Concurrent Realizability on Conjunctive

 StructuresFSCD 2023, Roma

${ }^{3}$ Univ. de la República
 DE LA REPUUBLIC
URUGUAY

Étienne MıQuey ${ }^{4}$

${ }^{4}$ Univ. Aix-Marseille
$\left(\begin{array}{l}\text { Aix } * \text { Marseille } \\ \text { socialemersent engengete }\end{array}\right.$

Realizability, two sides of the same coin
provides models
a tool to analyse programs behavior

Realizability, two sides of the same coin


```
Intuitively
    \(t \Vdash A=" t\) computes (soundly) w.r.t. \(A\) "
```


Algebrization of realizability

Allows to:

- abstract from implementation details
- focus on their structures
- reason collectively on interpretations

Algebrization of realizability

$$
\begin{array}{llll}
\text { Implicative algebra } & & \text { [Miquel 20] } \\
\text { complete lattice } & (\mathcal{A}, \preccurlyeq, 人) & +\cdots \rightarrow \cdot \in \mathcal{A} \mathcal{A} \times \mathcal{A} & \text { "implication" } \\
& + & \mathcal{S} \subseteq \mathcal{A} & \text { separator }
\end{array}
$$

Algebrization of realizability

Implicative algebra

［Miquel 20］

$$
\begin{array}{lllll}
\text { complete lattice } & (\mathcal{A}, \preccurlyeq, 人) & +\cdots \rightarrow \cdot \in \mathcal{A} \mathcal{A} \times \mathcal{A} & \text { "implication" } \\
& + & \mathcal{S} \subseteq \mathcal{A} & \text { separator }
\end{array}
$$

Application

$$
a @ b \triangleq 人\{c \in \mathcal{A}: a \preccurlyeq b \rightarrow c\}
$$

Abstraction

$$
\lambda f \triangleq 人_{a \in \mathcal{A}}(a \rightarrow f(a))
$$

Algebrization of realizability

Implicative algebra

[Miquel 20]

$$
\begin{array}{lllll}
\text { complete lattice } & (\mathcal{A}, \preccurlyeq, 人) & +\cdots \rightarrow \cdot \in \mathcal{A} \mathcal{A} \times \mathcal{A} & \text { "implication" } \\
& + & \mathcal{S} \subseteq \mathcal{A} & \text { separator }
\end{array}
$$

Order relation $\preccurlyeq:$

- $A \preccurlyeq B$
- $t \preccurlyeq A$
- $t \preccurlyeq u \quad t$ is more defined than u

Algebrization of realizability

Implicative algebra

[Miquel 20]

$$
\begin{array}{lllll}
\text { complete lattice } & (\mathcal{A}, \preccurlyeq, 人) & + & \rightarrow \cdot \in \mathcal{A}^{\mathcal{A} \times \mathcal{A}} & \text { "implication" } \\
& + & \mathcal{S} \subseteq \mathcal{A} & \text { separator }
\end{array}
$$

Order relation $\preccurlyeq:$

- $A \preccurlyeq B$
- $t \preccurlyeq A$
A subtype of B
t realizes A
- $t \preccurlyeq u \quad t$ is more defined than u

Soundness

1. If $\vdash t: A$ then $t^{\mathcal{A}} \preccurlyeq A^{\mathcal{A}}$
(w.r.t. typing)
2. If $t \rightarrow \beta u$ then $t^{\mathcal{A}} \preccurlyeq u^{\mathcal{A}}$.
(w.r.t. computation)

This work

Concurrent calculi:

- many syntactic presentations (CCS, π-calculi, etc...)
- many type systems, none as tight and universal as for λ-calculi
- many works seeking for simpler or more general theories.

This work

Concurrent calculi:

- many syntactic presentations (CCS, π-calculi, etc...)
- many type systems, none as tight and universal as for λ-calculi
- many works seeking for simpler or more general theories.

Our take

an algebraic presentation of concurrent realizability might provide us with a satisfying framework!
\rightarrow We follow Beffara's previous work on the matter

This work

Concurrent calculi:

- many syntactic presentations (CCS, π-calculi, etc...)
- many type systems, none as tight and universal as for λ-calculi
- many works seeking for simpler or more general theories.

Our take

an algebraic presentation of concurrent realizability might provide us with a satisfying framework!
\rightarrow We follow Beffara's previous work on the matter

The specification:

- study processes and their types via an ordered algebraic structure
- avoid imposing a priori restrictions on processes.

Processes with global fusions

Processes

\rightarrow names are taken in $\mathbb{N}, u(\vec{x}) \cdot \cdot$ and $v y$. are binders

Processes

Processes Π

$$
P, Q::=\underbrace{\mathbb{1}}_{\text {unit }}|\underbrace{(P \mid Q)}_{\text {parallel composition }}| \underbrace{u(\vec{x}) \cdot P}_{\text {reception }}|\underbrace{\bar{u}\langle\vec{v}\rangle}_{\text {emission }}| \underbrace{(v y) P}_{\text {hiding }}
$$

\rightarrow names are taken in $\mathbb{N}, u(\vec{x}) \cdot$ and $v y$. are binders

Substitution: $\quad \sigma: \mathbb{N} \rightarrow \mathbb{N}$

Processes

Processes Π

$$
P, Q::=\underbrace{\mathbb{1}}_{\text {unit }}|\underbrace{(P \mid Q)}_{\text {parallel composition }}| \underbrace{u(\vec{x}) \cdot P}_{\text {reception }}|\underbrace{\bar{u}\langle\vec{v}\rangle}_{\text {emission }}| \underbrace{(v y) P}_{\text {hiding }}
$$

\rightarrow names are taken in $\mathbb{N}, u(\vec{x}) \cdot \cdot$ and $v y$. are binders

Substitution: $\quad \sigma: \mathbb{N} \rightarrow \mathbb{N}$

One-step reduction: $\quad \bar{u}\langle\vec{v}\rangle \mid u(\vec{x}) \cdot P \longrightarrow{ }_{1} P\{\vec{x}:=\vec{v}\}$

Processes

Processes Π

$$
P, Q::=\underbrace{\mathbb{1}}_{\text {unit }}|\underbrace{(P \mid Q)}_{\text {parallel composition }}| \underbrace{u(\vec{x}) \cdot P}_{\text {reception }}|\underbrace{\bar{u}\langle\vec{v}\rangle}_{\text {emission }}| \underbrace{(v y) P}_{\text {hiding }}
$$

\rightarrow names are taken in $\mathbb{N}, u(\vec{x}) \cdot$ and $v y$. are binders

Substitution: $\quad \sigma: \mathbb{N} \rightarrow \mathbb{N}$

One-step reduction: $\quad \bar{u}\langle\vec{v}\rangle \mid u(\vec{x}) \cdot P \longrightarrow{ }_{1} P\{\vec{x}:=\vec{v}\}$

NB - this is just a parameter of the construction, which applies to other processes calculi

Processes

$$
\bar{u}\langle y\rangle|u(x) . \bar{x}\langle b\rangle| u(x) . \bar{x}\langle a\rangle \mid y(x) . \bar{u}\langle x\rangle
$$

Processes

$$
\begin{gathered}
\bar{u}\langle y\rangle|u(x) \cdot \bar{x}\langle b\rangle| u(x) \cdot \bar{x}\langle a\rangle \mid y(x) \cdot \bar{u}\langle x\rangle \\
\downarrow \\
\bar{y}\langle b\rangle|u(x) \cdot \bar{x}\langle a\rangle| y(x) \cdot \bar{u}\langle x\rangle
\end{gathered}
$$

Processes

$$
\begin{gathered}
\bar{u}\langle y\rangle|u(x) . \bar{x}\langle b\rangle| u(x) . \bar{x}\langle a\rangle \mid y(x) \cdot \bar{u}\langle x\rangle \\
\downarrow \\
\bar{y}\langle b\rangle|u(x) \cdot \bar{x}\langle a\rangle| y(x) \cdot \bar{u}\langle x\rangle \\
\downarrow \\
u(x) \cdot \bar{x}\langle a\rangle \mid \bar{u}\langle b\rangle
\end{gathered}
$$

Processes

$$
\begin{gathered}
\bar{u}\langle y\rangle|u(x) \cdot \bar{x}\langle b\rangle| \\
\downarrow(x) \cdot \bar{x}\langle a\rangle \mid y(x) \cdot \bar{u}\langle x\rangle \\
\downarrow \\
\bar{y}\langle b\rangle|u(x) \cdot \bar{x}\langle a\rangle| y(x) \cdot \bar{u}\langle x\rangle \\
\downarrow \\
u(x) \cdot \bar{x}\langle a\rangle \mid \bar{u}\langle b\rangle \\
\downarrow \\
\bar{b}\langle a\rangle
\end{gathered}
$$

Processes

$$
\begin{gathered}
\bar{a}\langle b\rangle \\
\uparrow \\
u(x) \cdot \bar{x}\langle b\rangle \mid \bar{u}\langle a\rangle \\
\uparrow \\
u(x) \cdot \bar{x}\langle b\rangle|\bar{y}\langle a\rangle| y(x) \cdot \bar{u}\langle x\rangle \\
\uparrow \\
\bar{u}\langle y\rangle|u(x) \cdot \bar{x}\langle b\rangle| \frac{u(x) \cdot \bar{x}\langle a\rangle \mid y(x) \cdot \bar{u}\langle x\rangle}{}
\end{gathered}
$$

$$
\begin{gathered}
\downarrow \\
\bar{b}\langle a\rangle
\end{gathered}
$$

Processes

$$
\begin{gathered}
\bar{a}\langle b\rangle \\
\uparrow
\end{gathered}
$$

$$
\bar{u}\langle y\rangle|u(x) . \bar{x}\langle b\rangle| u(x) . \bar{x}\langle a\rangle \mid y(x) . \bar{u}\langle x\rangle
$$

$$
\begin{gathered}
\downarrow \\
\bar{b}\langle a\rangle
\end{gathered}
$$

Global fusions

Intuition

$u \leftrightarrow v$ allows actions on u to synchronize with actions on v.

Global fusions

Intuition

$u \leftrightarrow v$ allows actions on u to synchronize with actions on v.

```
Fusions - E
A fusion e \in\mathcal{E}}\mathrm{ is an equivalence relation * }
```


Global fusions

Intuition

$$
u \leftrightarrow v \text { allows actions on } u \text { to synchronize with actions on } v .
$$

```
Fusions-\mathcal{E}
A fusion e \in\mathcal{E}}\mathrm{ is an equivalence relation * }
```


Fusion vs. substitution

We can define

- $\varepsilon_{\tau} \triangleq \bigvee_{x \in \mathbb{N}}(x \leftrightarrow \tau(x))$, the fusion induced by $\tau ;$
- $\sigma_{e}^{\bullet}: x \mapsto x_{e}^{\bullet}$, the substitution induced by e; with x_{e}^{\bullet} a canonical representative of $[x]_{e}$

Processes with fusions

Specification: extend a process calculus without affecting its theory \rightarrow technically made possible by only having fusions at top-level

Processes with fusions

Specification: extend a process calculus without affecting its theory \rightarrow technically made possible by only having fusions at top-level

Processes with global fusions $-\bar{\Pi}$

$$
\bar{\Pi} \triangleq \Pi \times \mathcal{E}=\{(P, e) \mid P \in \Pi, e \in \mathcal{E}\}
$$

Processes with fusions

Specification: extend a process calculus without affecting its theory \rightarrow technically made possible by only having fusions at top-level

Processes with global fusions $-\bar{\Pi}$

$$
\bar{\Pi} \triangleq \Pi \times \mathcal{E}=\{(P, e) \mid P \in \Pi, e \in \mathcal{E}\}
$$

\rightarrow we extend syntax, substitution, α-equivalence, \equiv, reduction, etc., everything works.

Syntax

$$
(P, e) \mid(Q, f) \triangleq(P \mid Q, e f), \quad \text { etc } \ldots
$$

Processes with fusions

Specification: extend a process calculus without affecting its theory \rightarrow technically made possible by only having fusions at top-level

Processes with global fusions $-\bar{\Pi}$

$$
\bar{\Pi} \triangleq \Pi \times \mathcal{E}=\{(P, e) \mid P \in \Pi, e \in \mathcal{E}\}
$$

\rightarrow we extend syntax, substitution, α-equivalence, \equiv, reduction, etc., everything works.

Syntax

$$
(P, e) \mid(Q, f) \triangleq(P \mid Q, e f), \quad \text { etc } \ldots
$$

Reduction

$$
(P, e) \longrightarrow_{1}(Q, f) \triangleq e=f \wedge P^{\sigma_{e}^{*}} \longrightarrow_{1} Q^{\sigma_{f}^{*}}
$$

which entails:

$$
(u(x) . P \mid \bar{v}\langle y\rangle, u \leftrightarrow v) \longrightarrow_{1}(P\{x:=y\}, u \leftrightarrow v)
$$

Realizability interpretation

Concurrent realizability

[Beffara'06]

Main insight from Krivine realizability:
interpretation parameterized by a pole \Perp, specifying "correct" interactions

Concurrent realizability

Main insight from Krivine realizability:

interpretation parameterized by a pole \Perp, specifying "correct" interactions

Pole

Any $\Perp \subseteq\{p \in \bar{\Pi} \mid \mathrm{FN}(p)=\emptyset\}$ that is closed under \equiv.
\rightarrow characterize the soundness of interaction wrt. the renaming mechanism
This induces a map $(\cdot)^{\perp}$ on \mathbb{P} :

$$
A^{\perp}=\{p \in \bar{\Pi} \mid \forall q \in A, \bar{v}(p \mid q) \in \Perp\}
$$

Concurrent realizability

Main insight from Krivine realizability:

interpretation parameterized by a pole \Perp, specifying "correct" interactions

Pole

Any $\Perp \subseteq\{p \in \bar{\Pi} \mid \mathrm{FN}(p)=\emptyset\}$ that is closed under \equiv.
\rightarrow characterize the soundness of interaction wrt. the renaming mechanism
This induces a map $(\cdot)^{\perp}$ on \mathbb{P} :

$$
A^{\perp}=\{p \in \bar{\Pi} \mid \forall q \in A, \bar{v}(p \mid q) \in \Perp\}
$$

Behaviors - $\mathbb{B} \triangleq\left\{A \in \mathbb{P}: A^{\perp \perp}=A\right\}$

- allows to define truth values
- induces a complete lattice.

Interpreting MLL formulas

Main idea

$\cdot \otimes \cdot$ amounts to parallel composition without communication.

Interpreting MLL formulas

Main idea

$\cdot \otimes \cdot$ amounts to parallel composition without communication.

Technically: injections $\iota_{1}, \iota_{2}: \mathbb{N} \rightarrow \mathbb{N}$ with disjoint codomains
For any PGFs p, q, we let :

$$
\left(\text { writing } p^{i} \triangleq p^{t_{i}}, p^{-i} \triangleq p^{\tau_{i}^{-1}}\right)
$$

- $p \bullet q \triangleq p^{1} \mid q^{2}$

Interpreting MLL formulas

Main idea

$\cdot \otimes \cdot$ amounts to parallel composition without communication.

Technically: injections $\iota_{1}, \iota_{2}: \mathbb{N} \rightarrow \mathbb{N}$ with disjoint codomains
For any PGFs p, q, we let : (writing $\left.p^{i} \triangleq p^{t_{i}}, p^{-i} \triangleq p^{t_{i}^{-1}}\right)$

- $p \bullet q \triangleq p^{1} \mid q^{2}$

On behaviors $A, B \in \mathbb{B}$, we define:

$$
\begin{array}{rl|rl}
1 & :=\left\{\left(\mathbb{1}, \Delta_{\mathrm{N}}\right)\right\}^{\perp \perp} & A \otimes B & :=(A \bullet B)^{\perp \perp} \\
A \bullet B & :=\{p \bullet q \mid p \in A, q \in B\} & A \otimes B & :=\left(A^{\perp} \otimes B^{\perp}\right)^{\perp} \\
A \mid B & :=\{p|q| p \in A, q \in B\} & A B & :=\left(A \otimes B^{\perp}\right)^{\perp} \\
A \| B & :=(A \mid B)^{\perp \perp}
\end{array}
$$

Interpreting MLL formulas

Main idea

$\cdot \otimes \cdot$ amounts to parallel composition without communication.

Technically: injections $\iota_{1}, \iota_{2}: \mathbb{N} \rightarrow \mathbb{N}$ with disjoint codomains

For any PGFs p, q, we let :

- $p \bullet q \triangleq p^{1} \mid q^{2}$
- $p * q \triangleq\left(\left(v \mathbb{N}^{1}\right)\left(p \mid q^{1}\right)\right)^{-2}$
(writing $\left.p^{i} \triangleq p^{l_{i}}, p^{-i} \triangleq p^{l_{i}^{-1}}\right)$
(tensor)
(application)

On behaviors $A, B \in \mathbb{B}$, we define:

$$
\begin{array}{rl|rl}
1 & :=\left\{\left(\mathbb{1}, \Delta_{\mathrm{N}}\right)\right\}^{\perp \perp} & A \otimes B & :=(A \bullet B)^{\perp \perp} \\
A \bullet B & :=\{p \bullet q \mid p \in A, q \in B\} & A \times B & :=\left(A^{\perp} \otimes B^{\perp}\right)^{\perp} \\
A \mid B & :=\{p|q| p \in A, q \in B\} & A \multimap B & :=\left(A \otimes B^{\perp}\right)^{\perp} \\
A \| B & :=(A \mid B)^{\perp \perp}
\end{array}
$$

Easy example

Proposition

For any $A \in \mathbb{P}$, we have that $I \triangleq \bigvee_{n \in \mathbb{N}}(n .1 \leftrightarrow n .2) \Vdash A \multimap A$.

Easy example

Proposition

For any $A \in \mathbb{P}$, we have that $I \triangleq \bigvee_{n \in \mathbb{N}}(n .1 \leftrightarrow n .2) \Vdash A \multimap A$.

Proof :

By definition, $A \multimap A=\left(A \bullet A^{\perp}\right)^{\perp}$.
Consider $p \in A$ and $q \in A^{\perp}$, we have to prove that $I \Perp p^{1} \mid q^{2}$.

Easy example

Proposition

For any $A \in \mathbb{P}$, we have that $I \triangleq \bigvee_{n \in \mathbb{N}}(n .1 \leftrightarrow n .2) \Vdash A \multimap A$.

Proof:

By definition, $A \multimap A=\left(A \bullet A^{\perp}\right)^{\perp}$.
Consider $p \in A$ and $q \in A^{\perp}$, we have to prove that $I \Perp p^{1} \mid q^{2}$. Using properties of fusions, we get

$$
\bar{v}\left(p^{1}\left|q^{2}\right| I\right) \equiv_{\alpha}\left(v_{2}\right)\left(v_{1}\right)\left(p^{1}\left|q^{2}\right| I\right) \equiv_{\alpha}\left(v_{2}\right)\left(p^{2} \mid q^{2}\right) \equiv_{\alpha}(\bar{v})(p \mid q)
$$

Easy example

Proposition

For any $A \in \mathbb{P}$, we have that $I \triangleq \bigvee_{n \in \mathbb{N}}(n .1 \leftrightarrow n .2) \Vdash A \multimap A$.

Proof:

By definition, $A \multimap A=\left(A \bullet A^{\perp}\right)^{\perp}$.
Consider $p \in A$ and $q \in A^{\perp}$, we have to prove that $I \Perp p^{1} \mid q^{2}$. Using properties of fusions, we get

$$
\bar{v}\left(p^{1}\left|q^{2}\right| I\right) \equiv_{\alpha}\left(v_{2}\right)\left(v_{1}\right)\left(p^{1}\left|q^{2}\right| I\right) \equiv_{\alpha}\left(v_{2}\right)\left(p^{2} \mid q^{2}\right) \equiv_{\alpha}(\bar{v})(p \mid q)
$$

We conclude by observing that $(\bar{v})(p \mid q) \in \Perp$.

Conjunctive structures

Conjunctive involutive structures

Conjunctive structures

A CS is a complete lattice $(\mathbb{C}, \preccurlyeq)$ equipped with $\otimes /(\cdot)^{\perp}$ s.t.:

- \otimes is monotone $/(\cdot)^{\perp}$ is antimonotone;
- $Y_{b \in \mathfrak{B}}(a \otimes b)=a \otimes\left(Y_{b \in \mathfrak{B}} b\right)$ and $Y_{b \in \mathfrak{B}}(b \otimes a)=\left(Y_{b \in \mathfrak{B}} b\right) \otimes a$;
- $\left(\Upsilon_{b \in \mathfrak{B}} b\right)^{\perp}=人_{b \in \mathfrak{B}} b^{\perp}$
(De Morgan's law).
A CS is involutive (CIS) if $(\cdot)^{\perp}$ is, unitary with $1 \in \mathbb{C}$.

Examples

- any Boolean algebra ($\mathbb{B}, \preccurlyeq, \wedge, \vee, \neg$),
- the call-by-value λ-calculus (not involutive though)
- Girard's phase space induces a CIS.

Separators \& internal logic

Any CIS induces an interpretation of MLL formulas:

$$
\left.\begin{array}{rl}
a \vee b & \triangleq\left(a^{\perp} \otimes b^{\perp}\right)^{\perp} \mid \exists F \\
a \multimap b & \triangleq \bigvee_{a \in \mathbb{C}} F(a) \\
\left.a \otimes b^{\perp}\right)^{\perp} & \forall F
\end{array} \begin{array}{l}
\text { 人 }
\end{array}\right)
$$

Separators \& internal logic

Any CIS induces an interpretation of MLL formulas:

$$
\begin{aligned}
a \vee b & \triangleq\left(a^{\perp} \otimes b^{\perp}\right)^{\perp} \\
a \multimap b & \exists F
\end{aligned} \begin{aligned}
& \triangleq Y_{a \in \mathbb{C}} F(a) \\
\left.a \otimes b^{\perp}\right)^{\perp} & \forall F
\end{aligned} 人_{a \in \mathbb{C}} F(a)
$$

A model?

How to discriminate valid formulas?

Separators \＆internal logic

Any CIS induces an interpretation of MLL formulas：

$$
\left.\begin{aligned}
a \vee b & \triangleq\left(a^{\perp} \otimes b^{\perp}\right)^{\perp} \\
a \multimap b & \exists F
\end{aligned} \begin{array}{rl}
& \triangleq \\
a \in \mathbb{C} & F(a) \\
& \left(a \otimes b^{\perp}\right)^{\perp}
\end{array} \right\rvert\, \forall F \triangleq 人_{a \in \mathbb{C}} F(a)
$$

Combinators

－$S_{3} \triangleq 人_{a, b \in \mathbb{C}}(a \otimes b) \multimap(b \otimes a)$
commutativity

- $S_{4} \triangleq 人_{a, b, c \in \mathbb{C}}(a \multimap b) \multimap(a \otimes c) \multimap(b \otimes c)$
- $S_{5} \triangleq 人_{a, b, c \in \mathbb{C}}((a \otimes b) \otimes c) \multimap(a \otimes(b \otimes c))$ compat．associativity
－$S_{6} \triangleq 人_{a \in \mathbb{C}} a \multimap(1 \otimes a)$ unit
－$S_{7} \triangleq 人_{a \in \mathbb{C}}(1 \otimes a) \multimap a$ unit
－$S_{8} \triangleq 人_{a, b \in \mathbb{C}}(a \multimap b) \multimap\left(b^{\perp} \multimap a^{\perp}\right)$

Separators \& internal logic

Any CIS induces an interpretation of MLL formulas:

$$
\left.\begin{aligned}
a 8 b & \triangleq\left(a^{\perp} \otimes b^{\perp}\right)^{\perp} \\
a \multimap F & \triangleq Y_{a \in \mathbb{C}} F(a) \\
a \multimap b & \triangleq\left(a \otimes b^{\perp}\right)^{\perp}
\end{aligned} \right\rvert\, \forall F \triangleq 人_{a \in \mathbb{C}} F(a)
$$

Combinators

- $S_{3} \triangleq 人_{a, b \in \mathbb{C}}(a \otimes b) \multimap(b \otimes a)$
- . .

Separator

Any upwards closed set $\mathcal{S} \subseteq \mathbb{C}$ s.t.:

- \mathcal{S} contains the MLL-combinators S_{3}, \ldots, S_{8}.
- If $a \multimap b \in \mathcal{S}$ and $a \in \mathcal{S}$ then $b \in \mathcal{S}$.

Conjunctive Involutive Monoidal Algebra

unitary CIS + separator.

Interpretation of MLL

Semantic judgement

A judgment $\vdash a: \Gamma$, where $a \in \mathbb{C}$ and Γ has parameters in \mathbb{C}, is sound if $a \preccurlyeq \llbracket \Gamma \rrbracket$.

Soundness

There exist $\mathbf{I}, \mathbf{c}, \mathbf{t}, \mathbf{e x}(\sigma) \in \mathcal{S}$ (for any CIMA) s.t. the following are sound:

$$
\begin{aligned}
& \frac{\vdash a: A_{1}, \ldots, A_{k}}{\vdash \mathbf{e x}(\sigma) * a: A_{\sigma(1)}, \ldots, A_{\sigma(k)}}(\mathrm{Ex}) \\
& \frac{\vdash a: \Gamma, A \quad \vdash b: B, \Delta}{\vdash \mathbf{t} * a * b: \Gamma, A \otimes B, \Delta}(\otimes) \\
& \frac{\vdash a: \Gamma, A\{X:=B\}}{\vdash a: \Gamma, \exists X . A}(\exists) \\
& \begin{array}{l}
\frac{\vdash a: \Gamma, A \quad \vdash: A^{\perp}, \Delta}{\vdash \mathbf{c} * a * b: \Gamma, \Delta}(\text { Сит }) \\
\quad \frac{\vdash a: \Gamma, A \quad X \notin \mathrm{FV}(\Gamma)}{\vdash a: \Gamma, \forall X . A}(\forall)
\end{array}
\end{aligned}
$$

Concurrent realizability as a CIMA

Conjunctive structure

The tuple $\left(\mathbb{B}, \subseteq, \otimes,(\cdot)^{\perp}\right)$ is a conjunctive involutive structure.

Concurrent realizability as a CIMA

Conjunctive structure

The tuple $\left(\mathbb{B}, \subseteq, \otimes,(\cdot)^{\perp}\right)$ is a conjunctive involutive structure.

Combinators

The following behaviors are realized by pure fusions:

1. $\cap_{A \in \mathbb{B}} A \multimap A$.
2. $\bigcap_{A, B \in \mathbb{B}}(A \otimes B) \multimap(B \otimes A)$.
3. $\bigcap_{A, B, C \in \mathbb{B}}(A \multimap B) \multimap(B \multimap C) \multimap A \multimap C$.
4. $\cap_{A, B, C \in \mathbb{B}}((A \otimes B) \otimes C) \multimap(A \otimes(B \otimes C))$.
5. $\bigcap_{A \in \mathbb{B}} A \multimap(1 \otimes A)$.
6. $\bigcap_{A \in \mathbb{B}}(1 \otimes A) \multimap A$.
7. $\bigcap_{A, B \in \mathbb{B}}(A \multimap B) \multimap\left(B^{\perp} \multimap A^{\perp}\right)$.
\rightarrow Essentially computations with the right fusions.

Concurrent realizability as a CIMA

Conjunctive structure

The tuple $\left(\mathbb{B}, \subseteq, \otimes,(\cdot)^{\perp}\right)$ is a conjunctive involutive structure.

Combinators

The following behaviors are realized by pure fusions:
S_{3}, \ldots, S_{8}
\uparrow Essentially computations with the right fusions.

Separator

The set of non-empty behaviors $\mathcal{S}_{\mathbb{B}} \triangleq \mathbb{B} \backslash \emptyset$ defines a separator.

Concurrent realizability as a CIMA

Conjunctive structure

The tuple $\left(\mathbb{B}, \subseteq, \otimes,(\cdot)^{\perp}\right)$ is a conjunctive involutive structure.

Combinators

The following behaviors are realized by pure fusions:
S_{3}, \ldots, S_{8}
\uparrow Essentially computations with the right fusions.

Separator

The set of non-empty behaviors $\mathcal{S}_{\mathbb{B}} \triangleq \mathbb{B} \backslash \emptyset$ defines a separator.

Theorem

Any concurrent realizability interpretation induces a CIMA.

Parallel composition

What about concurrency?

So far, we essentially described a linear tensorial calculus.

What about concurrency?

Composition: increasing and \curlyvee-continuous function $\diamond: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$.

Compositional structure induced by \diamond

Quotient \mathbb{C} / \equiv, where \equiv, is the minimum equivalence relation s.t.

$$
\begin{gathered}
\overline{a \diamond \mathbb{1} \equiv_{\diamond} a} \overline{\mathbb{1} \diamond a \equiv_{\diamond} a} \quad \overline{a \diamond b \equiv_{\diamond} b \diamond a} \quad \overline{a \diamond(b \diamond c) \equiv_{\diamond}(a \diamond b) \diamond c} \\
\frac{a \equiv_{\diamond} a^{\prime} \quad b \equiv_{\diamond} b^{\prime}}{a \diamond b \equiv_{\diamond} a^{\prime} \diamond b^{\prime}} \quad \frac{a \equiv_{\diamond} a^{\prime} \quad b \equiv_{\diamond} b^{\prime}}{a \otimes b \equiv_{\diamond} a^{\prime} \otimes b^{\prime}}
\end{gathered} \frac{a \equiv_{\diamond} a^{\prime}}{a^{\perp} \equiv_{\diamond} a^{\prime \perp}}
$$

What about concurrency?

Composition: increasing and \curlyvee-continuous function $\diamond: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$.

Compositional structure induced by \diamond

Quotient \mathbb{C} / \equiv, where \equiv, is the minimum equivalence relation s.t.

$$
\begin{aligned}
& \overline{a \diamond \mathbb{1} \equiv_{\diamond} a} \quad \overline{\mathbb{1} \diamond a \equiv_{\diamond} a} \quad \overline{a \diamond b \equiv_{\diamond} b \diamond a} \quad \overline{a \diamond(b \diamond c) \equiv_{\diamond}(a \diamond b) \diamond c} \\
& \frac{a \equiv_{\diamond} a^{\prime} \quad b \equiv \equiv_{\diamond} b^{\prime}}{a \diamond b \equiv_{\diamond} a^{\prime} \diamond b^{\prime}} \\
& \frac{a \equiv_{\diamond} a^{\prime} \quad b \equiv_{\diamond} b^{\prime}}{a \otimes b \equiv_{\diamond} a^{\prime} \otimes b^{\prime}} \\
& \frac{a \equiv_{\diamond} a^{\prime}}{a^{\perp} \equiv_{\diamond} a^{\prime \perp}} \\
& \frac{a \equiv_{\diamond} a^{\prime} \quad b \equiv \equiv_{\diamond} b^{\prime} \quad a \preccurlyeq b}{a^{\prime} \preccurlyeq b^{\prime}}
\end{aligned}
$$

PGF composition

The operation || is a composition over \mathbb{B}, the equivalence $\equiv_{\|}$is equality.
\rightarrow We even have a term Φ s.t. $\Phi * t * u=t \| u$.

What about concurrency?

Compositional structure induced by \diamond

Quotient $\mathbb{C} / \equiv_{\diamond}$ where \equiv_{\diamond} is the minimum equivalence relation s.t.

$$
\begin{gathered}
\overline{a \diamond \mathbb{1} \equiv_{\diamond} a} \overline{\mathbb{1} \diamond a \equiv_{\diamond} a} \quad \overline{a \diamond b \equiv_{\diamond} b \diamond a} \quad \overline{a \diamond(b \diamond c) \equiv_{\diamond}(a \diamond b) \diamond c} \\
\frac{a \equiv_{\diamond} a^{\prime} \quad b \equiv_{\diamond} b^{\prime}}{a \diamond b \equiv_{\diamond} a^{\prime} \diamond b^{\prime}} \quad \frac{a \equiv_{\diamond} a^{\prime} \quad b \equiv_{\diamond} b^{\prime}}{a \otimes b \equiv_{\diamond} a^{\prime} \otimes b^{\prime}}
\end{gathered} \frac{a \equiv_{\diamond} a^{\prime}}{a^{\perp} \equiv_{\diamond} a^{\prime \perp}}
$$

This extra structure is necessary in the sense that:

Parallel composition cannot be derived

There exists a CIMA in which no term induces a composition which equivalence relation is already valid.

Embedding of the π-calculus

We know how to define all this from a π-calculus. What about the converse?

Embedding of the π-calculus

Honda \& Yoshida defined a set of combinators complete wrt. π-calculus.
composition
synchronization
(iv).
(v). $\quad u^{*} x \cdot \mathcal{C}\left(v^{-} \tilde{w}\right) \stackrel{\text { def }}{=} c>\left(\mathcal{S}(u v c), \mathcal{C}\left(c^{-} \hat{w}\right)\right)$
binding-I

(VI).	$u^{*} x \cdot \mathcal{M}(v x)$	$\stackrel{\text { def }}{=} \mathcal{F} \mathcal{W}(u v)$	$x \neq v$
(VII).	$u^{*} x . \mathcal{F} \mathcal{W}(x v)$	$\stackrel{\text { def }}{=} \mathcal{B}_{l}(u v)$	$x \neq v$
(VIII).	$u^{*} x . \mathcal{F} \mathcal{W}(v x)$	$\stackrel{\text { def }}{=} \mathcal{B}_{r}(u v)$	$x \neq v$

binding-II
(IX). $\quad u^{*} x \cdot \mathcal{C}\left(\tilde{v_{1}} x^{+} \tilde{v}_{2}\right) \stackrel{\text { def }}{=} c \not u^{*} x .\left(\mathcal{F} \mathcal{W}(c x), \mathcal{C}\left(\tilde{v_{1}} c^{+} \tilde{v_{2}}\right)\right) \quad x \notin\left\{\tilde{v_{1}}\right\}, c$ fresh.
binding-III

(x).	$u^{*} x . \mathcal{C}\left(x^{-} \tilde{v}\right)$	$c \triangleright u^{*} x .\left(\mathcal{F W}(x c), \mathcal{C}\left(c^{-} \tilde{v}\right)\right)$	c fresh.	
(XI).	$u^{*} x \cdot \mathcal{B}_{r}\left(v x^{-}\right)$	$c_{1} c_{2} c_{3} \triangleright u^{*} x .\left(\mathcal{D}\left(v c_{1} c_{2}\right), \mathcal{S}\left(c_{1} x c_{3}\right), \mathcal{B}_{r}\left(c_{2} c_{3}\right)\right)$	$x \neq v$	c_{1}, c_{2}, c_{3} fresh.
(XII).	$u^{*} x \cdot \mathcal{S}\left(v x^{-} w\right)$	$c_{1} c_{2}>u^{*} x .\left(\mathcal{S}\left(v c_{1} c_{2}\right), \mathcal{M}\left(c_{1} x\right), \mathcal{B}_{l}\left(c_{2} w\right)\right)$	$x \neq v$	c_{1}, c_{2} fresh.

Embedding of the π-calculus

Essentially, one needs to have reduction rules for these combinators:

$$
\begin{aligned}
\mathcal{D}\left(u w w^{\prime}\right), \mathcal{M}(u v) & \longrightarrow \mathcal{M}(w v), \mathcal{M}\left(w^{\prime} v\right) & \mathcal{B}_{l}(u w), \mathcal{M}(u v) & \longrightarrow \mathcal{F W}(v w) \\
\mathcal{F} \mathcal{W}(u w), \mathcal{M}(u v) & \longrightarrow \mathcal{M}(w v) & \mathcal{B}_{r}(u w), \mathcal{M}(u v) & \longrightarrow \mathcal{F} \mathcal{W}(w v) \\
\mathcal{K}(u), \mathcal{M}(u v) & \longrightarrow \Lambda & \mathcal{S}\left(u w w^{\prime}\right), \mathcal{M}(u v) & \longrightarrow \mathcal{F W}\left(w w^{\prime}\right)
\end{aligned}
$$

Figure 1: Reduction Rules for Atomic Agents

Embedding of the π-calculus

Essentially, one needs to have reduction rules for these combinators:

$$
\begin{aligned}
\mathcal{D}\left(u w w^{\prime}\right), \mathcal{M}(u v) & \longrightarrow \mathcal{M}(w v), \mathcal{M}\left(w^{\prime} v\right) & \mathcal{B}_{l}(u w), \mathcal{M}(u v) & \longrightarrow \mathcal{F} \mathcal{W}(v w) \\
\mathcal{F} \mathcal{W}(u w), \mathcal{M}(u v) & \longrightarrow \mathcal{M}(w v) & \mathcal{B}_{r}(u w), \mathcal{M}(u v) & \longrightarrow \mathcal{F} \mathcal{W}(w v) \\
\mathcal{K}(u), \mathcal{M}(u v) & \longrightarrow \Lambda & \mathcal{S}\left(u w w^{\prime}\right), \mathcal{M}(u v) & \longrightarrow \mathcal{F} \mathcal{W}\left(w w^{\prime}\right)
\end{aligned}
$$

Figure 1: Reduction Rules for Atomic Agents

In our setting:

$$
\mathrm{F}(a, b) \mid \mathrm{M}(a, c) \preccurlyeq \mathrm{M}(b, c)
$$

Embedding of the π-calculus

Essentially, one needs to have reduction rules for these combinators:

$$
\begin{aligned}
\mathcal{D}\left(u w w^{\prime}\right), \mathcal{M}(u v) & \longrightarrow \mathcal{M}(w v), \mathcal{M}\left(w^{\prime} v\right) & \mathcal{B}_{l}(u w), \mathcal{M}(u v) & \longrightarrow \mathcal{F} \mathcal{W}(v w) \\
\mathcal{F} \mathcal{W}(u w), \mathcal{M}(u v) & \longrightarrow \mathcal{M}(w v) & \mathcal{B}_{r}(u w), \mathcal{M}(u v) & \longrightarrow \mathcal{F} \mathcal{W}(w v) \\
\mathcal{K}(u), \mathcal{M}(u v) & \longrightarrow \Lambda & \mathcal{S}\left(u w w^{\prime}\right), \mathcal{M}(u v) & \longrightarrow \mathcal{F} \mathcal{W}\left(w w^{\prime}\right)
\end{aligned}
$$

Figure 1: Reduction Rules for Atomic Agents

In our setting:

$$
\mathrm{F}(a, b) \mid \mathrm{M}(a, c) \preccurlyeq \mathrm{M}(b, c)
$$

Using \triangleright the right adjoint to $\cdot \mid \cdot$, we can define:

$$
\mathrm{F}(a, b) \triangleq 人_{x \in \mathbb{N}}(\mathrm{M}(a, x) \triangleright \mathrm{M}(b, x))
$$

Embedding of the π-calculus

Essentially, one needs to have reduction rules for these combinators:

$$
\begin{aligned}
\mathcal{D}\left(u w w^{\prime}\right), \mathcal{M}(u v) & \longrightarrow \mathcal{M}(w v), \mathcal{M}\left(w^{\prime} v\right) & \mathcal{B}_{l}(u w), \mathcal{M}(u v) & \longrightarrow \mathcal{F} \mathcal{W}(v w) \\
\mathcal{F} \mathcal{W}(u w), \mathcal{M}(u v) & \longrightarrow \mathcal{M}(w v) & \mathcal{B}_{r}(u w), \mathcal{M}(u v) & \longrightarrow \mathcal{F} \mathcal{W}(w v) \\
\mathcal{K}(u), \mathcal{M}(u v) & \longrightarrow \Lambda & \mathcal{S}\left(u w w^{\prime}\right), \mathcal{M}(u v) & \longrightarrow \mathcal{F W}\left(w w^{\prime}\right)
\end{aligned}
$$

Figure 1: Reduction Rules for Atomic Agents
Similarly, we define Honda-Yoshida combinators of \mathbb{C} s.t.:

$\mathrm{K}(a) \mid \mathrm{M}(a, x)$	$\preccurlyeq 1$	$\mathrm{Bl}(a, b) \mid \mathrm{M}(a, x)$	$\preccurlyeq \mathrm{F}(x, b)$
$\mathrm{F}(a, b) \mid \mathrm{M}(a, x)$	$\preccurlyeq \mathrm{M}(b, x)$	$\mathrm{Br}(a, b) \mid \mathrm{M}(a, x)$	$\preccurlyeq \mathrm{F}(b, x)$
$\mathrm{D}(a, b, c) \mid \mathrm{M}(a, x)$	$\preccurlyeq \mathrm{M}(b, x) \mid \mathrm{M}(c, x)$	$\mathrm{S}(a, b, c) \mid \mathrm{M}(a, x)$	$\preccurlyeq \mathrm{F}(b, c)$

Honda-Yoshida algebra

CIMA $+\mathrm{M}: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ s.t. all Honda-Yoshida combinators belong to \mathcal{S}.

Conclusion

Conclusion

What we have:

- CIMA, provides an interpretation of MLL
- additional structure for parallel composition
- realizability based on PGF induces a CIMA with parallel composition
- embedding of π-calculus using Honda \& Yoshida combinators

Conclusion

What we have:

- CIMA, provides an interpretation of MLL
- additional structure for parallel composition
- realizability based on PGF induces a CIMA with parallel composition
- embedding of π-calculus using Honda \& Yoshida combinators

Future work

1. Instantiate on different calculi, see if they fit.
2. Could this be a structured framework for comparing calculi? \rightarrow (for instance, synchrone vs. asynchrone, monadic vs. polyadic)
3. Add exponentials, additives
\uparrow following GOI/Duchesne's PhD, Honda-Yoshida?

Conclusion

Conclusion

Conclusion

The end

Thank you for your attention!

