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Realizability, two sides of the same coin

provides models

for theories

a tool to analyse
programs behavior
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Realizability, two sides of the same coin

tIF A
00T N

program “realises” formula

tlFA = “t computes (soundly) w.rt. A”
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Algebrization of realizability

Allows to:

« abstract from implementation details
« focus on their structures

« reason collectively on interpretations
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Algebrization of realizability

complete lattice (A, <, \) + - — - € AR “implication”

+ ScA separator
Types Formulas Order relation - < -
« AXB A subtype of B
et A t realizes A
Programs Proofs et <ku t is more defined than u
Soundness
1.Ifrt:A then t7 <5 A% (w.r.t. typing)

2. 1f ¢t —pu then 71 < u”. (w.r.t. computation)
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This work

Concurrent calculi:
« many syntactic presentations (CCS, m-calculi, etc...)
« many type systems, none as tight and universal as for A-calculi

- many works seeking for simpler or more general theories.
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This work

Concurrent calculi:
« many syntactic presentations (CCS, m-calculi, etc...)
« many type systems, none as tight and universal as for A-calculi

« many works seeking for simpler or more general theories.

an algebraic presentation of concurrent realizability might provide us
with a satisfying framework!

9~ We follow Beffara’s previous work on the matter

The specification:
« study processes and their types via an ordered algebraic structure

- avoid imposing a priori restrictions on processes.

4/ 17



Processes with global fusions



Processes

PQ:== 1 | (P|Q) | u@).P | a@ | ()P
~—— S— S S —
unit parallel composition reception emission hiding

Y= names are taken in N, u(X).- andvy. - are binders
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Processes

PQ:== 1 | (P|Q) | u@).P | a@ | ()P
~—— S— S S —
unit parallel composition reception emission hiding

Y= names are taken in N, u(X).- andvy. - are binders
Substitution: o:N — N
One-step reduction: i () | u(x¥).P — P{x := 0}

NB - this is just a parameter of the construction, which applies to other
processes calculi
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Processes

a(y) | u(x) x<b) | u(x) x{(a)|y(x).ax)
l
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Processes

uy) | ulx) x(b)| u(x) .x(a)|y(x).u(x)
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g(b) lu(x).x(a)| y(x) . (x)
l
u(x) .x{a) | u{b)
l
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Processes

afb)
1
u(x).x (b) | u{a)
T
u(x).x (b) | g{a) | y(x).u (x)
T
uy) | ulx) x(b)| u(x) .x(a)|y(x).u(x)
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Global fusions

Intuition

u<v allows actions on u to synchronize with actions on .
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Global fusions

Intuition

u<v allows actions on u to synchronize with actions on .

A fusion e € & is an equivalence relation - ~ - over N.
e

Fusion vs. substitution

We can define
e & 2\ en(x57(x)), the fusion induced by ;
« 0, :x — x, , the substitution induced by e;

e . ;
with xg a canonical representative of [x].
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Processes with fusions

Specification: extend a process calculus without affecting its theory
S technically made possible by only having fusions at top-level
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Processes with fusions

Specification: extend a process calculus without affecting its theory
S technically made possible by only having fusions at top-level

O2MIxE={(Pe)|Pcllec&}

S we extend syntax, substitution, a-equivalence, =, reduction, etc., everything works.

Syntax
(P.e)| (Q.f) £ (P Qeef), etc...

Reduction
(Pe) —1 (Q.) 2 e=f A P% — Q%

which entails:
(u(x).P|o(y),uev) —1 (P{x =y}, ue0)

7/17



Realizability interpretation




Concurrent realizability [Beffara’06]

Main insight from Krivine realizability:

interpretation parameterized by a pole 1L, specifying “correct”
interactions
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Concurrent realizability [Beffara’06]

Main insight from Krivine realizability:

interpretation parameterized by a pole 1L, specifying “correct”
interactions

Any 1L C {p € IT| FN(p) = 0} that is closed under =.

S characterize the soundness of interaction wrt. the renaming mechanism

This induces a map (+)* on P:
AT ={pelllVge A (p|q) € 1L}

Behaviors- B2 {AcP: At = A}
« allows to define truth values « induces a complete lattice.
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Interpreting MLL formulas

- ® - amounts to parallel composition without communication.
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Interpreting MLL formulas

- ® - amounts to parallel composition without communication.

Technically: injections 11,1, : N — N with disjoint codomains

For any PGFs p, g, we let : (writing p* £ p'i, p=i £ pti')
s peqg=p'|d (tensor)
« prg = ((WNY(plg )™ (application)

On behaviors A, B € B, we define:

A®B = (AeB)tt
1 = 1,AN)
B i( 9 ’\ll)}EA EB} AQS)B o— (AJ_®BJ_)J_
[ ] = L]
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Forany A € P, we have that 1 2 \/ (n.1n.2) IF A — A.

neN

10/ 17



Easy example

Forany A € P, we have that 1 2 \/ (n.1n.2) IF A — A.

neN

Proof :
By definition, A —0 A = (A e A+)*.

Consider p € A and q € A+, we have to prove that I1Lp! | g%

10/ 17



Easy example

Forany A € P, we have that 1 2 \/ (n.1n.2) IF A — A.

neN

Proof :
By definition, A —0 A = (A e A+)*.

Consider p € A and g € A*, we have to prove that I p! | ¢°. Using
properties of fusions, we get

7P 11D =2 )DP' 11D =2 (2)(P*1¢°) =« W) (P|g)

10/ 17



Easy example

Forany A € P, we have that 1 2 \/ (n.1n.2) IF A — A.

neN

Proof :
By definition, A —0 A = (A e A+)*.

Consider p € A and g € A*, we have to prove that I p! | ¢°. Using
properties of fusions, we get

7P 11D =2 )DP' 11D =2 (2)(P*1¢°) =« W) (P|g)

We conclude by observing that (v)(p | q) € L.

10/ 17



Conjunctive structures




Conjunctive involutive structures

A CS is a complete lattice (C, <) equipped with ® / (-)* s.t.:
« ® is monotone / (-)* is antimonotone;
* Yoen(a®b) =a® (Yyegb) and Yyeg(b ®a) = (Yjepb) @ 45
« (Yoenb)™ = Apeg b+ ( De Morgan’s law).

A CS is involutive (CIS) if (-)* is, unitary with 1 € C.
Examples
« any Boolean algebra (B, <, A, V, =),

o the call-by-value A-calculus (not involutive though)

« Girard’s phase space induces a CIS.

11/ 17



Separators & internal logic

Any CIS induces an interpretation of MLL formulas:

(a* @ bY)* | IF

a¥b

a—ob

1> i

(a®bH)t

VF

A

>l

Yacc F(a)
AaeC F(a)
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Separators & internal logic

Any CIS induces an interpretation of MLL formulas:

a¥b

a—ob

(a* ® bt
(a®bh)*t

1> i

How to discriminate valid formulas?

aF
VF

A

>l

Yaec Fla)
Aaec F(a)
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Separators & internal logic

Any CIS induces an interpretation of MLL formulas:

a®b = (atebH)t|IF & Y, . F(a)
a—ob £ (a®bh)t |VF & )\ .cF(a)
Combinators

e S5 2 Aa,bec(a ® b) —o (b ® a) commutativity
o Sy £ Aa,b,cec(a —o b) —o (a ® C) —o (b ® C) compat. —o
o Ss =S Aa,b,ceC((a ® b) ® C) —o (a ® (b ® C)) associativity
. S6éAa€Ca—O(1®a) unit
57 £ AaeC(l ®a) —oa unit

Ss = Napec(a —o b) —o (b —o at)

contrapositive
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Separators & internal logic

Any CIS induces an interpretation of MLL formulas:

a®b Y sec F(a)
a—ob Aaec F(a)

(at ®bH)* | IF
(a® b+)* | VF

L L
L L

Combinators

o S; 2 Aa,bec(a ®b) — (b®a) commutativity

Any upwards closed set S C Cs.t.:
« S contains the MLL-combinators Ss, .. ., Ss.

e Ifa—obeSandaeSthenbeS.

unitary CIS + separator.
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Interpretation of MLL

A judgment + a : ', where a € C and T has parameters in C, is
soundif a < [T].

There exist I, ¢, t,ex(o) € S (for any CIMA) s.t. the following are

sound:
1 (A%) Fa:Al,...,Ak (Ex)
- - .
F1: 1( ) Fl:ALHA Fex(o) *a:As) - Aok
ta:T,A rb:BA Fa:T,A Fb:ALHA
(®) (Cum)
Ftxaxb:T,A® B, A Fcxaxb:T,A
ba:T,A{X := B} Fa:T,A X ¢FV()

3 v
Fa:T,3X.A e Fa:T,VX.A "
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Concurrent realizability as a CIMA

The tuple (B, S, ®, (1)) is a conjunctive involutive structure.
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Concurrent realizability as a CIMA

The tuple (B, S, ®, (1)) is a conjunctive involutive structure.

The following behaviors are realized by pure fusions:
1. Nacg A — A

MNapes(A® B) — (B® A).

M4 ces(A—oB)—o(B—oC)—0A—C.

Napces((A®B)®C) — (A® (B®()).

Naeg A — (1Q® A).

Naea(1®A) — A.

Nape(A — B) —o (B+ —o A*).

SN

S Essentially computations with the right fusions.
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Concurrent realizability as a CIMA

The tuple (B, C, ®, ()1) is a conjunctive involutive structure.

The following behaviors are realized by pure fusions:

S3, ..., Sg

S Essentially computations with the right fusions.

The set of non-empty behaviors Sg = B\0 defines a separator.

Any concurrent realizability interpretation induces a CIMA.

14/ 17



Parallel composition




What about concurrency?

So far, we essentially described a linear tensorial calculus.
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What about concurrency?

Composition: increasing and Y -continuous function o : Cx C — C.

Quotient C/=, where =, is the minimum equivalence relation s.t.

aol=sa loa=,a aob=,boa ao(boc) =, (aob)oc
a=.a b=,b a=.a b=,0b a=,a
aob=sa ob a®b=,a b’ G =0

as=.a b=,b" axb
a=<b
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What about concurrency?

Composition: increasing and Y -continuous function o : Cx C — C.

Quotient C/=, where =, is the minimum equivalence relation s.t.

aol=,a loa=,a aob=,boa ao(boc)=,(aob)oc
a=.ad b=,b a=.a b=,0b a=,a
aob=,a ob a®b=,a" b’ at =, a't

as=.ad b=,b axb
a b

The operation || is a composition over B, the equivalence = is equality.

9= We even have a term @ s.t. ® =t s« u = t||u.
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What about concurrency?

Quotient C/=, where =, is the minimum equivalence relation s.t.

aol=,a loa=,a aob=,boa ao(boc)=,(aob)oc
as.a b=, as=.a b=,b' a=.a
aob=,a ob’ a®b=,ad b’ at =, a't

a=.ad b=,b axb
a b

This extra structure is necessary in the sense that:

There exists a CIMA in which no term induces a composition which
equivalence relation is already valid.
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Embedding of the 7-calculus

We know how to define all this from a 7-calculus. What about the

converse?
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Embedding of the 7-calculus

Honda & Yoshida defined a set of combinators complete wrt. z-calculus.

composition
). wz.(P, Q) ¥ cieom(Dlucics), ¢ja.P, ¢32.Q) ¢1,¢z fresh.
(11). wzerP & dwwaP{d]c}  fresh.
(). wzA & X(u)
synchronization
(v). wallwti) ¥ cw(S(uew), C(ctb)) z ¢ {vid}, c fresh.
V). w*z.C(v™ ) &t e (S(uve), C(c™w)} z & {vid}, c fresh.
binding-I
(v). u*z.M(vz) &t FW(uv) T#v
(vi). wrFWr) E Byuww) z#v
vm).  weFWes) & B.(w) z#v
binding-11
(X).  walliats) & crwa(FW(s), C(dcti)) z ¢ {91}, ¢ fresh.
binding-IIT
(x). u*2.C{z™ ) X cputa. (FW(ac), C(c™9)) ¢ fresh.
(x1). w*z.B.(vz”) & G eacs putn(D(vercy), S(c1acs), Br(cacs)) z#v  c1,05,05 fresh.
(xm). w*z.S (v~ w) e »utz.(S(verez), M{aiz), Bi(cw)) z#v  cp,cp fresh.

Figure 2: Name Abstraction
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Embedding of the 7-calculus

Essentially, one needs to have reduction rules for these combinators:

D(vww'), M(uwv) — M(wv), M(w'v) Bi(uw), M(uwv) — FW(vw)
FW(uw), M(uv) — M(wv) B (uw), M(uwv) — FW(wv)
K(u), M(uwv) —— A S(uww'), M(wv) — FW(ww')

Figure 1: Reduction Rules for Atomic Agents
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Embedding of the 7-calculus

Essentially, one needs to have reduction rules for these combinators:

D(vww'), M(wv) — M(wv), M(w'v) Bi(uw), M(uwv) — FW(vw)
FW(uw), M(uv) — M(wv) B.(uw), M(uv) — FW(wv)
K(uw), M(ww) — A S(uww'), M(uwv) — FW(ww')

Figure 1: Reduction Rules for Atomic Agents

In our setting:
F(a,b) | M(a,c) < M(b,¢c)

Using > the right adjoint to - | -, we can define:
F(a.b) = A (M(ax) > M(b,x))

xeN
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Embedding of the 7-calculus

Essentially, one needs to have reduction rules for these combinators:

D(vww'), M(wv) — M(wv), M(w'v) Bi(uw), M(uwv) — FW(vw)
FW(uw), M(uwv) — M(wv) B.(uw), M(uv) — FW(wv)
K(uw), M(ww) — A S(uww'), M(uwv) — FW(ww')

Figure 1: Reduction Rules for Atomic Agents

Similarly, we define Honda-Yoshida combinators of C s.t.:

K(a)[M(a,x) < 1 Bl(a,b)[M(a,x) =< F(x,b)
F(a,b)IM(a,x) < M(b,x) Br(a,b)IM(a,x) < F(b,x)
D(a,b,c)[M(a,x) < M(b,x)|M(c,x) S(a,b,¢)[M(a,x) < F(b,c)

CIMA+ M : C X C — C s.t. all Honda-Yoshida combinators belong to S.

16/ 17
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What we have:

« CIMA, provides an interpretation of MLL
« additional structure for parallel composition

« realizability based on PGF induces a CIMA with parallel

composition

+ embedding of 7-calculus using Honda & Yoshida combinators
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Conclusion

What we have:

« CIMA, provides an interpretation of MLL
« additional structure for parallel composition

« realizability based on PGF induces a CIMA with parallel

composition

+ embedding of 7-calculus using Honda & Yoshida combinators
Future work

1. Instantiate on different calculi, see if they fit.

2. Could this be a structured framework for comparing calculi?
S (for instance, synchrone vs. asynchrone, monadic vs. polyadic)

3. Add exponentials, additives
Y following GOIl/Duchesne’s PhD, Honda-Yoshida?
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Conclusion

process

calculus
determinization l

deterministic

processes

axiomatization of

...................... LK
concurrency?
various —=and CPS
~ translations
linear

— U

logic linearization

typing
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The end

Thank you for your attention!



	Processes with global fusions
	Realizability interpretation
	Conjunctive structures
	Parallel composition
	Conclusion
	Appendix

