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Realizability, two sides of the same coin
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provides models
for theories

a tool to analyse
programs behavior



Realizability, two sides of the same coin

𝑡  𝐴

↗ ↑ ↖

program “realises” formula

Intuitively
𝑡  𝐴 = “𝑡 computes (soundly) w.r.t. 𝐴 ”
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Algebrization of realizability

Allows to:

• abstract from implementation details
• focus on their structures
• reason collectively on interpretations
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Algebrization of realizability

Implicative algebra [Miquel 20]

complete laice (A,4,
c
) + · → · ∈ AA×A “implication”

+ S ⊆ A separator

Application

Abstraction

𝑎@𝑏 ,
c
{𝑐 ∈ A : 𝑎 4 𝑏 → 𝑐}

_𝑓 ,
c

𝑎∈A (𝑎 → 𝑓 (𝑎))
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Algebrization of realizability

Implicative algebra [Miquel 20]

complete laice (A,4,
c
) + · → · ∈ AA×A “implication”

+ S ⊆ A separator

FormulasTypes

ProofsPrograms

Order relation · 4 ·:

• 𝐴 4 𝐵 𝐴 subtype of 𝐵

• 𝑡 4 𝐴 𝑡 realizes 𝐴

• 𝑡 4 𝑢 𝑡 is more defined than 𝑢

Soundness

1. If ` 𝑡 : 𝐴 then 𝑡A 4 𝐴A (w.r.t. typing)

2. If 𝑡 →𝛽 𝑢 then 𝑡A 4 𝑢A . (w.r.t. computation)
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This work

Concurrent calculi:

• many syntactic presentations (CCS, 𝜋-calculi, etc…)

• many type systems, none as tight and universal as for _-calculi

• many works seeking for simpler or more general theories.

Our take
an algebraic presentation of concurrent realizability might provide us
with a satisfying framework!

# We follow Beara’s previous work on the maer

The specification:

• study processes and their types via an ordered algebraic structure

• avoid imposing a priori restrictions on processes.
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Processes with global fusions



Processes

Processes Π

𝑃,𝑄 ::= 1︸︷︷︸
unit

| (𝑃 | 𝑄)︸ ︷︷ ︸
parallel composition

| 𝑢 ( ®𝑥).𝑃︸ ︷︷ ︸
reception

| 𝑢 〈®𝑣〉︸︷︷︸
emission

| (a𝑦)𝑃︸︷︷︸
hiding

# names are taken in N, 𝑢 ( ®𝑥). · and a𝑦. · are binders

Substitution: 𝜎 : N → N

One-step reduction: 𝑢 〈®𝑣〉 | 𝑢 ( ®𝑥) .𝑃 −→1 𝑃{®𝑥 := ®𝑣}

NB - this is just a parameter of the construction, which applies to other
processes calculi
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Processes

𝑎 〈𝑏〉
↑

𝑢 (𝑥) .𝑥 〈𝑏〉 | 𝑢 〈𝑎〉
↑

𝑢 (𝑥) .𝑥 〈𝑏〉 | 𝑦 〈𝑎〉 | 𝑦 (𝑥) .𝑢 〈𝑥〉
↑

𝑢 〈𝑦〉 | 𝑢 (𝑥) .𝑥 〈𝑏〉 | 𝑢 (𝑥) .𝑥 〈𝑎〉 | 𝑦 (𝑥) .𝑢 〈𝑥〉
↓

𝑦 〈𝑏〉 | 𝑢 (𝑥) .𝑥 〈𝑎〉 | 𝑦 (𝑥) .𝑢 〈𝑥〉
↓

𝑢 (𝑥) .𝑥 〈𝑎〉 | 𝑢 〈𝑏〉
↓

𝑏 〈𝑎〉

5/ 17



Processes

𝑎 〈𝑏〉
↑

𝑢 (𝑥) .𝑥 〈𝑏〉 | 𝑢 〈𝑎〉
↑

𝑢 (𝑥) .𝑥 〈𝑏〉 | 𝑦 〈𝑎〉 | 𝑦 (𝑥) .𝑢 〈𝑥〉
↑

𝑢 〈𝑦〉 | 𝑢 (𝑥) .𝑥 〈𝑏〉 | 𝑢 (𝑥) .𝑥 〈𝑎〉 | 𝑦 (𝑥) .𝑢 〈𝑥〉
↓

𝑦 〈𝑏〉 | 𝑢 (𝑥) .𝑥 〈𝑎〉 | 𝑦 (𝑥) .𝑢 〈𝑥〉
↓

𝑢 (𝑥) .𝑥 〈𝑎〉 | 𝑢 〈𝑏〉
↓

𝑏 〈𝑎〉

5/ 17



Processes

𝑎 〈𝑏〉
↑

𝑢 (𝑥) .𝑥 〈𝑏〉 | 𝑢 〈𝑎〉
↑

𝑢 (𝑥) .𝑥 〈𝑏〉 | 𝑦 〈𝑎〉 | 𝑦 (𝑥) .𝑢 〈𝑥〉
↑

𝑢 〈𝑦〉 | 𝑢 (𝑥) .𝑥 〈𝑏〉 | 𝑢 (𝑥) .𝑥 〈𝑎〉 | 𝑦 (𝑥) .𝑢 〈𝑥〉
↓

𝑦 〈𝑏〉 | 𝑢 (𝑥) .𝑥 〈𝑎〉 | 𝑦 (𝑥) .𝑢 〈𝑥〉
↓

𝑢 (𝑥) .𝑥 〈𝑎〉 | 𝑢 〈𝑏〉
↓

𝑏 〈𝑎〉

5/ 17



Processes

𝑎 〈𝑏〉
↑

𝑢 (𝑥) .𝑥 〈𝑏〉 | 𝑢 〈𝑎〉
↑

𝑢 (𝑥) .𝑥 〈𝑏〉 | 𝑦 〈𝑎〉 | 𝑦 (𝑥) .𝑢 〈𝑥〉
↑

𝑢 〈𝑦〉 | 𝑢 (𝑥) .𝑥 〈𝑏〉 | 𝑢 (𝑥) .𝑥 〈𝑎〉 | 𝑦 (𝑥) .𝑢 〈𝑥〉
↓

𝑦 〈𝑏〉 | 𝑢 (𝑥) .𝑥 〈𝑎〉 | 𝑦 (𝑥) .𝑢 〈𝑥〉
↓

𝑢 (𝑥) .𝑥 〈𝑎〉 | 𝑢 〈𝑏〉
↓

𝑏 〈𝑎〉

5/ 17



Processes

𝑎 〈𝑏〉
↑

𝑢 (𝑥) .𝑥 〈𝑏〉 | 𝑢 〈𝑎〉
↑

𝑢 (𝑥) .𝑥 〈𝑏〉 | 𝑦 〈𝑎〉 | 𝑦 (𝑥) .𝑢 〈𝑥〉
↑

𝑢 〈𝑦〉 | 𝑢 (𝑥) .𝑥 〈𝑏〉 | 𝑢 (𝑥) .𝑥 〈𝑎〉 | 𝑦 (𝑥) .𝑢 〈𝑥〉
↓

𝑦 〈𝑏〉 | 𝑢 (𝑥) .𝑥 〈𝑎〉 | 𝑦 (𝑥) .𝑢 〈𝑥〉
↓

𝑢 (𝑥) .𝑥 〈𝑎〉 | 𝑢 〈𝑏〉
↓

𝑏 〈𝑎〉

5/ 17



Processes

𝑎 〈𝑏〉
↑

𝑢 (𝑥) .𝑥 〈𝑏〉 | 𝑢 〈𝑎〉
↑

𝑢 (𝑥) .𝑥 〈𝑏〉 | 𝑦 〈𝑎〉 | 𝑦 (𝑥) .𝑢 〈𝑥〉
↑

𝑢 〈𝑦〉 | 𝑢 (𝑥) .𝑥 〈𝑏〉 | 𝑢 (𝑥) .𝑥 〈𝑎〉 | 𝑦 (𝑥) .𝑢 〈𝑥〉
↓

𝑦 〈𝑏〉 | 𝑢 (𝑥) .𝑥 〈𝑎〉 | 𝑦 (𝑥) .𝑢 〈𝑥〉
↓

𝑢 (𝑥) .𝑥 〈𝑎〉 | 𝑢 〈𝑏〉
↓

𝑏 〈𝑎〉

5/ 17



Global fusions

Intuition

𝑢↔𝑣 allows actions on 𝑢 to synchronize with actions on 𝑣 .

Fusions - E
A fusion 𝑒 ∈ E is an equivalence relation · ∼

𝑒
· over N.

Fusion vs. substitution
We can define

• Y𝜏 ,
∨
𝑥 ∈N (𝑥↔𝜏 (𝑥)), the fusion induced by 𝜏 ;

• 𝜎•
𝑒 : 𝑥 ↦→ 𝑥•𝑒 , the substitution induced by 𝑒 ;

with 𝑥•𝑒 a canonical representative of [𝑥]𝑒
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Processes with fusions

Specification: extend a process calculus without aecting its theory
# technically made possible by only having fusions at top-level

Processes with global fusions - Π̄

Π̄ , Π × E = {(𝑃, 𝑒) | 𝑃 ∈ Π, 𝑒 ∈ E}

# we extend syntax, substitution, 𝛼-equivalence, ≡, reduction, etc., everything works.

Syntax

(𝑃, 𝑒) | (𝑄, 𝑓 ) , (𝑃 | 𝑄, 𝑒 𝑓 ), etc…

Reduction

(𝑃, 𝑒) −→1 (𝑄, 𝑓 ) , 𝑒 = 𝑓 ∧ 𝑃𝜎
•
𝑒 −→1 𝑄

𝜎•
𝑓

which entails:
(𝑢 (𝑥) .𝑃 | 𝑣 〈𝑦〉 , 𝑢↔𝑣) −→1 (𝑃{𝑥 := 𝑦}, 𝑢↔𝑣)
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Realizability interpretation



Concurrent realizability [Beara’06]

Main insight from Krivine realizability:

interpretation parameterized by a pole ⊥⊥, specifying “correct”
interactions

Pole
Any ⊥⊥ ⊆ {𝑝 ∈ Π̄ | FN(𝑝) = ∅} that is closed under ≡.
# characterize the soundness of interaction wrt. the renaming mechanism

This induces a map (·)⊥ on P:

𝐴⊥ = {𝑝 ∈ Π̄ |∀𝑞 ∈ 𝐴, ā (𝑝 | 𝑞) ∈ ⊥⊥}

Behaviors - B , {𝐴 ∈ P : 𝐴⊥⊥ = 𝐴}

• allows to define truth values • induces a complete laice.
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Interpreting MLL formulas

Main idea
· ⊗ · amounts to parallel composition without communication.

Technically: injections ]1, ]2 : N → N with disjoint codomains

For any PGFs 𝑝 , 𝑞, we let : (writing 𝑝𝑖 , 𝑝]𝑖 , 𝑝−𝑖 , 𝑝]
−1
𝑖 )

• 𝑝 • 𝑞 , 𝑝1 | 𝑞2 (tensor)

• 𝑝 ∗ 𝑞 , ((aN1) (𝑝 | 𝑞1))−2 (application)

On behaviors 𝐴, 𝐵 ∈ B, we define:

1 := {(1,ΔN)}⊥⊥

𝐴 • 𝐵 := {𝑝 • 𝑞 | 𝑝 ∈ 𝐴, 𝑞 ∈ 𝐵}
𝐴 | 𝐵 := {𝑝 | 𝑞 | 𝑝 ∈ 𝐴, 𝑞 ∈ 𝐵}

𝐴 ⊗ 𝐵 := (𝐴 • 𝐵)⊥⊥

𝐴 ` 𝐵 := (𝐴⊥ ⊗ 𝐵⊥)⊥

𝐴 ( 𝐵 := (𝐴 ⊗ 𝐵⊥)⊥

𝐴 ‖ 𝐵 := (𝐴 | 𝐵)⊥⊥
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Easy example

Proposition

For any 𝐴 ∈ P, we have that 𝐼 ,
∨
𝑛∈N

(𝑛.1↔𝑛.2)  𝐴 ( 𝐴.

Proof :
By definition, 𝐴 ( 𝐴 = (𝐴 •𝐴⊥)⊥.

Consider 𝑝 ∈ 𝐴 and 𝑞 ∈ 𝐴⊥, we have to prove that 𝐼⊥⊥𝑝1 | 𝑞2. Using
properties of fusions, we get

ā (𝑝1 | 𝑞2 | 𝐼 ) ≡𝛼 (a2) (a1) (𝑝1 | 𝑞2 | 𝐼 ) ≡𝛼 (a2) (𝑝2 | 𝑞2) ≡𝛼 (a) (𝑝 | 𝑞)

We conclude by observing that (a) (𝑝 | 𝑞) ∈ ⊥⊥.
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Conjunctive structures



Conjunctive involutive structures

Conjunctive structures [M. 2020]

A CS is a complete laice (C,4) equipped with ⊗ / (·)⊥ s.t.:

• ⊗ is monotone / (·)⊥ is antimonotone;

•
b

𝑏∈𝔅 (𝑎 ⊗ 𝑏) = 𝑎 ⊗
(b

𝑏∈𝔅 𝑏
)
and

b
𝑏∈𝔅 (𝑏 ⊗ 𝑎) =

(b
𝑏∈𝔅 𝑏

)
⊗ 𝑎;

•
(b

𝑏∈𝔅 𝑏
)⊥

=
c

𝑏∈𝔅 𝑏⊥ ( De Morgan’s law).

A CS is involutive (CIS) if (·)⊥ is, unitary with 1 ∈ C.

Examples

• any Boolean algebra (B,4,∧,∨,¬),
• the call-by-value _-calculus (not involutive though)

• Girard’s phase space induces a CIS.
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Separators & internal logic

Any CIS induces an interpretation of MLL formulas:

𝑎 ` 𝑏 , (𝑎⊥ ⊗ 𝑏⊥)⊥ ∃𝐹 ,
b

𝑎∈C 𝐹 (𝑎)
𝑎 ( 𝑏 , (𝑎 ⊗ 𝑏⊥)⊥ ∀𝐹 ,

c
𝑎∈C 𝐹 (𝑎)

Combinators
• 𝑆3 ,

c
𝑎,𝑏∈C(𝑎 ⊗ 𝑏) ( (𝑏 ⊗ 𝑎) commutativity

• 𝑆4 ,
c

𝑎,𝑏,𝑐∈C(𝑎 ( 𝑏) ( (𝑎 ⊗ 𝑐) ( (𝑏 ⊗ 𝑐) compat. (

• 𝑆5 ,
c

𝑎,𝑏,𝑐∈C((𝑎 ⊗ 𝑏) ⊗ 𝑐) ( (𝑎 ⊗ (𝑏 ⊗ 𝑐)) associativity

• 𝑆6 ,
c

𝑎∈C 𝑎 ( (1 ⊗ 𝑎) unit

• 𝑆7 ,
c

𝑎∈C(1 ⊗ 𝑎) ( 𝑎 unit

• 𝑆8 ,
c

𝑎,𝑏∈C(𝑎 ( 𝑏) ( (𝑏⊥ ( 𝑎⊥) contrapositive

Separator
Any upwards closed set S ⊆ C s.t.:

• S contains the MLL-combinators 𝑆3, . . . , 𝑆8.

• If 𝑎 ( 𝑏 ∈ S and 𝑎 ∈ S then 𝑏 ∈ S.

Conjunctive Involutive Monoidal Algebra
unitary CIS + separator.
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Interpretation of MLL

Semantic judgement
A judgment ` 𝑎 : Γ, where 𝑎 ∈ C and Γ has parameters in C, is
sound if 𝑎 4 JΓK.

Soundness
There exist I, c, t, ex(𝜎) ∈ S (for any 𝐶𝐼𝑀𝐴) s.t. the following are
sound:

` 1 : 1
(1) ` I : 𝐴⊥, 𝐴

(Ax)
` 𝑎 : 𝐴1, . . . , 𝐴𝑘

` ex(𝜎) ∗ 𝑎 : 𝐴𝜎 (1) , . . . , 𝐴𝜎 (𝑘)
(Ex)

` 𝑎 : Γ, 𝐴 ` 𝑏 : 𝐵,Δ
` t ∗ 𝑎 ∗ 𝑏 : Γ, 𝐴 ⊗ 𝐵,Δ

(⊗)
` 𝑎 : Γ, 𝐴 ` 𝑏 : 𝐴⊥,Δ

` c ∗ 𝑎 ∗ 𝑏 : Γ,Δ
(Cut)

` 𝑎 : Γ, 𝐴{𝑋 := 𝐵}
` 𝑎 : Γ, ∃𝑋 .𝐴

(∃)
` 𝑎 : Γ, 𝐴 𝑋 ∉ FV(Γ)

` 𝑎 : Γ,∀𝑋 .𝐴
(∀)
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Concurrent realizability as a CIMA

Conjunctive structure
The tuple (B, ⊆, ⊗, (·)⊥) is a conjunctive involutive structure.

Combinators
The following behaviors are realized by pure fusions:

1.
⋂

𝐴∈B 𝐴 ( 𝐴.

2.
⋂

𝐴,𝐵∈B (𝐴 ⊗ 𝐵) ( (𝐵 ⊗ 𝐴).
3.

⋂
𝐴,𝐵,𝐶∈B (𝐴(𝐵)((𝐵(𝐶)(𝐴(𝐶 .

4.
⋂

𝐴,𝐵,𝐶∈B ((𝐴 ⊗ 𝐵) ⊗ 𝐶) ( (𝐴 ⊗ (𝐵 ⊗ 𝐶)).
5.

⋂
𝐴∈B 𝐴 ( (1 ⊗ 𝐴).

6.
⋂

𝐴∈B (1 ⊗ 𝐴) ( 𝐴.

7.
⋂

𝐴,𝐵∈B (𝐴 ( 𝐵) ( (𝐵⊥ ( 𝐴⊥).

# Essentially computations with the right fusions.

Separator

The set of non-empty behaviors SB , B\∅ defines a separator.

Theorem
Any concurrent realizability interpretation induces a CIMA.
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Parallel composition



What about concurrency?

So far, we essentially described a linear tensorial calculus.
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What about concurrency?

Composition: increasing and
b
-continuous function � : C × C → C.

Compositional structure induced by �
otient C/≡� where ≡� is the minimum equivalence relation s.t.

𝑎 � 1 ≡� 𝑎 1 � 𝑎 ≡� 𝑎 𝑎 �𝑏 ≡� 𝑏 � 𝑎 𝑎 � (𝑏 � 𝑐) ≡� (𝑎 �𝑏) � 𝑐

𝑎 ≡� 𝑎′ 𝑏 ≡� 𝑏 ′

𝑎 �𝑏 ≡� 𝑎′ �𝑏 ′
𝑎 ≡� 𝑎′ 𝑏 ≡� 𝑏 ′

𝑎 ⊗ 𝑏 ≡� 𝑎′ ⊗ 𝑏 ′
𝑎 ≡� 𝑎′

𝑎⊥ ≡� 𝑎′⊥

𝑎 ≡� 𝑎′ 𝑏 ≡� 𝑏 ′ 𝑎 4 𝑏

𝑎′ 4 𝑏 ′
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𝑎 ≡� 𝑎′ 𝑏 ≡� 𝑏 ′ 𝑎 4 𝑏

𝑎′ 4 𝑏 ′

PGF composition
The operation ‖ is a composition over B, the equivalence ≡‖ is equality.

# We even have a term Φ s.t. Φ ∗ 𝑡 ∗ 𝑢 = 𝑡 ‖𝑢.
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This extra structure is necessary in the sense that:

Parallel composition cannot be derived
There exists a CIMA in which no term induces a composition which
equivalence relation is already valid.
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Embedding of the 𝜋-calculus

We know how to define all this from a 𝜋-calculus. What about the
converse?
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Embedding of the 𝜋-calculus

Essentially, one needs to have reduction rules for these combinators:

Similarly, we define Honda-Yoshida combinators of C s.t.:

K(𝑎) |M(𝑎, 𝑥) 4 1
F(𝑎, 𝑏) |M(𝑎, 𝑥) 4 M(𝑏, 𝑥)

D(𝑎, 𝑏, 𝑐) |M(𝑎, 𝑥) 4 M(𝑏, 𝑥) |M(𝑐, 𝑥)

Bl(𝑎, 𝑏) |M(𝑎, 𝑥) 4 F(𝑥, 𝑏)
Br(𝑎, 𝑏) |M(𝑎, 𝑥) 4 F(𝑏, 𝑥)
S(𝑎, 𝑏, 𝑐) |M(𝑎, 𝑥) 4 F(𝑏, 𝑐)

Honda-Yoshida algebra
CIMA+ M : C × C → C s.t. all Honda-Yoshida combinators belong to S.

16/ 17



Conclusion



Conclusion

What we have:

• CIMA, provides an interpretation of MLL

• additional structure for parallel composition

• realizability based on PGF induces a CIMA with parallel
composition

• embedding of 𝜋-calculus using Honda & Yoshida combinators

Future work

1. Instantiate on dierent calculi, see if they fit.

2. Could this be a structured framework for comparing calculi?
# (for instance, synchrone vs. asynchrone, monadic vs. polyadic)

3. Add exponentials, additives
# following GOI/Duchesne’s PhD, Honda-Yoshida?
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The end

Thank you for your aention!
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