Concurrent Realizability on Conjunctive Structures

FSCD 2023, Roma

Emmanuel BEFFARA¹

¹Univ. Grenoble-Alpes

Félix Castro^{2,3}

²Univ. Paris-Cité

Mauricio GUILLERMO³

³Univ. de la República

Étienne MIQUEY⁴

⁴Univ. Aix-Marseille

Realizability, two sides of the same coin

Realizability, two sides of the same coin

Intuitively

$$t \Vdash A = "t \text{ computes (soundly) w.r.t. } A "$$

Allows to:

- · abstract from implementation details
- focus on their structures
- · reason collectively on interpretations

l	Implicative alge	[Miquel 20]			
	complete lattice	$(\mathcal{A},\preccurlyeq,{\textstyle{\textstyle \large }})$	+	$\cdot \to \cdot \in \mathcal{A}^{\mathcal{A} \times \mathcal{A}}$	"implication"
			+	$\mathcal{S}\subseteq\mathcal{A}$	separator

Implicative algebra[Miquel 20]complete lattice $(\mathcal{A}, \preccurlyeq, \bigwedge)$ $+ \cdot \rightarrow \cdot \in \mathcal{A}^{\mathcal{A} \times \mathcal{A}}$ "implication" $+ \quad \mathcal{S} \subseteq \mathcal{A}$ separator

Application
$$a@b \triangleq \bigwedge \{c \in \mathcal{A} : a \preccurlyeq b \rightarrow c\}$$
Abstraction $\lambda f \triangleq \bigwedge_{a \in \mathcal{A}} (a \rightarrow f(a))$

Soundness

1. If $\vdash t : A$ then $t^{\mathcal{A}} \preccurlyeq A^{\mathcal{A}}$ 2. If $t \rightarrow_{\beta} u$ then $t^{\mathcal{A}} \preccurlyeq u^{\mathcal{A}}$.

(w.r.t. typing) w.r.t. computation)

Soundness

1. If $\vdash t : A$ then $t^{\mathcal{A}} \preccurlyeq A^{\mathcal{A}}$ (w.r.t. typing)2. If $t \rightarrow_{\beta} u$ then $t^{\mathcal{A}} \preccurlyeq u^{\mathcal{A}}$.(w.r.t. computation)

This work

Concurrent calculi:

- many syntactic presentations (CCS, π -calculi, etc...)
- many type systems, none as tight and universal as for λ -calculi
- · many works seeking for simpler or more general theories.

Our take

an algebraic presentation of concurrent realizability might provide us with a satisfying framework!

 \mapsto We follow Beffara's previous work on the matter

The specification:

- study processes and their types via an ordered algebraic structure
- avoid imposing a priori restrictions on processes.

This work

Concurrent calculi:

- many syntactic presentations (CCS, *π*-calculi, etc...)
- many type systems, none as tight and universal as for λ -calculi
- many works seeking for simpler or more general theories.

Our take

an algebraic presentation of concurrent realizability might provide us with a satisfying framework!

 \hookrightarrow We follow Beffara's previous work on the matter

The specification:

- study processes and their types via an ordered algebraic structure
- avoid imposing a priori restrictions on processes.

This work

Concurrent calculi:

- many syntactic presentations (CCS, π -calculi, etc...)
- many type systems, none as tight and universal as for λ -calculi
- many works seeking for simpler or more general theories.

Our take

an algebraic presentation of concurrent realizability might provide us with a satisfying framework!

 \hookrightarrow We follow Beffara's previous work on the matter

The specification:

- · study processes and their types via an ordered algebraic structure
- · avoid imposing a priori restrictions on processes.

Processes with global fusions

 \hookrightarrow names are taken in \mathbb{N} , $u(\vec{x})$. \cdot and vy. \cdot are binders

```
Substitution: \sigma : \mathbb{N} \to \mathbb{N}
```

One-step reduction: $\bar{u} \langle \vec{v} \rangle | u(\vec{x}).P \longrightarrow_1 P\{\vec{x} := \vec{v}\}$

 \hookrightarrow names are taken in \mathbb{N} , $u(\vec{x})$. \cdot and vy. \cdot are binders

```
Substitution: \sigma : \mathbb{N} \to \mathbb{N}
```

One-step reduction: $\bar{u} \langle \vec{v} \rangle | u(\vec{x}) P \longrightarrow_1 P\{\vec{x} \coloneqq \vec{v}\}$

 \hookrightarrow names are taken in \mathbb{N} , $u(\vec{x})$. \cdot and vy. \cdot are binders

Substitution: $\sigma : \mathbb{N} \to \mathbb{N}$

One-step reduction: $\bar{u} \langle \vec{v} \rangle | u(\vec{x}) \cdot P \longrightarrow_1 P\{\vec{x} := \vec{v}\}$

 \hookrightarrow names are taken in \mathbb{N} , $u(\vec{x})$. \cdot and vy. \cdot are binders

Substitution: $\sigma : \mathbb{N} \to \mathbb{N}$

One-step reduction: $\bar{u} \langle \vec{v} \rangle | u(\vec{x}) \cdot P \longrightarrow_1 P\{\vec{x} := \vec{v}\}$

 $\bar{u} \langle y \rangle \mid u(x) . \bar{x} \langle b \rangle \mid u(x) . \bar{x} \langle a \rangle \mid y(x) . \bar{u} \langle x \rangle$

$$\vec{a} \langle \vec{b} \rangle$$

$$\uparrow$$

$$u(x).\bar{x} \langle \vec{b} \rangle | \bar{u} \langle \vec{a} \rangle$$

$$\uparrow$$

$$u(x).\bar{x} \langle \vec{b} \rangle | \bar{y} \langle \vec{a} \rangle | y(x).\bar{u} \langle x \rangle$$

$$\uparrow$$

$$\bar{u} \langle y \rangle | u(x) .\bar{x} \langle \vec{b} \rangle | u(x) .\bar{x} \langle \vec{a} \rangle | y(x).\bar{u} \langle x \rangle$$

$$\downarrow$$

$$\vec{y} \langle \vec{b} \rangle | u(x).\bar{x} \langle \vec{a} \rangle | y(x) .\bar{u} \langle x \rangle$$

$$\downarrow$$

$$u(x) .\bar{x} \langle \vec{a} \rangle | \bar{u} \langle \vec{b} \rangle$$

$$\bar{a} \langle b \rangle$$

$$\uparrow$$

$$u(x).\bar{x} \langle b \rangle | \bar{u} \langle a \rangle$$

$$\uparrow$$

$$u(x).\bar{x} \langle b \rangle | \bar{y} \langle a \rangle | y(x).\bar{u} \langle x \rangle$$

$$\uparrow$$

$$\bar{u} \langle y \rangle | u(x) .\bar{x} \langle b \rangle | u(x) .\bar{x} \langle a \rangle | y(x).\bar{u} \langle x \rangle$$

$$\downarrow$$

$$\bar{y} \langle b \rangle | u(x).\bar{x} \langle a \rangle | y(x) .\bar{u} \langle x \rangle$$

$$\downarrow$$

$$u(x) .\bar{x} \langle a \rangle | \bar{u} \langle b \rangle$$

$$\downarrow$$

$$\bar{b} \langle a \rangle$$

Global fusions

Intuition

 $u \leftrightarrow v$ allows actions on u to synchronize with actions on v.

A *fusion* $e \in \mathcal{E}$ is an equivalence relation $\cdot \sim \cdot$ over N

Fusion vs. substitution

We can define

- $\varepsilon_{\tau} \triangleq \bigvee_{x \in \mathbb{N}} (x \leftrightarrow \tau(x))$, the fusion induced by τ ;
- $\sigma_e^{\bullet} : x \mapsto x_e^{\bullet}$, the substitution induced by e;

with x_e^{\bullet} a canonical representative of $[x]_e$

Global fusions

Intuition

 $u \leftrightarrow v$ allows actions on u to synchronize with actions on v.

A *fusion* $e \in \mathcal{E}$ is an equivalence relation $\cdot \sim \cdot$ over \mathbb{N} .

Fusion vs. substitution

We can define

Fusions - \mathcal{E}

- $\varepsilon_{\tau} \triangleq \bigvee_{x \in \mathbb{N}} (x \leftrightarrow \tau(x))$, the fusion induced by τ ;
- $\sigma_e^{\bullet}: x \mapsto x_e^{\bullet}$, the substitution induced by e;

with x_e^{\bullet} a canonical representative of $[x]_e$

Global fusions

Intuition

 $u \leftrightarrow v$ allows actions on u to synchronize with actions on v.

Fusions - \mathcal{E} A *fusion* $e \in \mathcal{E}$ is an equivalence relation $\cdot \underset{e}{\sim} \cdot \text{over } \mathbb{N}$.

Fusion vs. substitution

We can define

- $\varepsilon_{\tau} \triangleq \bigvee_{x \in \mathbb{N}} (x \leftrightarrow \tau(x))$, the fusion induced by τ ;
- $\sigma_e^{\bullet}: x \mapsto x_e^{\bullet}$, the substitution induced by e;

with x_e^{\bullet} a canonical representative of $[x]_e$

Specification: extend a process calculus *without* affecting its theory ↔ *technically made possible by only having fusions at top-level*

Processes with global fusions - Π_{-}

 $\bar{\Pi} \triangleq \Pi \times \mathcal{E} = \{ (P, e) \mid P \in \Pi, e \in \mathcal{E} \}$

 \rightarrow we extend syntax, substitution, α -equivalence, \equiv , reduction, etc., everything works.

Syntax

$(P, e) \mid (Q, f) \triangleq (P \mid Q, ef), \text{ etc...}$

Reduction

$$(P,e) \longrightarrow_1 (Q,f) \triangleq e = f \land P^{\sigma_e^*} \longrightarrow_1 Q^{\sigma_f^*}$$

which entails:

 $(u(x).P \mid \bar{v} \left< y \right>, u \leftrightarrow v) \longrightarrow_1 (P\{x \coloneqq y\}, u \leftrightarrow v)$

Specification: extend a process calculus without affecting its theory

 \leftrightarrow technically made possible by only having fusions at top-level

Processes with global fusions - $\overline{\Pi}$

 $\bar{\Pi} \triangleq \Pi \times \mathcal{E} = \{ (P, e) \mid P \in \Pi, e \in \mathcal{E} \}$

 \hookrightarrow we extend syntax, substitution, α -equivalence, \equiv , reduction, etc., everything works.

Syntax

$(P, e) \mid (Q, f) \triangleq (P \mid Q, ef), \text{ etc...}$

Reduction

$$(P,e) \longrightarrow_1 (Q,f) \triangleq e = f \land P^{\sigma_e^*} \longrightarrow_1 Q^{\sigma_f^*}$$

which entails:

 $(u(x).P \mid \bar{v} \left< y \right>, u \leftrightarrow v) \longrightarrow_1 (P\{x \coloneqq y\}, u \leftrightarrow v)$

Specification: extend a process calculus without affecting its theory

 \leftrightarrow technically made possible by only having fusions at top-level

Processes with global fusions - $\overline{\Pi}$

$$\bar{\Pi} \triangleq \Pi \times \mathcal{E} = \{ (P, e) \mid P \in \Pi, e \in \mathcal{E} \}$$

 \hookrightarrow we extend syntax, substitution, α -equivalence, \equiv , reduction, etc., everything works.

Syntax

$$(P, e) \mid (Q, f) \triangleq (P \mid Q, ef), \text{ etc...}$$

Reduction

$$(P, e) \longrightarrow_1 (Q, f) \triangleq e = f \land P^{\sigma_e^*} \longrightarrow_1 Q^{\sigma_f^*}$$

which entails:

 $(u(x).P \mid \bar{v} \left< y \right>, u \leftrightarrow v) \longrightarrow_1 (P\{x \coloneqq y\}, u \leftrightarrow v)$

Specification: extend a process calculus without affecting its theory

 \leftrightarrow technically made possible by only having fusions at top-level

Processes with global fusions - $\overline{\Pi}$

$$\bar{\Pi} \triangleq \Pi \times \mathcal{E} = \{ (P, e) \mid P \in \Pi, e \in \mathcal{E} \}$$

 \hookrightarrow we extend syntax, substitution, α -equivalence, \equiv , reduction, etc., everything works.

Syntax

$$(P, e) \mid (Q, f) \triangleq (P \mid Q, ef), \text{ etc...}$$

Reduction

$$(P, e) \longrightarrow_1 (Q, f) \triangleq e = f \land P^{\sigma_e^{\bullet}} \longrightarrow_1 Q^{\sigma_f^{\bullet}}$$

which entails:

$$(u(x).P \mid \bar{v} \langle y \rangle, u {\leftrightarrow} v) \longrightarrow_1 (P\{x := y\}, u {\leftrightarrow} v)$$

Realizability interpretation

Concurrent realizability

[Beffara'06]

Main insight from Krivine realizability:

interpretation parameterized by a *pole* \perp , specifying "correct" interactions

Pole

Any $\bot \subseteq \{p \in \overline{\Pi} \mid FN(p) = \emptyset\}$ that is closed under \equiv .

ightarrow characterize the soundness of interaction wrt. the renaming mechanism

Behaviors - $\mathbb{B} \triangleq \{A \in \mathbb{P} : A^{\perp \perp} = A\}$

allows to define truth values

• induces a complete lattice.

Concurrent realizability

[Beffara'06]

Main insight from Krivine realizability:

interpretation parameterized by a *pole* \perp , specifying "correct" interactions

Pole

 \hookrightarrow characterize the soundness of interaction wrt. the renaming mechanism

This induces a map $(\cdot)^{\perp}$ on \mathbb{P} : $A^{\perp} = \{ p \in \overline{\Pi} | \forall q \in A, \overline{v}(p \mid q) \in \bot\!\!\!\!\perp \}$

Behaviors - $\mathbb{B} \triangleq \{A \in \mathbb{P} : A^{\perp\perp} = A\}$

allows to define truth values

• induces a complete lattice.

Concurrent realizability

[Beffara'06]

Main insight from Krivine realizability:

interpretation parameterized by a *pole* \perp , specifying "correct" interactions

Pole

 \hookrightarrow characterize the soundness of interaction wrt. the renaming mechanism

This induces a map $(\cdot)^{\perp}$ on \mathbb{P} : $A^{\perp} = \{ p \in \overline{\Pi} | \forall q \in A, \overline{v}(p \mid q) \in \bot\!\!\!\!\bot \}$

Behaviors - $\mathbb{B} \triangleq \{A \in \mathbb{P} : A^{\perp \perp} = A\}$

- allows to define truth values
- induces a complete lattice.

Interpreting MLL formulas

Main idea

 $\cdot \otimes \cdot$ amounts to parallel composition without communication.

Technically: injections $\iota_1, \iota_2 : \mathbb{N} \to \mathbb{N}$ with disjoint codomains

For any PGFs p, q, we let :

•
$$p \bullet q \triangleq p^1 \mid q^2$$

• $p * q \triangleq ((\nu \mathbb{N}^1)(p \mid q^1))^{-1}$

(writing $p^i \triangleq p^{\iota_i}, p^{-i} \triangleq p^{\iota_i^{-1}}$)

(tensor)

On behaviors $A, B \in \mathbb{B}$, we define:

Interpreting MLL formulas

Main idea

 $\cdot \otimes \cdot$ amounts to parallel composition without communication.

Technically: *injections* $\iota_1, \iota_2 : \mathbb{N} \to \mathbb{N}$ *with disjoint codomains*

For any PGFs *p*, *q*, we let :

•
$$p \bullet q \triangleq p^1 \mid q^2$$

•
$$p * q \triangleq ((\nu \mathbb{N}^1)(p \mid q^1))^-$$

(writing $p^i \triangleq p^{\iota_i}, p^{-i} \triangleq p^{\iota_i^{-1}}$)

(tensor)

Interpreting MLL formulas

Main idea

 $\cdot \otimes \cdot$ amounts to parallel composition without communication.

Technically: *injections* $\iota_1, \iota_2 : \mathbb{N} \to \mathbb{N}$ *with disjoint codomains*

For any PGFs *p*, *q*, we let :

(writing $p^i \triangleq p^{\iota_i}, p^{-i} \triangleq p^{\iota_i^{-1}}$)

$$p \bullet q \triangleq p^{1} \mid q^{2}$$
(tensor)

$$p \ast q \triangleq ((v \mathbb{N}^{1})(p \mid q^{1}))^{-2}$$
(application)

On behaviors $A, B \in \mathbb{B}$, we define:

$$1 := \{(\mathbb{1}, \Delta_{\mathbb{N}})\}^{\perp \perp}$$

$$A \bullet B := \{p \bullet q \mid p \in A, q \in B\}$$

$$A \mid B := \{p \mid q \mid p \in A, q \in B\}$$

$$A \mid B := (A \cup B)^{\perp \perp}$$

$$A \otimes B := (A \cup B)^{\perp \perp}$$

$$A \otimes B := (A \cup B)^{\perp \perp}$$

$$A \to B := (A \otimes B^{\perp})^{\perp}$$

$$A \mid B := (A \mid B)^{\perp \perp}$$

Interpreting MLL formulas

Main idea

 $\cdot \otimes \cdot$ amounts to parallel composition without communication.

Technically: *injections* $\iota_1, \iota_2 : \mathbb{N} \to \mathbb{N}$ *with disjoint codomains*

For any PGFs p, q, we let : (writing $p^i \triangleq p^{\iota_i}, p^{-i} \triangleq p^{\iota_i^{-1}}$)

•
$$p \bullet q \triangleq p^1 \mid q^2$$
 (tensor)
• $p * q \triangleq ((v \mathbb{N}^1)(p \mid q^1))^{-2}$ (application)

On behaviors $A, B \in \mathbb{B}$, we define:

$$1 := \{(\mathbb{1}, \Delta_{\mathbb{N}})\}^{\perp \perp}$$

$$A \bullet B := \{p \bullet q \mid p \in A, q \in B\}$$

$$A \mid B := \{p \mid q \mid p \in A, q \in B\}$$

$$A \mid B := (A \cup B)^{\perp \perp}$$

$$A \otimes B := (A \cup B)^{\perp \perp}$$

$$A \to B := (A \otimes B^{\perp})^{\perp}$$

$$A \to B := (A \otimes B^{\perp})^{\perp}$$

$$A \mid B := (A \mid B)^{\perp \perp}$$

Proposition

For any $A \in \mathbb{P}$, we have that $I \triangleq \bigvee_{n \in \mathbb{N}} (n.1 \leftrightarrow n.2) \Vdash A \multimap A$.

Proof : By definition, $A \multimap A = (A \bullet A^{\perp})^{\perp}$.

Consider $p \in A$ and $q \in A^{\perp}$, we have to prove that $I \perp p^1 | q^2$. Using properties of fusions, we get

 $\bar{v}(p^1 \mid q^2 \mid I) \equiv_{\alpha} (v_2)(v_1)(p^1 \mid q^2 \mid I) \equiv_{\alpha} (v_2)(p^2 \mid q^2) \equiv_{\alpha} (\bar{v})(p \mid q)$

We conclude by observing that $(\overline{v})(p \mid q) \in \bot$.

Proposition

For any $A \in \mathbb{P}$, we have that $I \triangleq \bigvee_{n \in \mathbb{N}} (n.1 \leftrightarrow n.2) \Vdash A \multimap A$.

Proof:

By definition, $A \multimap A = (A \bullet A^{\perp})^{\perp}$.

Consider $p \in A$ and $q \in A^{\perp}$, we have to prove that $I \perp p^1 | q^2$. Using properties of fusions, we get

 $\bar{v}(p^1 \mid q^2 \mid I) \equiv_{\alpha} (v_2)(v_1)(p^1 \mid q^2 \mid I) \equiv_{\alpha} (v_2)(p^2 \mid q^2) \equiv_{\alpha} (\bar{v})(p \mid q)$

We conclude by observing that $(\overline{\nu})(p \mid q) \in \bot$.

Proposition

For any $A \in \mathbb{P}$, we have that $I \triangleq \bigvee_{n \in \mathbb{N}} (n.1 \leftrightarrow n.2) \Vdash A \multimap A$.

Proof:

By definition, $A \multimap A = (A \bullet A^{\perp})^{\perp}$.

Consider $p \in A$ and $q \in A^{\perp}$, we have to prove that $I \perp p^1 \mid q^2$. Using properties of fusions, we get

 $\bar{v}(p^1 \mid q^2 \mid I) \equiv_{\alpha} (v_2)(v_1)(p^1 \mid q^2 \mid I) \equiv_{\alpha} (v_2)(p^2 \mid q^2) \equiv_{\alpha} (\bar{v})(p \mid q)$

We conclude by observing that $(\overline{v})(p \mid q) \in \bot$.

Proposition

For any $A \in \mathbb{P}$, we have that $I \triangleq \bigvee_{n \in \mathbb{N}} (n.1 \leftrightarrow n.2) \Vdash A \multimap A$.

Proof:

By definition, $A \multimap A = (A \bullet A^{\perp})^{\perp}$.

Consider $p \in A$ and $q \in A^{\perp}$, we have to prove that $I \perp p^1 \mid q^2$. Using properties of fusions, we get

 $\bar{v}(p^1 \mid q^2 \mid I) \equiv_{\alpha} (v_2)(v_1)(p^1 \mid q^2 \mid I) \equiv_{\alpha} (v_2)(p^2 \mid q^2) \equiv_{\alpha} (\bar{v})(p \mid q)$

We conclude by observing that $(\overline{v})(p \mid q) \in \bot$.

Conjunctive structures

Conjunctive involutive structures

Conjunctive structures

A CS is a complete lattice $(\mathbb{C}, \preccurlyeq)$ equipped with $\otimes / (\cdot)^{\perp}$ s.t.:

- \otimes is monotone / $(\cdot)^{\perp}$ is antimonotone;
- $\Upsilon_{b\in\mathfrak{B}}(a\otimes b) = a\otimes (\Upsilon_{b\in\mathfrak{B}}b)$ and $\Upsilon_{b\in\mathfrak{B}}(b\otimes a) = (\Upsilon_{b\in\mathfrak{B}}b)\otimes a;$
- $(\Upsilon_{b\in\mathfrak{B}}b)^{\perp} = \bigwedge_{b\in\mathfrak{B}}b^{\perp}$ (De Morgan's law).
- A CS is *involutive* (CIS) if $(\cdot)^{\perp}$ is, *unitary* with $1 \in \mathbb{C}$.

Examples

- any Boolean algebra $(\mathbb{B}, \preccurlyeq, \land, \lor, \neg)$,
- the call-by-value λ -calculus (not involutive though)
- Girard's phase space induces a CIS.

[M. 2020]

Any CIS induces an interpretation of MLL formulas:

$$\begin{array}{cccc} a & \Im & b & \triangleq & (a^{\perp} \otimes b^{\perp})^{\perp} \\ a & \multimap & b & \triangleq & (a \otimes b^{\perp})^{\perp} \end{array} \begin{array}{cccc} \exists F & \triangleq & \bigvee_{a \in \mathbb{C}} F(a) \\ \forall F & \triangleq & \int_{a \in \mathbb{C}} F(a) \end{array}$$

Combinators

•
$$S_3 \triangleq \bigwedge_{a,b \in \mathbb{C}} (a \otimes b) \multimap (b \otimes a)$$
 commutativity
• $S_4 \triangleq \bigwedge_{a,b,c \in \mathbb{C}} (a \multimap b) \multimap (a \otimes c) \multimap (b \otimes c)$ compat. \multimap
• $S_5 \triangleq \bigwedge_{a,b,c \in \mathbb{C}} ((a \otimes b) \otimes c) \multimap (a \otimes (b \otimes c))$ associativity
• $S_6 \triangleq \bigwedge_{a \in \mathbb{C}} a \multimap (1 \otimes a)$ unit
• $S_7 \triangleq \bigwedge_{a \in \mathbb{C}} (1 \otimes a) \multimap a$ unit
• $S_8 \triangleq \bigwedge_{a,b \in \mathbb{C}} (a \multimap b) \multimap (b^{\perp} \multimap a^{\perp})$ contrapositive

Separator

Any upwards closed set $S \subseteq \mathbb{C}$ s.t.:

• S contains the MLL-combinators S_3, \ldots, S_8 .

Any CIS induces an interpretation of MLL formulas:

$$\begin{array}{rcl} a & \mathfrak{N} & b & \triangleq & (a^{\perp} \otimes b^{\perp})^{\perp} \\ a & \multimap & b & \triangleq & (a \otimes b^{\perp})^{\perp} \end{array} \begin{array}{rcl} \exists F & \triangleq & \bigwedge_{a \in \mathbb{C}} F(a) \\ \forall F & \triangleq & \int_{a \in \mathbb{C}} F(a) \end{array}$$

A model?

How to discriminate valid formulas?

Combinators

•
$$S_3 \triangleq \bigwedge_{a,b \in \mathbb{C}} (a \otimes b) \multimap (b \otimes a)$$
 commutativity
• $S_4 \triangleq \bigwedge_{a,b,c \in \mathbb{C}} (a \multimap b) \multimap (a \otimes c) \multimap (b \otimes c)$ compat. \multimap
• $S_5 \triangleq \bigwedge_{a,b,c \in \mathbb{C}} ((a \otimes b) \otimes c) \multimap (a \otimes (b \otimes c))$ associativity
• $S_6 \triangleq \bigwedge_{a \in \mathbb{C}} a \multimap (1 \otimes a)$ unit
• $S_7 \triangleq \bigwedge_{a \in \mathbb{C}} (1 \otimes a) \multimap a$ unit
• $S_8 \triangleq \bigwedge_{a,b \in \mathbb{C}} (a \multimap b) \multimap (b^{\perp} \multimap a^{\perp})$ contrapositive

Any CIS induces an interpretation of MLL formulas:

$$\begin{array}{rcl} a & \mathfrak{N} & b & \triangleq & (a^{\perp} \otimes b^{\perp})^{\perp} \\ a & \multimap & b & \triangleq & (a \otimes b^{\perp})^{\perp} \end{array} \begin{array}{rcl} \exists F & \triangleq & \bigwedge_{a \in \mathbb{C}} F(a) \\ \forall F & \triangleq & \int_{a \in \mathbb{C}} F(a) \end{array}$$

Combinators

$$\begin{array}{ll} \cdot S_{3} \triangleq \bigwedge_{a,b \in \mathbb{C}} (a \otimes b) \multimap (b \otimes a) & \text{commutativity} \\ \cdot S_{4} \triangleq \bigwedge_{a,b,c \in \mathbb{C}} (a \multimap b) \multimap (a \otimes c) \multimap (b \otimes c) & \text{compat.} \multimap \\ \cdot S_{5} \triangleq \bigwedge_{a,b,c \in \mathbb{C}} ((a \otimes b) \otimes c) \multimap (a \otimes (b \otimes c)) & \text{associativity} \\ \cdot S_{6} \triangleq \bigwedge_{a \in \mathbb{C}} a \multimap (1 \otimes a) & \text{unit} \\ \cdot S_{7} \triangleq \bigwedge_{a \in \mathbb{C}} (1 \otimes a) \multimap a & \text{unit} \\ \cdot S_{8} \triangleq \bigwedge_{a,b \in \mathbb{C}} (a \multimap b) \multimap (b^{\perp} \multimap a^{\perp}) & \text{contrapositive} \end{array}$$

Separator

Any upwards closed set $S \subseteq \mathbb{C}$ s.t.:

• *S* contains the MLL-combinators *S*₃,...,*S*₈

Any CIS induces an interpretation of MLL formulas:

$$\begin{array}{cccc} a & \mathfrak{N} & b & \triangleq & (a^{\perp} \otimes b^{\perp})^{\perp} \\ a & \multimap & b & \triangleq & (a \otimes b^{\perp})^{\perp} \end{array} \begin{array}{cccc} \exists F & \triangleq & \bigvee_{a \in \mathbb{C}} F(a) \\ \forall F & \triangleq & \int_{a \in \mathbb{C}} F(a) \end{array}$$

Combinators

•
$$S_3 \triangleq \bigwedge_{a,b \in \mathbb{C}} (a \otimes b) \multimap (b \otimes a)$$

commutativity

. . . .

Separator

Any upwards closed set $S \subseteq \mathbb{C}$ s.t.:

- S contains the MLL-combinators S_3, \ldots, S_8 .
- If $a \multimap b \in S$ and $a \in S$ then $b \in S$.

Conjunctive Involutive Monoidal Algebra

unitary CIS + separator.

Interpretation of MLL

Semantic judgement

A judgment $\vdash a : \Gamma$, where $a \in \mathbb{C}$ and Γ has parameters in \mathbb{C} , is *sound* if $a \preccurlyeq \llbracket \Gamma \rrbracket$.

Soundness

There exist $\mathbf{I}, \mathbf{c}, \mathbf{t}, \mathbf{ex}(\sigma) \in S$ (for any *CIMA*) s.t. the following are sound:

$$\frac{\vdash a: \Lambda_{1}, \dots, \Lambda_{k}}{\vdash \mathbf{t}: a * b: \Gamma, A \otimes B, \Delta} (\otimes) \qquad \frac{\vdash a: \Lambda_{1}, \dots, \Lambda_{k}}{\vdash \mathbf{ex}(\sigma) * a: A_{\sigma(1)}, \dots, A_{\sigma(k)}} (Ex)$$

$$\frac{\vdash a: \Gamma, A \vdash b: B, \Delta}{\vdash \mathbf{t} * a * b: \Gamma, A \otimes B, \Delta} (\otimes) \qquad \frac{\vdash a: \Gamma, A \vdash b: A^{\perp}, \Delta}{\vdash \mathbf{c} * a * b: \Gamma, \Delta} (Cu\tau)$$

$$\frac{\vdash a: \Gamma, A\{X := B\}}{\vdash a: \Gamma, \exists X.A} (\exists) \qquad \frac{\vdash a: \Gamma, A \quad X \notin FV(\Gamma)}{\vdash a: \Gamma, \forall X.A} (\forall)$$

Conjunctive structure

The tuple $(\mathbb{B}, \subseteq, \otimes, (\cdot)^{\perp})$ is a conjunctive involutive structure.

Combinators

The following behaviors are realized by pure fusions:

1.
$$\bigcap_{A \in \mathbb{B}} A \multimap A$$
.

2.
$$\bigcap_{A,B\in\mathbb{B}}(A\otimes B) \multimap (B\otimes A).$$

3.
$$\bigcap_{A,B,C \in \mathbb{B}} (A \multimap B) \multimap (B \multimap C) \multimap A \multimap C.$$

4.
$$\bigcap_{A,B,C\in\mathbb{B}}((A\otimes B)\otimes C)\multimap (A\otimes (B\otimes C)).$$

5.
$$\bigcap_{A \in \mathbb{B}} A \multimap (1 \otimes A).$$

6.
$$\bigcap_{A \in \mathbb{B}} (1 \otimes A) \multimap A.$$

7.
$$\bigcap_{A,B\in\mathbb{B}}(A\multimap B)\multimap (B^{\perp}\multimap A^{\perp}).$$

 \hookrightarrow Essentially computations with the right fusions.

Separator

Conjunctive structure

The tuple $(\mathbb{B}, \subseteq, \otimes, (\cdot)^{\perp})$ is a conjunctive involutive structure.

Combinators

The following behaviors are realized by pure fusions:

1.
$$\bigcap_{A \in \mathbb{B}} A \multimap A.$$

2.
$$\bigcap_{A,B\in\mathbb{B}}(A\otimes B) \multimap (B\otimes A).$$

3.
$$\bigcap_{A,B,C\in\mathbb{B}}(A\multimap B)\multimap (B\multimap C)\multimap A\multimap C.$$

4.
$$\bigcap_{A,B,C\in\mathbb{B}}((A\otimes B)\otimes C) \multimap (A\otimes (B\otimes C)).$$

5.
$$\bigcap_{A \in \mathbb{B}} A \multimap (1 \otimes A).$$

6.
$$\bigcap_{A \in \mathbb{B}} (1 \otimes A) \multimap A.$$

7.
$$\bigcap_{A,B\in\mathbb{B}}(A\multimap B)\multimap (B^{\perp}\multimap A^{\perp}).$$

 \hookrightarrow Essentially computations with the right fusions.

Separator

Conjunctive structure

The tuple $(\mathbb{B}, \subseteq, \otimes, (\cdot)^{\perp})$ is a conjunctive involutive structure.

Combinators

The following behaviors are realized by pure fusions:

 $S_3, ..., S_8$

 \hookrightarrow Essentially computations with the right fusions.

Separator

The set of non-empty behaviors $S_{\mathbb{B}} \triangleq \mathbb{B} \setminus \emptyset$ defines a separator.

Theorem

Any concurrent realizability interpretation induces a CIMA.

Conjunctive structure

The tuple $(\mathbb{B}, \subseteq, \otimes, (\cdot)^{\perp})$ is a conjunctive involutive structure.

Combinators

The following behaviors are realized by pure fusions:

 $S_3, ..., S_8$

 \hookrightarrow Essentially computations with the right fusions.

Separator

The set of non-empty behaviors $S_{\mathbb{B}} \triangleq \mathbb{B} \setminus \emptyset$ defines a separator.

Theorem

Any concurrent realizability interpretation induces a CIMA.

Parallel composition

So far, we essentially described a linear tensorial calculus.

Composition: increasing and γ -continuous function $\diamond : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$.

Compositional structure induced by **\epsilon**

Quotient $\mathbb{C}/\equiv_{\diamond}$ where \equiv_{\diamond} is the minimum equivalence relation s.t.

$$\overline{a \diamond 1} \equiv_{\diamond} \overline{a} \qquad \overline{1 \diamond a \equiv_{\diamond} a} \qquad a \diamond b \equiv_{\diamond} b \diamond a \qquad a \diamond (b \diamond c) \equiv_{\diamond} (a \diamond b) \diamond c$$

$$\frac{a \equiv_{\diamond} a' \quad b \equiv_{\diamond} b'}{a \diamond b \equiv_{\diamond} a' \diamond b'} \qquad \frac{a \equiv_{\diamond} a' \quad b \equiv_{\diamond} b'}{a \otimes b \equiv_{\diamond} a' \otimes b'} \qquad \frac{a \equiv_{\diamond} a'}{a^{\perp} \equiv_{\diamond} a'^{\perp}}$$

$$\frac{a \equiv_{\diamond} a' \quad b \equiv_{\diamond} b'}{a' \preccurlyeq b'} \qquad \frac{a \equiv_{\diamond} a'}{a^{\perp} \equiv_{\diamond} a'^{\perp}}$$

Composition: increasing and Υ -continuous function $\diamond : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$.

Compositional structure induced by **\epsilon**

Quotient $\mathbb{C}/\equiv_{\diamond}$ where \equiv_{\diamond} is the minimum equivalence relation s.t.

$$\overline{a \diamond 1 \equiv_{\diamond} a} \qquad \overline{1 \diamond a \equiv_{\diamond} a} \qquad a \diamond b \equiv_{\diamond} b \diamond a \qquad a \diamond (b \diamond c) \equiv_{\diamond} (a \diamond b) \diamond c$$

$$\frac{a \equiv_{\diamond} a' \quad b \equiv_{\diamond} b'}{a \diamond b \equiv_{\diamond} a' \diamond b'} \qquad \frac{a \equiv_{\diamond} a' \quad b \equiv_{\diamond} b'}{a \otimes b \equiv_{\diamond} a' \otimes b'} \qquad \frac{a \equiv_{\diamond} a'}{a^{\perp} \equiv_{\diamond} a'^{\perp}}$$

$$\frac{a \equiv_{\diamond} a' \quad b \equiv_{\diamond} b'}{a' \preccurlyeq b'} \qquad \frac{a \equiv_{\diamond} b'}{a \preccurlyeq b}$$

PGF composition

The operation \parallel is a composition over \mathbb{B} , the equivalence \equiv_{\parallel} is equality.

 \hookrightarrow We even have a term Φ s.t. $\Phi * t * u = t || u$.

Compositional structure induced by \diamond

Quotient $\mathbb{C}/\equiv_{\diamond}$ where \equiv_{\diamond} is the minimum equivalence relation s.t.

$$\overline{a \diamond 1} \equiv_{\diamond} \overline{a} \qquad \overline{1 \diamond a \equiv_{\diamond} a} \qquad \overline{a \diamond b \equiv_{\diamond} b \diamond a} \qquad \overline{a \diamond (b \diamond c)} \equiv_{\diamond} (a \diamond b) \diamond c$$

$$\frac{a \equiv_{\diamond} a' \quad b \equiv_{\diamond} b'}{a \diamond b \equiv_{\diamond} a' \diamond b'} \qquad \frac{a \equiv_{\diamond} a' \quad b \equiv_{\diamond} b'}{a \otimes b \equiv_{\diamond} a' \otimes b'} \qquad \frac{a \equiv_{\diamond} a'}{a^{\perp} \equiv_{\diamond} a'^{\perp}}$$

$$\frac{a \equiv_{\diamond} a' \quad b \equiv_{\diamond} b'}{a' \preccurlyeq b'} \qquad \frac{a \equiv_{\diamond} a'}{a^{\perp} \equiv_{\diamond} a'^{\perp}}$$

This extra structure is necessary in the sense that:

Parallel composition cannot be derived

There exists a CIMA in which no term induces a composition which equivalence relation is already valid.

We know how to define all this from a π -calculus. What about the converse?

Honda & Yoshida defined a set of combinators complete wrt. π -calculus.

(1).	$u^*x.(P, Q)$	def	$c_1c_2 \triangleright (\mathcal{D}(uc_1c_2), c_1^*x.P, c_2^*x.Q)$	c_1, c_2 fresh.
(II).	(,		$c' \triangleright u^* x. P\{c'/c\}$	c' fresh.
(ш).	$u^*x.\Lambda$	₫	$\mathcal{K}(u)$	
ynchronization				
(IV).	$u^{\star}x.\mathcal{C}(v^{+}\tilde{w})$	₫	$c \blacktriangleright (S(ucv), C(c^+ \tilde{w}))$	$x \notin \{v\tilde{w}\}, c$ fresh.
(v).	$u^*x.\mathcal{C}(v^-\tilde{w})$	₫	$c \blacktriangleright (\mathcal{S}(uvc), \ \mathcal{C}(c^-\hat{w}))$	$x \not \in \{v \tilde{w}\}, c$ fresh.
inding-I				
(VI).	$u^*x.\mathcal{M}(vx)$	def	$\mathcal{FW}(uv)$	$x \neq v$
(VII).	$u^*x.\mathcal{FW}(xv)$	def	$\mathcal{B}_l(uv)$	$x \neq v$
(VIII).	$u^*x.\mathcal{FW}(vx)$	def	${\cal B}_r(uv)$	$x \neq v$
inding-II				
(IX).	$u^*x.\mathcal{C}(\tilde{v_1}x^+\tilde{v_2})$	₫₫	$c \blacktriangleright u^* x.(\mathcal{FW}(cx), \mathcal{C}(\tilde{v_1}c^+ \tilde{v_2}))$	$x \not \in \{\tilde{v_1}\}, c {\rm fresh}.$
inding-III				
(x).	$u^*x.\mathcal{C}(x^-\tilde{v})$	₫	$c \blacktriangleright u^* x.(\mathcal{FW}(xc), \ \mathcal{C}(c^- \tilde{v}))$	c fresh.
(XI).	$u^*x.\mathcal{B}_r(vx^-)$	₫	$c_1c_2c_3 \blacktriangleright u^*x.(\mathcal{D}(vc_1c_2),\ \mathcal{S}(c_1xc_3),\ \mathcal{B}_r(c_2c_3))$	$x \neq v$ c_1, c_2, c_3 fresh.
(хп).	$u^*x.\mathcal{S}(vx^-w)$	₫	$c_1c_2 \blacktriangleright u^*x.(\mathcal{S}(vc_1c_2), \mathcal{M}(c_1x), \mathcal{B}_l(c_2w))$	$x \neq v$ c_1, c_2 fresh.

Essentially, one needs to have reduction rules for these combinators:

$\mathcal{D}(uww'),\ \mathcal{M}(uv)$		$\mathcal{M}(wv),\ \mathcal{M}(w'v)$	$\mathcal{B}_l(uw), \ \mathcal{M}(uv)$		$\mathcal{FW}(vw)$
$\mathcal{FW}(uw),\ \mathcal{M}(uv)$	 →	$\mathcal{M}(wv)$	$\mathcal{B}_r(uw),\ \mathcal{M}(uv)$		$\mathcal{FW}(wv)$
$\mathcal{K}(u), \; \mathcal{M}(uv)$	 →	Λ	$\mathcal{S}(uww'),\ \mathcal{M}(uv)$	\longrightarrow	$\mathcal{FW}(ww')$

Figure 1: Reduction Rules for Atomic Agents

Essentially, one needs to have reduction rules for these combinators:

Figure 1: Reduction Rules for Atomic Agents

In our setting:

 $\mathsf{F}(a,b) \mid \mathsf{M}(a,c) \preccurlyeq \mathsf{M}(b,c)$

Using \triangleright the right adjoint to $\cdot | \cdot$, we can define:

$$\mathsf{F}(a,b) \triangleq \bigwedge_{x \in \mathbb{N}} \big(\mathsf{M}(a,x) \rhd \mathsf{M}(b,x) \big)$$

Essentially, one needs to have reduction rules for these combinators:

$\mathcal{D}(uww'),\ \mathcal{M}(uv)$	>	$\mathcal{M}(wv), \ \mathcal{M}(w'v)$	$\mathcal{B}_l(uw), \ \mathcal{M}(uv)$		$\mathcal{FW}(vw)$
$\mathcal{FW}(uw),\ \mathcal{M}(uv)$	>	$\mathcal{M}(wv)$	$\mathcal{B}_r(uw),\ \mathcal{M}(uv)$		$\mathcal{FW}(wv)$
$\mathcal{K}(u), \; \mathcal{M}(uv)$	 →	Λ	$\mathcal{S}(uww'), \ \mathcal{M}(uv)$	\longrightarrow	$\mathcal{FW}(ww')$

Figure 1: Reduction Rules for Atomic Agents

In our setting:

 $\mathsf{F}(a,b) \mid \mathsf{M}(a,c) \preccurlyeq \mathsf{M}(b,c)$

Using \triangleright the right adjoint to $\cdot | \cdot$, we can define:

$$\mathsf{F}(a,b) \triangleq \bigwedge_{x \in \mathbb{N}} \big(\mathsf{M}(a,x) \rhd \mathsf{M}(b,x) \big)$$

Essentially, one needs to have reduction rules for these combinators:

$\mathcal{D}(uww'),\ \mathcal{M}(uv)$	 →	$\mathcal{M}(wv),\ \mathcal{M}(w'v)$) $\mathcal{B}_l(uw), \mathcal{M}(uv) \longrightarrow$	$\mathcal{FW}(vw)$
$\mathcal{FW}(uw),\ \mathcal{M}(uv)$	\longrightarrow	$\mathcal{M}(wv)$	$\mathcal{B}_r(uw), \mathcal{M}(uv) \longrightarrow$	$\mathcal{FW}(wv)$
$\mathcal{K}(u), \; \mathcal{M}(uv)$	<i></i> →	Λ	$\mathcal{S}(uww'), \mathcal{M}(uv) \longrightarrow$	$\mathcal{FW}(ww')$

Figure 1: Reduction Rules for Atomic Agents

Similarly, we define Honda-Yoshida combinators of $\mathbb C$ s.t.:

K(a) M(a,x)	\preccurlyeq	1	BI(a,b) M(a,x)	\preccurlyeq	F(x, b)
F(a,b) M(a,x)	\preccurlyeq	M(b, x)	Br(a,b) M(a,x)	\preccurlyeq	F(b, x)
D(a,b,c) M(a,x)	\preccurlyeq	M(b, x) M(c, x)	S(a, b, c) M(a, x)	\preccurlyeq	F(b, c)

Honda-Yoshida algebra

CIMA+ $M : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ s.t. all Honda-Yoshida combinators belong to S.

What we have:

- CIMA, provides an interpretation of MLL
- additional structure for parallel composition
- realizability based on PGF induces a CIMA with parallel composition
- embedding of π -calculus using Honda & Yoshida combinators

Future work

- 1. Instantiate on different calculi, see if they fit.
- 2. Could this be a structured framework for comparing calculi? ↔ (for instance, synchrone vs. asynchrone, monadic vs. polyadic)
- 3. Add exponentials, additives ↔ following GOI/Duchesne's PhD, Honda-Yoshida?

What we have:

- CIMA, provides an interpretation of MLL
- additional structure for parallel composition
- realizability based on PGF induces a CIMA with parallel composition
- embedding of π -calculus using Honda & Yoshida combinators

Future work

- 1. Instantiate on different calculi, see if they fit.
- 2. Could this be a structured framework for comparing calculi? ↔ (for instance, synchrone vs. asynchrone, monadic vs. polyadic)
- 3. Add exponentials, additives ↔ following GOI/Duchesne's PhD, Honda-Yoshida?

The end

Thank you for your attention!