How delimited continuations can be used
to define dependently typed CPS

Etienne MiQuEY

Equipe Gallinette, INRIA
LS2N, Université de Nantes

TYPES 2018

4 L S B LABORATOIRE
A ¢ DES SCIENCES
brria— ID2N G

DE NANTES

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Intro
@000

Dependent types

Lot of features:

o for programmers o for proof-assisted people
o for logicians o for proof-assisting people
Ingredients:

@ dependent product:

la:Arp:B IF'tp:Ml(a:A).Bla] Trt:A
T'+Aap:I(x: A).B T+ pt : B[]

@ dependent sum:

F'rt:A TFp:B[t/x] IF'tp:3(x:A).B Frp:3(x:A).B
Tk (t,p): X(x: A).B F'rwitp: A T+ prfp:Bwitp)

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Intro
[e] le]e]

CPS, classical logic & sequent calculi

CPS:

‘ Call-by-name ‘

Call-by-value

[tu] k. [t] [u] k

[A— B] | (-—A) —» ——B

Ak.[u] (Av.[t] vk)

A—) —|—|B

Provides semantics for control operators:

[call/cc, t] £ Aa.[t]e

Factorizes through sequent calculus:

Etienne MIQUEY

A-calculus | embed.

Appi-calculus

CbN

A-calculus | embed.

CPS

CbN

Auji-calculus

A

CbV

CPS

CbV

[throw, t] = A_[t]a

A-calculus

A-calculus

How delimited continuations can be used to define dependently typed CPS

Intro
[e] le]e]

CPS, classical logic & sequent calculi

CPS: ‘ Call-by-name ‘ Call-by-value

[tu] Akt] [u]l k| Ak.Ju] (Ao.[t] v k)
[A— B] | (-—A) - —-—B A— --B

Provides semantics for control operators:

[call/ccy t] £ Aa.[t]e [throw, t] = A_[t]e

Factorizes through sequent calculus:

A-calculus
CbN embed. .
Ayy-calc.u.lus cps A-calculus
Acaleul + polarities
calculus ——"
ChV

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Intro
[e]e] o]

Dependent Types & Classical Logic

On the Degeneracy of 2-Types in Presence of
Computational Classical Logic
H. Herbelin, TLCA 2005

Abstract. We show that a minimal dependent type theory based on X-
types and equality is degenerated in presence of computational classical
logic. By computational classical logic is meant a classical logic derived
from a control operator equipped with reduction rules similar to the ones
of Felleisen’s C or Parigot’s u operators. As a consequence, formalisms
such as Martin-Lof’s type theory or the (Set-predicative variant of the)
Calculus of Inductive Constructions are inconsistent in presence of com-
putational classical logic. Besides, an analysis of the role of the 7-rule for
control operators through a set-theoretic model of computational classi-
cal logic is given.

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Intro
[e]e] o]

Dependent Types & Classical Logic

Computational classical logic:
@ call/cc, captures the current continuation

@ throw, replaces the current continuation by «

Paradox:
One can define:

Hy := call/ccy(1,throw, (0,refl)) : X(x : IN).x =0

and reach a contradiction: oo

—

(wit Hy,prf Hy) — (1, refl)
———

Alxe X=

Morality:
% need to restrict dependencies to “not too effectful” computations

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Intro
[e]e]e]]

Dependent types & CPS

CPS Translating Inductive and Coinductive Types
G. Barthe & T. Uustalu, PEPM 2002

Etienne MIQUEY

ABSTRACT

We investigate CPS translatability of typed A-calculi with
inductive and coinductive types. We show that tenable
Plotkin-style call-by-name CPS translations exist for sim-
ply typed A-calculi with a natural number type and stream
types and, more generally, with arbitrary positive inductive
and coinductive types. These translations also work in the
presence of control operators and generalize for dependently
typed calculi where case-like eliminations are only allowed
in non-dependent forms. No translation is possible along the
same lines for small Y-types and sum types with dependent
case.

How delimited continuations can be used to define dependently typed CPS

Intro
[e]e]e]]

Dependent types & CPS

Questions:
@ lIs it really impossible?
Is the problem limited to call-by-name?
Is the problem limited to X-types?
What about value restriction?
Can’t we get a dependent sequent calculus?

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Intro
[e]e]e]]

Dependent types & CPS

Questions:
@ Is it really impossible?

No it’s not:
@ Bowman et al. [POPL 2018]:

parametric answer-types + extensional type theory
e M. [ESOP 2017]:
parametric and dependent answer-types + delimited continuations

@ Cong, Asai [ICFP 2018]

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Dependent CPS

Dependently typed CPS

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Dependent CPS
00000

Sequent calculus | Call-by-value | II-type

Can this work?
Iy g I

F,a:AI—b:B[a]IA) Fl-q;AIA F|e:B[q]|—A qEV()
TrAap:(a:A)B|A qu-e:H(a:A).Bl—A(C) !
uT

(Gaplq-er: (T rA)

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Dependent CPS
00000

Sequent calculus | Call-by-value | II-type

Can this work?
Iy g I

F,a:AI—b:B[a]IA) Fl-q;AIA F|e:B[q]|—A qEV()
TrAap:(a:A)B|A qu-e:H(a:A).Bl—A(C) !
uT

(Gaplq-er: (T rA)

—

, AT AFD: ,a: e: F
n, Da:Arp:Bla]|A T.a:Ale:Blgl+A
: ple): La:Ard)
Trq:A|A T|jalple):ArA

(Cur)

(qllaalple)): (T rA)

Mismatch

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Dependent CPS
00000

Sequent calculus | Call-by-value | II-type

Can this work? v
H.P Hfl He

F,a:AI—b:B[a]IA) Fl-q;AIA F|e:B[q]|—A qEV()
TrAap:(a:A)B|A quw:Hm:AyBkA(C) !
uT

(Gaplq-er: (T rA)

—

I, Ta:Arp:Bla]|A T,a:A|e:Blg]FrA;{IpHalg}
: (plle):T,a:AF A;{alg)
Trqg:A|A T |jalple):ArA;{lq)
(ql fasplie)): (TrA);{|}

(Cur)

()
(Cur)

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Dependent CPS
(o] le]ele]

CPS | Call-by-value | II-type (1/2)

Is it enough?
@ subject reduction / normalization / consistency as a logic v’

@ suitable for CPS translation X

la] [aa-p)] = lq] (Aa. [p] [e])
~—— S—— ——
This is quite normal:
@ we observed a desynchronization
@ we compensated only within the type system

% we need to do this within the calculus!

Intuition: [p] shouldn’t be applied to [e] before [q] has reduced

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Dependent CPS
[o]e] Jlele]

CPS | Call-by-value | II-type (2/2)

[Aa.plq-e)] — ([q] (Aa.[p]))[e]

@ Is any q compatible with such a reduction ?
@ s this typable ?

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

CPS | Call-by-value | II-type (2/2)

[Aa.plq-e)] — ([q] (Aa.[p]))[e]

@ Is any q compatible with such a reduction ?

@ If g eventually gives a value V:
(I Aa.[pI)[e] = (Aa.[pD[VDIel = [pI[V]/allel = [p[V/allle] v
@ If [¢] — A_.t and drops its continuation (meaning ¢ : L):

(Ia] (a.[p])[e] — ((A-.t)Aa.[p])[e] — t[e] X

How delimited continuations can be used to define dependently typed CPS

Dependent CPS
[o]e] Jlele]

CPS | Call-by-value | II-type (2/2)

[Aa.plq-e)] — ([q] (Aa.[p]))[e]

@ Is any q compatible with such a reduction ? ~> ¢ € NEF

@ If g eventually gives a value V:
(Il Aa.[p])[e] = (AalpD[VDIel — [pILIV]/alle] = [plV/allle] v
@ If [¢] — A_.t and drops its continuation (meaning ¢ : L):

(Ia] (a.[p])[e] — ((A-.t)Aa.[p])[e] — t[e] X

Negative-elimination free (Herbelin’12)

Values + one continuation variable + no application

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Dependent CPS
[o]e] Jlele]

CPS | Call-by-value | II-type (2/2)

[Aa.plq-e)] — ([q] (Aa.[p]))[e]

@ Is any q compatible with such a reduction ? ~> ¢ € NEF
@ s this typable ?

Naive attempt:

([q] (Aa.fp]) el
—— —— ~——
(Ao L)—>L I(q.4)~—B(a) -B(q)
X

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Dependent CPS
[o]e] Jlele]

CPS | Call-by-value | II-type (2/2)

[Aa.plq-e)] — ([q] (Aa.[p]))[e]

@ Is any q compatible with such a reduction ? ~> ¢ € NEF
@ s this typable ?

Friedman’s trick:

([q] (Aafp]) [l
—— ~—— —
VR.(A—R?)—R? I1(:4)——B(a) —B(q)
||B

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Dependent CPS
[o]e] Jlele]

CPS | Call-by-value | II-type (2/2)

[Aa.plq-e)] — ([q] (Aa.[p]))[e]

@ Is any q compatible with such a reduction ? ~> ¢ € NEF
@ s this typable ? ~> parametric return-type
Better:
([4] (Aafp]) _[e]
—— —— ~——
VR-(H(U:/\)R(Q))_)R(CI) H(a:A)_'_'B(a> "B(‘Z)
—=B(q)

(Remark: not possible without q € NEF)

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Dependent CPS
[o]e]e] le]

Delimited continuations

[(Aaplq-e)] — (lq] (Aa.[p]))[e]

So, we’re looking for:

qeNEF 5
Qaplg-e) — {(u?Lqljaipl ?))|e)
such that we first reduce (q | ga.<p |l ?)).

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Dependent CPS
[o]e]e] le]

Delimited continuations

[(Aaplq-e)] — (lq] (Aa.[p]))[e]

So, we’re looking for:

qeNEF 5
Qaplg-e) — {(u?Lqljaipl ?))|e)
such that we first reduce (q | ga.<p |l ?)).

Delimited continuations:

(ptheley — (it e) (ifc - ¢)
b plth) ey — (ple)

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Dependent CPS
[o]e]e] le]

Delimited continuations

[Aaplg-e)] — (lq] (Aa.[p]))]e]

So, we’re looking for:

eNEF . 5 .
Uaplg-e) "— (upLgliaiplp)e)
such that we first reduce {(q | fia.{p || tp)).

Delimited continuations:

 utpclley — (utp.cfe) (ifc—>¢’)
(utp-pltp) ey — (ple)

In other words:

q-e2 jib{utpdq jvplv-tp)e) (q € NEF)

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Dependent CPS
[o]e]e]e]]

Call-by-value | 2-type

Exact same story:

x:Trx:T a:AHTFa:Al]

x: T.a: At (r.a) 2(x:T).A Mism
Ft:T Fp:A[t] Fp i All]
F(tp):2(x:T).A ... , :
((t.p) I e) — (] ixdp |l fia((x.a) I e)))

CPS:

[(t.p)Tp k =[] (Ax. [p]l, (Aa.k (x,a))
—_—— —

—=A[t] —A[x]

[p] shouldn’t be applied to its continuation before [t] has reduced

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Dependent CPS
[o]e]e]e]]

Call-by-value | 2-type

[p] shouldn’t be applied to its continuation before [t] has reduced

CPS:
—~—A[t] —-A[t]

[(t.)T, k 2 Tpl, |

(1 (Axa.k (x,a)))
——
YR.II(x:T).R[x]>R[t] TI(x:T).—A[x]

Co-delimited continuations:

() e — (p | o (¢ | .60 1 dx.) 1))

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

ng further

Conclusion

ienne MIQUEY i ions can be used to define dependently typed CPS

Here comes duality again!

Going further
@00

MLTT | embed. | dApp-calculus CPS
CbV CbV

MLTT | embed. | dApufi-calculus CPS
CbN CbN

Call-by-name:

MLTT

E
e

@ (q-e):Il(a: A).Bis not problematic (g is to be substituted directly)
@ (t,p) : 2(a: A).B poses the exact same problem
% same ideas allow to soundly define reduction & CPS

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Going further
@00

Here comes duality again!

MLTT | embed. | dApp-calculus CPS
Chby Chbv MLTT

MLTT

CbN CbN

MLTT | embed. | dApjfi-calculus CPS

Call-by-name:
@ (q-e):Il(a: A).Bis not problematic (g is to be substituted directly)
@ (t,p) : 2(a: A).B poses the exact same problem
% same ideas allow to soundly define reduction & CPS

In each case:

@ problem of synchronizing the evaluation of a pair (t,p) / (q - €)
@ (co-)delimited continuations solve the problem

@ dependent and parametric return-type in the CPS

@ requires a restriction to “nice” terms

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Going further
oeo

Occam’s razor

Observation:

the solutions are unrelated to the evaluation strategy

Couldn’t we:
@ consider a core calculus with pairs/delimited continuations?
@ use polarities to define evaluation order?

MLTT (CbN) embed.
(e

MLTT (Cbv) | embed.

Conjecture: (Lgep)

V,V’
t,u

x| (V,V') | p(ky - k2).c | pxc c u= (t|t')”
V|px*tceljpc|~ e u= — |+

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Going further
[ele] J

Future work

(starring Guillaume Munch-Maccagnoni)

Study Lgep, sequent calculus presentation for a dependent CBPV

2
@ “nice” = thunkable

@ compatible with different kinds of effect?

Connections with Vakar’s dCBPV:
@ thunkable terms as the category of values?
@ V = ... | t* with t thunkable?

Connections with Pédrot-Tabareau’s Baclofen TT:
@ translations does not account for classical logic

@ what about a sequent calculus view of the effects they handled?

Etienne MIQUEY How delimited continuations can be used to define dependently typed CPS

Thank you for you attention.

Etienne MIQUEY imited continuations can be used to define dependently typed CPS

	Intro
	Dependent CPS
	Going further

