
Intro Dependent CPS Going further

How delimited continuations can be used

to define dependently typed CPS

Étienne Miquey

Équipe Galline�e, INRIA

LS2N, Université de Nantes

TYPES 2018

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 1/ 15

Intro Dependent CPS Going further

Dependent types

Lot of features:

for programmers

for logicians

for proof-assisted people

for proof-assisting people

Ingredients:

dependent product:

Γ,a : A ` p : B
Γ ` λa.p : Π(x : A).B

Γ ` p : Π(a : A).B[a] Γ ` t : A
Γ ` pt : B[t]

dependent sum:

Γ ` t : A Γ ` p : B[t/x]
Γ ` (t ,p) : Σ(x : A).B

Γ ` p : Σ(x : A).B
Γ ` wit p : A

Γ ` p : Σ(x : A).B
Γ ` prf p : B (witp)

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 2/ 15

Intro Dependent CPS Going further

CPS, classical logic & sequent calculi

CPS:
Call-by-name Call-by-value

JtuK λk .JtK JuKk λk .JuK (λv .JtKv k)
JA→ BK (¬¬A) → ¬¬B A→ ¬¬B

Provides semantics for control operators:

Jcall/ccα tK , λα .JtKα Jthrowα tK , λ .JtKα

Factorizes through sequent calculus:

λ-calculus

CbN

λµµ̃-calculus

CbN

λ-calculus

embed. CPS

λ-calculus

CbV

λµµ̃-calculus

CbV

λ-calculus

embed. CPS

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 3/ 15

Intro Dependent CPS Going further

CPS, classical logic & sequent calculi

CPS:
Call-by-name Call-by-value

JtuK λk .JtK JuKk λk .JuK (λv .JtKv k)
JA→ BK (¬¬A) → ¬¬B A→ ¬¬B

Provides semantics for control operators:

Jcall/ccα tK , λα .JtKα Jthrowα tK , λ .JtKα

Factorizes through sequent calculus:

λ-calculus

CbN

λµµ̃-calculus

+ polarities

λ-calculus

embed.

CPS

λ-calculus

CbV

embed.

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 3/ 15

Intro Dependent CPS Going further

Dependent Types & Classical Logic

On the Degeneracy of Σ-Types in Presence of

Computational Classical Logic

H. Herbelin, TLCA 2005

On the Degeneracy of Σ-Types in Presence of
Computational Classical Logic

Hugo Herbelin

LIX - INRIA-Futurs - PCRI
École Polytechnique

F-91128 Palaiseau Cedex

Abstract. We show that a minimal dependent type theory based on Σ-
types and equality is degenerated in presence of computational classical
logic. By computational classical logic is meant a classical logic derived
from a control operator equipped with reduction rules similar to the ones
of Felleisen’s C or Parigot’s µ operators. As a consequence, formalisms
such as Martin-Löf’s type theory or the (Set-predicative variant of the)
Calculus of Inductive Constructions are inconsistent in presence of com-
putational classical logic. Besides, an analysis of the role of the η-rule for
control operators through a set-theoretic model of computational classi-
cal logic is given.

1 Introduction

1.1 Computational Classical Logic

The call-with-current-continuation operator is a construct that has been
introduced in Scheme a few decades ago. Numerous variants of the original
call-with-current-continuation have been considered. Felleisen introduced
the operators C, K and A and studied calculi based on these operators [4]. The
SML language introduced the callcc and throw operators, all equipped with
comparable reduction rules.

Griffin [5] showed that Felleisen’s C operator was typable under some con-
ditions of type ¬¬A → A in a simply typed framework, thus extending the
Curry-Howard correspondence to classical logic.

Parigot [7] introduced a distinction between the (ordinary) variables and
the continuation variables, together with operators µ and brackets, leading to
the elegant λµ-calculus. A variant of λµ-calculus based on SML callcc (there
renamed catch) and throw has been given in Crolard [3].

Basically, computational classical calculus comes with commutation rules
(called structural rules or ζ rules in the context of λµ-calculus), an elimination
rule (also called simplification or ηµ rule in the context of λµ-calculus), and an
idempotency rule (also called renaming or βµ rule) .

As an introduction to computational classical logic, we here describe λµ-
calculus:

t, u ::= λx.t | tu | x | µα.c terms
c ::= [α]t commands

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 4/ 15

Intro Dependent CPS Going further

Dependent Types & Classical Logic

Computational classical logic:

call/ccα captures the current continuation

throwα replaces the current continuation by α

Paradox:

One can define:

H0 := call/ccα (1,throwα (0,refl)) : Σ(x : �).x = 0

and reach a contradiction:

(witH0,prfH0) → (1,
0=0︷︸︸︷
refl)︸ ︷︷ ︸

((((
(Σ(x :�).x=0

Morality:

need to restrict dependencies to “not too e�ectful” computations

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 4/ 15

Intro Dependent CPS Going further

Dependent types & CPS

CPS Translating Inductive and Coinductive Types

G. Barthe & T. Uustalu, PEPM 2002

CPS Translating Inductive and Coinductive Types

[Extended Abstract]

Gilles Barthe
INRIA Sophia-Antipolis

2004 route des Lucioles, BP 93
F-06902 Sophia-Antipolis Cedex, France

Gilles.Barthe@inria.fr

Tarmo Uustalu
∗

Dep. de Informática, Universidade do Minho
Campus de Gualtar

P-4710-057 Braga, Portugal

tarmo@di.uminho.pt

ABSTRACT
We investigate CPS translatability of typed λ-calculi with
inductive and coinductive types. We show that tenable
Plotkin-style call-by-name CPS translations exist for sim-
ply typed λ-calculi with a natural number type and stream
types and, more generally, with arbitrary positive inductive
and coinductive types. These translations also work in the
presence of control operators and generalize for dependently
typed calculi where case-like eliminations are only allowed
in non-dependent forms. No translation is possible along the
same lines for small Σ-types and sum types with dependent
case.

Categories and Subject Descriptors
F.3.3 [Logics and Meanings of Programs]: Studies of
Program Constructs—Functional constructs, Control prim-
itives, Type structure; F.4.1 [Mathematical Logic and
Formal Languages]: Mathematical Logic—Lambda calcu-
lus and related systems, Proof theory

General Terms
theory

Keywords
inductive and coinductive types, CPS translations, typed
λ-calculi, classical logic and control, dependent types

1. INTRODUCTION

Background
Continuation-passing style (CPS) is a style of programming
well suited for program analyses and optimizations, so CPS

∗On leave from Inst. of Cybernetics, Tallinn Technical
University, Akadeemia tee 21, EE-12618 Tallinn, Estonia,
tarmo@cs.ioc.ee.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PEPM ’02Jan. 14–15, 2002 Portland, OR, USA
Copyright 2002 ACM 1-58113-455-X/02/01 ...$5.00.

languages are commonly used as intermediate languages in
compilers, see, e.g., [3, 18]. CPS translations are transfor-
mations converting programs into CPS terms. In a sem-
inal paper [41], Plotkin defined call-by-value and call-by-
name CPS translations for the untyped λ-calculus and es-
tablished some of their important properties. Felleisen et
al. [17] extended the call-by value translation to also cover
their control operator C. Meyer and Wand [32] showed that
Plotkin’s call-by-value CPS translation is type-correct in a
simply typed setting. Griffin [23] noted that Felleisen’s C
types with the double negation rule of classical logic and
showed that both Felleisen’s CPS translation and its call-
by-name version correspond to well-known embeddings of
classical logic into intuitionistic logic. Subsequently, typed
CPS translations and correctness results have been given
for more powerful typed λ-calculi, see, e.g., [27, 28, 8], and
applied to the compilation and optimization of typed lan-
guages, see, e.g., [19, 44]. Griffin’s discovery initiated a series
of studies on the computational content of classical proofs
where CPS translations are a frequently employed tool, see,
e.g., [13, 33, 38, 39, 34, 12, 4, 42, 24, 25, 35, 36, 6].

Inductive and coinductive types, see, e.g., [31, 29, 20, 15,
40], are syntactic representations for initial algebras (such
as natural numbers and lists) resp. final coalgebras (such as
conatural numbers and streams) in typed λ-calculi. Despite
being pervasive in the type-theoretical literature on func-
tional languages and proof assistants, we are not aware of
any study of CPS translations for (co)inductive types.

Contribution
The purpose of this paper is to present CPS translations for
(co)inductive types. Our contribution is three-fold.

First, we extend the typed version of Plotkin’s call-by-
name CPS translation to (co)inductive types. More pre-
cisely, we define a type-preserving and reduction-preserving
CPS translation for λµ,ν , a simply-typed λ-calculus with
sum and product types and positive inductive and coinduc-
tive types. A salient feature of our translation is that it
also applies under µ and ν. This is required for the trans-
lation to enjoy a substitution property for types and hence
for scaling it up for more powerful type disciplines such as
polymorphism or higher-order polymorphism. One of the
effects is that strictly positive (co)inductive types such as
Nat = µZ. 1+Z get transformed into (double negations of)
non-strictly positive ones such as Natc = µZ. 1 + ¬¬Z, cf.
[11].

Second, we consider the CPS translation of λ∆µ,ν , which

131

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 5/ 15

Intro Dependent CPS Going further

Dependent types & CPS

�estions:

Is it really impossible?

Is the problem limited to call-by-name?

Is the problem limited to Σ-types?
What about value restriction?

Can’t we get a dependent sequent calculus?

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 5/ 15

Intro Dependent CPS Going further

Dependent types & CPS

�estions:

Is it really impossible?

Is the problem limited to call-by-name?

Is the problem limited to Σ-types?
What about value restriction?

Can’t we get a dependent sequent calculus?

No it’s not:

Bowman et al. [POPL 2018]:

parametric answer-types + extensional type theory

M. [ESOP 2017]:

parametric and dependent answer-types + delimited continuations

Cong, Asai [ICFP 2018]

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 5/ 15

Intro Dependent CPS Going further

Dependently typed CPS

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 6/ 15

Intro Dependent CPS Going further

Sequent calculus | Call-by-value | Π-type

Can this work?

Πp
.
.
.
.

Γ,a : A ` p : B[a] | ∆
Γ ` λa.p : Π(a : A).B | ∆

(→r)

Πq
.
.
.
.

Γ ` q : A | ∆

Πe
.
.
.
.

Γ | e : B[q] ` ∆ q ∈ V

Γ | q · e : Π(a : A).B ` ∆
(→l)

〈λa.p || q · e〉 : (Γ ` ∆)
(Cut)

−→

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 7/ 15

Intro Dependent CPS Going further

Sequent calculus | Call-by-value | Π-type

Can this work?

Πp
.
.
.
.

Γ,a : A ` p : B[a] | ∆
Γ ` λa.p : Π(a : A).B | ∆

(→r)

Πq
.
.
.
.

Γ ` q : A | ∆

Πe
.
.
.
.

Γ | e : B[q] ` ∆ q ∈ V

Γ | q · e : Π(a : A).B ` ∆
(→l)

〈λa.p || q · e〉 : (Γ ` ∆)
(Cut)

−→

Πq
.
.
.
.

Γ ` q : A | ∆

Γ,a : A ` p :���B[a] | ∆ Γ,a : A | e :���B[q] ` ∆
〈p || e〉 : (Γ,a : A ` ∆) Mismatch

Γ | µ̃a.〈p || e〉 : A ` ∆
(µ̃)〈

q ���� µ̃a.〈p || e〉
〉

: (Γ ` ∆)
(Cut)

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 7/ 15

Intro Dependent CPS Going further

Sequent calculus | Call-by-value | Π-type

Can this work? X

Πp
.
.
.
.

Γ,a : A ` p : B[a] | ∆
Γ ` λa.p : Π(a : A).B | ∆

(→r)

Πq
.
.
.
.

Γ ` q : A | ∆

Πe
.
.
.
.

Γ | e : B[q] ` ∆ q ∈ V

Γ | q · e : Π(a : A).B ` ∆
(→l)

〈λa.p || q · e〉 : (Γ ` ∆)
(Cut)

−→

Πq
.
.
.
.

Γ ` q : A | ∆

Γ,a : A ` p : B[a] | ∆ Γ,a : A | e : B[q] ` ∆; {·|p}{a |q}
〈p || e〉 : Γ,a : A ` ∆; {a |q}

(Cut)

Γ | µ̃a.〈p || e〉 : A ` ∆; {.|q}
(µ̃)〈

q ���� µ̃a.〈p || e〉
〉

: (Γ ` ∆); {·|·}
(Cut)

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 7/ 15

Intro Dependent CPS Going further

CPS | Call-by-value | Π-type (1/2)

Is it enough?

subject reduction / normalization / consistency as a logicX

suitable for CPS translation 7

JqK Jµ̃a.〈p || e〉K = JqK︸︷︷︸
¬¬A

(λa. JpK︸︷︷︸
¬¬B (a)

JeK︸︷︷︸
¬B (q)

)

This is quite normal:

we observed a desynchronization

we compensated only within the type system

we need to do this within the calculus!

Intuition: JpK shouldn’t be applied to JeK before JqK has reduced

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 8/ 15

Intro Dependent CPS Going further

CPS | Call-by-value | Π-type (2/2)

J〈λa.p || q · e〉K
?
−→ (JqK (λa.JpK))JeK

�estions:

1 Is any q compatible with such a reduction ?

2 Is this typable ?

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 9/ 15

Intro Dependent CPS Going further

CPS | Call-by-value | Π-type (2/2)

J〈λa.p || q · e〉K
?
−→ (JqK (λa.JpK))JeK

�estions:

1 Is any q compatible with such a reduction ?

If q eventually gives a value V :

(JqK (λa.JpK))JeK→ ((λa.JpK)JV K)JeK→ JpK[JV K/a]JeK = Jp[V /a]KJeK 3

If JqK→ λ .t and drops its continuation (meaning t : ⊥):

(JqK (λa.JpK))JeK→ ((λ .t)λa.JpK)JeK→ tJeK 7

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 9/ 15

Intro Dependent CPS Going further

CPS | Call-by-value | Π-type (2/2)

J〈λa.p || q · e〉K
?
−→ (JqK (λa.JpK))JeK

�estions:

1 Is any q compatible with such a reduction ? q ∈ nef

If q eventually gives a value V :

(JqK (λa.JpK))JeK→ ((λa.JpK)JV K)JeK→ JpK[JV K/a]JeK = Jp[V /a]KJeK 3

If JqK→ λ .t and drops its continuation (meaning t : ⊥):

(JqK (λa.JpK))JeK→ ((λ .t)λa.JpK)JeK→ tJeK 7

Negative-elimination free (Herbelin’12)

Values + one continuation variable + no application

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 9/ 15

Intro Dependent CPS Going further

CPS | Call-by-value | Π-type (2/2)

J〈λa.p || q · e〉K
?
−→ (JqK (λa.JpK))JeK

�estions:

1 Is any q compatible with such a reduction ? q ∈ nef

2 Is this typable ?

Naive a�empt:

(JqK︸︷︷︸
(A→⊥)→⊥

(λa.JpK︸ ︷︷ ︸
Π(a:A)¬¬B (a)

))

︸ ︷︷ ︸
7

JeK︸︷︷︸
¬B (q)

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 9/ 15

Intro Dependent CPS Going further

CPS | Call-by-value | Π-type (2/2)

J〈λa.p || q · e〉K
?
−→ (JqK (λa.JpK))JeK

�estions:

1 Is any q compatible with such a reduction ? q ∈ nef

2 Is this typable ?

Friedman’s trick:

(JqK︸︷︷︸
∀R.(A→R?)→R?

(λa.JpK︸ ︷︷ ︸
Π(a:A)¬¬B (a)

))

︸ ︷︷ ︸
¬¬B

JeK︸︷︷︸
¬B (q)

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 9/ 15

Intro Dependent CPS Going further

CPS | Call-by-value | Π-type (2/2)

J〈λa.p || q · e〉K
?
−→ (JqK (λa.JpK))JeK

�estions:

1 Is any q compatible with such a reduction ? q ∈ nef

2 Is this typable ? parametric return-type

Be�er:

(JqK︸︷︷︸
∀R.(Π(a:A)R (a))→R (q)

(λa.JpK︸ ︷︷ ︸
Π(a:A)¬¬B (a)

))

︸ ︷︷ ︸
¬¬B (q)

JeK︸︷︷︸
¬B (q)

(Remark: not possible without q ∈ nef)

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 9/ 15

Intro Dependent CPS Going further

Delimited continuations

J〈λa.p || q · e〉K −→ (JqK (λa.JpK))JeK

So, we’re looking for:

〈λa.p || q · e〉
q∈nef
−→

〈
µ ? .

〈
q ���� µ̃a.〈p || ? 〉

〉 ���
��� e

〉
such that we first reduce

〈
q ���� µ̃a.〈p || ? 〉

〉
.

Delimited continuations:

〈µ t̂p.c || e〉 −→ 〈µ t̂p.c ′ || e〉〈
µ t̂p.〈p || t̂p〉 ���� e

〉
−→ 〈p || e〉

(if c → c ′)

In other words:

q · e , µ̃b .
〈
µ t̂p.

〈
q ���� µ̃v .〈p ||v · t̂p〉

〉 ���
��� e

〉
(q ∈ nef)

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 10/ 15

Intro Dependent CPS Going further

Delimited continuations

J〈λa.p || q · e〉K −→ (JqK (λa.JpK))JeK

So, we’re looking for:

〈λa.p || q · e〉
q∈nef
−→

〈
µ ? .

〈
q ���� µ̃a.〈p || ? 〉

〉 ���
��� e

〉
such that we first reduce

〈
q ���� µ̃a.〈p || ? 〉

〉
.

Delimited continuations:

〈µ t̂p.c || e〉 −→ 〈µ t̂p.c ′ || e〉〈
µ t̂p.〈p || t̂p〉 ���� e

〉
−→ 〈p || e〉

(if c → c ′)

In other words:

q · e , µ̃b .
〈
µ t̂p.

〈
q ���� µ̃v .〈p ||v · t̂p〉

〉 ���
��� e

〉
(q ∈ nef)

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 10/ 15

Intro Dependent CPS Going further

Delimited continuations

J〈λa.p || q · e〉K −→ (JqK (λa.JpK))JeK

So, we’re looking for:

〈λa.p || q · e〉
q∈nef
−→

〈
µ t̂p.

〈
q ���� µ̃a.〈p || t̂p〉

〉 ���
��� e

〉
such that we first reduce

〈
q ���� µ̃a.〈p || t̂p〉

〉
.

Delimited continuations:

〈µ t̂p.c || e〉 −→ 〈µ t̂p.c ′ || e〉〈
µ t̂p.〈p || t̂p〉 ���� e

〉
−→ 〈p || e〉

(if c → c ′)

In other words:

q · e , µ̃b .
〈
µ t̂p.

〈
q ���� µ̃v .〈p ||v · t̂p〉

〉 ���
��� e

〉
(q ∈ nef)

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 10/ 15

Intro Dependent CPS Going further

Call-by-value | Σ-type

Exact same story:

` t : T ` p : A[t]
` (t ,p) : Σ(x : T).A . . .

〈(t ,p) || e〉
?
−→

` p : A[t]

x : T ` x : T a :���A[t] ` a :���A[x]
x : T ,a : A[t] ` (x ,a) : Σ(x : T).A Mism.

...

...〈
t ���

��� µ̃x .
〈
p ���� µ̃a.〈(x ,a) || e〉

〉〉
CPS:

[[(t ,p)]]p k , [[t]]t (λx . [[p]]p︸︷︷︸
¬¬A[t]

(λap.k (x ,a)︸ ︷︷ ︸
¬A[x]

)

JpK shouldn’t be applied to its continuation before JtK has reduced

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 11/ 15

Intro Dependent CPS Going further

Call-by-value | Σ-type

JpK shouldn’t be applied to its continuation before JtK has reduced

CPS:

[[(t ,p)]]p k ,
¬¬A[t]︷︸︸︷
[[p]]p

¬A[t]︷ ︸︸ ︷
([[t]]t︸︷︷︸
∀R.Π(x :T).R[x]→R[t]

(λxa.k (x ,a))︸ ︷︷ ︸
Π(x :T).¬A[x]

)

Co-delimited continuations:

〈(t ,p) || e〉 −→
〈
p

����
���� µ̃ ťp.

〈
t ���

��� µ̃x .
〈
ťp

���� µ̃a.〈(x ,a) || e〉
〉〉〉

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 11/ 15

Intro Dependent CPS Going further

Conclusion

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 12/ 15

Intro Dependent CPS Going further

Here comes duality again!

MLTT

CbN

dλµµ̃-calculus

CbN

MLTT

embed. CPS

MLTT

CbV

dλµµ̃-calculus

CbV

MLTT

embed. CPS

Call-by-name:

(q · e) : Π(a : A).B is not problematic (q is to be substituted directly)

(t ,p) : Σ(a : A).B poses the exact same problem

same ideas allow to soundly define reduction & CPS

In each case:

problem of synchronizing the evaluation of a pair (t ,p) / (q · e)
(co-)delimited continuations solve the problem

dependent and parametric return-type in the CPS

requires a restriction to “nice” terms

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 13/ 15

Intro Dependent CPS Going further

Here comes duality again!

MLTT

CbN

dλµµ̃-calculus

CbN

MLTT

embed. CPS

MLTT

CbV

dλµµ̃-calculus

CbV

MLTT

embed. CPS

Call-by-name:

(q · e) : Π(a : A).B is not problematic (q is to be substituted directly)

(t ,p) : Σ(a : A).B poses the exact same problem

same ideas allow to soundly define reduction & CPS

In each case:

problem of synchronizing the evaluation of a pair (t ,p) / (q · e)
(co-)delimited continuations solve the problem

dependent and parametric return-type in the CPS

requires a restriction to “nice” terms

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 13/ 15

Intro Dependent CPS Going further

Occam’s razor

Observation:

the solutions are unrelated to the evaluation strategy

Couldn’t we:

1 consider a core calculus with pairs/delimited continuations?

2 use polarities to define evaluation order?

MLTT (CbN)

Ldep MLTT

embed.

CPS

MLTT (CbV)
embed.

Conjecture: (Ldep)

V ,V ′ ::= x | (V ,V ′) | µ (κ1 · κ2).c | µx
−.c

t ,u ::= V | µx+.c | µ̂ .c | ˆ
c ::= 〈t || t ′〉−

ε ::= − | +
Étienne Miquey How delimited continuations can be used to define dependently typed CPS 14/ 15

Intro Dependent CPS Going further

Future work

(starring Guillaume Munch-Maccagnoni)

Study Ldep, sequent calculus presentation for a dependent CBPV

“nice”
?
= thunkable

compatible with di�erent kinds of e�ect?

Connections with Vákár’s dCBPV:

thunkable terms as the category of values?

V ::= ... | t• with t thunkable?

Connections with Pédrot-Tabareau’s Baclofen TT:

translations does not account for classical logic

what about a sequent calculus view of the e�ects they handled?

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 15/ 15

Intro Dependent CPS Going further

Thank you for you a�ention.

Étienne Miquey How delimited continuations can be used to define dependently typed CPS 15/ 15

	Intro
	Dependent CPS
	Going further

