CPS translations & environments

A well-typed story

Hugo Herbelin Etienne Miquey
Inria LIP
Université de Paris, IRIF ENS de Lyon

March 19th 2021

— Aip Crzia— NN

ENS DE LYON

1/ 38

Introduction
000000

A computational wonderland

The A-calculus

One calculus to rule them all

2/ 38

Introduction
000000

A computational wonderland

The A-calculus

One calculus to rule them all

A very nice abstraction:
@ Turing-complete e different evaluation strategies

o different type systems @ pure and effectful computations

2/ 38

Introduction
000000

A computational wonderland

The A-calculus

One calculus to rule them all

A very nice abstraction:
@ Turing-complete e different evaluation strategies

o different type systems @ pure and effectful computations

Operational semantics through abstract machines
% SECD (Landin), KAM (Krivine), CEK (Felleisen and Friedman), ZINC (Leroy)...

2/ 38

Introduction
000000

A computational wonderland

The A-calculus

One calculus to rule them all

A very nice abstraction:
@ Turing-complete e different evaluation strategies

o different type systems @ pure and effectful computations

Operational semantics through abstract machines
% SECD (Landin), KAM (Krivine), CEK (Felleisen and Friedman), ZINC (Leroy)...

Continuation-passing style (CPS) translations allow to abstract
the machine again.
@ specify an evaluation strategy
o make explicit the control flow
@ induce a type translation = syntactic model
% allowing to transfer logical properties from the target calculus

2/ 38

Introduction
0e00000

In praise of laziness

Call-by-need evaluation strategy:

@ evaluates arguments of functions only when needed

% as in call-by-name

@ shares the evaluations across all places where they are needed

9> as in call-by-value

3/38

Introduction
0e00000

In praise of laziness

Call-by-need evaluation strategy:

@ evaluates arguments of functions only when needed

% as in call-by-name

@ shares the evaluations across all places where they are needed

9> as in call-by-value

In short:
demand-driven computations + memoization

Many benefits, used in Haskell (by default) or Coq (tactic, kernel).

3/38

Introduction
0e00000

In praise of laziness

Call-by-need evaluation strategy:

@ evaluates arguments of functions only when needed

% as in call-by-name

@ shares the evaluations across all places where they are needed

9> as in call-by-value

In short:
demand-driven computations + memoization

Many benefits, used in Haskell (by default) or Coq (tactic, kernel).

Trickier and historically less studied than CbName/CbValue.

3/38

Introduction
[e]e] lelelele]

Computing with global environments

Standard abstract machines use local environments and closures:

Krivine Abstract Machine (CbName)

tu * S *x E —¢ tx(u,E)-S%xE
Ax.t % (u,E')-S* E —g t*x S kE[x:=(uE)]
X * S x E[x == (L,E)][E” —>s tx S xE

4/ 38

Introduction
[e]e] lelelele]

Computing with global environments

Standard abstract machines use local environments and closures:

Krivine Abstract Machine (CbName)

tu * S *x E —¢ tx(u,E)-S%xE
Ax.t % (u,E')-S* E —g t*x S kE[x:=(uE)]
X * S x E[x == (L,E)][E” —>s tx S xE

Call-by-need requires a global environment to share computations.

Milner Abstract Machine (CbName)

tu * m %7 —c P ku-mx7
Axt,u-m*71 —pg btk m kr[x:=ul
x x 1 xt[x:=t]/ —s Ik 1 *r[x:=t]r’

4/ 38

Introduction
[e]e] lelelele]

Computing with global environments

Standard abstract machines use local environments and closures:

Krivine Abstract Machine (CbName)

tu * S *x E —¢ tx(u,E)-S%xE
Ax.t % (u,E')-S* E —g t*x S kE[x:=(uE)]
X * S x E[x == (L,E)][E” —>s tx S xE

Call-by-need requires a global environment to share computations.

Milner Abstract Machine (CbName)

tu * m %7 —c P ku-mx7
Axt,u-m*71 —pg btk m kr[x:=u]
x x 1 xt[x:=t]t/ —s Ok 1 *r[x:=t]r’

Globality requires to explicitly handle addresses or a renaming
process.

4/ 38

Introduction
[e]e]e] lelele]

A thorn in the side

A lost paradise?
v~ Abstract machines with global environments

v" By-need abstract machines
% Sestoft’s machine, Accattoli, Barenbaum and Mazza’s Merged MAD

X Typed continuation-and-environment passing style
translation?

Several difficulties to handle:
@ How should control and environments interact?
e Can we soundly type environments?
@ ... while accounting for extensibility?

@ How to avoid name clashes?

5/38

Introduction
0000e00

Classical logic and control operators

Classical logic:
Intuitionistic logic + AV -A

(or =—A — A, ((A— B) = A) — A, etc.

Classical Curry-Howard:

A-calculus + call/cc

(Griffin’90: call/cc :VAB.((A — B) —» A) —» A)

Continuation-passing style translation:
@ operational semantics for call/cc

@ Godel’s negative translation

6/ 38

Introduction
00000e0

Classical call-by-need

let a = call/cc (Ak.(l,Ax.throw k x))
f = fst a
q = snd a

in f q (1,1)

How should a call-by-need strategy compute?

7/ 38

Introduction
00000e0

Classical call-by-need

let a = call/cc (Ak.(l,Ax.throw k x))
f = fst a
q = snd a

in f q (I,1)

How should a call-by-need strategy compute?

@ Okasaki, Lee, Tarditi’94:
Only the chain of bindings forcing an effect are not shared.

let a = (1,Ax.throw k x) let a = (1,1)

f =1 N f = fst a

q = Ax.throw k x q = Ax.throw k x
in g (1,1) in f q (I1,1)

— loops forever...

7/ 38

Introduction
00000e0

Classical call-by-need

let a = call/cc (Ak.(l,Ax.throw k x))
f = fst a
q = snd a

in f q (I,1)

How should a call-by-need strategy compute?

@ Ariola et al’12:
None of the bindings inside a side-effect are shared.

let a = (1,Ax.throw k x) let a = (1,1)
f =1 N f = fst a
q = Ax.throw k x q = snd a
in throw k (I,1) in f q (I,1)

— (I,1)

7/ 38

Introduction
000000e

This talk

Ariola et al.’12:
o defined a call-by-need sequent calculus Afj; 4
o used Danvy’s semantics artifacts to derive an untyped CPS

Goal #1

Do simply-typed terms of I[lvr*] normalize?

Goal #2

Typed continuation-and-environment-passing style (CEPS) translations

% i.e. understand how to soundly CEPS translate calculi with global environments

8/ 38

Introduction
000000e

This talk

Goal #2
Typed continuation-and-environment-passing style (CEPS) translations

% i.e. understand how to soundly CEPS translate calculi with global environments

Contribution
@ We introduce Fy, a generic calculus used as the target of CEPS
translations, which features:
e adata type for typed stores
o explicit coercions witnessing store extensions

8/ 38

Introduction
000000e

This talk

Goal #2

Typed continuation-and-environment-passing style (CEPS) translations

% i.e. understand how to soundly CEPS translate calculi with global environments

Contribution
@ We introduce Fy, a generic calculus used as the target of CEPS
translations, which features:
e adata type for typed stores
o explicit coercions witnessing store extensions

Generic?

We aim at isolating the key ingredients necessary to the definition
of well-typed CEPS translations.

8/ 38

Introduction
000000e

This talk

Goal #2
Typed continuation-and-environment-passing style (CEPS) translations

% i.e. understand how to soundly CEPS translate calculi with global environments

Contribution
@ We introduce Fy, a generic calculus used as the target of CEPS
translations, which features:
e adata type for typed stores
o explicit coercions witnessing store extensions

@ We use it to implement simply-typed CEPS translations for:
v call-by-need v call-by-name v call-by-value

8/ 38

Toolbox
[]

Our toolbox

Danvy’s semantics artifacts & Krivine realizability

9/ 38

Toolbox
@00000

CPS translation

Continuation-passing style translation: [-] : source — As°mething

@ preserving reduction
t—t =[S []
@ preserving typing
TFrt:A = [T] + e : TAT

o the type [L] is not inhabited

If Asomething is sound and normalizing:
Q If [t] normalizes, then ¢ normalizes
@ If tistyped, then t normalizes
© The source language is sound, i.e. there is no term Ft: L

10/ 38

Toolbox
(o] Jelele]e]

An atomic vision of logic

P.A. Melliés (2009) :

logic... leading to the decomposition of logical connectives and modalities into
smaller meaningful components. This practice has been extremely fruitful in
the past, and leads to the bold idea that there are such things as

elementary particles of logic

whose combined properties and interactions produce the logical phenomenon.

11/38

Toolbox
(o] Jelele]e]

An atomic vision of logic

P.A. Melliés (2009) :

logic... leading to the decomposition of logical connectives and modalities into
smaller meaningful components. This practice has been extremely fruitful in
the past, and leads to the bold idea that there are such things as

elementary particles of logic

whose combined properties and interactions produce the logical phenomenon.

Atomism, computationally:

11/ 38

Toolbox
(o] Jelele]e]

An atomic vision of logic

P.A. Melliées (2009) :

logic... leading to the decomposition of logical connectives and modalities into
smaller meaningful components. This practice has been extremely fruitful in
the past, and leads to the bold idea that there are such things as

elementary particles of logic

whose combined properties and interactions produce the logical phenomenon.

Atomism, computationally:

decom positj,,
n

Abstract
machine

sequent calculus

compilation

11/ 38

Toolbox
[o]e] lele]e}

Danvy’s semantic artifacts

A methodology for reductionism

© 00

for Call-by-Need Evaluation

Defunctionalized Interpreters
Danvy et al. (2010)

—

an operational semantics
a small-step calculus or abstract machine
a continuation-passing style translation

a realizability model

12/ 38

Toolbox
[o]e] lele]e}

Danvy’s semantic artifacts

A methodology for reductionism

© 00

Defunctionalized Interpreters

for Call-by-Need Evaluation
Danvy et al. (2010)

an operational semantics
a small-step calculus or abstract machine
a continuation-passing style translation

a realizability model

Coming next: this method on an easy example

12/ 38

Toolbox
000000

The Apji-calculus

The duality of computation

SyntaX' Curien/Herbelin (2000)
Terms tu=x | Ax.t | pa.c
Contexts ex=a|t-e|fix.c
Commands cu={(t|e)

Typing rules:
Tri:A|A Tle:ArA

(t]e):(I'rA)

(x:A) €T I,x:Art:B|A c:(TrFAa:A)
F'rx:A|A F'rixt:A—> B|A TFpac:A|A
(x:A) €A Fri:A|A I'le:BrA c:(T,x:ArN)
F'la:ArA T'lt-e:A—>BFA T'|jxc:ArA

13/ 38

Toolbox
000000

The Apji-calculus

The duality of computation
Curien/Herbelin (2000)

Syntax:
Terms tu=x | Ax.t | pa.c
Contexts ex=a|t-e|fix.c
Commands cu={(t|e)

Typing rules:
I'r A|A T| ArA

(T+A)
A €T I, Ar BJ|A rrA A
' A|A T+ A—>B|A I'r A|A
A €A ' A|A T| BrA I, ArA

T| ArA T| A—>BFA T| ArA

13/ 38

Toolbox
O000@0

Call-by-value Apji-calculus

Syntax:
Terms t ==V | pa.c Contexts e :=E| fix.c
Values Viu=x| Ax.t Co-values E:=al|t-e
Commands cu={t]e)
Reduction rules:
(pa.cle) - cle/a]
(VI ix.c) - c[V/x]
Uxtfu-e) — Culpxt]e))

14/ 38

Toolbox
O0000®

Semantic artifacts

Terms t ==V | pa.c Contexts e =:=FE | [ix
Values V :=x | Ax.t Co-values E:=oa |t

Commands ¢ == {t]e)
Small steps
(pacley — ~ cele/al
(Ve ~ Ve

Vlpx.c)e ~ ce[V/x]
Viu-e)e ~ (Vlu-e)y

TV Qxtu-e)y ~ (ulfix.t]e)),

— t

— €

15/ 38

Toolbox
O0000®

Semantic artifacts

Terms t ==V | pa.c Contexts e =:=FE | [ix.c
Values V :=x | Ax.t Co-values E:=a|t-e
Commands ¢ == {t]e)
Small steps CPS
L Gacley, ~ ale/al [ne.cl £ Ae.(Aar.[eo) e
A
(Ve ~ Ve [VIe = 2ee[V]v
L. (Vpxc)e ce[V/x] [ix.cle £ AV.(Ax.[c]o) V
Viu-e)e ~ V]u-e)y [u-e]e = AV.V [u]; [e]e
TV Uxtlu-e)y > (ulpx(t]e)) [Ax.t]v & Aue.u (Ax.[t]r €)

¢~ ¢! = [e]e l>[3 [e']e

15/ 38

Toolbox
O0000®

Semantic artifacts

Terms t ==V | pa.c Contexts e =:=FE | [ix.c
Values V :=x | Ax.t Co-values E:=a|t-e
Commands ¢ == {t]e)
CPS Types translation
[pe.cli = Ae.(Aa.[c]o) e [A]: £ [A]e — L
[V]i £ Ae.e [V]y
| [axec]e 2 AV.(Ax.[c]0 V [A]l. 2 [Aly — L
[u-e]e = AV.V [u]; [e]e

TV [Axt]y = Aueu (Ax.[t]; e) [A— B]y 2 [A]; — [A]le — L

Cre:AlA =[Ol [Aler [l : [AD

15/ 38

Toolbox
[Jele}

Realizability a la Krivine

o falsity value ||A||: contexts, opponent to A
o truth value |A| : terms, player of A

@ pole 1L: commands, referee

16/ 38

Toolbox
[Jele}

Realizability a la Krivine

o falsity value ||A||: contexts, opponent to A
o truth value |A| : terms, player of A

@ pole 1L: commands, referee

(tle)

16/ 38

Toolbox
[Jele}

Realizability a la Krivine

o falsity value ||A||: contexts, opponent to A
o truth value |A| : terms, player of A

@ pole 1L: commands, referee

(t]ey>co>-->cp

16/ 38

Toolbox
[Jele}

Realizability a la Krivine

o falsity value ||A||: contexts, opponent to A
o truth value |A| : terms, player of A

@ pole 1L: commands, referee

(t]|ey>co>--+>cpe€ IL?

16/ 38

Toolbox
[Jele}

Realizability a la Krivine

o falsity value ||A||: contexts, opponent to A
o truth value |A| : terms, player of A

@ pole 1L: commands, referee

(t]|ey>co>--+>cpe€ IL?

~+ 1l € A xII closed by anti-reduction

16/ 38

Toolbox
[Jele}

Realizability a la Krivine

o falsity value ||A||: contexts, opponent to A
o truth value |A| : terms, player of A

@ pole 1L: commands, referee

(t]|ey>co>--+>cpe€ IL?
~+ 1l € A xII closed by anti-reduction

Truth value defined by orthogonality :
Al = lIAII" ={t e A:Ve € ||All.(t]e) € 1L}

16/ 38

Toolbox
(o] lo}

Semantic artifacts++

(Terms) t n=pac|x|V
(Values) Vo= Ax.t

Small steps

L (pacle)y cele/al
Ve — ~ Ve

L. (Viixe)e ~ ce[V/x]
Vlu-e)e ~ (V]u-e)y

=V (Axt|u-eyy ~ (ulpx(t]e));

(Contexts) e u=fix.c|E
(Co-values) Ex=a |u-e
Realizability
Al 2 [|Alle™
1A]le £ |AN*
|A— Bly £

{Ax.t : VV € |Aly, t[V/x] € |Bl:}

17/ 38

Toolbox
(o] lo}

Semantic artifacts++

(Terms) t n=pac|x|V (Contexts) e u=fix.c|E
(Values) Vo= Ax.t (Co-values) Ex=a |u-e
Small steps Realizability
L (pacle) cile/a] Al £ ||Alle™
Vley — ~ Ve
L. Vipxe) ~ ce[V/x] 1A]le £ |AN*

Vlu-e)e ~ (V]u-e)y

-V o (Axtfu-e)yy ~ (ull pxt]e)), |A— B|y £
{Ax.t : VV € |Aly, t[V/x] € |Bl:}

Adequacy

For any pole 1L, if o |- T U A, then:
QTri:A|A = t[o] €Al Qc:TrHA) = clo]en
Q@T|e:ArA = ef[o] € |lAlle

|

17/ 38

Results

Normalizing commands

Ay £ {c: ¢ normalizes} defines a valid pole.

Proof. If ¢ — ¢’ and ¢’ normalizes, so does c. O

Normalization

For any command ¢, if ¢ : T + A, then ¢ normalizes.

Proof. By adequacy, any typed command c belongs to the pole 1L . O

Soundness

There is no term ¢ such that ¢ : L |.

Proof. Otherwise, t € |L|; = II* for any pole, absurd (AL £ 0). O

18/ 38

Normalization by realizabilty
°

Normalization of classical call-by-need

Realizability interpretation of I[lm*]

19/ 38

Normalization by realizabilty
@0000

The I[ZUT*]-calculus

(Analyzing Ariola et al. *12)

Sequent calculus:

(t]e)r
Term Context Environment
Syntax
Terms Contexts
Terms Lusz=V|pac Contexts e == E|jix.c
Weak val. Vi=ovlx Catchable cont. E := F|a| ji[x].(x| F)r
Strong val. vu= Axt | k Forcing cont. F = t-E|k
Environments Tu= ¢ | t[x :=t]| r]e := E]
Commands cu= (t|e)

20/ 38

Normalization by realizabilty
@0000

The I[IUT*]-calculus

(Analyzing Ariola et al. *12)

Sequent calculus:

(t]e)r
/ T AN
Term Context Environment
Syntax
Terms Contexts
Terms tuz=V|pa.c Contexts e == E|fix.c
Weak val. Vi=olx Catchable cont. E == F|a | fi[x].(x| F)r
Strongval. vi= Ax.t |k Forcing cont. F == t-E|lx
Environments ru= ¢ | t[x:=t] | r[a := E]
Commands cu= (t]e)

20/ 38

Normalization by realizabilty
@0000

The I[lm*]-calculus

(Analyzing Ariola et al. *12)

Syntax
Terms Contexts
Terms tuz=V|pac Contexts e == E|jix.c
Weak val. Vi=olx Catchable cont. E == F|a | j[x].{x| F)r
Strongval. v = Ax.t |k Forcing cont. F = t-E|x
Environments 7= ¢ | t[x :=t] | r[e := E]
Commands cu= (t]e)
Lazy reduction:
(Lazy storage) (t] px.c)r — ct[x :=t]
(Catch) (pa.c| E)t — ctla := E]
(Lookup) (x| F)elx:=tlr" — (] plx] x| F)')r
(Forced eval.) V| flx]-{x | Fyz’)r — (V| F)r[x := V]’
Axtlu-Eyr — (ulpx (]| E)r

20/ 38

Normalization by realizabilty
0O®000

Typing stores

Stores are typed with typing hypotheses T’

I'l'+tee Trpr:TY
kT

O]

Pty 7:T7 IIVHt:A
Trytfx:=t]: T, x: A

(72)

21/ 38

Normalization by realizabilty
[e]e] lele}

Semantic artifacts

Classical Call-by-Need: ...
Ariola et al. [2012]

Small steps:

+ e (t] fix.c),t — CeT[x = 1]
(L[E)er - (t|E)r
Tt (pac|Ey;t = (celE/a])r
VIEyr — (VIE)t

TE Vlalx] x| B = (VIF)yrlx:=V]’
(VIF)gr - (VI[F)yr

TV x| Fyrlx=tlr" — ({tlalx] x| F)t'),7
(Ax.t| Fyyt — (Ax.t| F)pt

+F Axtlu-Eypr - (uljx(t|E)),r

22/ 38

Normalization by realizabilty
[e]e] lele}

Semantic artifacts

Classical Call-by-Need: ...
Ariola et al. [2012]

CPS:
[Keleye] = [e]e[z]- []

1 e [ix.cle := Artfec]c r[x == t]

[Ele := Attt [E]e
1y [peccly = ATE.([c]c T)[E/]

Vle = AME.Et [[V]]V
1K [alx].{x | Fyz’]e := AtV.V z[x = V]’ [F]¢

[Fle = AMV.Vr [[F]]f
Ly [x]v = AtF.r(x)t (AcV.V r[x := V]’ [F])

[Ax.t]y = AtF.F 7 (AutE.[t]i t[x := u] E)

1L F [u-E]s := Arv.o[t]e 7 [E]e

22/ 38

Normalization by realizabilty
[e]e] lele}

Semantic artifacts

Realizability interpretation and
normalization of typed ...

Small-step: Realizability: M & Herbelin 0]
(L CAXIIXT)
T e (tlpx.c)er — ... lAlle = { e? € A"}
(I E).r —
-+t (pac|E),r — ... |Ale:={ 7 € |lAlle™}
(VIE)t —
+ E (V0pglxl (x| F)t")gr — ... IAlle :={ E? €|Alv"}
(VI F)pr oo
+V (x| Fyrlx:=tl" — ... [Alv:=={ V? € |Allr"}
(v| F)yr - ...
+F (lu-Eypr — ... AllF:={ F? €|A"}
4o (Ax.t|u-E),t — ... |[A— Bl, ={ Ax.t? : u? € |A];

= t[u/x]? € |B|}

22/ 38

Normalization by realizabilty
[e]e] lele}

Semantic artifacts

Realizability interpretation and
normalization of typed ...

Small-step: Realizability: M & Herbetn 2018)
(L CAXIIX7T)
T e (tlpx.cher — ... llAlle := {(elz) € |Al"}
(tIE)er —
-t (pac|Eyt — ... Al == {(tlr) € |Alle™}
VIE)r —
+— E (V0jalx]x | F)t)pr — ... lAlle = {(El7) € |Alv"}
(V| F)gr - ...
+V x| Fyrlx:=t]" — ... IAly = A{(VI7) € llAllF "}
(v| F)yr - ...
+ F @lu-Eypr — ... IAllr := {(FI7) € |AL*}
4o (Ax.t|u-E),t — ... |[A — B|, = {(Ax.t|7) : (u|r’) € |Al

= (t|re’[x := u]) € |Bl¢}

22/ 38

Normalization by realizabilty
[e]e]e] lo}

Realizability interpretation

Key ideas
@ Term-in-store (¢|7): FV(t) C dom(r) (7 closed)

generalizes closed terms
@ Pole : set of closures L which is:
o closed by anti-reduction:

ct"ell and c¢r > 't implies cre 1
o closed by store extension:

’

ctell and <7’ implies ¢z’ €l

@ Orthogonality :
(tlt)i(elt’) & 17,7’ compatible A (t|e)rr’ € AL.
o Realizers: definitions derived from the small-step rules!

23/ 38

Normalization by realizabilty
[e]e]e] lo}

Realizability interpretation

Adequacy

Forall 1L, if r FT and T +, ¢, then ct € L.

Proof: By induction on typing derivations.

Normalization

If +; ct then ¢t normalizes.

Proof: The set AL | = {ct € Cy : ct normalizes } is a pole.

23/ 38

Normalization by realizabilty
[e]e]e]e]]

To sum up

Initial questions:
v Does typed terms normalize? Yes!

v/ Can we define a realizability interpretation? Yes!

24/ 38

Normalization by realizabilty
[e]e]e]e]]

To sum up

Initial questions:
v Does typed terms normalize? Yes!

v/ Can we define a realizability interpretation? Yes!

Bonus:
@ Scales to 2nd order types for free

@ Seems to be a generic method for calculi with memory

24/ 38

Continuation-and-environment passing
style translations

Towards typed translations

25/ 38

Intuitions

(Analyzing Ariola et al. *12)
Sequent calculus:
(tle)r
/ T AN

Term Context Environment

Untyped CEPS:

[Ktleyr] = lele [7]- [t]
7N

environment continuation
passing passing

26/ 38

Intuitions

Untyped CEPS:

[<t]e)r]

[iix.c]e

[£].

[pa.cl

4t

[Alx]Ax | F)z']e
[Fe

[x]v

[Ax.t]y

[u - E¢

(Analyzing Ariola et al. *12)

~

environment
passing

lele [7]- 2]
7N
continuation
passing
Artfc]c z[x := t]
Attt [E]e
AE([e] 1)[E/a]

AME.ET[V],

AtV.V r[x = V][']. [F]¢
AtV.V T [[F]]f

AtF.r(x) T (AtV.V r[x =
AtF.Ft (AutE.[t]e t[x := u] E)
Arv.o [t]e T [E]e

v’ [F]e)

26/ 38

Typing the CEPS: guidelines

[Ktleye]l = [ele] [t]e
7N

environment continuation
passing passing

27/ 38

Typing the CEPS: guidelines

[Kele)el = lefe [z]- [t
7N

continuation

passing

Step 1 - Continuation-passing part

l
[T] F [e]e - [A]:

27/ 38

[Kele)el = lefe [z]- [t
7N

continuation

passing
Step 1 - Continuation-passing part
[A]e = [Ali— L t
[Ale = [Ale— L a
IIA]]E é [[A]]\/—) 1
[[A]]V 2 [[A]]F—> 1
[Alr 2 [Ah— L
[A—B], 2 [A]— [Ble— L

% In comparison, for call-by-name/call-by-value we would only have 4/3 layers.
27/38

Typing the CEPS: guidelines

[Kele)el = lefe [z]- [t
7N

continuation

passing

Step 2- Environment-passing part
l
[+ [t - [TT — [AD:]

28/ 38

Typing the CEPS: guidelines

[Kele)el = lefe [z]- [t
7N

continuation

passing

Step 2- Environment-passing part

l

FtJe: [T] >t A

28/ 38

Typing the CEPS: guidelines

[Kele)el = lefe [z]- [t
7N

continuation

passing

Step 2- Environment-passing part

l

[t : [1] = [I] e A— 1]

28/ 38

Typing the CEPS: guidelines

[Kele)el = lefe [z]- [t
7N

continuation

passing

Step 2- Environment-passing part

|

{" [t]; : [T] — ([T] — [[]pv A> L)— J_J

28/ 38

Typing the CEPS: guidelines

Keleye]l = [ele [[t
SN
continuation

passing

Step 2- Environment-passing part

[T]>e A
[r]> A
[T]>e A
[T]>v A
[T]>F A
[]>wA— B

(1> 11> 1> 1> > >

[T] — [[]rtA— L
[[rﬂ — [[F]]PEAHL
[T] — [T]>vA— L
[T] = [T]rrA— L
[[rﬂ - [[r]] l>VA_)J-
[

I - [T]»tA—[I]>eB— L

28/ 38

Typing the CEPS: guidelines

Step 3 - Extension of the environment
A possible reduction scheme:

t is needed (x| F)ri[x := t]ry

29/ 38

Typing the CEPS: guidelines

Step 3 - Extension of the environment
A possible reduction scheme:

t is needed (x| F)ri[x := t]ry
evaluation of t — (t| flx].{x | F)m)n

29/ 38

Typing the CEPS: guidelines

Step 3 - Extension of the environment
A possible reduction scheme:

t is needed (x| F)ri[x := t]ry
evaluation of t — (t| flx].{x | F)m)n
t produces a value —* (V| glx].{x | Fyr2) 7y

29/ 38

Typing the CEPS: guidelines

Step 3 - Extension of the environment
A possible reduction scheme:

t is needed (x| F)ri[x := t]ry

evaluation of t — (t| flx].{x | F)m)n

t produces a value —* (V| glx].{x | Fyr2) 7y

V is stored — (V| F)ri7'[x := V],
Key idea:

[t]t : [T] >t A should be compatible with any extension of [I']

29/ 38

Typing the CEPS: guidelines

Step 3 - Extension of the environment
Key idea:

[t]t : [T] >t A should be compatible with any extension of [I]

Store subtyping:

| By | B2 | At | Bs | Az | By

29/ 38

Typing the CEPS: guidelines

Step 3 - Extension of the environment

Key idea:

[t]t : [T] >t A should be compatible with any extension of [I]
Store subtyping:

Translation:
|

[I— [t]t : [T] — [T] > A— J_J

29/ 38

Typing the CEPS: guidelines

Step 3 - Extension of the environment

Key idea:

[t]t : [T] >t A should be compatible with any extension of [I]
Store subtyping:

Translation:
|

[" [t : .Y—>Y>EA_>J_]

29/ 38

Typing the CEPS: guidelines

Step 3 - Extension of the environment
Key idea:

[t]t : [T] >t A should be compatible with any extension of [I]

Store subtyping:

Translation:
|
[F [t]e : X - (X oY yA> 1) > 1)

(reminiscent of Kripke forcing)

29/ 38

Typing the CEPS: guidelines

Step 3 - Extension of the environment
Key idea:

[t]t : [T] >t A should be compatible with any extension of [I]

Store subtyping:

Translation:

[[]rcA = = YeA— L

[[]>rA = =Yg A— L

[T]reA = J—=YeyA— L

[[]evA = T - YepA— L

[T]»rA = I —>Te A— L
A

[f]>vA— B J—->YsA—>YegB— L

29/ 38

Typing the CEPS: guidelines

Step 4 - Avoiding name clashes

Ariola et al. work implicit relies on a-renaming on-the-fly.
% incompatible with the CEPS translation

30/ 38

Typing the CEPS: guidelines

Step 4 - Avoiding name clashes

Ariola et al. work implicit relies on a-renaming on-the-fly.
Y incompatible with the CEPS translation

Here, we use De Bruijn levels both:
@ in the source:

T(n) = Gn : T) (en | el o= e —— (t]jilxa)- (oo | F)eye
P (bl I Pe)e = (VI Fyelx, = VI

30/ 38

Typing the CEPS: guidelines

Step 4 - Avoiding name clashes

Ariola et al. work implicit relies on a-renaming on-the-fly.
Y incompatible with the CEPS translation

Here, we use De Bruijn levels both:
o and the target:

{xo CA o :BJ',xZ:C!—tt:D]

!

+[t]i: A B Co D

30/ 38

Typing the CEPS: guidelines

Step 4 - Avoiding name clashes
Here, we use De Bruijn levels both:
@ and the target:

{xo tA o :Bl,xZ:CFtt:D}
|

+[t]e: A BL.Co D

...where we use coercions o : I’ <:T'| to witness store extension

and keep track of De Bruijn:

E

B;

A

Bs

Ay

By

30/ 38

Fy
@00000

A calculus of expandable stores

Introducing Fy

31/38

Principles

A calculus of expandable stores
Herbelin & M. [2020]

System Fy defines a parametric target for CEPS translations

32/ 38

Principles

A calculus of expandable stores
Herbelin & M. [2020]

System Fy defines a parametric target for CEPS translations

Each CEPS translation can be divided in three blocks:
@ a source calculus and its type system
% Here, simply-typed calculi

32/ 38

Principles

A calculus of expandable stores
Herbelin & M. [2020]

System Fy defines a parametric target for CEPS translations

Each CEPS translation can be divided in three blocks:

@ a syntax for stores and coercions

32/ 38

Principles

A calculus of expandable stores
Herbelin & M. [2020]

System Fy defines a parametric target for CEPS translations

Each CEPS translation can be divided in three blocks:

© the target calculus, an instance of Fy

32/ 38

Stores

In the paper, we only use lists to represent stores:

Sourcetypes A = X|A—B Fu=A| At
Store types Y == Y|O|LF|X;Y
Stores r = O|[]]|<z[t] |7’

33/38

Stores

In the paper, we only use lists to represent stores:

Sourcetypes A = X|A—>B Fu:=A| At
Store types Y == Y|O|LF|X;Y
Stores r = O|[]]|<z[t] |7’

“Appended to a store of type Y’, the store 7 is of type X.”

Trt:Yo» T Trr: Yo, Y Tr:(Xp; V)oY
Tr[]:0-,0 Fr[t]: Yo, T Tror’ e, 1Y

Remark
type of a store = list of source types

33/38

Stores

In the paper, we only use lists to represent stores:

Sourcetypes A = X|A—B Fu=A| At
Store types Y == Y|O|LF|X;Y
Stores r = O|[]]|<z[t] |7’

“Appended to a store of type Y’, the store 7 is of type X.”

Trt:Yo» T Trr: Yo, Y Tr:(Xp; V)oY
Tr[]:0-,0 Fr[t]: Yo, T Tror’ e, 1Y

Remark
type of a store = list of source types

» = parameter of the target

how these types are translated
33/ 38

Coercions

Explicit witnesses of list inclusions:

@ Base case ©
(€
Tre:0<:0

34/ 38

Coercions

Explicit witnesses of list inclusions:
@ Base case
F're:0<: (Z)(E)
@ Local identity
Fro:Y' <Y
F'ro":(Y,F)<:(X,F)

(<:4)

34/ 38

Coercions

Explicit witnesses of list inclusions:
@ Base case
F're:0<: (Z)(g)
@ Local identity
Fro:Y' <Y
F'ro":(Y,F)<:(X,F)

(<)

© Strict extension
F'to:Y' <Y
I'tflo:(Y,F)<:Y

(<:ﬂ)

34/ 38

Coercions

Explicit witnesses of list inclusions:
Q Base case
F're:0<: @(5)
@ Local identity
Fro:Y' <Y
F'rot:XY,F)<:(Y,F)

(<)

© Strict extension
F'to:Y' <Y
I'tflo:(Y,F)<:Y

(<:ﬂ)

Example: .’ Z
(@) : T T.UT <T.U g

- T

B i

34/ 38

Coercions

Explicit witnesses of list inclusions:
Q Base case
F're:0<: @(5)
@ Local identity
Fro:Y' <Y
F'rot:XY,F)<:(Y,F)

(<)

© Strict extension
F'to:Y' <Y
I'tflo:(Y,F)<:Y

(<:ﬂ)

e

Example: (i
0. |
HI (N e)™) : To, T,U, Ty <: T,U — ul,
Ul|.--"|T
Remark: this corresponds to the function T T =
01 el>2 e24 - L

34/ 38

System Fy

In broad lines

System F extended with stores and coercions'

TActually, false advertizing, the situation is more involved.
35/ 38

System Fy

Syntax: Store type Y + Stores © + Coercions o +
Types T:=X|T - U | | Yo, Y > T |VY.T
Terms t:=k|x|Ax.t|tu| | | Ad.t | tT | AY.t |t Y

| split r at n along o : Y’ <: Y as (Y, so,), x, (Y1, 81,61) in ¢

35/ 38

System Fy

Syntax: Store type Y + Stores © + Coercions o +

Types Tu=X|T — U | | Yo, Y = T |VY.T
Terms t:=k|x|Ax.t|tu| | | Ad.t | tT | AY.t |t Y
| split r at n along o : Y’ <: Y as (Y, so,), x, (Y1, 81,61) in ¢

Intuitively, split allows to look in

for the term expected at
position n in Y using

expected

35/ 38

System Fy

Syntax: Store type Y + Stores © + Coercions o +

Types Tu=X|T — U | | Yo, Y = T |VY.T
Terms t:=k|x|Ax.t|tu| | | Ad.t | tT | AY.t |t Y
| split r at n along o : Y’ <: Y as (Y, so,), x, (Y1, 81,61) in ¢

Intuitively, split allows to look in

for the term expected at
positionn in Y using

expected .

35/ 38

System Fy

Syntax: Store type Y + Stores © + Coercions o +
Types T:=X|T - U | | Yo, Y > T |VY.T
Terms t:u=k|x|Ax.t|tu| | | Ad.t | tT | AY.t |t Y

| split 7 at n along o : X' <:Y as (Yy, So, 60), X, (Y1, 81,61) in t

Three kinds of reductions:

@ split e normalization of coercions @ usual S-reduction

We have:
@ Reduction preserves typing (Subject reduction)
@ Typed terms normalize (Normalization)

Shallow embedding in Coq: https://gitlab.com/emiquey/fupsilon

35/ 38

https://gitlab.com/emiquey/fupsilon

Examples

In the paper, we take advantage of the genericity of Fy:

» parameter depending
on the translation

Frt:Yo» T
Tr[f]: Yoo, T

36/ 38

Examples

In the paper, we take advantage of the genericity of Fy:

» parameter depending
on the translation

Frt:Yo» T
Tr[f]: Yoo, T

to define well-typed CEPS for simply-typed calculi:
v call-by-need v call-by-name v call-by-value

36/ 38

Examples

In the paper, we take advantage of the genericity of Fy:

» parameter depending
on the translation

Frt:Yo» T
Tr[f]: Yoo, T

to define well-typed CEPS for simply-typed calculi:
v call-by-need v call-by-name v call-by-value

These translations exactly follow the intuitions we saw before:

continuation-passing + environment-passing

negative translation Kripke-style forcing

36/ 38

Examples

In the paper, we take advantage of the genericity of Fy:

I YO > T - » parameter dfzpendlng
- " - on the translation
F + [t] : YO >r T

to define well-typed CEPS for simply-typed calculi:
v call-by-need v call-by-name v call-by-value

These translations exactly follow the intuitions we saw before:

continuation-passing + environment-passing

negative translation Kripke-style forcing

Remark: we could also consider System F as source calculus, by
changing the notion of source types.

36/ 38

Conclusion
e0

Conclusion

37/ 38

Conclusion
oe

Conclusion

We isolated the key ingredients for well-typed CEPS:
@ terms to represent and manipulate typed stores,

@ explicit coercions to witness store extensions.

38/ 38

Conclusion
oe

Conclusion

We isolated the key ingredients for well-typed CEPS:
@ terms to represent and manipulate typed stores,

@ explicit coercions to witness store extensions.

Fy has the benefits of being parametric:
e suitable for CEPS with different evaluation strategies
e compatible with different sources/type systems.

o compatible with different implementation of stores

38/ 38

Conclusion
oe

Conclusion

From a logical viewpoint:

CEPS = Kripke forcing interleaved with a negative translation

Connection between forcing and environment already known:

Presheaves

Forcing State monad

~_

38/ 38

Conclusion
oe

Conclusion

Open questions / further work

© Towards well-typed compilation transformations for
lazily-evaluated calculi? (cf. MetaCoq project)

38/ 38

Conclusion
oe

Conclusion

Open questions / further work

@ Exact expressiveness of Fy?

38/ 38

Conclusion
oe

Conclusion

Open questions / further work

@ Type translation as a modality?

[~ >t A is a function : store type — type

38/ 38

Conclusion
oe

Conclusion

Open questions / further work

@ Type translation as a modality?

{- > A is a function : store type — type}

OF £ Y- V<Y Y = (FY)—> L
< A = D(>E A) = D(l:l(>y A)) = ...

38/ 38

Thank you for your attention.

38/ 38

	Introduction
	

	Toolbox
	
	

	Normalization by realizabilty
	

	CEPS
	F
	

	Conclusion
	

	

