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A computational wonderland

The A-calculus

One calculus to rule them all

A very nice abstraction:
@ Turing-complete e different evaluation strategies

o different type systems @ pure and effectful computations

Operational semantics through abstract machines
% SECD (Landin), KAM (Krivine), CEK (Felleisen and Friedman), ZINC (Leroy)...

Continuation-passing style (CPS) translations allow to abstract
the machine again.
@ specify an evaluation strategy
o make explicit the control flow
@ induce a type translation = syntactic model
% allowing to transfer logical properties from the target calculus
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Call-by-need evaluation strategy:

@ evaluates arguments of functions only when needed

% as in call-by-name

@ shares the evaluations across all places where they are needed

9> as in call-by-value
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@ evaluates arguments of functions only when needed

% as in call-by-name

@ shares the evaluations across all places where they are needed

9> as in call-by-value

In short:
demand-driven computations + memoization

Many benefits, used in Haskell (by default) or Coq (tactic, kernel).

Trickier and historically less studied than CbName/CbValue.
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Computing with global environments

Standard abstract machines use local environments and closures:

Krivine Abstract Machine (CbName)

tu * S *x E —¢ tx(u,E)-S%xE
Ax.t % (u,E')-S* E —g t*x S kE[x:=(uE)]
X * S x E[x == (L,E)][E” —>s tx S xE
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Call-by-need requires a global environment to share computations.

Milner Abstract Machine (CbName)

tu * m %7 —c P ku-mx7
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Standard abstract machines use local environments and closures:

Krivine Abstract Machine (CbName)

tu * S *x E —¢ tx(u,E)-S%xE
Ax.t % (u,E')-S* E —g t*x S kE[x:=(uE)]
X * S x E[x == (L,E)][E” —>s tx S xE

Call-by-need requires a global environment to share computations.

Milner Abstract Machine (CbName)

tu * m %7 —c P ku-mx7
Axt,u-m*71 —pg btk m kr[x:=u]
x x 1 xt[x:=t]t/ —s Ok 1 *r[x:=t]r’

Globality requires to explicitly handle addresses or a renaming
process.
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A thorn in the side

A lost paradise?
v~ Abstract machines with global environments

v" By-need abstract machines
% Sestoft’s machine, Accattoli, Barenbaum and Mazza’s Merged MAD

X Typed continuation-and-environment passing style
translation?

Several difficulties to handle:
@ How should control and environments interact?
e Can we soundly type environments?
@ ... while accounting for extensibility?

@ How to avoid name clashes?
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Classical logic and control operators

Classical logic:
Intuitionistic logic + AV -A

(or =—A — A, ((A— B) = A) — A, etc.

Classical Curry-Howard:

A-calculus + call/cc

(Griffin’90: call/cc :VAB.((A — B) —» A) —» A)

Continuation-passing style translation:
@ operational semantics for call/cc

@ Godel’s negative translation

6/ 38
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Classical call-by-need

let a = call/cc (Ak.(l,Ax.throw k x))
f = fst a
q = snd a

in f q (1,1)

How should a call-by-need strategy compute?
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Classical call-by-need

let a = call/cc (Ak.(l,Ax.throw k x))
f = fst a
q = snd a

in f q (I,1)

How should a call-by-need strategy compute?

@ Okasaki, Lee, Tarditi’94:
Only the chain of bindings forcing an effect are not shared.

let a = (1,Ax.throw k x) let a = (1,1)

f =1 N f = fst a

q = Ax.throw k x q = Ax.throw k x
in g (1,1) in f q (I1,1)

— loops forever...
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Classical call-by-need

let a = call/cc (Ak.(l,Ax.throw k x))
f = fst a
q = snd a

in f q (I,1)

How should a call-by-need strategy compute?

@ Ariola et al’12:
None of the bindings inside a side-effect are shared.

let a = (1,Ax.throw k x) let a = (1,1)
f =1 N f = fst a
q = Ax.throw k x q = snd a
in throw k (I,1) in f q (I,1)

— (I,1)

7/ 38
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This talk

Ariola et al.’12:
o defined a call-by-need sequent calculus Afj; 4
o used Danvy’s semantics artifacts to derive an untyped CPS

Goal #1

Do simply-typed terms of I[lvr*] normalize?

Goal #2

Typed continuation-and-environment-passing style (CEPS) translations

% i.e. understand how to soundly CEPS translate calculi with global environments
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This talk

Goal #2

Typed continuation-and-environment-passing style (CEPS) translations

% i.e. understand how to soundly CEPS translate calculi with global environments

Contribution
@ We introduce Fy, a generic calculus used as the target of CEPS
translations, which features:
e adata type for typed stores
o explicit coercions witnessing store extensions

Generic?

We aim at isolating the key ingredients necessary to the definition
of well-typed CEPS translations.
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This talk

Goal #2
Typed continuation-and-environment-passing style (CEPS) translations

% i.e. understand how to soundly CEPS translate calculi with global environments

Contribution
@ We introduce Fy, a generic calculus used as the target of CEPS
translations, which features:
e adata type for typed stores
o explicit coercions witnessing store extensions

@ We use it to implement simply-typed CEPS translations for:
v call-by-need v call-by-name v call-by-value
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Our toolbox

Danvy’s semantics artifacts & Krivine realizability
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CPS translation

Continuation-passing style translation: [-] : source — As°mething

@ preserving reduction
t—t =[S []
@ preserving typing
TFrt:A = [T] + e : TAT

o the type [L] is not inhabited

If Asomething is sound and normalizing:
Q If [t] normalizes, then ¢ normalizes
@ If tistyped, then t normalizes
© The source language is sound, i.e. there is no term Ft: L
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An atomic vision of logic

P.A. Melliés (2009) :

logic... leading to the decomposition of logical connectives and modalities into
smaller meaningful components. This practice has been extremely fruitful in
the past, and leads to the bold idea that there are such things as

elementary particles of logic

whose combined properties and interactions produce the logical phenomenon.
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P.A. Melliées (2009) :

logic... leading to the decomposition of logical connectives and modalities into
smaller meaningful components. This practice has been extremely fruitful in
the past, and leads to the bold idea that there are such things as

elementary particles of logic

whose combined properties and interactions produce the logical phenomenon.

Atomism, computationally:

decom positj,,
n

Abstract
machine

sequent calculus

compilation
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Danvy’s semantic artifacts

A methodology for reductionism

© 00

for Call-by-Need Evaluation

Defunctionalized Interpreters
Danvy et al. (2010)

—

an operational semantics
a small-step calculus or abstract machine
a continuation-passing style translation

a realizability model
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Danvy’s semantic artifacts

A methodology for reductionism

© 00

Defunctionalized Interpreters

for Call-by-Need Evaluation
Danvy et al. (2010)

an operational semantics
a small-step calculus or abstract machine
a continuation-passing style translation

a realizability model

Coming next: this method on an easy example
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The Apji-calculus

The duality of computation

SyntaX' Curien/Herbelin (2000)
Terms tu=x | Ax.t | pa.c
Contexts ex=a|t-e|fix.c
Commands cu={(t|e)

Typing rules:
Tri:A|A  Tle:ArA

(t]e):(I'rA)

(x:A) €T I,x:Art:B|A c:(TrFAa:A)
F'rx:A|A F'rixt:A—> B|A TFpac:A|A
(x:A) €A Fri:A|A I'le:BrA c:(T,x:ArN)
F'la:ArA T'lt-e:A—>BFA T'|jxc:ArA
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The Apji-calculus

The duality of computation
Curien/Herbelin (2000)

Syntax:
Terms tu=x | Ax.t | pa.c
Contexts ex=a|t-e|fix.c
Commands cu={(t|e)

Typing rules:
I'r A|A T| ArA

(T+A)
A €T I, Ar BJ|A rrA A
' A|A T+ A—>B|A I'r A|A
A €A ' A|A T| BrA I, ArA

T| ArA T| A—>BFA T| ArA
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Call-by-value Apji-calculus

Syntax:
Terms t ==V | pa.c Contexts e :=E| fix.c
Values Viu=x| Ax.t Co-values E:=al|t-e
Commands cu={t]e)
Reduction rules:
(pa.cle) - cle/a]
(VI ix.c) - c[V/x]
Uxtfu-e)  —  Culpxt]e))
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Semantic artifacts

Terms t ==V | pa.c Contexts e =:=FE | [ix
Values V :=x | Ax.t Co-values E:=oa |t

Commands ¢ == {t]e)
Small steps
(pacley — ~ cele/al
(Ve ~ Ve

Vlpx.c)e ~ ce[V/x]
Viu-e)e ~  (Vlu-e)y

TV Qxtu-e)y ~ (ulfix.t]e)),

— t

— €
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Semantic artifacts

Terms t ==V | pa.c Contexts e =:=FE | [ix.c
Values V :=x | Ax.t Co-values E:=a|t-e
Commands ¢ == {t]e)
Small steps CPS
L Gacley,  ~  ale/al [ne.cl £ Ae.(Aar.[eo) e
A
(Ve ~ Ve [VIe = 2ee[V]v
L. (Vpxc)e ce[V/x] [ix.cle £ AV.(Ax.[c]o) V
Viu-e)e ~ V]u-e)y [u-e]e = AV.V [u]; [e]e
TV Uxtlu-e)y > (ulpx(t]e)) [Ax.t]v & Aue.u (Ax.[t]r €)

¢~ ¢! = [e]e l>[3 [e']e
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Semantic artifacts

Terms t ==V | pa.c Contexts e =:=FE | [ix.c
Values V :=x | Ax.t Co-values E:=a|t-e
Commands ¢ == {t]e)
CPS Types translation
[pe.cli = Ae.(Aa.[c]o) e [A]: £ [A]e — L
[V]i £ Ae.e [V]y
| [axec]e 2 AV.(Ax.[c]0 V [A]l. 2 [Aly — L
[u-e]e = AV.V [u]; [e]e

TV [Axt]y = Aueu (Ax.[t]; e) [A— B]y 2 [A]; — [A]le — L

Cre:AlA =[Ol [Aler [l : [AD
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Realizability a la Krivine

o falsity value ||A||: contexts, opponent to A
o truth value |A| : terms, player of A

@ pole 1L: commands, referee
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Realizability a la Krivine

o falsity value ||A||: contexts, opponent to A
o truth value |A| : terms, player of A

@ pole 1L: commands, referee

(t]|ey>co>--+>cpe€ IL?
~+ 1l € A xII closed by anti-reduction

Truth value defined by orthogonality :
Al = lIAII" ={t e A:Ve € ||All.(t]e) € 1L}

16/ 38
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Semantic artifacts++

(Terms) t n=pac|x|V
(Values) Vo= Ax.t

Small steps

L (pacle)y cele/al
Ve — ~ Ve

L. (Viixe)e ~ ce[V/x]
Vlu-e)e ~  (V]u-e)y

=V (Axt|u-eyy ~ (ulpx(t]e));

(Contexts) e u=fix.c|E
(Co-values) Ex=a |u-e
Realizability
Al 2 [|Alle™
1A]le £ |AN*
|A— Bly £

{Ax.t : VV € |Aly, t[V/x] € |Bl:}
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Semantic artifacts++

(Terms) t n=pac|x|V (Contexts) e u=fix.c|E
(Values) Vo= Ax.t (Co-values) Ex=a |u-e
Small steps Realizability
L (pacle) cile/a] Al £ ||Alle™
Vley — ~ Ve
L. Vipxe) ~ ce[V/x] 1A]le £ |AN*

Vlu-e)e ~  (V]u-e)y

-V o (Axtfu-e)yy ~ (ull pxt]e)), |A— B|y £
{Ax.t : VV € |Aly, t[V/x] € |Bl:}

Adequacy

For any pole 1L, if o |- T U A, then:
QTri:A|A = t[o] €Al Qc:TrHA) = clo]en
Q@T|e:ArA = ef[o] € |lAlle

|

17/ 38



Results

Normalizing commands

Ay £ {c: ¢ normalizes} defines a valid pole.

Proof. If ¢ — ¢’ and ¢’ normalizes, so does c. O

Normalization

For any command ¢, if ¢ : T + A, then ¢ normalizes.

Proof. By adequacy, any typed command c belongs to the pole 1L . O

Soundness

There is no term ¢ such that ¢ : L |.

Proof. Otherwise, t € |L|; = II* for any pole, absurd (AL £ 0). O

18/ 38



Normalization by realizabilty
°

Normalization of classical call-by-need

Realizability interpretation of I[lm*]
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Normalization by realizabilty
@0000

The I[ZUT*]-calculus

(Analyzing Ariola et al. *12)

Sequent calculus:

(t]e)r
Term Context Environment
Syntax
Terms Contexts
Terms Lusz=V|pac Contexts e == E|jix.c
Weak val. Vi=ovlx Catchable cont. E := F|a| ji[x].(x| F)r
Strong val. vu= Axt | k Forcing cont. F = t-E|k
Environments Tu= ¢ | t[x :=t]| r]e := E]
Commands cu= (t|e)
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The I[IUT*]-calculus

(Analyzing Ariola et al. *12)

Sequent calculus:

(t]e)r
/ T AN
Term Context Environment
Syntax
Terms Contexts
Terms tuz=V|pa.c Contexts e == E|fix.c
Weak val. Vi=olx Catchable cont. E == F|a | fi[x].(x| F)r
Strongval.  vi= Ax.t |k Forcing cont. F == t-E|lx
Environments ru= ¢ | t[x:=t] | r[a := E]
Commands cu= (t]e)
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Normalization by realizabilty
@0000

The I[lm*]-calculus

(Analyzing Ariola et al. *12)

Syntax
Terms Contexts
Terms tuz=V|pac Contexts e == E|jix.c
Weak val. Vi=olx Catchable cont. E == F|a | j[x].{x| F)r
Strongval. v = Ax.t |k Forcing cont. F = t-E|x
Environments 7= ¢ | t[x :=t] | r[e := E]
Commands cu= (t]e)
Lazy reduction:
(Lazy storage) (t] px.c)r — ct[x :=t]
(Catch) (pa.c| E)t — ctla := E]
(Lookup) (x| F)elx:=tlr"  — (] plx] x| F)')r
(Forced eval.) V| flx]-{x | Fyz’)r — (V| F)r[x := V]’
Axtlu-Eyr  —  (ulpx (]| E)r

20/ 38



Normalization by realizabilty
0O®000

Typing stores

Stores are typed with typing hypotheses T’

I'l'+tee Trpr:TY
kT

O]

Pty 7:T7 IIVHt:A
Trytfx:=t]: T, x: A

(72)
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Normalization by realizabilty
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Semantic artifacts

Classical Call-by-Need: ...
Ariola et al. [2012]

Small steps:

+ e (t] fix.c),t — CeT[x = 1]
(L[ E)er - (t|E)r
Tt (pac|Ey;t = (celE/a])r
VIEyr  —  (VIE)t

TE Vlalx] x| B = (VIF)yrlx:=V]’
(VIF)gr - (VI[F)yr

TV x| Fyrlx=tlr"  —  ({tlalx] x| F)t'),7
(Ax.t| Fyyt — (Ax.t| F)pt

+F Axtlu-Eypr - (uljx(t|E)),r
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Normalization by realizabilty
[e]e] lele}

Semantic artifacts

Classical Call-by-Need: ...
Ariola et al. [2012]

CPS:
[Keleye] = [e]e[z]- []

1 e [ix.cle := Artfec]c r[x == t]

[Ele := Attt [E]e
1y [peccly = ATE.([c]c T)[E/ ]

Vle = AME.Et [[V]]V
1K [alx].{x | Fyz’]e := AtV.V z[x = V]’ [F]¢

[Fle = AMV.Vr [[F]]f
Ly [x]v = AtF.r(x)t (AcV.V r[x := V]’ [F])

[Ax.t]y = AtF.F 7 (AutE.[t]i t[x := u] E)

1L F [u-E]s := Arv.o[t]e 7 [E]e

22/ 38
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Semantic artifacts

Realizability interpretation and
normalization of typed ...

Small-step: Realizability: M & Herbelin 0]
(L CAXIIXT)
T e (tlpx.c)er — ... lAlle = { e? € A"}
(I E).r —
-+t (pac|E),r — ... |Ale:={ 7 € |lAlle™}
(VIE)t —
+ E (V0pglxl (x| F)t")gr — ... IAlle :={ E? €|Alv"}
(VI F)pr oo
+V (x| Fyrlx:=tl" — ... [Alv:=={ V? € |Allr"}
(v| F)yr - ...
+F (lu-Eypr — ... AllF:={ F? €|A"}
4o (Ax.t|u-E),t — ... |[A— Bl, ={ Ax.t? : u? € |A];

= t[u/x]? € |B|}
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Semantic artifacts

Realizability interpretation and
normalization of typed ...

Small-step: Realizability: M & Herbetn 2018)
(L CAXIIX7T)
T e (tlpx.cher — ... llAlle := {(elz) € |Al"}
(tIE)er  —
-t (pac|Eyt — ... Al == {(tlr) € |Alle™}
VIE)r —
+— E (V0jalx]x | F)t)pr — ... lAlle = {(El7) € |Alv"}
(V| F)gr - ...
+V x| Fyrlx:=t]" — ... IAly = A{(VI7) € llAllF "}
(v| F)yr - ...
+ F @lu-Eypr — ... IAllr := {(FI7) € |AL*}
4o (Ax.t|u-E),t — ... |[A — B|, = {(Ax.t|7) : (u|r’) € |Al

= (t|re’[x := u]) € |Bl¢}
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Realizability interpretation

Key ideas
@ Term-in-store (¢|7): FV(t) C dom(r) (7 closed)

generalizes closed terms
@ Pole : set of closures L which is:
o closed by anti-reduction:

ct"ell and c¢r > 't implies cre 1
o closed by store extension:

’

ctell and <7’ implies ¢z’ €l

@ Orthogonality :
(tlt)i(elt’) & 17,7’ compatible A (t|e)rr’ € AL.
o Realizers: definitions derived from the small-step rules!
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Normalization by realizabilty
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Realizability interpretation

Adequacy

Forall 1L, if r FT and T +, ¢, then ct € L.

Proof: By induction on typing derivations.

Normalization

If +; ct then ¢t normalizes.

Proof: The set AL | = {ct € Cy : ct normalizes } is a pole.

23/ 38



Normalization by realizabilty
[e]e]e]e] ]

To sum up

Initial questions:
v Does typed terms normalize? Yes!

v/ Can we define a realizability interpretation? Yes!
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Normalization by realizabilty
[e]e]e]e] ]

To sum up

Initial questions:
v Does typed terms normalize? Yes!

v/ Can we define a realizability interpretation? Yes!

Bonus:
@ Scales to 2nd order types for free

@ Seems to be a generic method for calculi with memory
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Continuation-and-environment passing
style translations

Towards typed translations
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Intuitions

(Analyzing Ariola et al. *12)
Sequent calculus:
(tle)r
/ T AN

Term Context Environment

Untyped CEPS:

[Ktleyr] = lele [7]- [t]
7N

environment continuation
passing passing
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Intuitions

Untyped CEPS:

[<t]e)r]

[iix.c]e

[£].

[pa.cl

4t

[Alx]Ax | F)z']e
[Fe

[x]v

[Ax.t]y

[u - E¢

(Analyzing Ariola et al. *12)

~

environment
passing

lele [7]- 2]
7N
continuation
passing
Artfc]c z[x := t]
Attt [E]e
AE([e] 1)[E/a]

AME.ET[V],

AtV.V r[x = V][']. [F]¢
AtV.V T [[F]]f

AtF.r(x) T (AtV.V r[x =
AtF.Ft (AutE.[t]e t[x := u] E)
Arv.o [t]e T [E]e

v’ [F]e)
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Typing the CEPS: guidelines

[Ktleye]l = [ele ] [t]e
7N

environment continuation
passing passing
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Typing the CEPS: guidelines

[Kele)el = lefe [z]- [t
7N

continuation

passing

Step 1 - Continuation-passing part

l
[T] F [e]e - [A]:
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[Kele)el = lefe [z]- [t
7N

continuation

passing
Step 1 - Continuation-passing part
[A]e = [Ali— L t
[Ale = [Ale— L a
IIA]]E é [[A]]\/—) 1
[[A]]V 2 [[A]]F—> 1
[Alr 2 [Ah— L
[A—B], 2 [A]— [Ble— L

% In comparison, for call-by-name/call-by-value we would only have 4/3 layers.
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[Kele)el = lefe [z]- [t
7N

continuation

passing

Step 2- Environment-passing part

l

[t : [1] = [I] e A— 1]
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Typing the CEPS: guidelines

[Kele)el = lefe [z]- [t
7N

continuation

passing

Step 2- Environment-passing part

|

{" [t]; : [T] — ([T] — [[]pv A> L)— J_J
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Typing the CEPS: guidelines

Keleye]l = [ele [ [t
SN
continuation

passing

Step 2- Environment-passing part

[T]>e A
[r]> A
[T]>e A
[T]>v A
[T]>F A
[]>wA— B

(1> 11> 1> 1> > >

[T] — [[]rtA— L
[[rﬂ — [[F]]PEAHL
[T] — [T]>vA— L
[T] = [T]rrA— L
[[rﬂ - [[r]] l>VA_)J-
[

I - [T]»tA—[I]>eB— L
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t is needed (x| F)ri[x := t]ry
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Typing the CEPS: guidelines

Step 3 - Extension of the environment
A possible reduction scheme:

t is needed (x| F)ri[x := t]ry

evaluation of t — (t| flx].{x | F)m)n

t produces a value —* (V| glx].{x | Fyr2) 7y

V is stored — (V| F)ri7'[x := V],
Key idea:

[t]t : [T] >t A should be compatible with any extension of [I']
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Step 3 - Extension of the environment
Key idea:

[t]t : [T] >t A should be compatible with any extension of [I]

Store subtyping:

| By | B2 | At | Bs | Az | By
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Typing the CEPS: guidelines

Step 3 - Extension of the environment

Key idea:

[t]t : [T] >t A should be compatible with any extension of [I]
Store subtyping:

Translation:
|

[I— [t]t : [T] — [T] > A— J_J
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Step 3 - Extension of the environment

Key idea:

[t]t : [T] >t A should be compatible with any extension of [I]
Store subtyping:

Translation:
|

[" [t : .Y—>Y>EA_>J_]

29/ 38



Typing the CEPS: guidelines

Step 3 - Extension of the environment
Key idea:

[t]t : [T] >t A should be compatible with any extension of [I]

Store subtyping:

Translation:
|
[F [t]e : X - ( X oY yA> 1) > 1)

(reminiscent of Kripke forcing)
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Typing the CEPS: guidelines

Step 3 - Extension of the environment
Key idea:

[t]t : [T] >t A should be compatible with any extension of [I]

Store subtyping:

Translation:

[[]rcA = = YeA— L

[[]>rA = =Yg A— L

[T]reA = J—=YeyA— L

[[]evA = T - YepA— L

[T]»rA = I —>Te A— L
A

[f]>vA— B J—->YsA—>YegB— L
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Step 4 - Avoiding name clashes

Ariola et al. work implicit relies on a-renaming on-the-fly.
% incompatible with the CEPS translation
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Step 4 - Avoiding name clashes

Ariola et al. work implicit relies on a-renaming on-the-fly.
Y incompatible with the CEPS translation

Here, we use De Bruijn levels both:
@ in the source:

T(n) = Gn : T) (en | el o= e ——  (t]jilxa)- (oo | F)eye
P (bl I Pe)e = (VI Fyelx, = VI
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Typing the CEPS: guidelines

Step 4 - Avoiding name clashes

Ariola et al. work implicit relies on a-renaming on-the-fly.
Y incompatible with the CEPS translation

Here, we use De Bruijn levels both:
o and the target:

{xo CA o :BJ',xZ:C!—tt:D]

!

+[t]i: A B Co D
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Typing the CEPS: guidelines

Step 4 - Avoiding name clashes
Here, we use De Bruijn levels both:
@ and the target:

{xo tA o :Bl,xZ:CFtt:D}
|

+[t]e: A BL.Co D

...where we use coercions o : I’ <:T'| to witness store extension

and keep track of De Bruijn:

E

B;

A

Bs

Ay

By

30/ 38



Fy
@00000

A calculus of expandable stores

Introducing Fy
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Principles

A calculus of expandable stores
Herbelin & M. [2020]

System Fy defines a parametric target for CEPS translations
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System Fy defines a parametric target for CEPS translations

Each CEPS translation can be divided in three blocks:
@ a source calculus and its type system
% Here, simply-typed calculi
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Principles

A calculus of expandable stores
Herbelin & M. [2020]

System Fy defines a parametric target for CEPS translations

Each CEPS translation can be divided in three blocks:

© the target calculus, an instance of Fy

32/ 38



Stores

In the paper, we only use lists to represent stores:

Sourcetypes A = X|A—B Fu=A| At
Store types Y == Y|O|LF|X;Y
Stores r = O|[]]|<z[t] |7’
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Sourcetypes A = X|A—>B Fu:=A| At
Store types Y == Y|O|LF|X;Y
Stores r = O|[]]|<z[t] |7’

“Appended to a store of type Y’, the store 7 is of type X.”
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Stores

In the paper, we only use lists to represent stores:

Sourcetypes A = X|A—B Fu=A| At
Store types Y == Y|O|LF|X;Y
Stores r = O|[]]|<z[t] |7’

“Appended to a store of type Y’, the store 7 is of type X.”

Trt:Yo» T Trr: Yo, Y Tr:(Xp; V)oY
Tr[]:0-,0 Fr[t]: Yo, T Tror’ e, 1Y

Remark
type of a store = list of source types

» = parameter of the target

how these types are translated
33/ 38



Coercions

Explicit witnesses of list inclusions:

@ Base case ©
(€
Tre:0<:0
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Explicit witnesses of list inclusions:
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Coercions

Explicit witnesses of list inclusions:
Q Base case
F're:0<: @(5)
@ Local identity
Fro:Y' <Y
F'rot:XY,F)<:(Y,F)

(<)

© Strict extension
F'to:Y' <Y
I'tflo:(Y,F)<:Y

(<:ﬂ)

Example: .’ Z
(@) : T T.UT <T.U g

- T

B i
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Coercions

Explicit witnesses of list inclusions:
Q Base case
F're:0<: @(5)
@ Local identity
Fro:Y' <Y
F'rot:XY,F)<:(Y,F)

(<)

© Strict extension
F'to:Y' <Y
I'tflo:(Y,F)<:Y

(<:ﬂ)

e

Example: (i
0. |
HI (N e)™) : To, T,U, Ty <: T,U — ul,
Ul|.--"|T
Remark: this corresponds to the function T T =
01 el>2 e24 - L
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System Fy

In broad lines

System F extended with stores and coercions'

TActually, false advertizing, the situation is more involved.
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System Fy

Syntax: Store type Y + Stores © + Coercions o +
Types T:=X|T - U | | Yo, Y > T |VY.T
Terms t:=k|x|Ax.t|tu| | | Ad.t | tT | AY.t |t Y

| split r at n along o : Y’ <: Y as (Y, so, ), x, (Y1, 81,61) in ¢
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System Fy

Syntax: Store type Y + Stores © + Coercions o +
Types T:=X|T - U | | Yo, Y > T |VY.T
Terms t:u=k|x|Ax.t|tu| | | Ad.t | tT | AY.t |t Y

| split 7 at n along o : X' <:Y as (Yy, So, 60), X, (Y1, 81,61) in t

Three kinds of reductions:

@ split e normalization of coercions @ usual S-reduction

We have:
@ Reduction preserves typing (Subject reduction)
@ Typed terms normalize (Normalization)

Shallow embedding in Coq: https://gitlab.com/emiquey/fupsilon
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Examples

In the paper, we take advantage of the genericity of Fy:

» parameter depending
on the translation

Frt:Yo» T
Tr[f]: Yoo, T
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Examples

In the paper, we take advantage of the genericity of Fy:

I YO > T - » parameter dfzpendlng
- " - on the translation
F + [t] : YO >r T

to define well-typed CEPS for simply-typed calculi:
v call-by-need v call-by-name v call-by-value

These translations exactly follow the intuitions we saw before:

continuation-passing + environment-passing

negative translation Kripke-style forcing

Remark: we could also consider System F as source calculus, by
changing the notion of source types.
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Conclusion

We isolated the key ingredients for well-typed CEPS:
@ terms to represent and manipulate typed stores,

@ explicit coercions to witness store extensions.
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Conclusion
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Conclusion

We isolated the key ingredients for well-typed CEPS:
@ terms to represent and manipulate typed stores,

@ explicit coercions to witness store extensions.

Fy has the benefits of being parametric:
e suitable for CEPS with different evaluation strategies
e compatible with different sources/type systems.

o compatible with different implementation of stores
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Conclusion
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Conclusion

From a logical viewpoint:

CEPS = Kripke forcing interleaved with a negative translation

Connection between forcing and environment already known:

Presheaves

Forcing State monad

~_
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Conclusion
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Conclusion

Open questions / further work

© Towards well-typed compilation transformations for
lazily-evaluated calculi? (cf. MetaCoq project)
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Conclusion
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Conclusion

Open questions / further work

@ Type translation as a modality?

{- > A is a function : store type — type}

OF £ Y- V<Y Y = (FY)—> L
< A = D( >E A) = D(l:l( >y A)) = ...
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Thank you for your attention.
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