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Abstract. Inspired by the computation of the Kodaira dimension of sym-
metric powers Xm of a complex projective variety X of dimension n ≥ 2 by
Arapura and Archava, we study their analytic and algebraic hyperbolic prop-
erties. First we show that Xm is special if and only if X is special (except
when the core of X is a curve). Then we construct dense entire curves in (suf-
ficiently hig) symmetric powers of K3 surfaces and product of curves. We also
give a criterion based on the positivity of jet differentials bundles that implies
pseudo-hyperbolicity of symmetric powers. As an application, we obtain the
Kobayashi hyperbolicity of symmetric powers of generic projective hypersur-
faces of sufficiently high degree. On the algebraic side, we give a criterion
implying that subvarieties of codimension ≤ n − 2 of symmetric powers are
of general type. This applies in particular to varieties with ample cotangent
bundles. Finally, based on a metric approach we study symmetric powers of
ball quotients.

1. Introduction

In [AA03], it is shown that for any smooth complex projective variety X with
n = dimX ≥ 2 and Kodaira dimension k, the Kodaira dimension of the symmetric
product Xm is equal to mk. In particular, X is of general type if and only if Xm

is of general type. Green-Griffiths-Lang conjectures claim that varieties of general
type should have hyperbolic properties concerning entire curves or rational points.
More precisely, varieties of general type should be pseudo-hyperbolic i.e. there
should exist a proper subvariety containing all entire curves and all but finitely
many rational points. Therefore, if we believe in these conjectures, symmetric
product of varieties of general type should share the same hyperbolic properties
and the following conjecture should be true.

Conjecture 1.1. Let X be a complex projective variety with n = dimX ≥ 2. Then
X is pseudo-hyperbolic if and only if Xm is pseudo-hyperbolic for some m.

Remark that if Xm is pseudo-hyperbolic for some m, it is not difficult to prove
that X is pseudo-hyperbolic, so the interesting question is to show that Xm is
pseudo-hyperbolic if X is.

The second author has proposed vast generalizations of Green-Griffiths-Lang
conjectures based on the specialness property. Special varieties are opposite to
varieties of general type in the following sense: they do not admit any fibration with
(orbifold) base of general type or equivalently the core is of dimension 0 (see [Cam04]
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for a detailed background on special varieties and the core map). Conjecturally,
they should correspond to varieties admitting Zariski dense entire curves and a
(potentially) dense set of rational points (when defined over a number field).

In the first part of this paper we study specialness of symmetric powers and
prove the following result.

Theorem 1. If n ≥ 2, X is special if and only if so is Xm for some m (unless when
n ≥ 2, and the core of X is a curve, in which case Xm is special for sufficiently big
m even if X is not special).

In the line of the above conjectures, one should expect to have the correspond-
ing hyperbolic properties. In fact, this phenomenon has already been studied in
[HT00b] where the authors prove potential density of rational points for sufficiently
high symmetric powers of K3 surfaces. Here we prove the analytic analogue showing
that these symmetric powers contain dense entire curves (see Theorem 14).

We also study the case of product of curves.

Theorem 2. Let G (resp. C) be a curve of genus g(G) ≤ 1 (resp. g(C) > 1), and
S = G× C. If m ≥ g, then Sm contains dense entire curves.

As recently observed by Levin [Lev], such symmetric powers provide negative
answers to Puncturing Problems as formulated by Hassett and Tschinkel in [HT01]
in the arithmetic and geometric setting, which can be generalized in the analytic
setting as follows.

Problem 1.2. (Analytic Puncturing Problem) Let X be a projective variety with
canonical singularities and Z a subvariety of codimension ≥ 2. Assume that there
are Zariski dense entire curves on X. Is there a Zariski dense entire curve on X \Z
?

Considering Z := ∆m ⊂ Sm, the small diagonal, one easily gets that Zariski
dense entire curves cannot avoid Z giving a counter-example to the above problem.

In the second part of this paper, we study hyperbolic properties of symmetric
powers. We were not able to prove conjecture 1.1 in full generality, and the following
particular case seems already interesting and nontrivial.

Problem 1.3. Let X be a complex projective manifold with dimX ≥ 2. Assume
ΩX is ample. Show that Xm is pseudo-hyperbolic.

We provide partial answers to this problem and consider more generally jet
differentials bundles EGGk,r ΩX whose sections correspond to algebraic differential
equations or equivalently to sections of lines bundles on the jets spaces πk : XGG

k →
X (see section 2.3 and [Dem97b] for an introduction to these objects). First, we
establish a criteria which ensures strong algebraic degeneracy of entire curves in
symmetric powers i.e. the Zariski closure of the union of entire curves, known as
the exceptional set Exc(Xm), is a proper subvariety.

Theorem 3. Let X be a complex projective manifold. Let A be a very ample line
bundle on X. Let Z ( X, and k, r, d ∈ N∗. We make the following hypotheses.

(1) Assume that

Bs
(
H0(X,EGGk,r ΩX ⊗O(−dA))

)
⊂ XGG,sing

k ∪ π−1
k (Z).

(2) Assume that d
r > 2m(m− 1).
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Then Exc(Xm) 6= Xm.

In fact, there is a precise description of a proper subvariety containing the ex-
ceptional locus (see Theorem 15 for details). Our criteria applies to all situations
where we have enough positivity for jet differentials bundles. Thanks to the recent
works around the Kobayashi conjecture [Bro17, Den17, Dem18, RY18, BK19], we
obtain the following result.

Theorem 4. Let X ⊂ Pn+1 be a generic hypersurface of degree

d ≥ (2n− 1)5(2m2 + 10n− 1).

Then Xm is hyperbolic.

Then we establish a criterion ensuring that any subvariety V ⊂ Xm of codimV ≤
n− 2 is of general type (see Theorem 19). It applies in particular to varieties with
ample cotangent bundle.

Theorem 5. Let X be a complex projective manifold with n = dimX ≥ 2. Assume
ΩX is ample. Then, any subvariety V ⊆ Xm such that codimV ≤ n − 2 and
V 6⊂ Xsing

m is of general type.

In view of the above problem, if we believe in Lang’s conjectural characterization
of the exceptional locus, this should tell that codim Exc(Xm) ≥ n− 1 for varieties
with ΩX ample.

As a first corollary, we obtain geometric restrictions on the exceptional locus of
non-hyperbolic algebraic curves in Xm.

Corollary 1.4. Assume that ΩX is ample. Then, there exist countably many proper
algebraic subsets Vk ( Xm (k ∈ N) containing the image of any non-hyperbolic
algebraic curve, such that codimXm(Vk) ≥ n− 1 for all k ∈ N.

We also obtain some genus estimates for curves lying on X in the spirit of [AA03,
Corollary 4].

Corollary 1.5. Assume that ΩX is ample, and let Y ⊂ X be a closed submanifold.
Let 1 ≤ l ≤ d be integers. Assume that l generic points of Y and d − l generic
points of X lie on a curve of geometric genus g. Then if

l · codimY ≤ dimX − 2,

we have g > d.

In the last section, we give some metric criteria which in particular apply to
quotient of bounded symmetric domains. We obtain the following result for ball
quotients.

Theorem 6. Let X = Γ
∖Bn be a ball quotient by a torsion free lattice with only

unipotent parabolic elements, and let X = X ∪D be a smooth minimal compactifi-
cation (see [Mok12]). Let m ≥ 1. Then :
(a) Let V ⊂ Xm be a subvariety with codimV ≤ n− 6 and V 6⊂ d1(D) ∪ (Xm)sing

(where di(V ) = {[x1, ..., xm] ∈ Xm|x1, ..., xi ∈ V }). Then V is of general type.
(b) Let p ≥ n(m − 1) + 6, and f : Cp → Xm be a holomorphic map such that

f(Cp) 6⊂ d1(D) ∪ (Xm)sing. Then Jac(f) is identically degenerate.
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2. Notations and conventions

We introduce here a few notations pertaining to symmetric products of mani-
folds, that we will use throughout the text.

2.1. Symmetric products. Let X be a complex projective manifold.
(1) For any m ∈ N∗, we will denote by Xm = Sm

∖
Xm the m-th symmet-

ric product of X. We let q : Xm → Xm be the natural projection.
Elements of Xm will be denoted by [x1, x2, ..., xm] (where (x1, ..., xm) ∈
Xm). Also, if s > 0,m1, . . . ,ms are positive integers such that

∑
imi =

m, and x1, . . . , xs ∈ X are pairwise distinct, we write [xm1
1 , . . . , xmss ] :=

[x1, . . . , x1, . . . , xs, . . . , xs], where each xi is repeated mi times, for i =
1, . . . , s.

(2) For any V ⊂ X and any 1 ≤ i ≤ m, we let di(V ) = {[x1, ..., xm] ∈
Xm|x1, ..., xi ∈ V }.

(3) For any 1 ≤ i ≤ m, we let Di(Xm) = {[x1, ..., xm] ∈ Xm|x1 = ... = xi} be
the i-th diagonal locus. Note that codimDi(Xm) = n(i− 1).

(4) For any divisor A on X, we will denote by A] =
m∑
i=1

pr∗iA the associated

Sm-invariant divisor on Xm, and by A[ = q∗A
] the projection on Xm.

Note that A[ is a Cartier divisor on Xm, hence it induces a well-defined
line bundle.

Remark that the construction X  Xm is functorial, any holomorphic map
f : X → Y inducing a natural holomorphic map fm : Xm −→ Ym.

2.2. The Reid-Tai-Weissauer criterion. For later reference, we now recall an
important criterion for the extension of differential forms on resolutions of quotient
singularities.

Let G be a group acting on a complex manifold X of dimension n. The criterion
can be stated in terms of the following condition:

Condition (Ix,d). Let x ∈ X, and let d ∈ N. We say that the condition (Ix,d)
is satisfied, if for any g ∈ G − {1} stabilizing x, the following holds. Assume that
g has order r, and let (z1, ..., zn) be coordinates centered at x such that g acts by

g · (z1, ..., zn) = (ζa1z1, ..., ζ
anzn),

where ζ = e
2iπ
r , and a1, ..., an ∈ J0, r − 1K. Then, for any choice of d distinct

elements i1, ..., id in J1, nK, we have

ai1 + ...+ aid ≥ r.

It is useful to state a weaker condition under which the differentials will extend
meromorphically to a resolution of singularities. Resume the same notations as
before, and let α > 0.
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Condition (I′x,d,α). We say that the condition (I′x,d,α) is satisfied, if the same
statement as in Condition (Ix,d) holds, with the inequality replaced by

ai1 + ...+ aid ≥ r(1− α).

Proposition 2.1 ([Wei86, Lemma 4. p. 213]). Let d ∈ N. Assume that the
condition (Ix,d) (resp. (I′x,d,α)) holds for any point x ∈ X. Let Y = G

∖
X , and let

Ỹ be a smooth resolution of singularities of Y . Let Y ◦ be the smooth locus of Y .
Then, for any p ≥ d, and for any q ∈ N, the sections of (

∧p
ΩY ◦)

⊗q extend to
the whole Ỹ (resp. extends as meromorphic section of (

∧p
ΩỸ )⊗q with a pole of

order at most bqαc).

Remark 2.2. 1. The fact that q is arbitrary in the criterion above is crucial. Note
that if q = 1, then for any p ≥ 1, any section of

∧p
ΩY ◦ extends to Ỹ , e.g. by

[Fre71] or [GKKP10]. The proof of [Fre71] consists essentially in remarking that
(I′x,d,α) always holds for some α < 1, so bqαc = 0 in this case.

2. Proposition 2.1 is a generalization of well-known criterion proved indepen-
dently by Tai [Tai82] and Reid [Rei79] (which is simply the case p = dimX). The
proof given in [Wei86] is stated in the case where X = Hg is the Siegel upper half-
space acted upon by G = Sp(2g,Z), but it generalizes immediately to the general
case (for more details in English, the reader can see e.g. [Cad18]).

2.3. Jet differentials. We will now recall some basic facts around the notion of
jet differentials. For more details, the reader can refer to [Dem12].

Let X be a complex manifold, and k,m ∈ N be integers. We will denote the
unit disk by ∆. The Green-Griffiths vector bundle of jet differentials of order k and
degree m, is the vector bundle EGGk,mΩX → X, whose sections over a chart U ⊂ X
identify with differential equations acting on holomorphic maps f : ∆ → U , with
adequate order and degree. Writing f = (f1, ..., fn) in local coordinates, P (f) can
be put under the form:
P (f) : t ∈∆ 7−→ P (f)(t)

=
∑

I=(i1,1,...,i1,k,...,in,1,...,in,k)

aI(f(t)) (f ′1)i1,1 ...(f ′n)in,1 ...(f
(k)
1 )i1,k ...(f (k)

n )in,k ,

and P being of degree m means that if g(t) = f(λt), then P (g)(t) = λmP (f)(λt).

For any order k ≥ 1, we can form the Green-Griffiths jet differential algebra
EGGk,• ΩX =

⊕
m≥0Ek,mΩX , and define the k-th jet space XGG

k = ProjX(EGGk,• ΩX).
We check that the elements of XGG

k are naturally identified with classes of k-jets,
i.e. k-th order Taylor expansion of holomorphic maps f : (∆, 0)→ X, up to linear
reparametrization. Each jet space is endowed with a projection map πk : XGG

k → X
and tautological sheaves OXGGk (m) (m ≥ 0), such that

(πk)∗OXGGk (m) = EGGk,mΩX

for any m ≥ 1.
If C is a complex curve, any map f : C → X admit well-defined lifts f[k] : C →

XGG
k obtained by taking the k-th Taylor expansion at each point of C. The main

interest of jet differential equations in the study of complex hyperbolicity comes
from the following fundamental vanishing theorem, which permits to give strong
restrictions on the geometry of entire curves.
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Theorem 7 ([SY96, Dem97a]). Let X be a complex projective manifold, and let A
be an ample line bundle on X. Let k,m ≥ 1, and let P ∈ H0(X,EGGk,mΩ⊗O(−A)).
Let f : C −→ X. Then f is a solution of the holomorphic differential equation P ,
i.e. P (f ; f ′, ..., f (k)) = 0.

In other words, for any entire curve f : C→ X, we have f[k](C) ⊂ B+(OXGGk (1)),
where B+ denotes the augmented base locus.

The previous theorem has strong implications in cases where global jet differ-
ential equations are numerous. In these notes, we will be able to produce such
differential equations using a basic variant of the orbifold jet differentials which
were introduced by the second and third authors in a joint work with L. Darondeau
[CDR18]. We will explain briefly how these objects can be defined in our context
at the beginning of Section 6.2.

3. Special varieties

We collect here basic definitions and constructions related to special varieties,
while referring to [Cam04] for more details.

3.1. Special Manifolds via Bogomolov sheaves. Let X be a connected com-
plex nonsingular projective variety of complex dimension n. For a rank-one coherent
subsheaf L ⊂ ΩpX , denote by H0(X,Lm) the space of sections of Symm(ΩpX) which
take values in Lm (where as usual Lm := L⊗m). The Iitaka dimension of L is
κ(X,L) := maxm>0{dim(ΦLm(X))}, i.e. the maximum dimension of the image
of rational maps ΦLm : X 99K P(H0(X,Lm)) defined at the generic point of X,
where by convention dim(ΦLm(X)) := −∞ if there are no global sections. Thus
κ(X,L) ∈ {−∞, 0, 1, . . . ,dim(X)}. In this setting, a theorem of Bogomolov in
[Bog79] shows that, if L ⊂ ΩpX , then κ(X,L) ≤ p.

Definition 3.1. Let p > 0. A rank one saturated coherent sheaf L ⊂ ΩpX is called a
Bogomolov sheaf if κ(X,L) = p, i.e. if L has the largest possible Iitaka dimension.

The following remark shows that the presence of Bogomolov sheaves on X is
related to the existence of fibrations f : X → Y where Y is of general type.

Remark 3.2. If f : X → Y is a fibration (by which we mean a surjective morphism
with connected fibers) and Y is a variety of general type of dimension p > 0, then
the saturation of f∗(KY ) in ΩpX is a Bogomolov sheaf of X,

The second author introduced the notion of specialness in [Cam04, Definition
2.1] to generalize the absence of fibration as above.

Definition 3.3. A nonsingular variety X is said to be special (or of special type)
if there is no Bogomolov sheaf on X. A projective variety is said to be special if
some (or any) of its resolutions are special.

By the previous remark if there is a fibration X → Y with Y of general type
then X is nonspecial. In particular, if X is of general type of positive dimension,
X is not of special type.
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3.2. Special Manifolds via orbifold bases. It is possible to give a characteri-
zation of special varieties using the theory of orbifolds. We briefly recall the con-
struction.

Let Z be a normal connected compact complex variety. An orbifold divisor ∆
is a linear combination ∆ :=

∑
{D⊂Z} c∆(D) · D, where D ranges over all prime

divisors of Z, the orbifold coefficients are rational numbers c∆(D) ∈ [0, 1]∩Q such
that all but finitely many are zero. Equivalently,

∆ =
∑
{D⊂Z}

(
1− 1

m∆(D)

)
·D,

where only finitely orbifold multiplicities m∆(D) ∈ Q≥1 ∪ {+∞} are larger than 1.
An orbifold pair is a pair (Z,∆) where ∆ is an orbifold divisor; they interpolate

between the compact case where ∆ = ∅ and the pair (Z,∅) = Z has no orbifold
structure, and the open, or purely-logarithmic case where cj = 1 for all j, and we
identify (Z,∆) with Z \ Supp(∆).

When Z is smooth and the support Supp(∆) := ∪Dj of ∆ has normal crossings
singularities, we say that (Z,∆) is smooth. When all multiplicities mj are integral
or +∞, we say that the orbifold pair (Z,∆) is integral, and when every mj is finite
it may be thought of as a virtual ramified cover of Z ramifying at order mj over
each of the Dj ’s.

Consider a fibration f : X → Z between normal connected complex projective
varieties. In general, the geometric invariants (such as π1(X), κ(X), . . .) of X do
not coincide with the ‘sum’ of those of the base (Z) and of the generic fiber (Xη)
of f . Replacing Z by the ‘orbifold base’ (Z,∆f ) of f , which encodes the multiple
fibers of f , leads in some favorable cases to such an additivity (on suitable birational
models at least).

Definition 3.4 (Orbifold base of a fibration). Let f : (X,∆) → Z be a fibration
X → Z as above and let ∆ be an orbifold divisor on X. We shall define the orbifold
base (Z,∆f ) of (f,∆) as follows: to each irreducible Weil divisor D ⊂ Z we assign
the multiplicity m(f,∆)(D) := infk{tk · m∆(Fk)}, where the scheme theoretic fiber
of D is f∗(D) =

∑
k tk.Fk +R, R is an f -exceptional divisor of X with f(R) ( D

and Fk are the irreducible divisors of X which map surjectively to D via f .

Remark 3.5. Note that the integers tk are well-defined, even if X is only assumed
to be normal.

Let (Z,∆) be an orbifold pair. Assume that KZ + ∆ is Q-Cartier (this is the
case if (Z,∆) is smooth, for example): we will call it the canonical bundle of
(Z,∆). Similarly we will denote by the canonical dimension of (Z,∆) the Kodaira
dimension of KZ + ∆ i.e. κ(Z,∆) := κ(Z,OZ(KZ + ∆)). Finally, we say that the
orbifold (Z,∆) is of general type if κ(Z,∆) = dim(Z).

Definition 3.6. A fibration f : X → Z is said to be of general type if (Z,∆f ) of
general type.

The non-existence of fibrations of general type in the above sense turns out to
be equivalent to the specialness condition of Definition 3.3.

Theorem 8 (see [Cam04, Theorem 2.27]). A variety X is special if and only if it
has no fibrations of general type.
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Let us now recall the existence of the core map (see [Cam04, Section 3] for
details). Given a smooth projective variety X there is a functorial fibration cX :
X → C(X), called the core of X such that the fibers of cX are special varieties
and the base C(X) is either a point (if and only if X is special) or an orbifold of
general type.

As mentioned in the introduction, the second author has proposed the following
generalizations of Lang’s conjectures.

Conjecture 3.7 (Campana). (1) Let X be a complex projective variety. Then,
X is special if and only if there exists an entire curve C→ X with Zariski
dense image.

(2) Let X be a projective variety defined over a number field. Then, the set of
rational points on X is potentially dense if and only if X is special.

Finally, let us remark that previous conjectures (see [HT00a, Conjecture 1.2])
proposed to characterize potential density with the weaker notion of weak special-
ness.

Definition 3.8. A projective variety X is said to be weakly special if there are no
finite étale covers u : X ′ → X admitting a dominant rational map f ′ : X ′ → Z ′ to
a positive dimensional variety Z ′ of general type.

It has been shown in [CP07] and [RTJ20] that one cannot replace “special” by
“weakly-special” in Conjecture 3.7 in the analytic and function fields settings.

4. Canonical fibrations

We will now study conditions under which various canonical fibrations are pre-
served by the symmetric product. In the rest of the text, a fibration will be a
surjective morphism with connected fibres. Then, if f : X → Y is a fibration, so is
fm : Xm → Ym.

We shall consider the following (bimeromorphically well-defined) fibrations for
X smooth compact of dimension n:

(1) The Moishezon-Iitaka fibration f := J : X → B
Assuming X to be smooth Kähler:

(2) The ‘rational quotient’1 f := r : X → B.
(3) The ‘core map’ f := c : X → B.
Recall that [AA03] shows that if X is smooth, and if dimX ≥ 2, the singularities

of Xm are canonical, and consequently, that κ(Xm) = m.κ(X).
The goal is to extend (and exploit) [AA03] in order to show the following:

Theorem 9. Assume dimB ≥ 2, then in each of these 3 cases (f = J, r, c re-
spectively), fm : Xm → Bm is the same fibration (Jm, rm, cm respectively), with
Xm, Bm replacing X,B. (In the case of the rational quotient, or of the core map,
there are exceptional cases when B is a curve. See Theorems 10 and 11 below, as
well as Remark 4.1).

Remark 4.1. The conclusion is obviously false when dimX = 1 and g(X) ≥ 2, since
qm : Xm → Xm then ramifies in codimension n = 1. One recovers a uniform state-
ment by equipping Xm with its natural orbifold structure, obtained by assigning to

1Also termed MRC fibration.



9

each component Dj,k in Xm of the diagonal locus D2(Xm) its natural multiplicity
2. The orbifold divisor Dm :=

∑
j<k(1− 1

2 ).Dj,k on Xm has then the property that
q∗m(KXm +Dm) = KXm . In particular, κ(Xm,KXm +Dm) = m.κ(X). The divisor
Dm will appear again when we consider the core map below. Notice however that,
as soon as m ≥ 3, the orbifold divisor Dm is not of normal crossings (for m = 3 for
example, it is locally analytically a product of of disk by a plane cusp.)

For f = J , the proof is an immediate consequence of [AA03]. Indeed: the
general fibre of fm is a product of fibres of J , hence has κ = 0. On the other hand,
κ(Xm) = m.κ(X) = dim(Bm). The conclusion follows.

Before starting the study of cm, rm, let us make some simple observations on
fm : Xm → Bm if f : X → B is a fibration (with connected fibres) between two
connected compact complex manifolds.

1. The generic fibre of fm over a point [b1, . . . , bm] ∈ Bm is isomorphic to the
(unordered) product Xb1 × . . . Xbm if the bi are pairwise distinct. In particular, if
the generic fibre of f is rationally connected, or special, so are the generic fibres of
fm.

2. if the schematic fibres Xbi are reduced, so is the fibre over [b1, . . . , bm], what-
ever the bi.

3. If f has a local section over a neighborhood of each of the b′is, fm has (an
obvious) local section over a neighborhood of [b1, . . . , bm].

We shall now prove the statement for the other two fibrations.

4.1. The ‘rational quotient’.

Theorem 10. Let r : X → B be the rational quotient map of X, compact Kähler.
Then rm : Xm → Bm is the rational quotient map of Xm if dim(B) 6= 1. If B is
a curve of genus g > 0, and Rm : Xm → R(m) is the rational quotient map, there
are two cases: either m < g, then Rm = rm, R(m) = Bm, or Rm = jacmB ◦ rm :
Xm → Jac(B), where jacmB : Bm → Jac(B) is the natural Jacobian map.

Proof. Recall that r is characterised by the fact that its fibres are rationally con-
nected and (a smooth model of) its base is not uniruled (by [GHS03]). Since the
generic fibres of rm are products of fibres of r, hence rationally connected, it is
sufficient to show that a smooth model µ : B′m → Bm of Bm is not uniruled if
B is not a curve of positive genus, case treated now. Assume it were, we would
then have an algebraic family of generically irreducible curves C ′t covering B′m
and with −KB′m

.C ′t > 0. Since the singularities of Bm are canonical, this implies
KBm .Ct < 0, where Ct := µ∗(Ct), since KB′m

= µ∗(KBm) + E′, with E′ effec-
tive, by [AA03]. The conclusion now follows, using [MM86], from the fact that
KBm = (qBm)∗(KBm) is pseudo-effective (ie: has nonnegative intersection with any
covering algebraic family of generically irreducible curves), by lifting to Bm the
generic curve Ct.

Assume now that B is a curve of genus g > 0. Then jacmB : Bm → Jac(B) has
connected fibres generically projective spaces of dimension 0 if m ≤ g, and positive
dimension if m > g. Moreover the image of jacmB is never uniruled when m > 0.
This shows the claim, by [GHS03]. �

Corollary 4.2. X is rationally connected if and only if so is Xm for some m.
X is uniruled if and only if so is Xm for some m, unless we are in the following
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situation, where Xm is uniruled, but X is not: X is a curve of genus g > 0, and
m > g.

Proof. Indeed: the uniruledness (resp. rational connectedness) ofX is characterised
by: dim(X) > dim(B) (resp. dim(B) = 0), and dim(Bm) = m.dim(B). We thus
see that Xm is rationally connected (resp. uniruled) if so is X. Conversely, the
preceding Theorem 10 shows that the claim holds true if dim(R(m)) = dim(Bm) =
m. dim(X). This is the case unless possibly when r : X → B fibres over a curve
B with g(B) > 0, and m > g. In this case, Xm is uniruled, but not rationally
connected. Thus Xm rationally connected implies X rationally connected. On the
other hand, if X is not uniruled, we have X = B is a curve, and so Xm is uniruled
if and only if m > g. Hence the corollary. �

Remark 4.3. If X is unirational, so is obviously Xm, for any m > 1. It is true,
but less obvious ([Mat68]), that if X is rational, then so is Xm, for any m > 1.
From this follows that if X is stably rational, then so is Xm, for m > 1 too. This
naturally leads to consider the converses.

Question 1. Assume that Xm is unirational (resp. rational, stably rational) for
some m ≥ 2, is then, yes or no, X unirational (resp. rational, stably rational)? If
some Xm,m > 1 is rational, is X unirational? Some specific cases are as follows.

Example 1. 1. If X is a smooth cubic hypersurface of dimension n ≥ 3, is Xm

rational for some large m?
2. If X is the double cover of P3 ramified over a smooth sextic surface, X is Fano,

hence rationally connected, but its unirationality (or not) is an open problem. Is
Xm unirational for some large m? The same question arises for X a conic bundle
over P2 with a smooth discriminant of large degree.

4.2. The core map.

Theorem 11. If c : X → B is the core map of X, then cm : Xm → Bm is
(bimeromorphically) the core map of Xm if n ≥ 2, p 6= 1, where p := dim(B) is the
dimension of the core.

The case where B is a curve is studied in the next subsection.

Corollary 4.4. If n ≥ 2, X is special if and only if so is Xm for some m (unless
when n ≥ 2, and the core of X is a curve. See Remark 4.1).

Indeed, X (resp. Xm) is special if and only if dim(B) = 0 (resp. dim(Bm) = 0),
and dim(Bm) = m.dim(B).

Proof of Theorem 11. Since the general fibres of cm are products of special mani-
folds they are special (it is easy to see that a product of special manifolds is special).
It is thus sufficient to show that the ‘neat orbifold base’ of cm is of general type,
knowing that so is the neat orbifold base of c. This requires some explanation.

Recall that f : X → B is neat if there exists a bimeromorphic map u : X →
X0, X0 smooth, such that each f -exceptional divisor is also u-exceptional, and the
complement of the open set U = B \ D ⊂ B over which f is submersive is a snc
divisor, as well as f−1(D) ⊂ X. Such a neat model of f0 : X0 99K B is obtained by
flattening f0, followed by suitable blow-ups. In this case, the support of Df , the
orbifold base of f , is snc too, and κ(B,Df ) is minimal among all bimeromorphic
models of f . More precisely, κ(B,Df ) = κ(X,Lf ), where Lf := f∗(KB)sat ⊂ ΩpX ,
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where p := dim(B), and f∗(KB)sat is the saturation of f∗(KB) in ΩpX . See [Cam04]
for details. Notice also that if c : X → B is a neat model of some f0 : X0 99K B0,
and if x ∈ X is any point, there is another neat model f ′ : X ′ → B′ dominating2f :
X → B such that x does not belong to any f ′-exceptional divisor on X ′, and lies
in the image of the smooth locus of the reduction of a fibre of f ′. If this condition
is not realised on (X, f) it is then sufficient to suitably blow-up X, then flatten the
resulting map by modifying B, and finally take a smooth model of the resulting f .
The claim of Theorem 11 then holds true for (X, f) if it holds for (X ′, f ′).

Let c : X → B be neat with respect to u : X → X0, and let cm : Xm → Bm,
together with a smooth model c′m : X ′m → B′m of cm (ie: X ′m, B

′
m are smooth

models of Xm, Bm).
Let us prove first that cm : Xm → Bm is the core map of Xm, with orbifold

base (Bm, Dfm) and Kodaira dimensionm.κ(B,Df ). This follows inductively onm
from the following easy lemma, which also shows that Dfm = ∪s∈Sms(Df×Xm−1).
Lemma 4.5. Let f : X → V, g : Y → W be neat fibrations with orbifold bases
(V,Df ), (W,Dg). Then f × g : X × Y → V × W is neat, its orbifold base is
(X × Y,Df ×W + V ×Dg), and its Kodaira dimension is κ(V,Df ) + κ(W,Dg).
Proof. If E ⊂ V ×W is an irreducible divisor mapped surjectively on both V and
W , there is only one irreducible divisor F ⊂ X×Y such that (f×g)(F ) = E, which
has multiplicity 1 in (f × g)∗(E), since over (v, w) ∈ E generic, (f × g)−1(v, w) =
Xv × Yw, reduced. The other conclusions are obtained by a similar argument. �

• We now turn to the proof of Theorem 11. Let cm : Xm → Bm be deduced
by quotient from the core map cm, and let Dcm ⊂ Xm be the direct image of Dcm

under the quotient map qB : Bm → Bm, so that Dcm = (qB)∗(Dcm). It is sufficient
to show that ρ∗(c∗m((KXm +Dcm)⊗k)) ⊂ Symk(Ωm.pX′m

) for any (or some) k > 0 such
that k.(KXm +Dcm) is Cartier, where ρ : X ′m → Xm is a smooth model of Xm.
• If p := dim(B) = 0, there is nothing to prove.
• We thus assume that p := dim(B) ≥ 2. The problem is local (in the analytic

topology) on Xm, Xm, B
m, Bm. By the observations made above, we shall assume

that the points (x1, . . . , xm) near which we treat the problem do not belong to
any c-exceptional divisor, and are regular points of the reduction of the fibre of c
containing them. The fibration c is thus given in suitable local coordinates on X
and B by the map c : (x1, . . . , xn)→ (b1, . . . bp) with bi := xtii ,∀i = 1, . . . , p, p < n,
where the support of Dc is contained in the union of the coordinate hyperplanes
bi = 0 of B, the multiplicity of bi = 0 in Dc being an integer t′i, with 1 ≤ t′i ≤
ti,∀i ≤ p, by the very definition of the orbifold base.

Since c∗
((

dbi

b
1−(1/t′

i
)

i

)⊗t′i)
= t

t′i
i .x

(ti−t′i)
i .(dxi)

⊗t′i , we see that (KB + Dc)
⊗t is

Cartier and c∗((KB +Dc)
⊗t) ⊂ Symt(ΩpX), if t = lcm{t′i}.

Thus (cm)∗((KBm + Dcm)⊗t) ⊂ Symt(ΩpmXm), this natural injection being de-
duced from the description of Dcm given above (which shows that it is snc since so is
Dc). The saturation of the image of this injection inside Symt(ΩpmXm) is the line bun-
dle generated by T := (w1∧· · ·∧wm)⊗t, where wj := dx1,j∧· · ·∧dxp,j ,∀j = 1, . . . ,m.
Here (x1,j , . . . , xn,j) are the local coordinates near the point zj ∈ X, on the j-th
component Xj

∼= X of Xm near the point (z1, . . . , zm).

2In the sense that there exists birational maps u′ : X′ → u and β′ : B′ → B such that
f ◦ u′ = β′ ◦ f ′.
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It is sufficient (considering separately the distinct points of the set {z1, . . . , zm})
to deal with the case where zj = zk,∀j, k ≤ m.

The operation of Sm on the coordinates xi,j , i ≤ n, j ≤ m fixes the set of coor-
dinates xi,j , i ≤ p, j ≤ m and induces on the vector space ⊕jVj := ⊕i,jC.xi,j , j ≤ p
they generate a representation which is a direct sum of p copies of the regular
representation.

The conclusion then follows from Proposition 2.1. One checks the conditions3

given in [Wei86] by using the (purely algebraic) proof of Prop.1, p. 1370, of [AA03],
which says that if ρ : Sm → Gl(⊕j=mj=1 V ) is a representation which is the direct
sum of p copies of the regular representation, where V is a complex vector space
of dimension p ≥ 2, then σ(g) = n

2 .r.(
∑k=s
k=1(rk − 1)) ≥ r, for any g ∈ Sm which is

the product of s non-trivial disjoint cycles of lengths rk, and r := lcm(r′ks) is the
order of g. Here σ(g) :=

∑
h ah, if the eigenvalues of ρ(g) are ζah , where ζ is any

complex primitive r-th root of the unity, and 0 ≤ ah < r for any h. �

4.3. The core map of Xm when the base of c is a curve. We now assume
that p := dim(B) = 1. Let c : X → B be the core map, and (B,Dc) its orbifold
base. When Dc = 0, the situation is easy:

Theorem 12. Assume that the core map c : X → B maps onto a curve B, and
that its orbifold-base divisor Dc = 0. Then cm : Xm → Bm is the core map if
m < g, and Xm is special if m ≥ g.

Proof. Since Dc = 0, the fibration c : X → B, and so cm, has everywhere local
sections, thus the same is true for cm, and hence for any smooth birational model of
cm. The conclusion thus follows from the fact that Bm is of general type if m < g,
and special if m ≥ g. �

In the general case, we have a weaker statement:

Corollary 4.6. If c : X → B is the core map, with B a curve, there is an integer
g(B,Dc) > 0 such that Xm is special if m ≥ g(B,Dc)

Proof. By assumption, the orbifold curve (B,Dc) is of general type, hence ‘good’,
meaning that there exists a finite Galois cover h : B̃ → B which ramifies at order
t′ over each point b ∈ Dc ⊂ B, b of multiplicity t′ in Dc. The normalisation
H : X̃ → X of the fibre-product X ×B B̃ comes equipped with c̃ : X̃ → B̃, which
is its core map, since this fibration has everywhere local sections.

If m ≥ g(C̃), then X̃m, and so also Xm, is special. This shows the claim. �

Remark 4.7. It would be interesting to know a precise bound for g(B,Dc), such
that Xm is special for m ≥ g(B,Dc), and such that cm : Xm → Bm is the core map
for m < g(B,Dc).

5. Dense entire curves in symmetric powers

5.1. Dense entire curves in Symm(G × C). Let G (resp. C) be a curve of
genus g(G) ≤ 1 (resp. g(C) > 1), and S = G × C, then Sm is special if and
only if m ≥ g, which we assume from now on. Theorem 12 shows that Sm is

3The simpler form of our tensor T reduces the conditions, for a given g, in the proof-not the
statement-of Lemma 4 of [Wei86] to a single one: σ(g) ≥ r (in loc.cit the data `, d,N,m correspond
to t, pm, n, r here, respectively.)
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‘special’ (hence ‘weakly-special’), while of course, Sm is not ‘weakly special’. This
section is devoted to the proof of a result stating that Sm contains (lots of) entire
curves h : C→ Sm with dense (not only Zariski-dense) image. This statement was
suggested by Ariyan Javanpeykar as a test case for the conjecture by the second
named author, that special manifolds should contain dense entire curves. The
arithmetic counterpart were that Sm is ‘potentially dense’ if defined over a number
field.

Theorem 13. If S = G × C is as above, and if m ≥ g, then Sm contains dense
entire curves.

Proof. We shall assume here that G = P1, the proof when G is an elliptic curve
being completely similar (just replacing C ⊂ P1 by C → G the universal cover).
Observe that Cm contains dense entire curves, since it fibres over Jac(C) as a Pr-
bundle, with r := m− g, over the complement in Jac(C) of a Zariski-closed subset
of codimension at least 2.

Take a dense entire curve f : C → Cm, let V ⊂ C × C be the graph of the
family of m-tuples of points of C parameterized by C via f (ie: V := {w :=
(z, c)|c ∈ C, c ∈ f(z)}. The map π : V → C sending w = (z, c) to z is thus proper,
open and of geometric generic degree m. In particular, V is a Stein curve (not
necessarily irreducible). Let F : V → C be the projection on the second factor.
Let g : V → C ⊂ P1 = G be any holomorphic map. The product map g × F : V →
C×C ⊂ G×C = S is thus well-defined. We now define the map h : C→ Symm(S)
by sending z ∈ C to the m-tuple of S defined by: (g × F )(π−1(z)) ⊂ S.

We now just need to check that the map g : V → C can be chosen such that
h(C) ⊂ Symm(S) is dense there. Note first that if (zn)n>0 is a any discrete sequence
of pairwise distinct complex numbers such that π : V → C is unramified over each
zn, and if, for each n > 0, (tn,1, . . . , tn,m) is an m-tuple of complex numbers, there
exists a holomorphic map g : V → C such that g(wn,i) = tn,i,∀n > 0, i = 1, . . . ,m,
where (wn,1 = (zn, cn,1), . . . , wn,m = (zn, cn,m)) = π−1(zn), and (cn,1, . . . , cn,m) :=
f(zn) ∈ Symm(C) (the ordering being arbitrarily chosen).

It is now an elementary topological fact that the sequences (tn,1, . . . , tn,m), n > 0
can be chosen in such a way that the sequence (sn,1, . . . , sn,m)n>0 ∈ Sm is dense
in Sm, where sn,i := (tn,i, cn,i) ∈ S, ∀n > 0, i = 1, . . . ,m.

�

Remark 5.1. The preceding arguments work more generally for X = G× C, when
C,m are as above, but G enjoys the following property: for any smooth complex
Stein curve V → C proper over C, and any sequence of distinct points wn ∈W, tn ∈
G, there exists a holomorphic map g : V → G such that g(wn) = tn,∀n.

This property is satisfied for G a complex torus or a unirational manifold. The
same arguments would show the same result for G rationally connected if one
could answer positively the following question, answered positively in [CW19], when
V = C:

Question: For m,C, π : V → C defined as above, let wn ∈ V, tn ∈ G,n ∈ Z>0

be a sequence of points. Assume that the points π(wn) ∈ C are all pairwise distinct.
Does there exist a holomorphic map g : V → G such that g(wn) = tn,∀n if G is
rationally connected?
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Remark 5.2. Let now ∆(m) ⊂ Sm be the ‘small diagonal’, consisting of m-tuple of
points of which 2 at least coincide. Thus (Sm)∗ := Sm \∆(m) admits a surjective
(but non-proper...) map to Cm.

Let ∆m ⊂ Sm be defined as: ∆m := D2(Sm) = q(∆(m)). We thus have, too:
∆(m) = q−1(∆m). The restricted map q : (Sm)∗ → (Sm)∗ := Sm \ ∆m is thus
proper and étale.

Let d(Sm)∗ := dSm|(Sm)∗ (by [Kob98]) be the Kobayashi pseudometric on (Sm)∗.
Since the Kobayashi pseudometric on Sm is the inverse image by π of that on Cm,
any entire curve h : C → Sm (and so even more in (Sm)∗ has to be contained in
some fibre of π. Moreover, the Kobayashi pseudometric on (Sm)∗ is comparable
to its inverse image in (Sm)∗ (and can be explicitly described). This shows that
any entire curve in (Sm)∗ is contained in the image by q of a fibre of π, and is in
particular algebraically degenerate (although there are lots of dense entire curves
on Sm, none of these avoids ∆m).

This gives a counterexample to an analytic version of the ‘puncture problem’ of
[HT01], similar to the arithmetic one of [Lev].

5.2. C2g-dominability of S[g], the g-th symmetric product of generic pro-
jective K3-surfaces. Let S be a smooth projective K3-surface with4 Pic(S) ∼= Z,
generated by an ample line bundle L of degree 2(g−1), g > 1. Such K3-surfaces are
thus generic among projective K3-surfaces admitting a primitive ample line bundle
of degree 2.(g − 1).

The objective is to prove the following

Theorem 14. For any such S, there is a (transcendental) meromorphic map
h : C2g 99K Symg(S) whose image contains a nonempty Zariski open subset U
of Symg(S) (such 2g-fold is said to be ‘C2g-dominable’). In particular, for any
countable subset P of U , there is an entire curve on Symg(S) whose image con-
tains P . If P is dense in Symg(S), so is the image of this entire curve.

Remark 5.3. 1. The proof rests on a suitable abelian fibration Symg(S) 99K Pg.
Our result may thus be seen as analog to the case when S is an elliptic K3 surface
(over P1) and g = 1, shown in [BL00].

2. Our result is analogous to the arithmetic situation treated by [HT01].
3. Since Symg(S) is special, 14 solves in a stronger form the conjecture of

[Cam04].
4. One may expect the conclusion of Theorem 14 to hold for S[k], any k > 1 and

any K3-surface (projective or not).

Before starting the proof, we recall some of the objects which have been attached
to such a pair (S,L).

The g-th Symmetric product: It is the direct product Sg of g copies of
S, the symmetric product Symg(S) is the quotient q : Sg → Symg(S) of Sg by
the symmetric group Sg operating naturally on the factors. The Hilbert scheme
S[g] of points of length g on S, equipped with the Hilbert to Chow birational
morphism δ : S[g] → Symg(S), is known to be smooth ([Fog68], Theorem 2.4) and
holomorphically symplectic [Bea83]).

4with some more work, it is probably possible to extend the next result to any projective
K3-surface, by taking for L an ample and primitive line bundle with g minimal.
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The Relative Jacobian: The line bundle L determines P(H0(S,L))∗) := Pg,
the g-dimensional projective space (by Riemann-Roch and Kodaira vanishing). The
linear system |L| is base-point free and the associated map ϕ : S → Pg is an
embedding for g ≥ 3 (a double cover ramified over a sextic for g = 2). For each
t ∈ Pg, the corresponding zero locus of a non-zero section of |L| is an irreducible
and reduced (by the cyclicity of Pic(S) assumption) curve of genus g denoted
Ct. The incidence graph of this family of curves is denoted by γ : C → Pg. For
d ∈ Z, the relative Jacobian fibration jd : Jd → Pg has fibre over t the Jacobian
Jdt of degree d line bundles on Ct. The Jacobian J0

t of degree 0 line bundles on
Ct (isomorphic to Jdt by tensorising with any given line bundle of degree d) is a
complex Hausdorff Lie group of dimension g quotient ofH1(Ct,OCt) by the (closed)
discrete subgroup H1(Ct,Z) ([BPVdV84], II.2, Proposition (2.)). Thus, denoting
with j0 : J0 → Pg the relative Jacobian of degree 0 (instead of d) line bundles
on the C ′ts, and V := R1γ∗(OC) → Pg, this sheaf is locally free and thus a vector
bundle w : V → Pg of rank g on Pg. By [Gro62], Theorème 3.1, the relative Picard
scheme is separated, and so the relative discrete group R1γ∗(Z) → Pg is closed in
V . Taking the quotient, we get:

Lemma 5.4. There is a holomorphic and surjective unramified map H : V → J0

over Pg.

The compactified Jacobian: For d ∈ Z, this is the compactification j̄d : Jd →
Pg of Jd over Pg obtained as a component of the moduli space of simple sheaves on
S ([Muk84]). This variety is compact smooth, holomorphically symplectic and, for
d = g, birational to S[g] ([Bea91], Proposition 3). We denote with σ : S[g] 99K Jg

this birational equivalence.
The covering by singular elliptic curves. By [BPVdV84], VIII, Theorem

23.1 (see references there for the original proofs), there is a nonempty curve in
Pg parametrising (singular) curves C ′ts with elliptic normalisations. This family
(and each of its components) covers S. Choosing g generic (normalised) members
E1, . . . , Eg of such an irreducible family provides a product ε : E := E1×· · ·×Eg ⊂
Sg. By [HT01], proof of Theorem 6.1, the composed projection j̄g◦σ◦ε : E → Pg is a
(meromorphic) multisection of the (meromorphic) fibration τ := (j̄g)◦σ : S[g] → Pg.
This fact is in fact easy to prove, since if Ct is smooth, it cuts each of the E′is in
finitely many distinct points, and so the intersection of E with Cgt is finite, and
surjective on the fibre of Symg(S) over Pg.

Proof. We can now prove Theorem 14. For any complex manifolds M,R equipped
with a holomorphic map µ : M → Pg, r : R→ Pg, we denote with R(M) := R ×Pg

M , equipped with the projections µM : R(M) → M, rM : R(M) → R . This, ap-
plied toR = V,R = Jd, R = S[g](M), gives the fibre products V (M), Jd(M), S[g](M).

We have two meromorphic and generically finite maps ε : E 99K S[g], and σ ◦ ε :
E 99K Jg. Denote with Et the fibre of E over t ∈ Pg. We get a birational map
β : Jg(E) 99K J0(E) over E by sending a generic pair (j, (e1, . . . , eg)t) ∈ Jgt × Et
to j ⊗ λ−1, if λ ∈ Jgt is the line bundle on Ct with a nonzero section vanishing on
the g points ei.

Let π : E′ → E be a modification making these maps holomorphic. Let wE :
V (E′) → E′ be the rank-g vector bundle on E′ lifted from w : V → Pg. We get
also a natural holomorphic map, unramified and surjective HE : V (E′) → J0(E′)
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over E′. Let E := π∗(V ):this is a rank-g coherent sheaf on E, and there is a natural
evaluation map: π∗(E)→ V over E′.

Let now ρ : E → E be the universal cover, so that E ∼= Cg. Let π′ : E′ ×E E →
E be deduced from π : E′ → E by the base change ρ. Hence π′ is a proper
modification. The sheaf ρ∗(E) on E is coherent, hence generated by its global
sections since E is Stein. Let W ⊂ H0(E, ρ∗(E)) be a vector subspace of dimension
g which generates ρ∗(E) at the generic point of E, and let ev : W×E ∼= C2g → V (E′)
be the resulting meromorphic and bimeromorphic map, obtained from the injection
π′∗ : H0(E, ρ∗(E))→ H0(E′ ×E E, V (E′)).

We thus obtain a dominating meromorphic map C2g → S[g] by composing ev
with the bimeromorphic maps between J0(E′), Jg(E′), S[g](E′), and finally project-
ing S[g](E′) onto S[g].

This completes the proof of Theorem 14. �

6. Hyperbolicity of symmetric products

6.1. A remark on the Kobayashi pseudometric. For any (irreducible) complex
space Z, let dZ be its Kobayashi pseudo-distance. We say that Z is generically
hyperbolic if dZ is a metric on some nonempty Zariski open subset of Z.

Question 2. Assume X is smooth, compact and generically Kobayashi hyperbolic
with n > 1. Is then Xm is generically Kobayashi hyperbolic for any m > 0?

One remark in this context. Let (Xm)∗ ⊂ Xm be the Zariski open subset
consisting of ordered m-tuples of distinct points of X. The complement of (Xm)∗

has codimension n ≥ 2 in Xm. By [Kob98] Theorem 3.2.22, dXm|(Xm)∗ = d(Xm)∗ .
Let qm : Xm → Xm be the natural quotient, and X∗m := qm((Xm)∗), so that X∗m
has a complement of codimension n in Xm as well, which is the singular set of Xm.
Moreover, (Xm)∗ = q−1

m (X∗m). From [Kob98] 3.1.9 and 3.2.8, we get:
dX∗m([x1, . . . , xm], [y1, . . . , ym]) = infs∈Sm{maxi=1,...,m{dX(xi, ys(i))}}.
Although the complement Xsing

m of X∗m in Xm has codimension n ≥ 2 (and the
singularities are canonical quotient), it is not true that dXm|X∗m = dX∗m in general,
as the following example shows. Even more, the pseudometric may degenerate away
from Xsing

m , so the problem is not a local one near Xsing
m .

Let C ⊂ X be an irreducible curve of geometric genus g with normalisation Ĉ
on X, and take m ≥ g. Then Ĉm → Alb(C) is a surjective morphism with generic
fibres Pm−g, and there is then a natural generically injective map from Ĉm to Xm

showing that dXm vanishes identically on its image.
If the answer to the above question is affirmative (as it should be if and only if X

is of general type, after S. Lang’s conjectures), the vanishing locus of dXm appears
to have an involved structure. In particular, it should contain the union of all the
Ĉ)m whenever g(Ĉ) ≤ m, and this union should not be Zariski dense.

Example 2. The simplest possible example might be a surface S := C × C ′, where
C,C ′ are smooth projective curves of genus 2, and m = 2. In this case, the natural
map S2 → C2 × C ′2 is a ramified cover of degree 2 branched over R := (2C) ×
C ′2 ∪ C2 × (2C ′), where (2C) ⊂ C2 is the divisor of double points (and similarly
for (2C ′)). Notice that C2 identifies naturally with the Pic2(C), the Picard variety
of line bundles of degree 2 on C, isomorphic to Jac(C), blown-up over the point
{KC}, and 2C embeds C in C2, its image meeting the exceptional divisor of C2
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in the 6 ramification points of the map C → P1 given by the linear system |KC |.
Thus 2C ⊂ C2 is an ample divisor (similarly for C ′).

As a first step towards the above question, let us show the following result which
in particular implies that entire curves in the above example cannot be Zariski
dense.

Proposition 6.1. Let X be a complex projective variety of dimension n with ir-
regularity q := h0(X,ΩX).

(1) If m · n < q then entire curves in Xm are not Zariski dense.
(2) If X is of general type, n ≥ 2 and m · n ≤ q then entire curves in Xm are

not Zariski dense.

Proof. Let α : X → A be the Albanese map. It induces the Albanese map αm :
Xm → A. If dimXm = m · n < q = dimA then by the classical Bloch-Ochiai’s
Theorem, entire curves in Xm are not Zariski dense. If X is of general type, by
[AA03] Xm is of general type. Therefore by Corollary 3.1.14 [Yam04], if dimXm =
m · n ≤ q = dimA, entire curves in Xm are not Zariski dense. �

6.2. Jet differentials on resolutions of quotient singularities. We recall here
some basic definitions related, on the one hand, to natural orbifold structures on
resolution of quotients singularities (see [CRT19, Cad18, CDG19]), and on the other
hand, to orbifold jet differentials (see [CDR18]). The basic result we will need is
given by Proposition 6.2.

6.2.1. Jet differentials on orbifolds. Let us give some details about the very basic
notion of orbifold jet differentials that we will use in the following. For our purposes,
it will be enough to consider only orbifolds of the form (X,∆ =

∑
i(1 −

1
mi

)Di),
with mi ∈ N≥1. Also, rather than using the geometric orbifold jet differentials
defined in [CDR18], it will also suffice to consider jet differentials adapted to di-
visible holomorphic curves in the sense of [loc. cit., Definition 1.1]. The latter jet
differentials admit a very simple description. For any k, r ∈ N, we will denote by
EGGk,r Ωdiv

(X,∆) the vector bundle of divisible orbifold jet differentials of order k and
degree r, whose sections in orbifold local charts adapted to ∆ can be described as
follows. Assume that (t1, ..., tp, tp+1, ..., tn) ∈ U 7−→ (tm1

1 , ..., t
mp
p , tp+1, ..., tn) ∈ V

is such a chart. Then, the local sections of EGGk,r Ωdiv
(X,∆) corresponds to the regu-

lar sections of EGGk,r ΩU on U , which are invariant under the deck transform group.
Remark that we could also have defined EGGk,r Ωdiv

(X,∆) in terms of a global adapted
covering instead of local orbifold charts.

6.2.2. Natural orbifold structure on resolutions of a quotient singularities. Consider
now a quotient Y = G

∖
X where X is smooth, and G finite. If Ỹ −→ Y is a

resolution of singularities, we can endow it with a natural orbifold structure, by
assigning to every exceptional divisor E ⊂ Ỹ the rational multiplicity 1− 1

m , where
m is the order of the element γ ∈ G associated with the meridional loop around
the generic point of E (see [CDG19, Cad18]).

With these notations, the following proposition is then essentially tautological.

Proposition 6.2. Let X be a complex manifold, and let G ⊂ Aut(X) be a finite
subgroup. Let p : X −→ Y = G

∖
X be the quotient map, and Ỹ

π−→ Y be a
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resolution of singularities. Let (Ỹ ,∆) be the natural orbifold structure on Ỹ . Let A
be a G-invariant divisor on X, and B = p∗A the associated Cartier divisor on Y .

For k, r ∈ N, we let σ ∈ H0(X,EGGk,r ΩX ⊗ O(−A)) be a G-invariant section.
Then π∗p∗σ induces an element of H0(Ỹ , EGGk,r Ωdiv

(Ỹ ,∆)
⊗O(−π∗B)).

Remark 6.3. With the notations of the previous proposition, we see that if r is
divisible enough, and if f is a local section of OỸ (−r∆) ⊂ OỸ , then f · π

∗p∗σ is a
holomorphic section of EGGk,r ΩỸ ⊗O(−π∗B).

6.3. A first criterion for the hyperbolicity of symmetric products. Before
presenting our next hyperbolicity result, let us first prove a proposition that will
allow us later on to compensate for the divergence of natural orbifold objects on
resolutions of Xm. We resume the notations introduced in Section 2.1.

Proposition 6.4. Let X be a complex projective manifold, and let A be a very
ample divisor on X. Let π : X̃m −→ Xm be a log-resolution of singularities, and
let ∆ be the exceptional divisor with its reduced structure. Then

B(π∗A[ −
1

2(m− 1)
∆) ⊂ |∆|,

where B denotes the stable base locus.

We break the proof of this proposition into several lemmas.

Lemma 6.5. Let U be a complex manifold, let G ⊂ Aut(U) be a finite group, and
let p : U −→ G

∖
U = V be the quotient map. Let A be a divisor on X, and let

A] =
∑
γ∈G

γ∗A and A[ = p∗A
]. Note that A] is G-invariant, and A[ is Cartier on

V . Let W ⊂ U be an irreducible component of the subset of points stabilized by
some element of G. Let s ∈ Γ(U,A]) be a G-invariant section vanishing at order r
along W , for some r ≥ 1. Then, we have the following.

(1) s descends to a section σ ∈ Γ(X,A[) ;
(2) let X̃ π−→ X be a resolution of singularities, and let E ⊂ X̃ be an excep-

tional divisor such that π(E) ⊂ p(W ). Let m be the multiplicity of E for
the natural orbifold structure on X̃. Then, π∗σ, seen as a section of π∗A[,
vanishes at order ≥ r

m along E.

Proof. (1) is trivial. Let us prove (2). Let H ⊂ G be the stabilizer of the generic
point of π(E). By definition of A], we may find an H-invariant trivialization e
of A] near this generic point. Besides, s = f e for some H-invariant holomorphic
function f vanishing at order r along W . Consider a polydisk D ∼= ∆n centered
around a generic point of E, and let D′ be the normalization of the fibered product
of D and U over V . We obtain the following diagram:

D′ ∼= ∆×∆n−1 U

(∆n ∩ E) = {0} ×∆n−1 D ∼= ∆×∆n−1 V

π′

p′ p

π

Since f is H-invariant, f ◦ π′ = f ′ ◦ p′ for some holomorphic function f ′ on D ∼=
∆×∆n−1. Moreover, we have σ = f ′ e[, where e[ is the section of A[ induced by e.
The holomorphic function f vanishes at order r > 0 along V , so f ◦ π′ vanishes at
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order ≥ r along {0}×∆n−1. Since p′(w, z) = (wm, z), this implies that f ′ vanishes
at order ≥ r

m > 0 along {0} ×∆n−1 ⊂ ∆n. This ends the proof. �

Lemma 6.6. Let N,m ≥ 1. We define V = PN × ... × PN to be a product of m
copies of PN . Let D = {(z1, ..., zm) ∈ V | ∃i 6= j, xi = xj} ⊂ V be the diagonal

locus. Let A ⊂ PN be a hyperplane section, and A] =
m∑
i=1

pr∗i A.

Then, for any z ∈ V \D, there exists a Sm-invariant section

s ∈ Γ(V,OV (2(m− 1)A])),

with s(x) 6= 0, and such that s vanishes at order 2 along D.

Proof. Let z = (z1, ..., zm) ∈ V \D. Write (PN )i to denote the i-th factor of V . For
any i < j, we have zi 6= zj , so for two generic hyperplane linear sections X,Y ∈ |A|,
we have

(1) X(zi)Y (zj)−X(zj)Y (zi) 6= 0.

Indeed, we can choose X, Y so that X(zi) 6= 0 and X(zj) = 0 (resp. Y (zi) = 0 and
Y (zj) 6= 0).

Now, for each 1 ≤ i ≤ m, choose two generic linear forms Xi and Yi on (PN )i.
We let

s =
∏
i<j

(XiYj −XjYi)
2

This is a section of
⊗m

i=1 p
∗
iO(2(m − 1)) = O(2(m − 1)A]). By the argument

above, we have s(z) 6= 0, and s vanishes on D at order 2 by Lemma 6.7. We
check that s is invariant under all transpositions (i j) ∈ Sm. This proves that s is
Sm-invariant. �

Lemma 6.7. Let X1, Y1, X2, Y2 be generic hyperplane sections on PN . Then the
homogeneous polynomial X1Y2 − X2Y1 vanishes at order 1 along the diagonal of
PN × PN .

Proof. We let 2u = X1 +X2, 2v = X1 −X2 (resp. 2u′ = Y1 + Y2, 2v′ = Y1 − Y2).
Then, we can write

X1Y2 −X2Y1 = (u+ v)(u′ − v′)− (u− v)(u′ + v′)

= −2uv′ + 2u′v.

This expression is of degree 1 in v′ and v, so for generic u, u′, it vanishes at order
one along the diagonal. �

The proof of Proposition 6.4 is now straightforward.

Proof of Proposition 6.4. Let x ∈ X̃m \ |∆|, and let x0 ∈ Xm be such that p(x0) =
π(x). Since x is not in |∆|, x0 is not in the diagonal locus of Xm. Using the
embedding X ⊂ PN provided by the very ample divisor A, Lemma 6.6 gives a
Sm-invariant section σ ∈ H0(Xm, 2(m− 1)A]) such that σ(x0) 6= 0, and such that
σ vanishes at order 2 along the diagonal locus.

Applying now Lemma 6.5 to σ, we see that the induced section

π∗p∗σ ∈ H0(X̃m, 2(m− 1)π∗A[)

vanishes along |∆|. Moreover, we have π∗p∗σ(x) 6= 0, which gives the result. �
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We are ready to state our hyperbolicity criterion, in terms of the existence of
sufficiently many jet differentials of bounded order onX. Again, we refer to [Dem12]
for the basic definitions related to jet differentials. Let us simply recall that the locus
of singular jets XGG,sing

k ⊂ XGG
k is the subset of all classes of k-jets [f : ∆ → X]k

such that f ′(0) = 0. Also, if V ⊂ H0(X,EGGk,r ΩX) is a vector subspace, then
Bs(V ) ⊂ XGG

k is the subsets of classes of k-jets solutions to every equation in V .

Theorem 15. Let X be a complex projective manifold. Let A be a very ample line
bundle on X. Let Z ⊂ X, and k, r, d ∈ N∗. We make the following hypotheses.

(1) Assume that

Bs
(
H0(X,EGGk,r ΩX ⊗O(−dA))

)
⊂ XGG,sing

k ∪ π−1
k (Z).

(2) Assume that d
r > 2m(m− 1).

Then, Exc(X̃m) ⊂ |∆| ∪ π−1(d1(Z)).

Proof. Let f : C −→ X̃m be an entire curve such that f(C) 6⊂ |∆|. Let U =
C− f−1(|∆|), and, as before D =

⋃
i 6=j
{xi = xj} ⊂ Xm . We consider the following

diagram:

Ũ Xm \D X

U (Xm)reg

g

q p

pri

f

where q is the universal covering map, and g is an arbitrary lift of f . Without loss
of generality, we can assume that all pri◦g are non-constant (1 ≤ i ≤ m). Indeed, if
one of these maps is constant, it suffices to replace Xm (resp. Xm) by the product
Y = X × ...×X over a number m′ < m of factors (resp. by Xm′ = Sm′

∖
Y ).

We may assume that Im(pri ◦ g) 6⊂ Z for all 1 ≤ i ≤ m, otherwise the proof is
finished. Thus, there exists t ∈ Ũ such that (pri ◦g)(t) 6∈ Z, and (pri ◦g)′(t) 6= 0 for
all 1 ≤ i ≤ m. By the hypothesis (1), there exists σ ∈ H0(X,EGGk,mΩX ⊗O(−dA))

such that for all 1 ≤ i ≤ m, we have σg(t) · (pri ◦ g) 6= 0, and in particular

σ(pri ◦ g) 6≡ 0

for all i.

Thus, σ] def
=
⊗m

i=1 pr∗i (σ) is aSm-invariant jet differential inH0(Xm, EGGk,rmΩX⊗
O(−dA])) such that σ](g) 6≡ 0. By Proposition 6.2, σ] induces a section

σ[ ∈ H0(X̃m, E
GG
k,rmΩdiv

(X̃m,∆)
⊗O(−dπ∗A[)).

We have moreover σ[(f) 6≡ 0.

Now, by Proposition 6.4, for a ≥ 1 divisible enough, there exists s ∈ H0(X̃m, a(π∗A[−
1

2(m−1)∆)) such that s|f(C) 6≡ 0. Thus, by the remark following Proposition 6.2,
s2rm(m−1)σa[ induces a non-orbifold section

σ′ ∈ H0
(
X̃m, E

GG
k,armΩX̃m ⊗O (a(2rm(m− 1)− d)π∗A[)

)
,
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and σ′(f) 6≡ 0. Since 2rm(m− 1) < d and π∗A[ is big on X̃m, this is absurd by the
fundamental vanishing theorem of Demailly-Siu-Yeung (see [Dem12]). �

6.4. Applications.

6.4.1. Hypersurfaces of large degree. Using Theorem 15, we can now obtain hyper-
bolicity results for the varieties Xm when X ⊂ Pn+1 is a generic hypersurface of
large degree. To do this, we will make use of several important recent results con-
cerning the base loci of jet differentials on such hypersurfaces. Let us begin with
the algebraic degeneracy of entire curves.

The recent work of Bérczi and Kirwan [BK19] gives new effective degrees for
which a generic hypersurface has enough jet differentials to ensure the degeneracy
of entire curves. This improvement of [DMR10] yields the following result.

Theorem 16 ([BK19]). Let X ⊂ Pn+1 be a generic hypersurface of degree

d ≥ 16n5(5n+ 4).

Then, if r � 0 is divisible enough, we have

(2) Bs

[
H0(X,EGGn,r ΩX ⊗O(−r d− n− 2

16n5
+ r(5n+ 3)))

]
⊂ XGG,sing

k ∪ π−1
k (Z)

for some algebraic subset Z ( X.

Remark 6.8. As explained in [BK19], the coefficient 5n+3 comes from Darondeau’s
improvements [Dar16] for the pole order of slanted vector fields on the universal
hypersurface. It seems to us by reading [Dar16] that we should actually expect the
slightly better value 5n− 2.

We deduce immediately from Theorem 15 the following consequence of this re-
sult.

Corollary 6.9. Let m,n ∈ N∗. Let X ⊂ Pn+1 be a generic hypersurface of degree

d ≥ 16n5(5n+ 2m2 + 4).

Then there exists Z ( X such that Exc(Xm) ⊂ d1(Z).

Proof. Because of (2), the conditions of Theorem 15 will be satisfied if(
d− n− 2

16n5
− (5n+ 3)

)
> 2m(m− 1),

which is implied by our hypothesis. We have then Exc(Xm) ⊂ (Xm)sing ∪ d1(Z)
for some Z ( X. Since (Xm)sing is a union of Xm′ for m′ < m, an induction on m
permits to conclude. �

It is also possible to obtain the hyperbolicity of Xm when X has large enough
degree, using all the recent work around the Kobayashi conjecture (cf. [Bro17,
Den17, Dem18, RY18]). The main result of [RY18] permits to reduce the proof of
the hyperbolicity of X to results such as Theorem 16, and gives in particular the
following.

Theorem 17 ([RY18]). Let d, n, c, p ∈ N. Suppose that for a generic hypersurface
X ′ ⊂ Pn+1+p of degree d, we have

Bs
(
H0(X ′, EGGk,r ΩX′ ⊗O(−1))

)
⊂ X ′kGG,sing ∪ π−1

k (Z ′),
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for some algebraic subset Z ′ ⊂ X ′ satisfying codim(Z ′) ≥ c. Then, for a generic
hypersurface X ⊂ Pn+1 of degree d, we have

Bs
(
H0(X,EGGk,r ΩX ⊗O(−1))

)
⊂ XGG,sing

k ∪ π−1
k (Z),

for some subset Z ⊂ X with codim(Z) ≥ c+ p.

Letting d = n−1, we deduce from this and Theorem 15, combined with Theorem
16:

Corollary 6.10. Let X ⊂ Pn+1 be a generic hypersurface of degree

d ≥ (2n− 1)5(2m2 + 10n− 1).

Then Xm is hyperbolic.

6.4.2. Complete intersections of large degree. We can also obtain a hyperbolicity
result for symmetric products of generic complete intersections of large multidegree,
using the work of Brotbek-Darondeau and Xie on Debarre’s conjecture (see [BD18,
Xie18]). The effective bound in the theorem below is provided by [Xie18].

Theorem 18 ([BD18, Xie18]). Let n, n′, d ≥ 1, and assume that n′ ≥ n. Let
X ⊂ Pn+n′ be a complete intersection of multidegrees

d1, ..., dn′ ≥ (n+ n′)(n+n′)2

· d

Then ΩX ⊗O(−d) is ample. In particular

Bs(H0(X,EGG1,r ⊗O(−rd)) = ∅

for r � 1.

By Theorem 15 and the same induction argument on m as above, the following
corollary is immediate.

Corollary 6.11. Let m,n ∈ N∗ and let n′ ≥ n. Let X ⊂ Pn+n′ be a generic
complete intersection of multidegrees

d1, ..., dn1 > (n+ n′)(n+n′)2

(2m(m− 1))

Then Xm is hyperbolic.

Remark 6.12. For d1 large enough, Corollary 6.11 is trivially implied by Corollary
6.10. Indeed, if X ⊂ H, where H is a degree d1 hypersurface, Xm embeds in Hm.

6.5. Higher dimensional subvarieties. In this section, we gather several results
related to the subvarieties of Xm, when X is a "sufficiently hyperbolic" manifold.
In particular, when ΩX is ample, we will show that a generic subvariety of Xm of
codimension higher than n− 1 is of general type (see Theorem 19).

Lemma 6.13. Assume that X is a complex manifold of dimension n, with n ≥ 2,
and let Sm act on Xm. Let α ∈ [0, 1]. If

d ≥ n(m− 1) + 2− α
(n− 2)(m− 2)

2
,

then the condition (I ′x,d,α) of Section 2.2 is satisfied for every x ∈ Xm. In particu-
lar, if d ≥ n(m− 1) + 2, then the condition (Ix,d) is satisfied for any x ∈ Xm.
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Proof. Let σ ∈ Sm\{1}, and let σ = σ1...σt be a decomposition of σ into cycles with
disjoint supports. For each σi, let ri = ord(σi), and assume that r1 ≥ ... ≥ rl > 1,
and rl+1 = ... = rl+s = 1, with s = t− l. Then, the order of σ is r = lcm(r1, ..., rl),
and the ai appearing in condition (Ix,d) are the integers j rrk (1 ≤ k ≤ s, 0 ≤ j < rk),
each one repeated n times. We see in particular that 0 appears with multiplicity
nt = n(s+ l), and that each non-zero ai is larger than r

max
1≤j≤l

rj
.

We need to check that for any choice of d distinct elements ai1 , ..., aid among the
ai, the sum is larger than (1 − α)r. The lowest possible sum is reached when all
the 0 appear in it. Thus, the sum of the aij is larger than

(d− n(s+ l))
r

max
1≤j≤l

rj
.

The last quantity is larger than r(1− α) if the following inequality is satisfied:

(3) n(s+ l) + (1− α) max
1≤j≤l

rj ≤ d

Now, we have max
1≤j≤l

rj ≤
∑

1≤j≤l
rj = m−s, and 2l+s ≤

∑
1≤j≤l rj +s = m hence

l ≤ m−s
2 . Putting everything together, we see that the following is always satisfied:

n(s+ l) + max
1≤j≤l

rj ≤
(n

2
+ 1
)
m+ (1− α)

(n
2
− 1
)
s.

Since n ≥ 2 and 1−α ≥ 0, the right hand side is maximal if s is maximal, equal to

m−2; this right hand side is then equal to n(m−1)+2−α
(n− 2)(m− 2)

2
(thus the

maximum is reached for r1 = 2, r2 = ... = rt = 1, i.e. when σ is a transposition).

Thus, if d ≥ n(m− 1) + 2− α
(n− 2)(m− 2)

2
, the inequality (3) is satisfied, which

gives the result. �

In the next definition, we state a condition that will later imply that a generic
subvariety of Xm of high enough dimension is of general type (see Theorem 19).

Definition 6.14. Let X be a complex projective manifold, let Σ ( X be a proper
algebraic subset, and let A be an effective divisor on X. We say that X satisfies
the property (HΣ,A), if the following holds.

Let V ⊂ X be a subvariety of arbitrary dimension d, not included in Σ and A.
Then, there exists q, r ≥ 1, and a section σ ∈ H0(X, (

∧d
ΩX)⊗q), with non-zero

restriction

σ|(∧d TV reg )⊗q ∈ H
0(V reg, (

d∧
ΩV )⊗q ⊗O(−rA|V ))− {0}.

Under suitable positivity hypotheses on the cotangent bundle of a complex man-
ifold, it is not hard to check that the previous condition is satisfied, as we will show
in the next proposition.

Recall that if E −→ X is a vector bundle, its augmented base locus is the algebraic
subset B+(E) ⊂ X defined as follows. Let p : P(E) −→ X be projectivized bundle
of rank one quotients of E, and O(1) be the tautological line bundle on P(E). Then,
if A is any ample line bundle on X, we let

B+(E) = p(B+(O(1))),
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where B+(O(1)) =
⋂
l≥1

Bs(O(l) ⊗ p∗A−1). The ample locus of E is the (possibly

empty) open subset X \ B+(E).

Proposition 6.15. Let X be a complex projective manifold such that ΩX is big.
Let A be any very ample divisor on X.

(1) if B+(ΩX) 6= X, then X satisfies the property (HB+(ΩX),A);
(2) if ΩX is ample, then X satisfies the property (H∅,A).

Proof. (1) Let V ⊂ X be a d-dimensional subvariety such that V 6⊂ B+(ΩX) and
V 6⊂ A. By general properties of ampleness of vector bundles, we have the inclusion
B+(

∧d
ΩX) ⊂ B+(ΩX) (this can be seen easily e.g. from [Laz04, Corollary 6.1.16])

Thus, if x ∈ V \ B+(
∧d

ΩX) is a smooth point of V , and w =
∧d

TV,x, there
exists σ ∈ H0(X,Sm(

∧d
ΩX) ⊗ O(−A)) such that σx(w⊗m) 6= 0. In particular,

since σ vanishes along A, the restriction σ|V vanishes along A ∩ V . The section σ
satisfies our requirements.

(2) If ΩX is ample, we have B+(ΩX) = ∅, so the result comes from the first
point. �

In the next proposition, we show that the property (HΣ,A) is stable under prod-
ucts.

Proposition 6.16. Let Xi (i = 1, 2) be complex projective manifolds, and denote
by p1, p2 : X1 ×X2 −→ X the canonical projections. Assume that each Xi satisfies
the property (HΣi,Ai) for some subvariety Σi ( Xi and some divisor Ai on X.

Then X1 ×X2 satisfies the property (HΣ,A), where Σ = p−1
1 (Σ1)∪ p−1

2 (Σ2), and
A = p∗1A1 + p∗2A2.

Proof. Let V ⊂ X1 × X2 be a d-dimensional subvariety such that V 6⊂ Σ. Let
d2 = dim p2(V ), and let d1 be the dimension of the generic fiber of p2 : V −→ p2(V ).
We have d1 + d2 = d.

(1) We deal first with the case d2 = 0. Then, we have dim p1(V ) = d, and
p1(V ) 6⊂ Σ1 because V 6⊂ Σ. Since X1 satisfies (HΣ1

), there exists integers
q, r ≥ 1, and a section σ ∈ H0(X1, (

∧d
ΩX1

)⊗q) such that σ|∧d Tp1(V )reg
vanishes

at order r along A1. Thus, (p1)∗σ ∈ H0(X1 × X2, (
∧d

ΩX1)⊗q). We also have
(p1)∗σ|∧d TV reg

6≡ 0, and this section vanishes at order r along p∗1A1 + p∗2A2|V =

p∗1A1|V . This ends the proof in this case.

(2) Assume now that d2 > 0. Let x2 ∈ X2 be generic so that dim(Vx2
) = d1 and

p1(Vx2
) 6⊂ Σ1, where Vx2

= p−1
2 (x2) ∩ V . Let V2 = p2(V ), and V1 = p1(Vx2

).
For each i, we have Vi 6⊂ Σi, so there exists integers qi, ri ≥ 1, and a section

σi ∈ H0(Xi, (
∧di ΩXi)

⊗di) whose restriction to (
∧di TV reg

i
)⊗qi vanishes at order ri

along Ai|Vi . Then,
σ = (p∗1σ1)⊗q2 ⊗ (p∗2σ2)⊗q1

can be identified to a section in H0(X1×X2, (
∧d1 p∗1ΩX1

⊗
∧d2 p∗2ΩX2

)⊗q1q2). Since∧d1 p∗1ΩX1
⊗
∧d2 p∗2ΩX2

is a direct factor of
∧d

ΩX ∼=
∧d1+d2(p∗1ΩX1

⊕ p∗2ΩX2
), we

have obtained a section σ ∈ H0(X1×X2, (
∧d

ΩX1×X2
)⊗q1q2) which does not vanish

along V .
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Moreover, by construction, the restriction of σ to (
∧d

TV reg)⊗q1q2 vanishes along
B|V , where B = q2r1 p

∗
1A1+q1r2 p

∗
2A2. Since q2r1, q1r2 > 0, this restriction vanishes

along A. This gives the result. �

In the case where X1 = X2, it is not hard to strengthen the property (HΣ) to
obtain sections σ invariant by permutation of X1 and X2. More precisely:

Proposition 6.17. Let X be a complex projective manifold satisfying the property
(HΣ,A) for some Σ ( X and some ample divisor A on X. Let Σ′ ⊂ Xm the subset
of points with at least a coordinate in Σ. Let Sm act on Xm by permutation of the
factors. Then, for any subvariety V ⊂ Xm of dimension d and such that V 6⊂ Σ′,
there exists an integer q ≥ 1, and a Sm-invariant section σ ∈ H0(Xm, (

∧d
ΩX)⊗q⊗

O(−A]))Sm such that σ|∧d TV reg
6≡ 0.

(Recall that A] =
m∑
i=1

pr∗iA).

Proof. By Proposition 6.16, Xm satisfies the property (HΣ′,A]) so there exists q0 ≥
1 and a section σ0 ∈ H0(Xm, (

∧d
ΩX)⊗q0), such that σ0|(∧d TV reg )⊗q0 vanishes at

order r0 along A]|V .
Now, we let

σ =
⊗
s∈Sm

s · σ0 ∈ H0(Xm, (

d∧
ΩX)⊗m! q0)

The section σ is Sm-invariant and vanishes along A], hence satisfies our require-
ments. �

We now show the main hyperbolicity result of this section.

Theorem 19. Let X be a complex projective manifold with dimX ≥ 2. Assume
X satisfies (HΣ,A) for some Σ ( X and some ample divisor A on X.

Then, any subvariety V ⊆ Xm such that codimV ≤ n−2 and V 6⊂ Xsing
m ∪d1(Σ)

is of general type.

Proof. Let V ⊂ Xm be a d-dimensional variety satisfying the hypotheses above.
We have then d ≥ (m − 1)n + 2. Let Xm p−→ Xm be the canonical projection.
We do not lose generality in replacing A by a high multiple (the condition (HΣ,A)
is preserved), and then moving it in its linear equivalence class, so we can assume
that V 6⊂ |A|.

By Proposition 6.17, for q � 0, there exists a section σ ∈ Γ(Xm, (
∧p

ΩXm)⊗q)Sm ,
whose restriction to (

∧d
Tp−1(V reg))

⊗q vanishes along the Sm-invariant ample divi-
sor A]. This section descends to Xm; moreover, for any resolution of singularities
X̃m, Lemma 6.13 shows that the Reid-Tai-Weissauer criterion of Proposition 2.1 is
appliable. Hence, σ induces a section

σ̃ ∈ H0(X̃m, (

d∧
ΩX̃m)⊗q).

Moreover, the restriction of σ̃ to
∧d

TV reg vanishes on the ample divisor A =
p∗(A

])|V .
Consider now a resolution of singularities Ṽ ϕ−→ V . The pullback ϕ∗σ induces

a section of KṼ that vanishes on the big divisor ϕ∗A. This implies that KṼ is big,
so V is of general type. �
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Remark 6.18. The bound on dimV in Theorem 19 is sharp, as we can see from the
following example. Let C be a genus 2 curve, and let Y be any (n− 1)-dimensional
variety with ΩY ample. Let X = C × Y . This manifold satisfies property (H∅,A)
for some ample divisor A by Propositions 6.15 and 6.16.

(1) In the casem = 2: let f : S2C×Y −→ S2(C×Y ) = S2X be the generically
injective map

f( [c1, c2], y1, ..., yn−1) = [(c1, y1, ..., yn−1), (c2, y1, ..., yn−1)].

Since g(C) = 2, the variety S2(C) is birational to Jac(C) and thus
S2C × Y is not of general type.

(2) In the case m ≥ 2, consider the composition of f × IdXm−2 : S2C × Y ×
Xm−2 −→ S2X × Xm−2 (where f is as above) and of the natural map
g : S2X ×Xm−2 −→ SmX.

We have dimS2C × Y × Xm−2 = n(m − 1) + 1, and the image V =
(g◦f)(S2C×Y ×Xm−2) inXm is not of general type, since S2C×Y ×Xm−2

is not.

Note that if the Green-Griffiths-Lang conjecture were true, then Theorem 19
would imply the following result.

Conjecture 6.19. Let X be a complex projective manifold with ΩX ample. Then,
codim Exc(Xm) ≥ n− 1.

We can use Theorem 19 to prove the following weaker statement, that gives
geometric restrictions on the exceptional locus on non-hyperbolic algebraic curves
in Xm.

Corollary 6.20. Assume that ΩX is ample. Then, there exist countably many
proper algebraic subsets Vk ( Xm (k ∈ N) containing the image of any non-
hyperbolic algebraic curve. Moreover, the Vk can be chosen so that for any compo-
nentW of Di(Xm) (0 ≤ i ≤ n) containing Vk (k ∈ N), we have codimW (V ) ≥ n−1.

In particular (letting i = 0 and W = Xm), we have codimXm(Vk) ≥ n− 1 for all
k ∈ N.

Proof. As the irreducible components of each Di(Xm) identify to copies of Xm−i,
it suffices to prove the last claim, and to show the result for curves C not included
in (Xm)sing.

By [Kol95, Proposition 2.8], a Hilbert scheme argument shows that there exists:
(1) a locally topologically trivial family of normal varieties p : V → B, where

B is a smooth scheme with countably many components;
(2) a morphism f : V → Xm,

such for any subvariety V ⊂ Xm, there exists t ∈ B with f(Vt) = V . Let Bnon hyp ⊂
B be the subset parametrizing curves of genus g ≤ 1. Then, for any irreducible
component V of p−1(Bnon hyp), the subvariety f(V ) ⊂ X admits a dominant family
of non-hyperbolic curves, and hence is not of general type. Since ΩX is ample,
Theorem 19 implies that codim f(V ) ≥ n− 1 if f(V ) 6⊂ (Xm)sing. The property of
p : V → B finally implies that any non-hyperbolic curve C ⊂ Xm with C 6⊂ (Xm)sing

is included in one such f(V ). This ends the proof. �

We can also prove the following corollary to Theorem 19, in the spirit of [AA03,
Corollary 4].
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Corollary 6.21. Assume that ΩX is ample, and let Y ⊂ X be a closed submanifold.
Let 1 ≤ l ≤ d be integers. Assume that l generic points of Y and d−l generic points
of X lie on a curve of geometric genus g. Then if

l · codimY ≤ dimX − 2,

we have g > d.

Proof. Assume that g ≤ d. Let C → V be the family of curves and f : C −→ X be
the map given by the hypothesis. By the assumption, the image Z of Yl ×Xd−l →
Xd is dominated by the image of Sdf : SdC → Xd. As in [AA03], we may replace
V be a hyperplane section to assume that Sdf is generically finite.

Since g ≤ d, the family SdC → V is a family of varieties which are not of general
type (the fiber over t is a Pd−g-bundle over Jac(Ct)), and hence Z is not of general
type as well. Since dimZ = dimYl ×Xd−l, Theorem 19 implies dim(Yl ×Xd−l) <
(d− 1) dimX + 2, hence

dimY <
1

l
((l − 1) dimX + 2) ,

which gives the result. �

6.6. Metric methods. We will now present a metric point of view on these sym-
metric products of varieties, which will permit to give several applications to quo-
tients of bounded symmetric domains.

We will use a metric hyperbolicity criterion similar to the one of [Cad18]. To
express this criterion, we need first to introduce several constants bounding the
Ricci curvature on subvarieties of the domain. Let us recall how to define these
constants.

Let Ω be a bounded symmetric domain of dimension n, and let hΩ be the
Bergman metric on this domain. If X,Y ∈ TΩ,x (x ∈ Ω), we can define the bi-
sectional curvature of hΩ as

B(X,Y ) =
iΘ(hΩ)(X,X, Y, Y )

||X||2hΩ
||Y ||2hΩ

.

Fix p ∈ N. Then, we define

(4) Cp = − max
X∈TΩ,x

max
V 3X,dimV=p

p∑
i=1

B(X, ei),

where V ⊂ TΩ,x runs among the p-dimensional subspaces containingX, and (ei)1≤i≤p
is any unitary basis of V . Since Ω is homogeneous, this constant does not depend
on x ∈ Ω.

Then, if we normalize the Bergman metric so that Cn = 1, we have a sequence
of positive constants

0 < C1 ≤ C2 ≤ ... ≤ Cn = 1.

These constants can be used to state the following criterion for the p-hyperbolicity
of compactification of a quotient of Ω.

Proposition 6.22 (see [Cad18]). Let M be a smooth projective manifold, and D,
E =

∑
i(1− αi)Ei be Q-divisors on X such that the support |E| ∪ |D| has normal

crossings. Let U = M − (|D| ∪ |E|), and let h be a smooth Kähler metric on U ,
possibly degenerate. Let p ∈ J1,dimMK and let α > 1

Cp
be a rational number. We

make the following assumptions.
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(i) h is non-degenerate outside an algebraic subset Z ⊂M , and is modeled after
hΩ on U − Z;

(ii) the metric induced by h on
∧d

TM has singularities near any point of |Ei| −
(|D| ∪ Z) with coefficients of order at most O(|z|2(αi−1));

(iii) there exists a non-zero section s of K⊗lU such that ||s||2/l
(deth∗)l

extends as a
continuous function u on M , vanishing along E + D at an order strictly
larger than 1

Cp
. If z is a local equation for a component of weight β in D+E,

this means that u = O(|z|
β
Cp

(1+ε)
) for some ε > 0 (recall that β = 1 for the

components of D, and β = 1− αi for the Ei).
Then,

(a) For any subvariety V ⊂M with V 6⊂ Z(s) ∪ E ∪D ∪ Z and dimV ≥ p, dimV
is of general type.

(b) For any holomorphic map f : Cp → M with Jac(f) generically of maximal
rank, we have f(Cp) ⊂ Z(s) ∪ E ∪D ∪ Z.

Proof. The metric h satisfies all the assumptions permitting to apply the proof of
Theorem 2 and Theorem 8 of [Cad18]. Let us recall that the technique of this proof
consists in forming the metric h̃ = ||s||2β(deth∗)mh for an adequate β > 0. We then

check that h̃ induces a positively curved singular metric on the canonical bundle of
a desingularization of any subvariety V as in the hypotheses. In the case of a map
f : Cp →M , we apply the Ahlfors-Schwarz lemma (see [Dem12]) to this metric to
obtain a contradiction if f(Cp) 6⊂ Z(s) ∪ E ∪D ∪ Z. �

Remark 6.23. Assume that X = Γ
∖

Ω is a quotient by an arithmetic lattice, and let
q : M → X

BB
be a log-resolution of the singularities of the Baily-Borel compactifi-

cation of X. Let U ⊂ X be the smooth locus, and Ei (resp. Dj) be the components
of the exceptional divisor whose projection intersects Xsing (resp. whose projection
lies in X

BB \ X). For each i, let xi be a generic point of the projection of Ei on
X
BB

. Let Hi ⊂ Γ be the isotropy group of xi, and let αi be such that the action of
Hi on Ω satisfies the condition (I ′x,d,αi) of Section 2.1. We associate the multiplicity
αi to Ei by putting E =

∑
i(1− αi)Ei. We also let D =

∑
iDi.

With these notations, as explained in [Cad18], the hypotheses (i) and (ii) of
Proposition 6.22 are satisfied. The condition (iii) is implied by the following more
algebraic condition.

(iii’) For α ∈ Q∗+, let Lα = q∗K
X
BB ⊗O(−α(D + E)). Then Lα is effective for

some α > 1
Cp

.
Moreover, Z(s) in (a) and (b) can then be replaced by the stable base locus

B(Lα).

Remark 6.24. We can generalize the conclusion (b) of Proposition 6.22 to the fol-
lowing situation. Assume that there exists a proper birational holomorphic map
q : M → M0, where M0 is a possibly singular complex variety. Then, under the
assumption of the theorem, we can state the following:

(b’) Let W = q(Z(s)∪E ∪D∪Z). Then for any holomorphic map f : Cp →M0

with Jac(f) generically of maximal rank, we have f(Cp) ⊂W ∪ (M0)sing.

To prove this statement, assume by contradiction that there exists a f : Cp →M0

that fails to satisfy the conclusion of (b’). Let C be a resolution of singularities
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of the main component of the fiber product Cp ×(f,q) M . Then, there exists a
proper morphism g : C → Cp, birational outside a locally finite union of analytic
subvarieties of Cp, and there exists a natural map h : C → M , generically non-
degenerate, whose image intersects U \ (Z ∪Z(s)∪E). Construct h̃ is as the proof
of Proposition 6.22. Then, the metric g∗h̃ on C is subject to the following version
of the Ahlfors-Schwarz lemma.

Lemma 6.25. Let g : C → Cp be a proper holomorphic map, realizing an isomor-
phism outside a countable union of analytic subvarieties of Cp. Then TC cannot
admit any singular metric h, with deth everywhere locally bounded, smooth on a
dense open Zariski subset U , and satisfying the following inequality on U :

(5) ddc log deth ≥ εωh (ε > 0).

Proof. Assume by contraction that there exists such a metric. We may assume
that g is an isomorphism on some open subset V ⊂ C containing U . We may then
see h as a metric on V ⊂ Cp, satisfying (5) on U . As deth is everywhere locally
bounded on V , and since ddc log deth ≥ 0 on U ⊂ V , the function log deth is psh
on V . Besides, as Cp is normal, we have codim(Cp \V ) ≥ 2, so log deth extends to
the whole Cp as a psh function, satisfying (5) in the sense of currents. This case is
however ruled out by the standard Ahlfors-Schwarz lemma stated in [Dem12]. �

Our plan is to use the previous proposition in the case where X is a resolution of
singularities of a symmetric product of a quotient of a bounded symmetric domain.
To do so, we will need some estimates on the Cp when the domain is of the form
Ωm (m ∈ N). The case p = 1 is fairly easy to settle: in this case, −C1 is just
the maximum of the holomorphic sectional curvature, and we have the following
well-known result.

Proposition 6.26. Let Ω be a bounded symmetric domain, and denote by −γ the
maximum of the holomorphic sectional curvature on Ω. Then we have

C1(Ωm) =
1

m
C1(Ω) =

γ

m
.

This can be checked directly by writing the formula for the bisectional curvature
of Ωm, or by remarking that by the polydisk theorem (see [Mok89]), it suffices to
deal with the case where Ω = ∆n. In this case the holomorphic sectional curvature
is maximal in the direction of the long diagonals, and the formula can be easily
derived.

We can use now use this result to study the case of ramified coverings of smooth
compact quotients of bounded symmetric domains.

Proposition 6.27. Let Y = Γ
∖

Ω be a smooth compact quotient, let p : X −→ Y
be a Block-Gieseker covering, and let δ = s

r be a positive rational number such that
be such that p∗K⊗rY = A⊗s for some very ample line bundle A. Let W ⊂ X be the
locus where p is non-étale.

Then if m ∈ N is such that

γ δ > 2m(m− 1),

the variety Xm is Brody hyperbolic modulo d1(W ).
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Proof. Let q : M → Xm be a log-resolution of singularities, let E ⊂ M be the
exceptional locus, and Z be the preimage of d1(W ). Let hY be the pullback of the
Bergman metric on Y . This metric is smooth on Y , and non degenerate on Y −W .
This metric induces in turn a natural metric on the smooth locus of Ym, and by
pullback, a smooth metric h on M − E.

Let us check that the conditions of Proposition 6.22 are satisfied for p = 1. Since
hY is non-degenerate and modeled on hΩ on X−W , the metric h is non-degenerate
and modeled on hΩm on M − (E ∪ Z), so the condition (i) is satisfied.

It follows directly from the discussion of Section 2.2 that the condition (I ′x,1,1)
is satisfied for every x ∈ Xm. Hence, the condition (ii) holds for E =

∑
iEi.

Let x ∈ M − E. By Proposition 6.4, for some N ∈ N, there exists a section
σ of q∗A⊗sN[ ⊗ ( − Ns

2(m−1) |E|) that does not vanish at x. By hypothesis, the line
bundles (A[)

⊗s|Xreg
m

and K⊗r
Xreg
m

coincide. Thus, if N is divisible enough, σ can be
seen as a section of the line bundle (q∗KXm ⊗ O(− δ

2(m−1)E))⊗rN . Finally, the
holomorphic sections of q∗K⊗rNXm

have bounded norm for the norm induced by h,
which shows that (iii) is satisfied if δ > 2(m−1)

C1(Ωm) = 2m(m−1)
γ . This is precisely

our hypothesis. Moreover, since x ∈ M − E is arbitrary, the locus cut out by
the sections σ is included in M − E. The conclusion follows as announced from
Proposition 6.22. �

The following result of Hwang-To can be used to give a more explicit constant δ
in the proposition above.

Theorem 20 ([HT00b]). For any smooth compact quotient of a bounded domain
X, there exists a finite étale cover X ′ such that 2KX′ is very ample.

This gives immediately the following series of examples.

Example 3. Let Y0 = Γ
∖

Ω be a smooth compact quotient, and let Y1 −→ Y0 be
the étale cover provided by [HT00b]. Let m ∈ N∗, and let q be an integer such that
q > 4m(m−1)

γ .

Now let X p−→ Y1 be a Bloch-Gieseker covering such that p∗(K⊗2
Y1

) = A⊗q,
with A very ample. Then, we have δγ = qγ

2 > 2m(m − 1), so that Xm is Brody
hyperbolic modulo d1(Sing(p)).

Example 4. For 1 ≤ i ≤ n, let Xi be a smooth projective curve of genus g ≥ 2,
and fix some integer q. For all i, since 3KXi is very ample, we can perform a q-fold
Bloch-Gieseker covering pi : X ′i −→ Xi, so that p∗i (3KXi) = A⊗qi , with Ai very
ample on X ′i.

Letting X = X ′1 × ...×X ′n
p−→ X1 × ...×Xn = Y , we have then p∗K⊗3

Y = A⊗q,
where A =

⊗
1≤j≤n

p∗jKXj is very ample on X. The manifold Y is a smooth compact

quotient of ∆n, and γ = 1
n for this domain. Proposition 6.27 shows then Xm is

Brody hyperbolic modulo (Xm)sing as soon as

q ≥ 6m(m− 1)n.
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6.7. Non-compact ball quotients. In the case where the domain is the ball, it
is possible to give explicit values for the constants Cp. The result can be stated as
follows when dim Ω ≥ 5.

Proposition 6.28. We let Ω = Bn for some n ≥ 5. Let m ∈ N, and fix p ∈ J1,mnK.
Let k ∈ N (resp. d ∈ J0, n−1K) be the quotient (resp. the remainder) in the euclidean
division of p− 1 by n. Then the value of Cp(Ωm) is given by the table of Figure 1.

m− k = 1 m− k = 2 m− k = 3 m− k = 4 m− k ≥ 5

d = 0

d+2
n+1

2
(m−k)(n+1)

d = 1 23
16

1
n+1

11
12

1
n+1

21
32

1
n+1

d = 2 7
4

1
n+1

d = 3 31
16

1
n+1

2
m−k−1

1
n+1

d ≥ 4

Figure 1. Values of Cp for the domain (Bn)m

Note the similarity with the case where Ω is the Siegel upper half-space (see
[Cad18, Proposition 1.4]). We will prove Proposition 6.28 in Section 6.8. As an
application, we can derive the following hyperbolicity result for symmetric products
of ball quotients.

Corollary 6.29. Let X = Γ
∖Bn be a ball quotient by a torsion free lattice with

only unipotent parabolic elements, and let X = X ∪D be a smooth minimal com-
pactification (see [Mok12]). Let m ≥ 1. Then :
(a) Let V ⊂ Xm be a subvariety with codimV ≤ n− 6 and V 6⊂ d1(D) ∪ (Xm)sing.

Then V is of general type.
(b) Let p ≥ n(m − 1) + 6, and f : Cp → Xm be a holomorphic map such that

f(Cp) 6⊂ d1(D) ∪ (Xm)sing. Then Jac(f) is identically degenerate.

Proof. Let q : X̃ → Xm be a resolution of singularities. We may assume that
F = q−1(d1(D) ∪ (Xm)sing) is a simple normal crossing divisor. Let D̃ denote
the sum of components of F that project in d1(D), and E the sum of all other
components.

Let p ≥ n(m−1)+6 be an integer. By Proposition 6.28, since p ≥ n(m−1)+6, the
constant Cp is given by the first column of Figure 1, and Cp = p−n(m−1)+1

n+1 > 2π
n+1 .

Let h be the metric induced on U = X̃ \ (E + D). Let us check that the
assumptions of Proposition 6.22 are satisfied, with Ω = (Bn)m. (i) is obvious, taking
Z = ∅. By Lemma 6.13, since p ≥ n(m − 1) + 2, the condition (Ix,p) is satisfied
above any singular point of Xm, so Remark 6.23 implies that the hypothesis (ii) is
satisfied with αi = 1 for any component Ei ⊂ E.

To prove (iii), we make use of [BT18], whose main result shows that the line
bundle KX +(1−α)D is ample for any α > n+1

2π . Let α ∈] 1
Cp
, n+1

2π [. Thus, for l ∈ N
large enough, and any x = (x1, ..., xm) ∈ Xm \ ∪i=1pr−1

i (D), we can find a section
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σ of l (KX + (1− α)D), such that σ(xi) 6= 0 (1 ≤ i ≤ m). Let s] =
⊗

1≤j≤m pr∗jσ.
This is a Sm-invariant section of K⊗lXm , which descends to a section s of K⊗lU . Let
u = ||s||2/l

(deth∗)l
.

We need to check the conditions on the growth of u near E + D̃. First, u
is bounded near any point of E since ||s]||(deth∗Ω)l is continuous on the manifold
Xm. Besides, by [Mum77], the determinant of the Bergman metric on KX + D
has logarithmic growth near D. Hence, since σ, seen as a section of l(KX + D),
vanishes at order lα along D, then the function ||s]||2deth∗Ω

=
∏
i pr∗i ||s||hBn vanishes

at any order < lα near pri
∗D. Now ||s]||2/l

(deth∗Ω)l
= u ◦ π, where π : X

m → Xm is

the projection, so u vanishes at order α near any point of D̃ \ E. As α > 1
Cp

, the
section s satisfies the condition (iii).

Finally, since x was arbitrary outside
⋃

1≤i≤m pr∗iD, we conclude from Propo-
sition 6.22 that all p-dimensional varieties V ⊂ X̃, not included in E + D̃, are of
general type. This proves (a).

The proof of (b) follows from the conclusion (b′) in Remark 6.24, applied with
M = X̃, and M0 = Xm. �

6.8. Computation of the curvature constants for the domain (Bn)m. We
now prove Proposition 6.28. We will proceed as in [Cad18], and introduce a certain
combinatorial functional whose minimum will give us the value of Cp(Ωm).

Definition 6.30. Let

∆m = {(r1, ..., rm) ∈ (R+)m |
∑

1≤j≤m

rj = 1 and r1 ≥ r2 ≥ ... ≥ rm}.

Let r = (r1, ..., rm) ∈ ∆m and Γ ⊂ J1,mK × J1, nK. Denote by k the number of
elements of Γ in the first column. We assume that k ≤ m− 1. We define:

F(r,Γ) =


2 +

∑
(i,j)∈Γ, i≥2

ri if k = m− 1

2
∑

1≤i≤m
r2
i + 2

∑
(i,1)∈Γ

ri +
∑

(i,j)∈Γ, j≥2

ri if k ≤ m− 2.

From now on, we fix a given minimizer (r,Γ) for F , where r ∈ ∆m, and Γ runs
among cardinal p−1 subsets of J1,mK× J1, nK with less than m−1 elements on the
first column. Let k be the number of these elements. We will assume that (r,Γ) is
chosen among all the minimizers so that
(1) r = (r1, ..., rm) has the maximal number of zero components ;
(2) among all minimizing couples (r,Γ) satisfying (1), Γ is chosen so that k is

maximal.

We can make a simple remark on the geometry of Γ. Let

Π = Γ ∩ (J1,mK× J2, nK)

be the set of elements of Γ which are outside of the first column. For each i ∈ J1,mK,
denote by bi the number of elements of Π which are on the i-th line. Then, since
r1 ≥ ... ≥ rm, we see from the formula for F that we may suppose that the elements
of Π are the largest possible in the lexicographic order. This implies that for some
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q ∈ J0,mK, d ∈ J0, n − 2K, we have bm−j = n − 1 (0 ≤ j ≤ q − 1), bm−q = d, and
bm−j = 0 (m ≤ j ≤ q + 1).

Lemma 6.31. Let l be the maximal integer such that rm−l+1 = ... = rm = 0. We
have l = k.

Proof. The proof is exactly the same as the one of [Cad18, Lemma 3.8], replacing
g by m, Γ0 by Γ, and "off-diagonal" by "off the first column". �

The previous proof relies on the following lemma, which will be used frequently
in the following.

Lemma 6.32 (see [Cad18, Lemma 3.9]). Let a1 ≤ ... ≤ am be non-negative inte-
gers, and let t be the smallest integer such that

∑t
i=1(at − ai) ≥ 4 (let t = m+ 1 if

there is no such integer). Let r ∈ ∆m be a minimizer for the quadratic form

Q(r1, ..., rm) = 2

m∑
i=1

r2
i +

m∑
i=1

airi.

Then rt = ... = rm = 0.

We will now compute the several possible values for the minimum F(r,Γ). We
will proceed by distinguishing along the value of k. There is one simple first case.

Lemma 6.33. If k = m− 1, then

F(r,Γ) = 2 + b1.

Proof. In this case, we have

F(r,Γ) = 2 +
∑

1≤i≤m

biri.

Recall that the bi are non-decreasing. Since r must be an extremum of the function
F(·,Γ), we see that we may chose r = (1, 0, ..., 0), which gives the result. �

We will now assume that k ≤ m− 2, and distinguish several subcases.

Case 0. q < k.
In this situation, since rm−k+1 = ... = rm = 0, we simply have F(r,Γ) =

2
∑m−k
i=1 r2

i . The minimum is then reached for (r1, ..., rm) = ( 1
m−k , ...,

1
m−k , 0, ..., 0),

and the value of the minimum is

F(r,Γ) =
2

m− k
.

Assumption. In the remaining cases 1 and 2 below, we will assume that q ≥ k,
which means that rm−q 6= 0.

Case 1. d ≥ 1.
By our previous description of the shape of Π, this implies that two subcases are

a priori possible.

Case 1a. q ≥ k + 1, i.e. the line {m− k} × J2, n− 1K is included in Γ.

Case 1b. q = k i.e. the only elements of J1,m− kK× J2, n− 1K in Γ are the
d last elements of {m− k} × J2, n− 1K.

Lemma 6.34. The case 1a. cannot occur.
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Proof. In the case 1a, since rm−k 6= 0, Lemma 6.32 shows that
∑
i≤m−k(bm−k −

bi) ≤ 3. Hence, all elements of J1,m − kK × J2, n − 1K are in Γ, except δ elements
on the first line, with 1 ≤ δ ≤ 3. (If δ = 0, we would have d = 0).

This shows that b1 = n− 1− δ, with 1 ≤ δ ≤ 3, and bj = n− 1 (2 ≤ j ≤ m− k).
In this setting, the minimizer r is of the form (x, y, ..., y, 0, ..., 0) where y is repeated
m− k − 1 times, and x+ (m− k − 1)y = 1. Let b = m− k − 1.

The minimum then equals

F(r,Γ) = 2x2 + 2by2 + (n− 1)− δx.

We claim that b ≤ 2. Indeed, if b ≥ 3, since n − 1 ≥ 4, we can remove 4 − δ
elements on the first line of Γ, to get a new set Γ′. If r′ ∈ ∆m is a minimizer for the
functional F(·,Γ′), we have r′2 = ... = r′m = 0 by Lemma 6.32. Since b ≥ 3, there is
enough room on the first column of Γ′ to add back the 4− δ elements, which gives
a new set Γ′′ with strictly more elements on the first column than Γ. Now

F(r′,Γ′′) = F(r′,Γ′) ≤ F(r,Γ′) ≤ F(r,Γ).

(The first equality comes from the fact the r′2 = ... = r′m = 0, and the inequalities
are obvious since all ri are non-negative). This gives a contradiction with our choice
of (r,Γ).

The same computation as in [Cad18, Lemma 3.14] shows that the case b = 1 is
impossible.

Let us finally exclude the case b = 2. In this situation r = (x, y, y, 0, ..., 0)
minimizes F(r,Γ) = 2x2 + 4y2 + (n− 1)− δx, with the constraint x+ 2y = 1. We
check that the minimum is equal to

n− (2 + δ)2

12
.

Since b = 2, there are two elements of J1,mK× {1} which are not in Γ, and we can
move two elements of the first row Γ to get a new set Γ′ with m− 1 elements in the
first column. Letting r′ = (1, 0, ..., 0), we have

F(r′,Γ′) = 2 + (n− 1)− (δ + 2)

= n− 1− δ

< n− (2 + δ)2

12
= F(r,Γ),

since δ ∈ {1, 2, 3}. This is a contradiction. �

Lemma 6.35. In the case 1b, there are only 5 possibilities, which are given in the
table of Figure 2.

Proof. In this case, we have bm−q = d, and this is the only non-zero bj with j ≤
m − l. By Lemma 6.32 again, we have d(m − k − 1) ≤ 3 since rm−k 6= 0. Since
d 6= 0 and m− k ≥ 2 in the case under study, this gives only only five possibilities.
The corresponding values for the minimum of F(r,Γ) = 2

∑m−k
j=1 r2

j + drm−k were
computed in [Cad18, Case 2]. �

There is only one remaining case.

Case 2. d = 0.
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m− k = 2 m− k = 3 m− k = 4

d = 1 23
16

11
12

21
32

d = 2 7
4

d = 3 31
16

Figure 2. Possible values of the minimum of F in the case 1b

Lemma 6.36. Case 2 cannot occur unless Γ is of the form Jm−k+ 1,mK× J1, nK.
The value of the minimum is then

F(r,Γ) =
2

m− k
.

Proof. If Γ is not of the prescribed form, we have

F(r,Γ) = 2
∑

1≤j≤m−k

r2
j + (n− 1)

m−k∑
j=m−q+1

rj ,

with q < k. Applying another time Lemma 6.32, since rm−k 6= 0, we have (n −
1)(m − q) ≤ 3 for all t ≥ 1. As we assumed that n ≥ 5, this implies that q = m,
i.e. Γ contains all the elements which are not on the first column. The minimum
is then reached for r of the form r = ( 1

m−k , ...,
1

m−k , 0, ..., 0) (1/(m − k) repeated
m− k times), and its value is

F(r,Γ) =
2

m− k
+ (n− 1).

However, this is absurd. Indeed, let Γ′ be obtained from Γ by moving elements to
its m− k − 1 empty slots on the first column (recall that we consider sets with at
most m− 1 elements on the first column).

If m− k ≥ 3, we may then assume that Γ′ has less than (n− 1)− 2 elements on
the first line. Letting r′ = (1, 0, ..., 0), we get

F(r′,Γ′) ≤ 2 + (n− 3) <
2

m− k
+ (n− 1) = F(r,Γ),

which is a contradiction.
If m− k = 2, we may move one element, and assume that Γ′ has n− 2 elements

on the first line. Then, letting again r′ = (1, 0, ..., 0), we get

F(r′,Γ′) = 2 + (n− 2) =
2

m− k
+ (n− 1) = F(r,Γ).

This is again a contradiction, since we assumed that Γ had the maximal number of
elements on the first column. �

Putting everything together, we have proved the following.

Proposition 6.37. Let p ∈ J1,mnK. Let k = bp−1
n c, and d = p−1−kn. Let (r,Γ)

be a minimizer for F , where r ∈ ∆m, and Γ ⊂ J1,mK × J1, nK is a cardinal p − 1
subset with less that m− 1 elements on the first column. Then

(1) the value of F(r,Γ) is given by the table of Figure 3 ;
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m− k = 1 m− k = 2 m− k = 3 m− k = 4 m− k ≥ 5

r = 0

d+ 2

2
m−k

d = 1 23
16

11
12

21
32

d = 2 7
4

r = 3 31
16

2
m−k−1

d ≥ 4

Figure 3. Values of the maxima of F

(2) we may choose (r,Γ) so that the elements of Γ in the first column are the
(j, 1) with j ≥ m− k + 1, and so that rm−k+1 = ... = rm = 0.

We will now show that the previously computed maxima permit to give the
constant Cp. Let us recall how this constant can be computed.

In the following, if Ω is a bounded symmetric domain, and X is a vector tangent
to Ω, we will denote by BΩ

0 (X, ·) the following bilinear form:

BΩ
0 (X, ·) : Y 7−→ iΘ(hΩ)(X,X, Y, Y ).

LetX ∈ TΩ,0 be a unitary vector. Let V ⊂ TΩm,0 be a d-dimensional vector space
containing X. We now assume that the pair (X,V ) realizes the maximum of (4).
We let Aut(Bn)m act on Ω so thatX decomposes in the direct sum TΩ,0 = (TBn,0)⊕m

as X = (α1e
1
1, ..., αme

m
1 ), where (ei1, ..., e

i
n) denotes a unitary basis of the i-th factor

TBn . We let ri = α2
i (1 ≤ i ≤ m), so that

∑
1≤i≤m ri = 1. We may assume that

r1 ≥ r2 ≥ ... ≥ rm.
By our choice of (X,V ), we have

(6) Cp = −B0(X,X) +
∑

λ∈S(V )

λ,

where S(V ) is the set of the p−1 eigenvalues of the restriction of the hermitian form
−B0(X, ·) to X⊥ ∩V (with multiplicities). We let W ⊂ V be a (p− 1)-dimensional

vector subspace, spanned by corresponding eigenvectors, so that V = CX
⊥
⊕W .

Let us now explain how to compute the eigenvalues of the hermitian form
BΩ

0 (X, ·) on the space TΩ,0. First, it is easy to show that for U = (U1, ..., Um),
V = (V1, ..., Vm) in TΩ,0, we have

BΩ
0 (U, V ) =

∑
1≤m

BBn
0 (Ui, Vi).

To simplify the computation, we will temporarily adopt a new normalization on
hBn , so that for any U ∈ TBn,0, the eigenspaces of −BBn

0 (U, ·) are{
C · U for the eigenvalue 2||U ||2;
U⊥ ⊂ TBn for the eigenvalue ||U ||2.

Thus, with this normalization, the eigenvalues of BΩ
0 (X, ·) are 2ri (with mul-

tiplicity 1, and eigenvector ei1) and ri (with multiplicity n − 1, with eigenvectors
ei2, ..., e

i
n), for 1 ≤ i ≤ m.
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Proposition 6.38. With the above normalization, the constant Cp is equal to the
minimum of F .

The proof is the same as in [Cad18], so we will only sketch it briefly.

Lemma 6.39. We have Cp ≥ min
r,Γ
F(r,Γ), where r ∈ ∆m, and Γ ⊂ J1,mK× J1, nK

runs among the cardinal p − 1 subsets with less that m − 1 elements on the first
column.

Proof. We can decompose W = W1

⊥
⊕W2, where

W1 ⊂
⊥⊕

1≤i≤m

Cei1, andW2 ⊂
⊥⊕

1≤i≤m

Vect(ei2, ..., e
i
n).

Let k = dimW1. By the description above of the eigenvalues of BΩ
0 (X, ·), we see

that W2 is spanned by p − 1 − k eigenvectors corresponding to the eigenvalues ri
(1 ≤ i ≤ m).

Let S1 be the sum of the k smallest of the 2ri, and S2 be the sum of the k-th
smallest of the eigenvalues of −B0(X, ·) on W2. Then

Cp = −B0(X,X)− TrB0(X, ·)|W1
− TrB0(X, ·)|W2

≥ −B0(X,X) + S1 + S2 = 2
∑
i≥i

r2
i + S1 + S2.

The eigenvalues appearing in S1 and S2 can be indexed by a subset Γ ⊂ J1,mK ×
J1, nK, with k-elements of the first column corresponding to the k-th smallest 2ri,
and the elements (i, j) to the rj if j ≥ 2.

There are two cases to distinguish. First, if k ≤ m− 1, what has just been said
shows that Cp ≥ F(r,Γ).

Now, if k = m− 1, then CX
⊥
⊕W1 =

⊕m
i=1 C · ei1, so

−B0(X,X)− TrB0(X, ·)|W1
= Tr

(
−B0(X, ·)|⊕m

i=1 C·ei1

)
= 2.

Cp is equal to the first case of the definition of F in Definition 6.30, so Cp =
F(r,Γ). �

Lemma 6.40. We have minr,Γ F (r,Γ) ≥ Cp.

Proof. Let r and Γ realizing this minimum. Let W be the p− 1-dimensional space
spanned by the eigenvectors corresponding to the elements of Γ, and let X =
(
√
r1e

1
1, ...,

√
rme

m
1 ). By Proposition 6.37 (2), we see that W ⊂ X⊥, so if we let

V = C⊕W , we have
−TrB0(X, ·)|V = −B0(X,X)− TrB0(X, ·)|W

= F(r,Γ).

As Cp is defined to be the minimum of the left hand side for all X and V with
dimV = p and X ∈ V unitary, this shows that F(r,Γ) ≥ Cp. �

Thus, the table 3 gives the constants Cp with our simplifying normalization. To
obtain the table 1, for which the normalization is chosen so that Cnm = 1, we must
replace Cp by Cp

Cnm
. In our current normalization, we have Cnm = n+ 1 according

the the first column of table 3. This ends the proof of Proposition 6.28.
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