A journey through in Krivine realizability

ENS DE LYON

Etienne MIQUEY

ENS de Lyon, LIP

Seminario de Logica Matematica

ClR

Recall
00000

Introduction

A short recap on last week’s talk

2/ 49

Recall
0e0000

Krivine realizability, from above

@ A complete reformulation of intuitionistic realizability.

Necessary reformulation:

Vx.(H(x) V =H(x)) not realized

e Computational classical logic:

e duality between terms / contexts
e interaction player / opponent

@ Powerful tool to:

e prove normalization/soundness properties
e analyze computational behaviours of programs
o build new models

(today’s talk)

3/49

Recall
[o]e] lele]e]

Krivine realizability, from inside

A 3-steps recipe
@ an operational semantics
@ alogical language

@ formulas interpretation

4/ 49

Recall

[e]e] lelele}

Krivine realizability, from inside

A 3-steps recipe

@ an operational semantics (aka. the abstract Krivine machine)

Pusu : (tul|x)y > (t|u-mx)

GRAB Ax.t|u-x)y > (t{x:=u}|x)

SAVE : (ce|t-m)y > (t|ky-m
RESTORE : (kxlt-py > (t|m)

Q a Iogical Ianguage (a.k.a, a type system)

i || e o o 00)
X(eq,...,ex) | A= B|Vx.A|VYX.A

1**-order terms e
Formulas AB :

@ formulas interpretation

4/ 49

Recall
[e]e]e] le]e]

Realizability interpretation

o falsity value ||A||: stacks, opponent to A

o truth value |A| : proofs, player of A

@ pole 1L: commands, referee

5/49

Recall
[e]e]e] le]e]

Realizability interpretation

o falsity value ||A||: stacks, opponent to A

o truth value |A| : proofs, player of A

@ pole 1L: commands, referee

(t] 7y >po>-->pn€ll?
~ I € A XII closed by anti-reduction

5/49

Recall
[e]e]e] le]e]

Realizability interpretation

o falsity value ||A||: stacks, opponent to A

o truth value |A| : proofs, player of A

@ pole 1L: commands, referee

(t] 7y >po>-->pn€ll?
~ I € A XII closed by anti-reduction

Falsity value (tests):

|A— B
V. All

{u-m: uel|AAxel|B|}
Unen [IA[n/x]l|

5/49

Recall

[e]e]e] lele}

Realizability interpretation

o falsity value ||A||: stacks, opponent to A

o truth value |A| : proofs, player of A

@ pole 1L: commands, referee

(tlmy>po>--->py€l?
~ I € A XII closed by anti-reduction

Falsity value (tests):

|A— B
V. All

{u-m: uel|AAxel|B|}
Unen [IA[n/x]l|

Truth value by orthogonality :

|Al = Al = {t € A: V€ ||All, (¢ |) € L}

5/49

Recall
0000e0

Results

Adequacy

If -t:A then t € |A| for any pole.

(intuition: the proof proceeds by normalization)

6/ 49

Recall
0000e0

Results

Adequacy

If -t:A then t € |A| for any pole.

(intuition: the proof proceeds by normalization)

Consequences:

o Normalization

Typed terms normalize.

e Soundness

There is no term t such that F¢: L.

6/ 49

Recall
00000e

This talk

Today, we shall dwell on:

o specification problem

“Who are the realizers of A?”

7/ 49

Recall
00000e

This talk

Today, we shall dwell on:

o specification problem

“Who are the realizers of A?”

@ witness extraction

Spoiler: it works for £2-formulas.

7/ 49

Recall
00000e

This talk

Today, we shall dwell on:

o specification problem

“Who are the realizers of A?”

@ witness extraction

Spoiler: it works for £2-formulas.

@ connexion with forcing

Spoiler: realizability generalizes forcing!

7/ 49

Recall
00000e

This talk

Today, we shall dwell on:

o specification problem

“Who are the realizers of A?”

@ witness extraction

Spoiler: it works for £2-formulas.

@ connexion with forcing

Spoiler: realizability generalizes forcing!

o the algebraic structure of realizability models

The wonderland of implicative algebras

7/ 49

Specification
°

Specification

Who are the (universal) realizers of A?

8/ 49

Specification
000

Building poles.

Two ways of building poles from any set P of processes.

9/ 49

Specification
000

Building poles.

Two ways of building poles from any set P of processes.

@ goal-oriented :

W={peA.xT:3p €P, p>p'}

9/ 49

Specification
000

Building poles.

Two ways of building poles from any set P of processes.
@ goal-oriented :
L={peA xII:TFp" €P, p>p'}

o thread-oriented :

Thread of a process p : thy ={p" € Ac xII:p>p'}

9/ 49

Specification
000

Building poles.

Two ways of building poles from any set P of processes.
@ goal-oriented :
L={peA xII:TFp" €P, p>p'}

o thread-oriented :

Thread of a process p : thy ={p" € Ac xII:p>p'}

i = (U thy)® = ﬂth;,

pEP peEP

9/ 49

Specification
oceo

Example

tIFVX.(X = X) iff YuVr.(t|u-mx) > (u|r)

10/ 49

Specification
oceo

Example

tIFVX.(X = X) iff YuVr.(t|u-mx) > (u|r)

Proof :
Method 1 - Goal-oriented
Take u, , define 1L := {p : p > (u| 7)}.

10/ 49

Specification
oceo

Example

tIFVX.(X = X) iff YuVr.(t|u-mx) > (u|r)

Proof :

Method 1 - Goal-oriented

Take u, , define 1L := {p : p > (u| 7)}.
Let us pose X = {r}.

10/ 49

Specification
oceo

Example

tIFVX.(X = X) iff YuVr.(t|u-mx) > (u|r)

Proof :

Method 1 - Goal-oriented

Take u, , define 1L := {p : p > (u| 7)}.

Let us pose X = {r}. In particular, we have:

ulFX u- € [[VX.(X = X)||

10/ 49

Specification
oceo

Example

tIFVX.(X = X) iff YuVr.(t|u-mx) > (u|r)

Proof :

Method 1 - Goal-oriented

Take u, , define 1L := {p : p > (u| 7)}.

Let us pose X = {r}. In particular, we have:

ulFX u- € [[VX.(X = X)||

Therefore,
(t|u-mye 1L

10/ 49

Specification
oceo

Example

tIFVX.(X = X) iff YuVr.(t|u-mx) > (u|r)

Proof :

Method 1 - Goal-oriented

Take u, , define 1L := {p : p > (u| 7)}.

Let us pose X = {r}. In particular, we have:

ulFX u- € [[VX.(X = X)||

Therefore,
(t|u-mye 1L

(tlu-m) > Cul) v

10/ 49

Specification
oceo

Example

tlIFVX.(X = X) iff YuVrt|u-x) > (ul|)
Proof :

Method 2 - Using threads
Take u, , define 1 = th¢

ares

10/ 49

Specification
oceo

Example

tlIFVX.(X = X) iff YuVrt|u-x) > (ul|)

Proof :
Method 2 - Using threads
Take u, , define 1. = thzt o)

By construction:

(t|u-m)¢ 1L thus u - re||VX.(X = X)||

10/ 49

Specification
oceo

Example

tlIFVX.(X = X) iff YuVrt|u-x) > (ul|)

Proof :
Method 2 - Using threads
Take u, , define 1 = th¢

ares

By construction:
(t|u-m)¢ 1L thus u - re||VX.(X = X)||
Let us pose X £ {7}, we deduce

ulF X ie. Ar’ e XAu| n')¢ 1L

10/ 49

Specification
oceo

Example

tlIFVX.(X = X) iff YuVrt|u-x) > (ul|)

Proof :
Method 2 - Using threads
Take u, , define 1 = th¢

ares

By construction:
(t|u-m)¢ 1L thus u - re||VX.(X = X)||
Let us pose X £ {7}, we deduce
ulF X ie. Ar’ e XAu| n')¢ 1L
Necessarily, 7 = 7’ and so (u | 7)¢ 1L, i.e.

(tlu-m) > (ul) v

10/ 49

Specification
[o]e] J

>1-formulas

What about
tlF3x.f(x) =0 iff ??

11/ 49

Specification
[o]e] J

>1-formulas

tlIF3x.f(x) =0 iff 7?

Remind that :

Ivx.All =] I1A{x = n}|
neN
In particular, n does not appear on the stack!

11/ 49

Specification
[o]e] J

>1-formulas

tIF3INx f(x) =0 iff

Remind that :
Ivx.All =] l1A{x = n}|
nelN

In particular, n does not appear on the stack!

Fix: relativized quantifier

AB := ...|{e}=>A
[{e} = All £ {i-7:[e] =nnAxelAl}
2 Vx.({x} = Ax))

viNx A(x)

11/ 49

Specification
[o]e] J

>1-formulas

tIF3MNx. f(x) =0 iff 7

Recall that:

ANy (f(x) = 0) = VX.(Vx.({x} = (f(x) = 0) = X) = X)

What is the thread of (¢t | u - 7)?

(t|u-m) >

11/ 49

Specification
[o]e] J

>1-formulas

tIF3MNx. f(x) =0 iff 7

Recall that:

ANy (f(x) = 0) = VX.(Vx.({x} = (f(x) = 0) = X) = X)

What is the thread of (¢t | u - 7)?

(tlu-my > (ulmo-to-)

11/ 49

Specification
ooe

>1-formulas

t - 3Nx. f(x) =0 G

Recall that:

N (f(x) = 0) = VX.(Vx.({x} = (f(x) = 0) = X) = X)
If(x) = ol = {“VX(X =Xl EMEe=e
IT= L M = ey # €

What is the thread of (¢t | u - 7)?

tlu-m) > (ulmo-to-m)
(to | ug - moy >

11/ 49

Specification
[o]e] J

>1-formulas

tIF3MNx. f(x) =0 iff 7

Recall that:

N (f(x) = 0) = VX.(Vx.({x} = (f(x) = 0) = X) = X)
If(x) = ol = {“VX(X =Xl EMEe=e
IT= L M = ey # €

What is the thread of (¢t | u - 7)?

lu-my > (ulmg-to-)
(tollug - mo) > (ulmy-t;-m)

11/ 49

Specification
[o]e] J

>1-formulas

tIF3MNx. f(x) =0 iff 7
Recall that:
ANy (f(x) = 0) = VX.(Vx.({x} = (f(x) = 0) = X) = X)

||VX(X ﬁX)” if M |= e1 = e
Il f(x) =0l = .
T = 1] if M |=e1 # ez

What is the thread of (¢t | u - 7)?

lu-my > (ulmg-to-)
(tollug - mo) > (ulmy-t;-m)
(tilu; - m) > ullmygy -t -)

(e lue - me) >

11/ 49

Specification
[o]e] J

>1-formulas

tIF3MNx. f(x) =0 iff 7
Recall that:
ANy (f(x) = 0) = VX.(Vx.({x} = (f(x) = 0) = X) = X)

||VX(X ﬁX)” if M |= e1 = e
Il f(x) =0l = .
T = 1] if M |=e1 # ez

What is the thread of (¢t | u - 7)?

lu-my > (ulmg-to-)
(tollug - mo) > (ulmy-t;-m)
(tilu; - m) > ullmygy -t -)
(e lug - mey > (us ||) M [f(ms) = 0)

11/ 49

Specification
e0

Witness extraction

Say we have a term :

tIF 3Nx.(f(x) = 0)

Goal: we would like to use t to compute some m € N st. f(m) = 0.

12/ 49

Specification
e0

Witness extraction

Say we have a term :

tIF 3Nx.(f(x) = 0)

Goal: we would like to use t to compute some m € N st. f(m) = 0.

(tlu-7y > (ulm-to-m)
(toluo - mo) > (ulmy-t;-m)
(tilui-m)y > (ulMigy - tivs -)
(e lug -) > (us | 7s) (M [f(ms) =0)

12/ 49

Specification
e0

Witness extraction

Say we have a term :

tIF 3Nx.(f(x) = 0)

Goal: we would like to use t to compute some m € N st. f(m) = 0.

(tlu-7y > (ulm-to-m)
(toluo - mo) > (ulmy-t;-m)
(tilui-m)y > (ulMigy - tivs -)
(e lug -) > (us | 7s) (M [f(ms) =0)

Define u := Axy.y (stop x)

(with stop a new instruction blocking computations)
12/ 49

Specification
e0

Witness extraction

Say we have a term :

tIF 3Nx.(f(x) = 0)

Goal: we would like to use t to compute some m € N st. f(m) = 0.

(tu-) > (ulmg-to-)
> (lo|stopmg-m) > (ulmy-t-m)

> (tilstopm;-m) > (ulmivy-tivi-)

> (tr|stopmy - m) > (stopmg|ms) (M f(ms) =0)

Define u := Axy.y (stop x)

(with stop a new instruction blocking computations)
12/ 49

Specification
e0

Witness extraction

Witness extraction [Miquel’11]
If ¢ - EI'Nx.(f(x) = 0) then Vrr € II there exists m € N s.t.:

(t| Axy.y(stop x) - &) > (stop|m-) A f(m)=0

Preuve:
tlu-m) > (ulmg-to-)
> A(to|stopmg-my) > (ulmy-t-m)
> <tl‘ " stopm; - 77.'i> > (u " Mii1 - Liv1 - 77,')

> (tp|stopmy - k) > (stopms|ms) (M f(ms) =0)

Define u := Axy.y (stop x)

(with stop a new instruction blocking computations)
12/ 49

Specification
(o] }

>o-formulas?

If we have a term :

t - 3INx vNy f(x) < F(v)
then the thread of p := (t | u - x) is as follows :

(tlu-m)y > (ulmo-to-m)
(toluo - mo) > (ullmy-ty-7)

(tilui -m) > (ullMipq - tir -)

<tk ” Ug - 7Tk> > <us " ”s) (f(ms) < f(ns))

13/ 49

Specification
(o] }

>o-formulas?

If we have a term :

t - INxVNy. f(x) < fy)
then the thread of p := (t | u - x) is as follows :

(tlu-m)y > (ulmo-to-m)
(toluo - mo) > (ullmy-ty-7)

(tilu;-m) > (ulmigq - tivs -)

<tk ” Ug - 7l'k> > <us " ”s) (f(ms) < f(ns))

f(ms) < f(ns) is far from implying Vy.f(ms) < f(y)

13/ 49

Specification
[Jele}

Coquand’s games

Arithmetical formula

@ : Ay Vyy ... IxgVyn f(Xp. gn) = 0

Rules of Gg:
o Players : Eloise @ and Abelard @ .
@ Moves : - at his turn, each player instantiates his variable
- Eloise allowed to backtrack
e Final position : evaluation of f(fmy, i) =0:
o true: Eloise wins
o false : game continues

@ Abelard wins if the game never ends

14/ 49

Specification
[Jele}

Coquand’s games

Arithmetical formula

@ : Ay Vyy ... IxgVyn f(Xp. gn) = 0

Rules of Gg:
o Players : Eloise @ and Abelard @ .
@ Moves : - at his turn, each player instantiates his variable
- Eloise allowed to backtrack
e Final position : evaluation of f(fmy, i) =0:
o true: Eloise wins
o false : game continues

@ Abelard wins if the game never ends

Winning strategy

Way of playing that ensures the victory, independently of the
opponent moves.

14/ 49

Specification

oeo

Example

Formula

Ix.Vy.dz.xXy=2Xz

@
©
@

15/ 49

Specification

oeo

Example

Formula

Vy.Jdz.1Xy=2Xz

Star
@ S

©
@

15/ 49

Specification
oeo

Example

Formula

dz.1=2X%Xz

Star
© S

© S
@

15/ 49

Specification
oeo

Example

Formula

Vy. dz.2Xy=2Xz

15/ 49

Specification
oeo

Example

dz.2=2X%Xz

15/ 49

Eloise wins

15/ 49

Specification

ooe

Arithmetical formulas

Using the threads method, we can show that for any arithmetical
formula :

Theorem [Guillermo, M.15]
tli-® iff ¢implements a winning strategy for the game G

16/ 49

Specification
ooe

Arithmetical formulas

Using the threads method, we can show that for any arithmetical
formula &:

Theorem [Guillermo, M.15]
tli-® iff ¢implements a winning strategy for the game G

Besides, there exists a winning strategy for Gg iff M |= @, therefore:

Absoluteness

If @ is an arithmetical formula, then
Ate A, tlEFD iff ME®

16/ 49

Models
0000000000

Realizability & model theory

17/ 49

Models
0®00000000

Theory vs Model

What is the status of axioms (e.g. AV —A)?
% neither true nor false in the ambient theory

(here, true means provable)

18/ 49

Models
0®00000000

Theory vs Model

What is the status of axioms (e.g. AV —A)?
% neither true nor false in the ambient theory

(here, true means provable)

There is another point of view:
o Theory: provability in an axiomatic representation (syntax)

@ Model: validity in a particular structure (semantic)

18/ 49

Models
0®00000000

Theory vs Model

What is the status of axioms (e.g. AV —A)?
% neither true nor false in the ambient theory

(here, true means provable)

There is another point of view:

o Theory: provability in an axiomatic representation (syntax)
@ Model: validity in a particular structure (semantic)
Example:
ANB AV B
B B A|l-A|AV-A
A X A I X 71T x 7
VX |/ X| v v/
X | X|X X |V X

18/ 49

Models
0®00000000

Theory vs Model

What is the status of axioms (e.g. AV —A)?
% neither true nor false in the ambient theory

(here, true means provable)

There is another point of view:

o Theory: provability in an axiomatic representation (syntax)
@ Model: validity in a particular structure (semantic)
Example:
ANB AV B
B B A[-A]Av-A
A X A I X 71T x 7
VX |/ X| v v/
X | X|X X |V X

Valid formula

18/ 49

Models
00e0000000

Krivine realizability as a model

Krivine realizability: .
Tarski

A {t:tlF A} Ao Al € B

(intuition: programs that share a com-
. . (intuition: level of truthness)
mon computational behavior given by

A)

19/ 49

Models
00e0000000

Krivine realizability as a model

Krivine realizability:
Tarski

A {t:tlF A} Ao Al € B
i

(intuition: programs that share a com-

. . . intuition: h
mon computational behavior given by (intuition: level of truthness)

A)

Great news #1

Classical realizability semantics gives surprisingly new models!

(generalize forcing, e.g. direct construction of M = ZF, + ~CH + -AC)

19/ 49

Models
00e0000000

Krivine realizability as a model

Krivine realizability:
Tarski

A {t:tlF A} Ao Al € B
i

(intuition: programs that share a com-

. . . intuition: h
mon computational behavior given by (intuition: level of truthness)

A)

Great news #1

Classical realizability semantics gives surprisingly new models!

(generalize forcing, e.g. direct construction of M = ZF, + ~CH + -AC)

Great news #2

Classical realizability models have a simple algebraic structure.

(generalize Boolean algebras)

19/ 49

Models
0008000000

Realizability models

Given:
@ acalculus
Q its type system
© an adequate interpretation of formula
© apole 1L

one defines a model M, by:

Realizability model
My EA iff |[AINPL#0

(where PL is the set of proof-like terms)

20/ 49

Models
0008000000

Realizability models

Given:
@ acalculus
Q its type system
© an adequate interpretation of formula
© apole 1L

one defines a model M, by:

Realizability model

My EA iff |[AINPL#DO

(where PL is the set of proof-like terms)
In other words:

A'is satisfied £ “there exists a proof-like realizer of A”

20/ 49

Models
0000e00000

Forcing in one picture (©Miquel)

21/49

Models
00000e0000

A transformation on formulae

[Cohen’63]

e Definition of a forcing notion :

+ a poset P of conditions, with 1 the largest one
* p,q € P are compatible when (3r € P)(r < p A1 < q)

22/ 49

Models
00000e0000

A transformation on formulae [Cohen’63]

e Definition of a forcing notion :

+ a poset P of conditions, with 1 the largest one
* p,q € P are compatible when (3r € P)(r < p A1 < q)

o Definition of the forcing relation :

pIF—|A
pIF(AAB)
plFA=B

~@q<p)gFa
(pIFA) A (pIFB)
Vq(qIFA = (¥Vr < p,q)r IF B)

22/ 49

Models
00000e0000

A transformation on formulae [Cohen’63]

e Definition of a forcing notion :

+ a poset P of conditions, with 1 the largest one
* p,q € P are compatible when (3r € P)(r < p A1 < q)

o Definition of the forcing relation :

plF-A = =(3g < p)qlFA
pIF(AAB) = (pIFA) A (pIFB)
= Vq(qIFA= (Vr < p,q)r IF B)

plFA=B

o Definition of M[G] such that M[G] |= ZFC

22/ 49

Models
00000e0000

A transformation on formulae [Cohen’63]

e Definition of a forcing notion :

+ a poset P of conditions, with 1 the largest one
* p,q € P are compatible when (3r € P)(r < p A1 < q)

o Definition of the forcing relation :

plF-A = =(3g < p)qlFA
pIF(AAB) = (pIFA) A (pIF B)
= Vq(qIFA= (Vr < p,q)r IF B)

plFA=B

o Definition of M[G] such that M[G] |= ZFC

Forcing Theorem

Let (P, <) be a forcing notion. Then YG C P generic over M :

MIGIEA & (GpeGplFA

22/ 49

Models
000000 e000

A transformation on programs

@ A forcing structure is given by :

a sort k of conditions, with 1 the largest one
a predicate C[p] (p is well-founded)
a closed term (-) for the product

a lot of combinators :

ap
ay
as
Qg -

C[1]

Vp*Vq*(Clpql = Clpl)
Vp*Vq*(Clpql = Clgp])

Vp* Vg Vr<(Clp(qr)] = Cl(pq)r])

[Krivine’10]

23/ 49

A transformation on programs

Models
000000 e000

@ A forcing structure is given by :

a sort k of conditions, with 1 the largest one
a predicate C[p] (p is well-founded)
a closed term (-) for the product

a lot of combinators :

@0
(631
a3
a6

: C[1]

: Yp*Vq*(Clpq]l = Clpl)

: Vp*Vq*(Clpql = Clgp])

2 VpRVgVr<(Clp(qr)] = Cl(pq)r])

@ Definition of the forcing relation :

pIFA
(A= B)*

Vre(Clpr] = A*r)
Ar€.NgVr'(r = qr’')(Vs(Clgs] = A*s) = B*r’)

[Krivine’10]

23/ 49

Models
000000 e000

A transformation on programs [Krivine’10]

@ A forcing structure is given by :

« asort k of conditions, with 1 the largest one
« a predicate C[p] (p is well-founded)
« aclosed term () for the product
« alot of combinators :

ap C[l]

ar = YVp*Vq*(Clpq] = Clp])

as : Vp*Vq*(Clpq] = Clqp])

ag : YpVq*Vr¥(Clp(qr)] = Cl(pg)r])

@ Definition of the forcing relation :

pIFA
(A= B)*

Vre(Clpr] = A*r)
Ar€ . NgVr'(r = qr’')(Vs(C[gs] = A*s) = B*r’)

@ Translation on programs:

(tu)* = yst*u*
(Ax.1)* = y(Ax.t"{x; := f3x; Hx := fax})
cc* = Aex.cc(Ak.x(aiac)(ysk))

23/ 49

Models
000000 e000

A transformation on programs [Krivine’10]

@ A forcing structure is given by :

a sort k of conditions, with 1 the largest one
a predicate C[p] (p is well-founded)

a closed term (-) for the product

a lot of combinators

@ Definition of the forcing relation :

pIFA
(A= B)*

Vr(Clpr] = A*r)
Ar€ NgVr'(r = qr’')(¥s(C[gs] = A*s) = B*r’)

@ Translation on programs:

(tw)* = pst'u”
(Ax.0)* = yi(Ax.£"{x; := Paxi H{x := Pax})
cc® = Aex.cc(Ak.x(azsc)(yak))

Soundness

F'rt:A = Vp.pFT+t*:plFA)

23/ 49

Models
0000000800

The KFAM: the transformation hard-wired [Miquel’11]

New axiom ~ Programing primitive

g g

Logical translation ~ Program translation

24/ 49

Models
0000000800

The KFAM: the transformation hard-wired [Miquel’11]

Terms tbu == x | Ax.t | tu | cc

Environments e = 0 | ex:=c

Closures c u= tle] | kp | tle]” | Kk,
————

Stacks T uw= o | t-m

forcing closures

24/ 49

Models
0000000800

The KFAM: the transformation hard-wired [Miquel’11]

Terms tbu == x | Ax.t | tu | cc
Environments e = 0 | ex:=c
Closures c = tle] | kp | tle]” | Kk
————
Stacks T = o | t-m forcing closures
@ Evaluation rules : real mode

(x[e,y:=c]llmr) > (x[e] I =) (y # x)

(x[e,x=c]llmr) > (cllm)

((Ax.tlelllc-7) > (tle,x:=c]|m)

((twlelllx) > (tle] llule] - =)

{ cele]fle-m) > (cllkr -7)

(krlle-n")y > cllm)

24/ 49

Models
0000000800

The KFAM: the transformation hard-wired [Miquel’11]

Terms tbu == x | Ax.t | tu | cc
Environments e = 0 | ex:=c
Closures c = tle] | kp | tle]” | Kk
————
Stacks T = o | t-m forcing closures
@ Evaluation rules : real mode
(x[e,y:=c]llmr) > (x[e] I =) (y # x)
(x[e,x=c]llmr) > (cllm)
((Ax.tlelllc-7) > (tle,x:=c]|m)
((twlelllx) > (tle] llule] - =)
(cele]fle-m) > (cllkr -7)
(krlle-n")y > cllm)
@ Evaluation rules : forcing mode
(xle;y=c]"llco-m) > (x[e]lasco - 7) (y #x)
(x[e,x=c]"|lco-m) > (cllaeo -)
((Ax.e]*llco-c-m) > (tle,x:=c]llasco- 7)
{ (twle]" lco-m) > (tle] laiico - ule] -)
{ cele]"llecg-c-m) > | cllawco k-7)
{ kypllco-c-n"y > (clletsco -)

24/ 49

Models
0000000080

A barrier

According to the previous slides :

What forcing can, classical realizability can too.

25/ 49

Models
0000000080

A barrier

According to the previous slides :

What forcing can, classical realizability can too.

But in fact, the same limitation appears :

Schoenfield’s barrier [Krivine’14]

33- and ITI)-formulz are absolute for realizability models.

25/ 49

Models
000000000 e

New models

Nat(x) £ VX.(X0 = Vy.(Xy = X(sy)) = Xx)

Fact : There is no universal realizer of Vx.Nat(x).

There are unnamed elements.

26/ 49

Models
000000000 e

New models

Nat(x) £ VX.(X0 = Vy.(Xy = X(sy)) = Xx)

Fact : There is no universal realizer of Vx.Nat(x).

There are unnamed elements.

In fact, we can find a pole L s.t.

(Vn e N) M, |= Nat(n) and My = 3x.—Nat(x)

26/ 49

Models
000000000 e

New models

Nat(x) £ VX.(X0 = Vy.(Xy = X(sy)) = Xx)

In fact, we can find a pole L s.t.

(Vne N) My |= Nat(n) and My = x.—Nat(x)

More surprisingly, V,, € P(IN) s.t.:

@ V., is not well-ordered © there is no surjection
from V, to V.41

there ian injection V, — V,
°) o Q Vi xV,=Vp,

26/ 49

Models
000000000 e

New models

Nat(x) £ VX.(X0 = Vy.(Xy = X(sy)) = Xx)

In fact, we can find a pole 1L s.t.

(Vn e N) My |= Nat(n) and My |E 3x.—Nat(x)

Realizability algebras I1:

More surprisingly, V,, € P(N) s.t.: hew models of ZF + DC

J.-L. Krivine [2014]

@ V., is not well-ordered @ there is no surjection
from V,, to V11

@ there ian injection V,, < V
) n n+1 0 Vm x Vn ~ an

My |E ZF, + -AC + -CH

26/ 49

Models
000000000 e

New models

Great news #1

These are really new and interesting models for set theorists.

ask J.-L. Krivine or A. Karagila!

26/ 49

Models
000000000 e

New models

What about:

Great news #2

Classical realizability models have a simple algebraic structure.

?

26/ 49

Implicative algebras
L]

Krivine realizability, algebraically

Entering the wonderland of implicative algebras

27/ 49

Implicative algebras

| Jele]e]

Streicher’s Abstract Krivine Structures

Krivine's classical realisability from (...)
Thomas Streicher [2013]

Abstract Krivine Structures

An AKS is given by (A, I1, app, push, k_, k, s, cc, PL, 1L) where:

© A and IT are non-empty sets (terms and stacks)
Q app:t,u—=tuisfromAXAtoA (application)
@ push:t, > t-misfromAXII toIT (push)
Q k_: 7wk, isfromIIto A (continuation)

@ k, s and cc are distinguished terms of A;
Q 1L C AxIIis arelation s.t.: (pole)

(t|lu-7) el = (tulx)elL
(t|r)yell = (k|t -u-m)el
(to(uo)) el = (s|t-u-v-m) €l

(t|kr -m)yed = (cc|t-m)el
(thnyeld = (kplt-n')el

@ PL C A contains k, s, cc is closed under app (proof-like)

28/ 49

Implicative algebras

| Jele]e]

Streicher’s Abstract Krivine Structures

Krivine’s classical realisability from (...)
Thomas Streicher [2013]

Abstract Krivine Structures

An AKS is given by (A, I1, app, push, k_, k, s, cc, PL, 1L) where:

© A and IT are non-empty sets (terms and stacks)

Q 1L C AxIIis arelation s.t.: (pole)

(t|lu-w) el = (tul]x)ell
(t|r)yel = (k|t -u-m)el
(to(uo)) el = (s|t-u-v-m) €l

(t|kr -m)yed = (cc|t-m)el
(t|r)yel = (kp|t-x')el

@ PL C A contains k, s, cc is closed under app (proof-like)
Definitions:
e Falsity value: subset X C IT

A

@ Orthogonality: Xt = {teA:VneX,(t|n)e 1}

28/ 49

Implicative algebras

| Jele]e]

Streicher’s Abstract Krivine Structures

Krivine’s classical realisability from (...)
Thomas Streicher [2013]

Abstract Krivine Structures

An AKS is given by (A, I1, app, push, k_, k, s, cc, PL, 1L) where:

© A and IT are non-empty sets (terms and stacks)

Q 1L C AxIIis arelation s.t.: (pole)

(t|lu-w) el = (tul]x)ell
(t|r)yel = (k|t -u-m)el
(to(uo)) el = (s|t-u-v-m) €l

(t|kr -m)yed = (cc|t-m)el
(t|r)yel = (kp|t-x')el

@ PL C A contains k, s, cc is closed under app (proof-like)
Definitions:
e Falsity value: subset X C IT

A

@ Orthogonality: Xt = {teA:VneX,(t|n)e 1}
% you know the rest!

28/ 49

Implicative algebras

(o] lele]

Ordered combinatory algebras

Ordered combi algebras and realizabili
Ferrer et al. [2017]

The Uruguayan approach (similar to PCA for Kleene realizability)

An OCA is given by (A, <, app, k, s) where:
o (A, <)isaposet @ app : (a, b) — ab is monotonic
@ kab <a @ sabc < ac(bce)

If A is an OCA, a filter over A is a subset ® C A s.t.:
o kedands e d @ & is closed under application

29/ 49

Ordered combinatory algebras

Implicative algebras

(o] lele]

Ordered combi algebras and realizabili
Ferrer et al. [2017]

The Uruguayan approach (similar to PCA for Kleene realizability)

An OCA is given by (A, <, app, k, s) where:

o (A, <) is a poset @ app : (a, b) > ab is monotonic
@ kab <a @ sabc < ac(bce)

If A is an OCA, a filter over A is a subset ® C A s.t.:
o kedands e d @ & is closed under application

Krivine Ordered Combinatory Algebra

A KOCA is given by (A, <, app, imp, k, s, e, cc, @) where:
o (A, <,D)is a filtered OCA @ecced
@ imp: (a,b) — a — b is monotonic from A°%®? X A — A
ecc<((a—b)—a)—a
@a<b—oc¢c > ab<c and ab<c = ea<b-oc

29/ 49

Implicative algebras
00e0

Connecting the dots
From AKS to XOCA
If (A, I1, app, push, k_, k, s, cc, PL, 1) is an AKS, then
(P.(I0), <, app’, imp’, {k}, {s}™, {cc} L, {e} L, D) is a KOCA, with:

2 XDY;

e X<Y =
e X Y& {t-mell:te XL AmeY}id

e d2 {XePy :AtePLLUX}
From XOCA to AKS
If (A, <, appa, imp 4, k, s, ¢, e, D) is a KOCA,

then (A, A, app, push, k_, Kk, s, c, PL, 1) is an AKS where:

o ky 21— L

e tlUT 2t < T
o app(t,u) £ app.(t, u) = tu;
e PL £ O,
30/ 49

e push(t,7) &t — m;

Implicative algebras
00e0

Connecting the dots
From AKS to XOCA
If (A, I1, app, push, k_, k, s, cc, PL, 1L) is an AKS, then

(PL(), <, app’, imp’, {k}™, {s}™, {cc} ™, {e}™, @) is a KOCA, with:

e X<Y 2 XD2V;
e X—oY={t-mell:te X+ AreY}

e PL{XePy :ItePLLUX}
From ®OCA to AKS
If (A, <, app.g, imp.4. k, s, ¢, e, D) is a KOCA,

then (A, A, app, push, k_, K, s, c, PL, 1) is an AKS where:
ok, 21— L

>

etlUT 2t < T
o app(t,u) £ app.(t, u) = tu;
o PL £ @;
30/ 49

e push(t,7) &t — m;

Implicative algebras
00e0

Connecting the dots

From AKS to XOCA
If (A, I1, app, push, k_, k, s, cc, PL, 1) is an AKS, then
(P.L(T), <, app’, imp’, {k}L, {s}1, {cc}t, {e}L, @) is a OCA, with:
e X<Y & XDVY;
A

o X—>Y={t-mell:te Xt AreY}td
e P2 {XeP, :AtePLLUX}

If (A, <, appa, imp 4, k, s, ¢, e, D) is a KOCA,

then (A, A, app, push, k_, k, s, ¢, PL, 1) is an AKS where:
oty 2t < m ok,,én:—>J_;
o app(t, u) = appa(t, u) = tu;
o push(t,m) £t — m; o PL £ @,

30/ 49

Implicative algebras
(eJele]]

Observations

From a filtered OCA, one can define a tripos

Set’” — HA
7-;{ P

endowed with the following entailment relation:

o+ £ lp = y|NPL+O

31/49

Implicative algebras
(eJele]]

Observations

Remark: everything lays in the order

tLASt<A (AKS to KOCA)

31/49

Implicative algebras
(eJele]]

Observations

Remark: everything lays in the order

tLASt<A (AKS to KOCA)

31/49

Implicative algebras
®000000000000

Underlying lattice structures

Subtyping relation:

r |‘p T T<:U (Sus) U1 <ZT1 Tg <:U2 (S-ArR)
FI—p:U T, - T,<:U — U

32/ 49

Implicative algebras
®000000000000

Underlying lattice structures

Subtyping relation:

r |‘p T T<U (Sus) U1 <:T1 Tg <:U2 (S-ArR)
FI—p:U T, - T,<:U — U

Classical realizability:
ifA<:B then tIFA=1tlI-B (for any 1)

In terms of truth values:

[I>

Subtyping A<, B 1B < [IAll

32/ 49

Implicative algebras
®000000000000

Underlying lattice structures

Subtyping relation:

r |‘p T T<U (Sus) U1 <:T1 Tg <2U2 (S-ArR)
FI—p:U T, - T,<:U — U

Classical realizability:
ifA<:B then tIFA=1tlI-B (for any 1)
In terms of truth values:
Subtyping A<y B 2 |B| c Al
Induces a structure of complete lattice, where A\ =, as in:

Ivx.All, £] llAGx = n}l = \{IA{x :=n}] :n € N)

nelN

Realizability: V=A A =X I=y V =+

32/ 49

Implicative algebras
®000000000000

Underlying lattice structures

Subtyping relation:

r |‘P T T<:U (Sus) U1 <:T1 Tg <:Ug (S-ArR)
FI—p:U T, - T,<:U — U

Classical realizability:

Subtyping A<y B = |B| c Al
Realizability: V= A A =X I=Y vV =+

Boolean algebras:
quantifiers and connectives both interpreted by meets and joins:

IVx.All = [AQ) A A A . AAR) Al = A TA®]
nelN

Forcing: V=A= A IJ=v=Y

32/ 49

Implicative algebras
O®00000000000

Curry-Howard, one step further

Types Formulas

A-terms Proofs

33/49

Implicative algebras
O®00000000000

Curry-Howard, one step further

Types Formulas

Ul

A-terms Proofs

33/49

Implicative algebras
O®00000000000

Curry-Howard, one step further

Types Formulas

A-terms Proofs

In particular, a < b reads:
@ ais a subtype of b
@ ais a realizer of b

o the realizer a is more defined than b

33/49

Implicative algebras
0O0O®0000000000

Implicative Structures

Implicative algebras: a new (...)
Alexandre Miquel [2018]

Definition:

Complete meet-semilattice (A, <, —) s.t.:
e ifag < a and b < by then (a — b) < (a9 — bp) (Variance)
o \pepla—b)=a— Appb (Distributivity)

34/ 49

Implicative algebras
0O0O®0000000000

Implicative Structures

Implicative algebras: a new (...)
Alexandre Miquel [2018]

Definition:

Complete meet-semilattice (A, <, —) s.t.:
e ifay<a and b < by then (a — b) <X (ag — bp) (Variance)
® h\pegla—b)=a— \,epb (Distributivity)

Examples:
@ complete Heyting/Boolean algebras

If H is complete,a—> b=Y{x e H:anx < b}.

@ Ordered Combinatory Algebras

Complete lattice P(A) equipped with Ar> B 2 {r € A:Va € A.ra € B}.

@ Abstract Krivine Structures
Complete lattice P(IT), equipped with:

a<b2adb a—be2at b={t-nm:teat, web}

34/ 49

Implicative algebras
000@000000000

Interpretation of A-terms

Application:

a@b & N\{ceA:a<xb—c}

Abstraction:

Af £ Kaeala— f(@)

35/ 49

Implicative algebras
000@000000000

Interpretation of A-terms

Application:

a@b & N\{ceA:a<xb—c}

Abstraction:

Af £ Kaeala— f(@)

Q Ift —p u, then P = (B-reduction)
Q Ift —, u, then ut < tA, (n-expansion)

Q@ a@b<kc © axkbrc¢ (Adjunction)

35/ 49

Implicative algebras
0000800000000

Interpretation of formulas

Formulas with parameters:
AB:=a|X|A= B|VX.A (ae A)

Embedding of closed formulas with parameters:

! £ 4 (if a € A)
(A=B7" £ A" - B~
VXA 2 L ealA{X =a}h)”

36/ 49

Implicative algebras
0000800000000

Interpretation of formulas

Formulas with parameters:
AB:=a|X|A=B|VX.A (aeA)

Embedding of closed formulas with parameters:

a2 a (ifa e A)

(A= B £ AR BA
VXA 2 NgealAX = ap™

Adequacy: If t:A then t7' < A%

quacy

In particular:
kKt = Aa,beﬂ(a —b— a)
s = a,b,ce.‘i{((a —b— C) - (a d b) —a— C)
cc = Aa’beﬂ(((a — b) > a) — a)

36/ 49

Implicative algebras
00000@0000000

Implicative algebras

Separator S:
Q k" eS8, s"eS(cceS) (Combinators)
Q IfaeSanda < b,thenb € S. (Upwards closure)
Q@ If(a—>b)eSandac S, thenb e S. (Modus ponens)

Implicative algebras:

(A,=%,—) + separatorS

37/ 49

Implicative algebras
00000@0000000

Implicative algebras

Separator S:
Q k"eS8,s"eS(cceS) (Combinators)
Q@ Ifae Sanda < b,thenb € S. (Upwards closure)
Q@ If(a—>b)eSandac S, thenb eS. (Modus ponens)

Implicative algebras:

(A,%,—) + separator S

Examples:

@ Complete Boolean algebras

Forall A-term t, tB = T and a@b = a A b. Thus, T or any filter define separators.

37/ 49

Implicative algebras
00000@0000000

Implicative algebras

Separator S:
Q k"eS8,s"eS(cceS) (Combinators)
Q@ Ifae Sanda < b,thenb € S. (Upwards closure)
Q@ If(a—>b)eSandac S, thenb eS. (Modus ponens)

Implicative algebras:

(A,%,—) + separator S
Examples:
@ Complete Boolean algebras

Forall A-term t, tB = T and a@b = a A b. Thus, T or any filter define separators.

@ Abstract Krivine structures

The set S = {a € P(I) : a'* N PL # 0} is a separator.

37/ 49

Implicative algebras

0000008000000

Internal logic

Entailment: arsb £ a—beS

@ tgis apreorder
Q ifa<x bthenatgh (Subtyping)
Q ifarsbandae Sthenbe S (Closure under)

38/ 49

Implicative algebras
0000008000000

Internal logic

Entailment: arsbh & a—>beS

@ rgsis apreorder

Q ifaxbthenatgh (Subtyping)
Q ifarsbandae Sthenbe S (Closure under)
Quantifiers:
?vjai 2 \a 3 2 L (\@—0o—0
i€ iel ceA i€l

Semantic rules:

IF'rt:a; foralliel T+t:VYiea igel
Fi—t:Vidai Fi—t:a,-o
IF'rt:a; ipel Frt:Tjera; Tox:a;ru:c (foralliel)

TFAxxt: Jiera; I'Ft(Ax.u):c

38/ 49

Implicative algebras

0000008000000

Internal logic

Entailment: arsbh & a—>beS

Properties

@ rgsis apreorder

Q ifaxbthenatgh (Subtyping)
Q ifarsbandae Sthenbe S (Closure under)
Connectives:
axb & A((a—>b—>c)—>c) a+b £ A((a—>c)—>(b—>c)—>c)
cedAl ceAl

Semantic rules:

Trt:a Tru:b F'rt:a+b I'x:aru:c T,y:brov:c
IF'rAzztu:axb Ik t(Ax.u)(Ay.0) : c
Frt:axb F'-t:axb Ftt:a F'rt:b

Trim:a Trim:b TrAlrit:a+b TrAlrort:a+b

38/ 49

Implicative algebras

0000008000000

Internal logic

Entailment: arsbh & a—>beS

Properties

@ rgsis apreorder

Q ifaxbthenatgh (Subtyping)
Q ifargsbandae Sthenbe S (Closure under)
Connectives:
axb & A((a—>b—>c)—>c) a+b £ A((a—>c)—>(b—>c)—>c)
ceA ceA

Adjunction

atrsb—c if and only if axXbtrsc

38/ 49

Implicative algebras
0000000 @00000

A incredibly nice framework

Adjunction

arsbmc if and only if axbtrgsec.

Proof. (=) Assume thatt := a > b +— ¢ € S. We shall find?u € S s.t.:

Uu<axXxbc

39/ 49

Implicative algebras
0000000 @00000

A incredibly nice framework

Adjunction

arsbmc if and only if axbtrgsec.

Proof. (=) Assume thatt := a > b +— ¢ € S. We shall find?u € S s.t.:

w<(\(@ambd-d e
deA

39/ 49

Implicative algebras
0000000 @00000

A incredibly nice framework

Adjunction

arsbmc if and only if axbtrgsec.

Proof. (=) Assume thatt :==aw> b c €S. Let us prove that:

xx@t < (Ngeglar bod)—d)—c

39/ 49

Implicative algebras
0000000 @00000

A incredibly nice framework

Adjunction

arsbmc if and only if axbtrgsec.

Proof. (=) Assume thatt := a+> b+ c € S. Let us prove that:
xx@t < (Ngeglar bod)—d)—c
= Mxx@a—= b= o) (Ngegala—= b= d)—>d)—c (B-reduction)
& Mxx@@— b)@ \geqla b d)—d)<c (adjunction)

& (Adeﬂ(a PbodHd@a—b-c)<c (B-reduction)
< (Adeﬂ(a b dPd<@-booc (adjunction)
s apbbo)bceck(aPpb—co)>c (meet def.)

O

39/49

Implicative algebras
0000000 @00000

A incredibly nice framework

Adjunction

arsbmc if and only if axbtrgsec.

Proof. (=) Assume thatt := a+> b c € S. It suffices to prove that:

Mxyyx < (a—> b o) (axb) ¢

(&) Assume that (a X b) — c € S. It suffices to prove that:
Afab.f(Az.zab) < ((axb)—>c)— (a— b c)

39/ 49

Implicative algebras
00000000 e0000

Implicative tripos

Adjunction

arsb—c if and only if axXbtrsc

(3 (A/S,+s, X, +,—) is a Heyting algebra)
Tripos:

7. Set’”? — HA
11 — Al/S[I]

40/ 49

Implicative algebras
00000000 e0000

Implicative tripos

Adjunction

arsb—c if and only if axXbtrsc

(3 (A/S,+s, X, +,—) is a Heyting algebra)
Tripos:

7. Set’”? — HA
11 — Al/S[I]

Collapse criteria

The following are equivalent:
@ 7 is isomorphic to a forcing tripos
@ S C Ais a principal filter of A.
Q S C A is finitely generated and h € S.

40/ 49

Implicative algebras
000000000 e000

Completeness of implicative triposes

Theorem [Miquel 18]

Each Set-based tripos is (isomorphic to) an implicative tripos.

The proof is based on several observations:

@ generic predicate: there exists X and tr € 7(2) s.t.

> S T(X) . N
I-]x : { o > T(o)tr) is surjective
% each predicate on X has a code in =X
@ we can define codes /'\,'\'/,' = for connectives
V,3 for quantifiers
o this almost endows ¥ with a structure of complete HA

e it “leads” to an implicative algebra
Y the corresponding tripos is isomorphic to the original one

41/ 49

Implicative algebras
0000000000800

Categorifying a bit more

We have:
A
~—
AKS IA
x__
K
Questions:

© Can we define categories for ZA /| AKS?

@ Does this diagram have a categorical meaning?

42/ 49

Implicative algebras
0000000000080

The category of Implicative Algebras

The category of Implicative
Algebras and Realizability
Assume two 1As A and B W, Ferrer, O. Malherbe [2018]

f: A — B withr,u € Sg such that:
Q f(Sa)c Sz
@ rf(@f(@) < f(aa’) Va.d' € A)
Q Ifa < a’ thenuf(a) < f(a’)

Computationally dense morphism

f: A — B applicative with h : Sg — S# monotonic, t € Sg s.t.:
t < f(h(b)) = b (Vb € S3)

Proposition

The two notions give rise to categories 1A / IAc.

43/ 49

Implicative algebras
0000000000080

The category of Implicative Algebras -
Nacbras d Realabiny
W. Ferrer, O. Malherbe [2018]

Good news:
@ The two notions also give rise to categories AKS / AKSc.
@ Themaps A: AKS — IA and K : JA — AKS extend to

functors:
A A
PN —
AKS IA AKSc IAc
u v
K K

43/ 49

Implicative algebras
0000000000080

The category of Implicative Algebras -
Nscbrasand Rty
W. Ferrer, O. Malherbe [2018]

Good news:
@ The two notions also give rise to categories AKS / AKSc.
@ Themaps A: AKS — IA and K : JA — AKS extend to

functors:
A A
PN —
AKS L 1A AKSc L IAc
v ~_
K K

These functors form an adjoint pair.

43/ 49

Implicative algebras
000000000000 e

Is that it?

Implicative structures:
@ simple algebraic structures

o adequate embedding of types and terms

44/ 49

Implicative algebras
000000000000 e

Is that it?

Implicative structures:
@ simple algebraic structures

o adequate embedding of types and terms

Implicative algebras:
@ encompass usual approaches to realizability
@ generalize Boolean algebras and forcing

@ complete w.r.t. Set-based triposes

44/ 49

Implicative algebras
000000000000 e

Is that it?

Implicative structures:
@ simple algebraic structures

o adequate embedding of types and terms

Implicative algebras:
@ encompass usual approaches to realizability
@ generalize Boolean algebras and forcing

@ complete w.r.t. Set-based triposes

Further questions:
@ account for different evaluation strategies [M. "20]
@ account for side effects

o |A morphisms that induce tripos isomorphisms?

44/ 49

Conclusion
0000

Conclusion

45/ 49

Conclusion
(o] Jelele]

Last week

We saw:

o Classical logic: interaction terms/contexts
o Krivine realizability:

e interaction player/opponent
e primitive falsity values + orthogonality

o Key property: adequacy w.r.t. typing

46/ 49

Conclusion
(o] Jelele]

Last week

We saw:

o Classical logic: interaction terms/contexts
o Krivine realizability:

e interaction player/opponent
e primitive falsity values + orthogonality

o Key property: adequacy w.r.t. typing

Killer features
@ Normalization / soundness as corollaries
@ Very modular: With side-effects come new reasoning principles.

o Compatible with your favorite calculus

46/ 49

Conclusion
[e]e] Tele]

Today wrapped up

We saw:

o specification problem

v solutions via the threads method.

47/ 49

Conclusion
[e]e] Tele]

Today wrapped up

We saw:

o specification problem

v solutions via the threads method.

@ witness extraction

v/ works for 29-formulas

47/ 49

Conclusion
[e]e] Tele]

Today wrapped up

We saw:

o specification problem

v solutions via the threads method.

@ witness extraction

v/ works for 29-formulas

@ connexion with forcing

v realizability generalizes forcing!

47/ 49

Conclusion
[e]e] Tele]

Today wrapped up

We saw:

o specification problem

v solutions via the threads method.

@ witness extraction

v/ works for 29-formulas

@ connexion with forcing

v realizability generalizes forcing!

o the algebraic structure of realizability models

v implicative algebras

47/ 49

Conclusion
[e]e]e] o]

Future lines of work

@ Logical counterpart of side effects

AC via memoization, resources management, ...

48/ 49

Conclusion
[e]e]e] o]

Future lines of work

@ Logical counterpart of side effects

AC via memoization, resources management, ...

@ Realizability models

structure, properties, connexion with usual models, ...

48/ 49

Conclusion
[e]e]e] o]

Future lines of work

@ Logical counterpart of side effects

AC via memoization, resources management, ...

@ Realizability models

structure, properties, connexion with usual models, ...

© Implicative algebras

include effects, algebraic properties, ...

48/ 49

Conclusion
[e]e]e] o]

Future lines of work

@ Logical counterpart of side effects

AC via memoization, resources management, ...

@ Realizability models

structure, properties, connexion with usual models, ...

© Implicative algebras

include effects, algebraic properties, ...

Q@ You tell me!

48/ 49

Conclusion
0000e

Questions?

49/ 49

	Recall
	Specification
	Specification
	Witness extraction
	Arithmetical formulas

	Models
	Implicative algebras
	
	

	Conclusion

