There is a natural projection q : IX →X . We write

IX =
∐
i∈I

Xi

for the decomposition of IX into a disjoint union of connected components. There is a
distinguished component X0, corresponding to h = 1, which is isomorphic to X .

If F is a vector bundle, then q∗F decomposes into a direct sum of eigen-subbundles⊕
ζ∈µ∞

F (ζ),

where µ∞ is the group of roots of unity. For such a decomposition one defines a map ρ :
K0(IX )→ K0(IX ) by

ρ(
⊕
ζ∈µ∞

F (ζ)) :=
∑
ζ

ζF (ζ).

Then one defines

Definition 4.2. [28] Define c̃h : K0(X )→ H∗(IX ) to be the composite

K0(X )
q∗F−−→ K0(IX )

ρ−→ K0(IX )
ch−→ H∗(IX ),

where ch is the usual Chern character.

Definition 4.3. [28] Let E be a vector bundle on X and q∗E decomposed into a direct sum
(q∗E)inv ⊕ (q∗E)mov where (q∗E)inv is the eigenbundle with eigenvalue 1 and (q∗E)mov is the

direct sum with eigenvalues not equal to 1. Then define T̃ d : K0(X )→ H∗(IX ) by

T̃ d(E) :=
Td((q∗E)inv

ch(ρ ◦ λ−1(((q∗E)mov)∗))
,

where λ−1 is defined by λ−1(V ) :=
∑

a≥0(−1)a
∧a V for a vector bundle V .

Then Toën’s Riemann-Roch formula gives

Theorem 4.4. [28] Let X be a Deligne-Mumford stack with quasi-projective coarse moduli
space and which has the resolution property (i.e every coherent sheaf is a quotient of a vector
bundle). Let E be a coherent sheaf on X then

χ(X , E) =

∫
X

c̃h(E)T̃ d(TX ).
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5. Applications to smooth orbifold surfaces of general type

Let us apply Toën’s formula in our situation. Our observation here is that we are only
interested in asymptotic Riemann-Roch, therefore the only contribution that we have to take
into account is the one coming from the component of the inertia stack of maximal dimension
i.e the stack itself. In other words the étale cohomology is enough to deal with asymptotic
Riemann-Roch.

Theorem 5.1. Let (X,∆) be a smooth projective orbifold surface, ∆ =
∑

i(1−
1
mi

)Ci. Then

χ(X , SNΩX ) =
N3

6
(c2

1 − c2) +O(N2),

where X is the stack associated to X described in example 2.4, c1 and c2 are the étale orbifold
Chern classes of X .

Proof. Let Y := P(ΩX ) and L := OY (1), then χ(X , SNΩX ) = χ(Y, L⊗N). The inertia stack
p : IY → Y is decomposed in connected components

IY = Y
n∐
i=1

Yi
∐

1≤i<j≤n

CiCj∐
k=1

Yi,j,k,

where Yi lies over Ci and Yi,j,k over Ci ∩ Cj. Corresponding to this decomposition we have

c̃h(L⊗N) = ch(L⊗N)
⊕
i

ζNi ch(L⊗Ni )
⊕
i,j,k

ζNi,j,kch(L⊗Ni,j,k),

where Li and Li,j,k denotes the restrictions of p∗L to Yi and Yi,j,k. We apply Toën’s Riemann-
Roch formula and obtain

χ(Y, L⊗N) =
c1(L)3

6
N3 +O(N2),

since the terms coming from the Li and Li,j,k are all O(N2) because of the dimension. This
concludes the proof by the classical formula relating c1(L), c1 and c2. �

Now we compute the étale orbifold Chern classes. The following ”Gauss-Bonnet” formula
will be useful

Proposition 5.2. [28] Let X be a Deligne-Mumford stack of dimension n with the same
hypotheses as in theorem 4.4. Let {Mi}i be a stratification of its coarse moduli space such
that the order of ramification of X is constant on each Mi equal to mi. Then∫

X

cn =
∑
i

χ(Mi)

mi

.

Then we can compute explicitely the orbifold Chern classes

Proposition 5.3. Let (X,∆) be a smooth projective orbifold surface, ∆ =
∑

i(1 −
1
mi

)Ci.

Denote gi := g(Ci) the genus of the curve Ci and c1, c2 the logarithmic Chern classes of
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(X, d∆e). Then the étale orbifold Chern classes c1, c2 of the stack X associated to (X,∆)
verify

c2
1 = c2

1 − 2
n∑
i=1

1

mi

(2gi − 2) +
n∑
i=1

C2
i

m2
i

+ 2
∑

1≤i<j≤n

CiCj
mimj

− 2
n∑
j=1

n∑
i=1,i 6=j

CiCj
mj

,

c2 = c2 −
n∑
i=1

1

mi

(2gi − 2)−
n∑
j=1

n∑
i=1,i 6=j

CiCj
mj

+
∑

1≤i<j≤n

CiCj
mimj

.

Proof. We have
KX = π∗(KX + ∆),

therefore

c2
1 = (KX + ∆)2 =

(
(KX +

n∑
i=1

Ci)−
n∑
i=1

1

mi

Ci

)2

= c2
1 − 2

n∑
j=1

1

mj

(KX +
n∑
i=1

Ci)Cj +

(
n∑
i=1

1

mi

Ci

)2

.

We have KXCj = (2gj − 2)− C2
j , therefore we obtain

c2
1 = c2

1 − 2
n∑
i=1

1

mi

(2gi − 2) + 2
n∑
i=1

C2
i

mi

− 2
n∑
j=1

n∑
i=1

CiCj
mj

+
n∑
i=1

C2
i

m2
i

+ 2
∑

1≤i<j≤n

CiCj
mimj

= c2
1 − 2

n∑
i=1

1

mi

(2gi − 2) +
n∑
i=1

C2
i

m2
i

+ 2
∑

1≤i<j≤n

CiCj
mimj

− 2
n∑
j=1

n∑
i=1,i 6=j

CiCj
mj

.

For c2 we use the previous proposition 5.2 which gives

c2 = χ(X)− χ

(
n⋃
i=1

Ci

)
+

n∑
i=1

1

mi

χ

(
Ci \

n⋃
j=1,j 6=i

Ci ∩ Cj

)
+

∑
1≤i<j≤n

1

mimj

χ(Ci ∩ Cj)

= c2 −
n∑
i=1

1

mi

(2gi − 2)−
n∑
j=1

n∑
i=1,i 6=j

CiCj
mj

+
∑

1≤i<j≤n

CiCj
mimj

.

�

As a corollary we obtain

Corollary 5.4. Let (X,∆) be a smooth projective orbifold surface of general type, i.e KX +∆
is big, ∆ =

∑
i(1−

1
mi

)Ci and A an ample line bundle on X. Denote gi := g(Ci) the genus of
the curve Ci. If

c2
1 − c2 −

n∑
i=1

1

mi

(2gi − 2 +
∑
j 6=i

CiCj) +
∑

1≤i≤j≤n

CiCj
mimj

> 0,
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then H0(X,SNΩ(X,∆) ⊗ A−1) 6= 0 for N large enough.

Proof. With the hypotheses, theorem 5.1 gives that

h0(X , SNΩX ) + h2(X , SNΩX ) ≥ cN3

for some suitable positive constant c and all sufficiently large integers N . By Serre duality
h2(X , SNΩX ) = h0(X , SNΩX ⊗K1−N

X ), and as KX = π∗(KX + ∆), we obtain an injection
h2(X , SNΩX ) ↪→ h0(X , SNΩX ). Therefore h0(X , SNΩX ) ≥ c

2
N3. Since h0(X , SNΩX ) =

h0(X,SNΩ(X,∆)), this concludes the proof. �

Now let us recall that in [25] we have obtained

Theorem 5.5. Let (X,∆) be a smooth projective orbifold surface of general type, A an ample
line bundle on X such that H0(X,SNΩ(X,∆)⊗A−1) 6= 0 for N large enough. Then there exists
a proper subvariety Y ( X such that every non-constant entire curve f : C→ X which is an
orbifold morphism verifies f(C) ⊂ Y .

As an immediate corollary we obtain the theorem announced

Theorem A. Let (X,∆) be a smooth projective orbifold surface of general type, ∆ =
∑

i(1−
1
mi

)Ci. Denote gi := g(Ci) the genus of the curve Ci and c1, c2 the logarithmic Chern classes

of (X, d∆e). If

(1.1) c2
1 − c2 −

n∑
i=1

1

mi

(2gi − 2 +
∑
j 6=i

CiCj) +
∑

1≤i≤j≤n

CiCj
mimj

> 0,

then there exists a proper subvariety Y ( X such that every non-constant entire curve f :
C→ X which is an orbifold morphism verifies f(C) ⊂ Y .

Remark 5.6. This result generalizes and implies as a particular case the corresponding the-
orem of [25] where the hypotheses were much stronger. Indeed it was needed that gi ≥ 2,
h0(Ci,OCi(Ci)) 6= 0 for all i and that the logarithmic Chern classes of (X, d∆e) had to verify

c1
2 − c2 −

n∑
i=1

1

mi

(2gi − 2 +
∑
j 6=i

CiCj) > 0.

Remark 5.7. One can write the previous inequality 1.1 in terms of Chern classes d1, d2 of
X and quantities involving only KX and ∆. It becomes

d2
1 − d2 + 2KX∆ + ∆2 + χ(∆) > 0,

where χ(∆) = χ
(∑

i(1−
1
mi

)Ci

)
:=
∑

i(1−
1
mi

)χ(Ci)−
∑

i<j(1−
1
mi

)(1− 1
mj

)CiCj.

As an application we obtain the following theorem
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Theorem 5.8. Let Ci, 1 ≤ i ≤ 2, be two smooth curves in X = P2 of degree di ≥ 4 with
normal crossings. Let ∆ = (1− 1

m1
)C1 + (1− 1

m2
)C2, and d = d1 + d2. If

(5.1) deg(∆)2 − deg(∆)(d+ 3) + d1d2

(
1− 1

m1m2

)
+ 6 > 0

then there exists a curve D ⊂ X which contains every orbifold entire curve f : C→ (X,∆).

Proof. First we verify that condition 1.1 is satisfied. We compute everything in terms of the
degrees d1 ≤ d2

c1
2 − c2 −

1

m1

(2g1 − 2 + d1d2)− 1

m2

(2g2 − 2 + d1d2) +
d2

1

m2
1

+
d2

2

m2
2

+
d1d2

m1m2

=

deg(∆)2 − deg(∆)(d+ 3) + d1d2

(
1− 1

m1m2

)
+ 6.

So, if condition 5.1 is satisfied, we can apply theorem A and obtain the algebraic degeneracy
of f . �

Example 5.9. Let Ci, 1 ≤ i ≤ 2 be two smooth curves in P2 of degree 5 with normal crossings.
Let ∆ = (1 − 1

69
)C1 + (1 − 1

69
)C2. Then there exists a curve D ⊂ P2 which contains every

orbifold entire curve f : C → (X,∆). If the curves Ci are very generic, then (P2,∆) is
hyperbolic (see [25]).

6. The singular case

We can apply the above ideas to the second class of examples, namely klt surfaces (X,∆).
In the classical case one obtains as an immediate consequence of [21], [22]

Theorem 6.1. Let (X,∆) be a projective klt orbifold surface of general type and π : X → X
its associated Deligne-Mumford stack. If

c2
1(X )− c2(X ) > 0,

then there exists a proper subvariety Y ( X such that any non-constant classical orbifold
entire curve f : C→ (X,∆) is contained in Y .

Proof. By definition f : C → (X,∆) lifts to f̃ : C → X . Moreover c2
1(X ) − c2(X ) > 0

implies that H0(X , SNΩX ⊗π∗A−1) 6= 0 for N large enough where A is an ample line bundle
on X. Then there exists a proper sub-stack Z of P(TX ) which contains the image of the

derivative of f̃ . The main theorem of [21] then implies that f̃ factors through a sub-stack Z ′

of X . �

In the non-classical case we can prove

Theorem 6.2. Let (X,∆) be a projective klt orbifold surface of general type, π : X → X its
associated Deligne-Mumford stack and Z the subset of X consisting of Sing(X) and the locus
in X \ Sing(X) where d∆e is not a divisor with only normal crossings. If

c2
1(X )− c2(X ) > 0,
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then there exists a proper subvariety Y ( X such that any non-constant orbifold entire curve
f : C→ (X,∆) with the property that f(C) ∩ Z = ∅ is contained in Y .

Proof. c2
1(X ) − c2(X ) > 0 implies that there exists ω ∈ H0(X,SNΩ(X,∆) ⊗ A−1) 6= 0 for

N large enough where A is an ample line bundle on X. Let p : X̃ → X be a resolution of

the singularities of (X,∆), so that the exceptional divisors, Ei and the components of ∆̃, the
strict transform of ∆, have normal crossings and

K eX + ∆̃ +
∑
i

Ei = p∗(KX + ∆) +
∑
i

aiEi.

Let f̃ : C → X̃ be the lifting of f . Then f̃ is an orbifold map into (X̃, ∆̃ +
∑

iEi) since

f(C) ∩ Z = ∅ which implies f̃(C) ∩ (∪iEi) = ∅. But, since (X,∆) is klt, (X̃, ∆̃ +
∑

iEi) is

of general type. Moreover p∗ω ∈ H0(X̃, SNΩ( eX,e∆+
P
i Ei)
⊗ p∗A−1). To finish the proof we just

have to apply theorem 5.5 to the smooth orbifold of general type (X̃, ∆̃ +
∑

iEi). �

In fact, the proof shows that we can do better, namely we can shrink the locus Z. Indeed,
write the ramification formula

K eX + ∆̃ = p∗(KX + ∆) +
∑

a(E;X,∆)E,

where a(E;X,∆), which is independent of p (see [18]), is called the discrepancy of (X,∆) at
E and p(E) is called the center of E on X denoted by CenterX(E). Then the previous proof
immediately generalizes as

Theorem 6.3. Let (X,∆) be a projective klt orbifold surface of general type, π : X → X its
associated Deligne-Mumford stack, Z the subset of X consisting of Sing(X) and the locus in
X \Sing(X) where d∆e is not a divisor with only normal crossings and Z ′ the non-canonical
locus, i.e Z ′ = {CenterX(E)/a(E;X,∆) < 0}. If

c2
1(X )− c2(X ) > 0,

then there exists a proper subvariety Y ( X such that any non-constant orbifold entire curve
f : C→ (X,∆) with the property that f(C) ∩ Z ∩ Z ′ = ∅ is contained in Y .

Question 6.4. Can we shrink the ”bad” locus so that it becomes empty?

Remark 6.5. As seen in example 2.7, one can generalize slightly the preceding result to the
case of log canonical orbifold surface (X,∆) where all points which are not klt lie on b∆c.

7. Applications to singular orbifold surfaces of general type

7.1. Complements of plane curves. Let us consider a curve C ⊂ P2. We can apply the
above results to obtain examples where any holomorphic map f : C→ P2 \C is contained in
a curve D ⊂ P2. Such kind of results have been obtained in [9] and [13] by different methods.
The approach used here shows that ”order 1” techniques, i.e. symmetric differentials, can
still be useful in this situation contrary to the smooth case.
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Let us illustrate this in the case of a curve C ⊂ P2 with ordinary double points and cusps
as singularities. The orbifold (P2, αC) is klt for α < 5

6
(see for example [17]) so the orbifold

(P2,
(
1− 1

5

)
C) is klt and applying theorem 6.2 (or theorem 6.1), we obtain as announced

Theorem B. Let C ⊂ P2 be a curve of degree d ≥ 4 with n nodes and c cusps. If

−d2 − 15d+
75

2
+

1079

96
c+ 6n > 0,

then there exists a curve D ⊂ P2 which contains any non-constant entire curve f : C→ P2\C.

Proof. Let X be the stack associated to the klt orbifold (P2,
(
1− 1

m

)
C), m = 5. We just

have to compute c2
1(X ) and c2(X ). We have

c2
1(X ) =

(
KP2 +

(
1− 1

5

)
C

)2

=

(
−3 +

(
1− 1

5

)
d

)2

= 9 +
16

25
d2 − 24

5
d.

Now we use proposition 5.2 to compute c2(X ). To do so we need to compute the order of the
orbifold fundamental group at singular points of C. This can be found in [30] for example.
At a node we find that this order is m2 = 25 and at a cusp, it is equal to

4

6

(
1

m
− 1 +

5

6

)−2

= 600.

Therefore we obtain

c2(X ) = χ(P2)− χ(C) +
1

m
χ(C \ Sing(C)) +

1

25
n+

1

600
c

= 3−
(

1− 1

m

)
χ(C \ Sing(C))−

(
1− 1

25

)
n−

(
1− 1

600

)
c

= 3− 4

5
(χ(C̃)− 2n− c)− 24

25
n− 599

600
c

= 3− 4

5
χ(C̃) +

16

25
n− 119

600
c,

where C̃ is the normalization of C. We have

g(C̃) =
(d− 1)(d− 2)

2
− n− c,

therefore

χ(C̃) = 2− 2g(C̃) = 2n+ 2c− d(d− 3).

Finally we obtain

c2
1(X )− c2(X ) =

4

25
(−d2 − 15d+

75

2
+

1079

96
c+ 6n).

�
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Remark 7.1. One can compare the previous result with [9] and [13], where a stronger property,
namely hyperbolicity, is proved but under a numerical condition which can be seen to be much
more restrictive than the one obtained here. In particular, all cases of [9] and [13] must verify
d ≥ 9, which is not the case above.

7.2. Singular surfaces. Let us consider a nodal hypersurface X ⊂ P3, i.e. its singularities
are ordinary double points. Hyperbolic properties of such surfaces have been studied in [4].
Here, applying theorem 6.3, we obtain

Theorem 7.2. Let X ⊂ P3 be a nodal surface of general type of degree d with l nodes. If

l >
8

3

(
d2 − 5

2
d

)
,

then there exists a proper subvariety Y ⊂ X which contains every non-constant orbifold entire
curve f : C→ X.

Proof. First observe that the singularities are canonical (i.e. a(E;X) ≥ 0 for E exceptional
divisors appearing in a resolution of singularities) so in the notations of theorem 6.3 we have
Z ∩ Z ′ = ∅ and so no restrictions on orbifold entire curves.

Let us compute c2
1(X ) and c2(X ) where π : X → X is the stack associated to X. We

have
KX = π∗KX

and by proposition 5.2

c2(X ) = χ(X \ Sing(X)) +
l

2
.

Now, consider p : X̃ → X the minimal resolution of X. Then we have

K eX = p∗KX .

So we obtain
c2

1(X ) = c1(X̃)2

and

c2(X ) = χ(X̃ \ ∪Ei) +
l

2
= c2(X̃)− 2l +

l

2
= c2(X̃)− 3l

2
,

where the Ei are the exceptional curves. Therefore, we have

c2
1(X )− c2(X ) = c1(X̃)2 − c2(X̃) +

3l

2
.

X̃ can be seen as the central fiber of a flat family Xt → D on the unit disk where the other
members are smooth hypersurfaces of degree d, so we have

c1(X̃)2 − c2(X̃) = d(d− 4)2 − d(d2 − 4d+ 6) = d(10− 4d).

And finally

c2
1(X )− c2(X ) = d(10− 4d) +

3l

2
=

3

2

(
l − 8

3

(
d2 − 5

2
d

))
.

�
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Remark 7.3. One can notice that we obtain exactly the same numerical condition as in [4]
and, as it is observed there, there exists surfaces of degree d ≥ 6 satisfying it but not of degree
5, since then, the maximum number of nodes is 31 and 33 at least is needed. The next section
will provide an alternative method to deal with entire curve on such a surface.

Problem 7.4. Find a singular quintic in P3 such that c2
1(X )− c2(X ) > 0.

8. Orbifold jet differentials

8.1. The smooth case. Recall that if X is a compact complex manifold, in [14] Green
and Griffiths have introduced the vector bundle of jet differentials of order k and degree m,
EGG
k,mΩX → X whose fibers are complex valued polynomials Q(f ′, f ′′, . . . , f (k)) on the fibers

of JkX of weight m for the action of C∗:

Q(λf ′, λ2f ′′, . . . , λkf (k)) = λmQ(f ′, f ′′, . . . , f (k))

for all λ ∈ C∗ and (f ′, f ′′, . . . , f (k)) ∈ JkX.
If (X,D) is a smooth logarithmic manifold, i.e X is a complex manifold and D =

∑
iDi is

a reduced normal crossing divisor, the vector bundle of logarithmic jet differentials of order k
and degree m, EGG

k,mΩ(X,D) → X, consists of polynomial operators (satisfying the same weight
condition) in the derivatives of order 1, 2, . . . , k of f and of the log(sj(f)) where Dj = {sj = 0}
locally (see [11] for details).

Let (X,∆) be a smooth orbifold. Let (x1, . . . , xn) be local coordinates such that ∆ has
equation

x
(1− 1

m1
)

1 . . . x
(1− 1

mn
)

n = 0.

Generalizing the definition of orbifold symmetric differentials, one may define orbifold jet
differentials in the following way

Definition 8.1. For N a positive integer, EGG
k,NΩ(X,∆) is the locally free subsheaf of EGG

k,NΩ(X,d∆e)
generated by the elements∏

1≤i≤n

x
d
αi,1+···+kαi,k

mi
e

i

(
dxi
xi

)αi,1
. . .

(
dkxi
xi

)αi,k
,

such that |α1|+ 2|α2|+ · · ·+ k|αk| = N where |αi| =
∑

j αj,i.

From this definition, it is clear that elements ω ∈ H0(X,EGG
k,NΩ(X,∆)⊗A−1) act on orbifold

morphisms f : C→ (X,∆) giving holomorphic sections of f ∗A−1. More precisely, we have

Theorem 8.2. Let (X,∆) be a smooth compact orbifold, A an ample line bundle on X and
P ∈ H0(X,EGG

k,NΩ(X,∆) ⊗ A−1). Then for any orbifold morphism f : C→ (X,∆)

P (f) ≡ 0.
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Proof. The proof goes along the same lines as in the classical setting using the logarithmic
derivative lemma (see [27], [31], [7]) which we summarize for the convenience of the reader.
P (f) is a holomorphic section of f ∗A−1. Suppose it does not vanish identically. Let ω =
Θh(A), then by the Poincaré-Lelong equation

i∂∂ log ||P (f)||2h−1 ≥ f ∗ω.

Therefore

Tf (r, ω) ≤
∫ r

1

dt

t

∫
|z|<t

i∂∂ log ||P (f)||2h−1

and from Jensen formula ∫ 2π

0

log+ ||P (f)||h−1dθ ≥ Tf (r, ω) + O(1).

Finally the logarithmic derivative lemma gives∫ 2π

0

log+ ||P (f)||h−1dθ ≤ O(log(r) + log(Tf (r, ω)))

outside a set of finite Lebesgue measure in [0,+∞[. This gives a contradiction. �

Another possibility to define orbifold jet differentials, following the philosophy of the pre-
ceding sections, is to consider the smooth Deligne-Mumford stack π : X → X, with coarse
moduli space X. Then one can define

Definition 8.3. The sheaf Ek,NΩ(X,∆) of classical jet differentials is

Ek,NΩ(X,∆) := π∗Ek,NΩX .

The same proof as above gives

Theorem 8.4. Let (X,∆) be a smooth compact orbifold, A an ample line bundle on X and
P ∈ H0(X,Ek,NΩ(X,∆) ⊗ A−1). Then for any classical orbifold morphism f : C→ (X,∆)

P (f) ≡ 0.

The situation for higher order orbifold jet differentials turns out to be different from the
case of orbifold symmetric differentials. Indeed, in the order 1 case, the key point is that
orbifold symmetric differentials act on classical and non-classical orbifold morphisms. From
order 2, this is not the case anymore as we can see in the following

Example 8.5. Consider the morphism of orbifold [Dn/G]→ Dn induced by π : (y1, . . . , yn)→
(ym1

1 , . . . , ymnn ). A simple computation gives

ω := π∗(d
2yi)

mi = yi

(
1

mi

(
1

mi

− 1

)(
dyi
yi

)2

+
1

mi

(
d2yi
yi

))mi

.

Then one can see that if f : D → Dn is an orbifold morphism, ω(f) is not necessary holo-
morphic except if multx(f

∗(yi = 0)) ≥ 2mi for all x such that f(x) ∈ (yi = 0).
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8.2. The singular case. Let us study orbifold jet differentials in the case of singular surfaces.
Let (X,∆) be an orbifold and consider the smooth Deligne-Mumford stack π : X → X, with
coarse moduli space X. Then one can define, as in the smooth case,

Definition 8.6. The sheaf Ek,NΩ(X,∆) of classical jet differentials is

Ek,NΩ(X,∆) := π∗Ek,NΩX .

Classical jet differentials act on classical orbifold morphisms and as above we have

Theorem 8.7. Let (X,∆) be an orbifold with X compact, A an ample line bundle on X and
P ∈ H0(X,Ek,NΩ(X,∆) ⊗ A−1). Then for any classical orbifold morphism f : C→ (X,∆)

P (f) ≡ 0.

We have seen above a numerical condition for the existence of global orbifold symmetric
differentials on nodal surfaces, which unfortunately is not satisfied for nodal quintics. Here
we have

Theorem 8.8. Let X ⊂ P3 be a nodal surface of general type of degree d with l nodes.

(1) If

l >
−4

15
(d3 − 18d2 + 41d),

then X has global 2-jet differentials i.e. global sections of E2,NΩ(X,∆). More precisely

h0(X,E2,NΩX) ≥
(

15l

2
+ 2d3 − 36d2 + 82d

)
N5

43.3!
+O(N4).

(2) If

l >
−4

147
(18d3 − 242d2 + 533d)

then X has global 3-jet differentials i.e. global sections of E3,NΩ(X,∆). More precisely

h0(X,E3,NΩX) ≥
(

147l

2
+ 36d3 − 484d2 + 1066d

)
N7

65
+O(N6).

In particular, a quintic with the maximum number of nodes, 31, has global 3-jet differentials.

Proof. The proof is just a generalization of the original approach of [14] to the orbifold setting.
Recall that on a complex manifold Y we have a filtration of EGG

k,mΩY whose graded terms are

Grl(EGG
k,NΩY ) = Sl1ΩY ⊗ Sl2ΩY ⊗ ...⊗ SlkΩY ,

where l := (l1, l2, ..., lk) ∈ Nk verify l1 + 2l2 + ... + klk = N. This enables the following
Riemann-Roch computations on surfaces

χ(Y,EGG
2,NΩY ) = (7c2

1 − 5c2)
N5

43.3!
+O(N4),

χ(Y,EGG
3,NΩY ) = (85c2

1 − 49c2)
N7

65
+O(N6).
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These Riemann-Roch estimations extend to the orbifold setting in the same way as described
above for symmetric differentials, providing

χ(X , EGG
2,NΩX ) = (7c2

1(X )− 5c2(X ))
N5

43.3!
+O(N4),

χ(X , EGG
3,NΩX ) = (85c2

1(X )− 49c2(X ))
N7

65
+O(N6).

To conclude, in the case of manifolds, one applies a vanishing theorem of Bogomolov [3] for the
h2. This vanishing theorem extends to the orbifold setting as shown in [4] (proposition 2.3).
Then one uses the explicit computations of the orbifold Chern classes described above. �

As a consequence we obtain

Theorem C. Let X ⊂ P3 be a quintic with the maximum number of nodes, 31. Then every
classical orbifold entire curve satisfies an algebraic differential equation of order 3.
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