A sequent calculus with dependent types

for classical arithmetic

Etienne MiIQUEY

Equipe Gallinette, INRIA
LS2N, Université de Nantes

Workshop Réalisabilité
13 Juin 2018

7 P S {f LABORATOIRE

A o 0Es SCENCES

&fpw,a,- I Zk o NUNERIQUE
AL

DE NANTES

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic 1/ 46

A constructive proof of DC

A constructive proof of dependent choice
compatible with classical logic

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
[Jele}

Proofs-as-programs

The Curry-Howard correspondence

Mathematics Computer Science
Proofs Programs
Propositions Types
Deduction rules Typing rules
'rA=B TILA F'trt:A>B Tru:A
(=) (=E)
I'rB F'rtu:B
Benefits:
Program your proofs! ‘ Prove your programs!

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
[Jele}

Proofs-as-programs

Mathematics Computer Science
Av-4 try. . . catch
A=A X := 42
All sets can
be well-ordered random()
Sets that have the stop
same elements are equal goto

% We want more !

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
oeo

Extending Curry-Howard

Classical logic = Intuitionistic logic + AV -A

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
oeo

Extending Curry-Howard

Classical logic = Intuitionistic logic + AV -A

1990: Griffin discovered that call/cc can be typed by Peirce’s law

(well-known fact: Peirce’s law = A V —A)

Classical Curry-Howard:

A-calculus + call/cc

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
oeo

Extending Curry-Howard

Classical logic = Intuitionistic logic + AV -A

1990: Griffin discovered that call/cc can be typed by Peirce’s law

(well-known fact: Peirce’s law = A V —A)

Classical Curry-Howard:

A-calculus + call/cc

Other examples:
@ quote instruction ~ dependent choice
@ monotonic memory ~ Cohen’s forcing
o ..

With side-effects come new reasoning principles.

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic 4/ 46

A constructive proof of DC
[e]e] J

Teaser

With side-effects come new reasoning principles.

We will use several computational features:

@ dependent types @ lazy evaluation

@ streams @ shared memory

to get a proof for the axioms of dependent and countable choice
that is compatible with classical logic.

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
®00000

The axiom of choice

Axiom of Choice:

AC : VxA3yBP(x,y) —» AFA7BYXAP(x, f(x))

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
®00000

The axiom of choice

Axiom of Choice:

AC : VxATFyBP(x,y) —» A EVxAP(x, f(x))
= AH.(Ax.wit (Hx), Ax.prf (Hx))

Computational content through dependent types:

Fx:Trt:A % I'kp:Alt/x] FI—t:TG)
Mope M FEaA

T+ Ax.t:VxTA Tk (tp): IxTA '
Trp:AxTAKX) TFp:AxTA(x)

f
Trwitp:T Y Trprfp:Awity) *

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
O@0000

Incompatibility with classical logic

dependent sum + classical logic = &

Choice:
Ft:Vx € Ady € B.P(x,y) —» 1f € B ¥x € AP(x, f(x))
Excluded-middle:

Fs:VxeX.dye{0,1}.(Ux)Ay=1)V (=U(x) Ay =0)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic 7/ 46

A constructive proof of DC
O@0000

Incompatibility with classical logic

dependent sum + classical logic = &,

Choice:

Ft:Vx € Ady € B.P(x,y) —» 1f € B ¥x € AP(x, f(x))
Excluded-middle:

Fs:VxeX.dye{0,1}.(Ux)Ay=1)V (=U(x) Ay =0)
Take U undecidable:
Fts:df € {0,117 .Vx € X.(U(x) A f(x V (=U(x) A f(x

% ie. wit(ts) computes the uncomputable...

Etienne MIQUEY

A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
O@0000

Incompatibility with classical logic

dependent sum + classical logic = 2,

On the degeneracy of 2-Types
in presence of ...

One can define: Herbelin (2005)

Hj :=call/ccy(1,throws(0,p)) : dx.x =0
and reach a contradiction: oo

(wit Ho,prfHy) — (1,” p)
|
Fxex=0

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic 7/ 46

A constructive proof of DC
O@0000

Incompatibility with classical logic

dependent sum + classical logic = 2,

in presence of ...

Herbelin (2005)

On the degeneracy of 2-Types
One can define:

Hj :=call/ccy(1,throws(0,p)) : dx.x =0

and reach a contradiction:

0=0
(wit Ho,prfHy) — (1, p)
P
Fxex=0
We need to:
% share % restrict dependent types

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic 7/ 46

A constructive proof of DC
[e]e] le]ele]

Toward a solution ?

A constructive proof of dependent
choice, compatible with ...
Herbelin (2012)

@ Restriction to countable choice:

ACN : VXN FyB P(x,y) —» AFNByaNP(x, f(x))

@ Proof:
AC := AH.(An.if n = 0 then wit(H 0) else
ifn=1then wit(H 1) else ...,
An.if n =0 then prf(H 0) else
if n=1then prf(H 1) else...)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
[e]e] le]ele]

Toward a solution ?

A constructive proof of dependent
choice, compatible with ...
Herbelin (2012)

@ Restriction to countable choice:

ACN : VXN FyB P(x,y) —» AFNByaNP(x, f(x))

@ Proof:
ACN := AH.let Hy = H0in
letH; =H 1in

(An.if n =0 then wit Hy else
ifn=1then wit H; else ...,
An.if n = 0 then prf H, else
if n=1then prfH, else...)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
[e]e] le]ele]

Toward a solution ?

A constructive proof of dependent
choice, compatible with ...
Herbelin (2012)

@ Restriction to countable choice:
ACN : VXN FyB P(x,y) —» AFNByaNP(x, f(x))
@ Proof:

ACN :=AH.letH, = (HO0,H1,...,Hn,...)in
(An.wit (nth n Hy),An. prf (nth n Hy))

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
[e]e] le]ele]

Toward a solution ?

A constructive proof of dependent
choice, compatible with ...
Herbelin (2012)

@ Restriction to countable choice:
ACN : VXN FyB P(x,y) —» AFNByaNP(x, f(x))
@ Proof:

ACN = AH.let Hy = cofix) (H n,b(S(n))) in
(An.wit (nth n Hy),An. prf (nth n Hy))

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
[e]e]e] Jele]

dPA® (Herbelin’s recipe)

A proof system:
@ classical:
p,q = ... | catchy p | throw, p

@ with stratified dependent types :

o terms: t,u = ... |witp
o formulas: A,B:u=..|VxLA|3xTA| Mga).Blt=u
@ proofs: p.q = ...| Ax.p | (t,p) | Aa.p

@ a syntactical restriction of dependencies to NEF proofs

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
[e]e]e] Jele]

dPA® (Herbelin’s recipe)

A proof system:
@ classical:
p,q = ... | catchy p | throw, p

@ with stratified dependent types :

o terms: t,u = ... |witp
o formulas: A,B:u=..|VxLA|3xTA| Mg.a).Blt=u
@ proofs: p.q = ...| Ax.p | (t,p) | Aa.p

@ a syntactical restriction of dependencies to NEF proofs
@ call-by-value and sharing:

p.q:==..|leta=qinp
@ with inductive and coinductive constructions:
£,q 5= ... | Fixfm[po | ps] | cofixin p

o lazy evaluation for the cofix

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
0O000e0

State of the art

Subject reduction

IfTFp:Aandp — g, thenT + q: A

IfT F p: Athen p is normalizable.

| requires

%dpAw 1

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
O0000e

Roadmap

dPA® [Herbelin’12]:

+ control operators . .

+ dependent types ------- Subject reduction
+ co-fixpoints

+ sharing & laziness

CPS-translation?

?-calculus f------------- Normalization

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
O0000e

Roadmap

Remark: CPS usually factorize through sequent calculi!

A-calculus A-calculus
CbN CbV

embed. embed.

Apfi-calculus
CbN

Apfi-calculus

CPS Chv

CPS ‘

CPS CPS

A-calculus A-calculus

i
i

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
O0000e

Roadmap

dPA® [Herbelin’12]:
+ control operators . .
+ dependent types ------- Subject reduction
+ co-fixpoints

+ sharing & laziness

T
: typing/reduction preservation
1

dLPA®?

+ sequent calculus - -
+ dependent types F------- Subject reduction
+ co-fixpoints

+ sharing & laziness

T
1
. CPS-translation?
1
Y

?-calculus f------------- Normalization

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
O0000e

Roadmap

dPA® [Herbelin’12]:
+ control operators
+ dependent types F-------
+ co-fixpoints

+ sharing & laziness

1
dLPA®?
— - + sequent calculus
A'[lv'r*] + dependent types F-------
+ co-fixpoints

— + sharing & laziness

T
1
. CPS-translation?
1
Y

?-calculus f------------

Subject reduction

typing/reduction preservation

Subject reduction

- Normalization

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A constructive proof of DC
O0000e

Roadmap

dPA® [Herbelin’12]:
+ control operators . .
+ dependent types ------- Subject reduction
+ co-fixpoints

+ sharing & laziness

: typing/reduction preservation
1
dLPA®?

- + sequent calculus
dL— T | declloendent types F------- Subject reduction
+ co-fixpoints
+ sharing & laziness

T
1
. CPS-translation?
1
Y

?-calculus f------------- Normalization

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts

Danvy’s semantic artifacts

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
0000000000

CPS translation

Continuation-passing style translation: [-] : source — Amachin
@ preserving reduction

st =[S []
@ preserving typing
TFrt:A = [T] - 2] - [A]

@ the type [L] is not inhabited

If Ama<hin is sound and normalizing:
Q If [t] normalizes, then t normalizes
Q If tistyped, then t normalizes
© The source language is sound, i.e. there is no term F¢: L

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic 13/ 46

Semantic artifacts
0000000000

CPS translation

Continuation-passing style translation: [-] : source — Amachin

@ preserving reduction
@ preserving typing
o the type [L] is not inhabited

If Ama<hin is sound and normalizing:
Q If [t] normalizes, then t normalizes
Q If tistyped, then t normalizes

© The source language is sound, i.e. there is no term F¢: L

Danvy’s methodology)
. . Defunctionalized Interpreters
@ an operational semantics for Call-by-Need Evaluation
. Danvy et al. (2010)
© a small-step calculus or abstract machine
© a continuation-passing style translation

@ arealizability model

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
0Oe000000000

The Apji-calculus

The duality of computation
Syntax: Curien/Herbelin (2000)

(Proofs) pu=allap|pac
(Contexts) ex=al|p-e| fac
(Commands) ¢ :=(p|e)

Typing rules:
Tri:A|A TleArA

(t]e) (T FA)

(a:A) el Ia:Avrp:B|A c:(TrAa:A)
F'ra:A|A I'tAlap:A—>B|A T'vpac:AlA
(ax :A) € A F'rp:AlA I'le:BrA c:(T,a:ArN)
T|l|a:Ar A IF'lp-e:A>BFA T'|jia.c:ArA

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
0Oe000000000

The Apji-calculus

The duality of computation

SyntaX' Curien/Herbelin (2000)

(Proofs) pu=allap|pac
(Contexts) ex=al|p-e| fac
(Commands) ¢ :=(p|e)

Typing rules:
I+ A|A T| ArA

TrA)
A eT I, A+ BJ|A T'rA, A
Tr A|A T+ A—>B|A T+ Al A
A €A ' A|A I'| BFrA I', ArA
T'| ArA T A—-> BFA T ArA

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
0Oe000000000

The Apji-calculus

The duality of computation
Syntax: Curien/Herbelin (2000)

(Proofs) pu=allap|pac
(Contexts) ex=al|p-e| fac
(Commands) ¢ :=(p|e)

Typing rules:
Tri:A|A TleArA

(t]e) (T FA)

(a:A) el Ia:Avrp:B|A c:(TrAa:A)
F'ra:A|A I'tAlap:A—>B|A T'vpac:AlA
(ax :A) € A F'rp:AlA I'le:BrA c:(T,a:ArN)
T|l|a:Ar A IF'lp-e:A>BFA T'|jia.c:ArA

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
0Oe000000000

The Apji-calculus

The duality of computation
Curien/Herbelin (2000)

Syntax:
(Proofs) pu=allap|pac
(Contexts) ex=al|p-e| fac
(Commands) ¢ :=(p|e)
Reduction:

(Aaplg-e) — (qlpalple))
(¢l ga.cy — c[p/a] peP
(pa.cley — cle/a] eeé&
Critical pair: (uat.c | jia.c')
e N
clga.c’/a] c’[ua.c/al

A sequent calculus with dependent types for classical arithmetic

Etienne MIQUEY

Semantic artifacts
0Oe000000000

The Apji-calculus

The duality of computation

Syntax: Curien/Herbelin (2000)
(Proofs) pu=V]pa.c (Values) Viu=aldap
(Contexts) e :=FE| fa.c (Co-values) E u=al|p-e

(Commands) ¢ :=(p|e)

Reduction:
(Aaplg-e) — (qlpalple))
(plpa.cy — c[p/a] pe?P
(na.cley — cle/al eed

Critical pair: .,
P (pa.c| fia.c’)

CbIV/ \C‘bN
clpa.c’/a] c’[pa.c/al

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
[e]e] lelelelelelele]e]

Call-by-name Apji-calculus

Syntax:
(Proofs) p ==V |pua.c (Contexts) e ==E | jia.c
(Values) V:u=aldayp (Co-values) E:x=a|p-e

(Commands) c:==(p|e)

Reduction rules:

Pl pa.c) - c[p/a)
(pa.c | E) - c[E/a]
(Aaplg-ey — {qlfalple)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
[ee]e] lelelelelele]e)

Semantic artifacts

(Proofs) p ==V | pa.c (Contexts) e
(Values) V:u=al dayp (Co-values) E :=

(Commands) c=={p|e)
Small steps

L. (plpacy ~ ce[p/al
PIE)e r1E),

4 (pa.c E)p ~ ce[E/a]
(VIE), ~ (VIE)E

T Vlg-eg ~ (Vlg-ey
TV (laplg-eyy ~ Lqlpalple)).

$

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic 16/ 46

Semantic artifacts
[ee]e] lelelelelele]e)

Semantic artifacts

(Proofs) p ==V | pa.c (Contexts) e ==E | ja.c
(Values) V:u=a|lap (Co-values) E:ux=a|p-e
(Commands) c=={p|e)
Small steps CPS
L. pliacey, ~ clp/al lia.clep = (Aa.[c]e) p
PIB. ~ (PIE)y, [E]ep = p [E]e
1, (paclE), ~ ce[E/a] lpa.cl, E 2 (Aa.[c].) E
(VIE)y, ~ (VIExg [VI,E=E[VIv
T8 Vig-e)g ~ (Vg ey [q-ele V£V gl [e]e
TV (daplg-eyy ~ (qlpalple)). [haplv ge = (Aa.e [pl)) q

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic 16/ 46

Semantic artifacts
[ee]e] lelelelelele]e)

Semantic artifacts

(Proofs) p ==V | pa.c (Contexts) e ==E | ja.c
(Values) V:u=a|lap (Co-values) E:ux=a|p-e
(Commands) c=={p|e)
Small steps CPS
L. pliacey, ~ clp/al lia.clep = (Aa.[c]e) p
PIB. ~ (PIE)y, [E]ep = p [E]e
1, (paclE), ~ ce[E/a] lpa.cl, E 2 (Aa.[c].) E
(VIE)y, ~ (VIExg [VI,E=E[VIv
T8 Vig-e)g ~ (Vg ey [q-ele V£V gl [e]e
TV daplg-ev ~ (qlpalple)). [haplv ge = (Aa.e [pl)) q
e = [l :>/3 [c'Te

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
[ee]e] lelelelelele]e)

Semantic artifacts

(Proofs) (Contexts)
(Values) (Co-values)

(Commands) cu={(p|e)

CPS Types translation
4o [fa.clep £ (Aa.[c]e)p [A]. = [[A]]p -1
[Elep = p [E]e
1y [pac]pE = (Aafc]e) E [A]l, £ [Allg — L
[VI,E=EVIy
T lg-eleV =Vl [ele [Allz = [Allv — L
TV [laplv ge = (Aa.e[pl,) q [A— Blly £ [A], — [A]le » L

F'rp:A|A = [TTp.[ATE - [plp : TAI,

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
[ee]ele] Telelelele]e)

Consequences

Normalization

Typed commands of the call-by-name Apji-calculus normalize.

Inhabitation

There is no simply-typed A-term t such that + ¢ : [.L]],.

Proof. [L]lp = (L — 1) — L and Ax.x is of type 1. — L. m]

Soundness

There is no proof p such that Fp: L |.

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
0O0000e00000

Realizability a la Krivine (1/2)

o falsity value ||A]|: contexts, opponent to A
@ truth value |A| : proofs, player of A

@ pole 1: commands, referee

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
0O0000e00000

Realizability a la Krivine (1/2)

o falsity value ||A]|: contexts, opponent to A
@ truth value |A| : proofs, player of A

@ pole 1: commands, referee

rle

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
0O0000e00000

Realizability a la Krivine (1/2)

o falsity value ||A]|: contexts, opponent to A
@ truth value |A| : proofs, player of A

@ pole 1: commands, referee

(rley>co>--->cpn

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
0O0000e00000

Realizability a la Krivine (1/2)

o falsity value ||A]|: contexts, opponent to A
@ truth value |A| : proofs, player of A

@ pole 1: commands, referee

pley>co>-->cp€lL?

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
0O0000e00000

Realizability a la Krivine (1/2)

o falsity value ||A]|: contexts, opponent to A
@ truth value |A| : proofs, player of A

@ pole 1: commands, referee

pley>co>-->cp€lL?

~ 1l € A% II closed by anti-reduction

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
0O0000e00000

Realizability a la Krivine (1/2)

o falsity value ||A]|: contexts, opponent to A
@ truth value |A| : proofs, player of A
@ pole 1L: commands, referee
(plley >co>--->cp€ L7
~ 1l € A% II closed by anti-reduction

Truth value defined by orthogonality :
|Al = lIAI* ={p e A:Ve € |lAll,{plle) € 1L}

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
00000080000

Semantic artifacts++

(Terms) pu=pacl|lalV (Contexts) e == fia.c | E
(Values) V u=lda.p (Co-values) Ez=a |p-e

Small steps
plpacy ~ ce[p/al
PIE). PIE),

(a.clEy, ~ c[E/a]
(VIE), ~ (VIE)E

Vlg-e)p ~ Vlg-e)v

+v (aplg-eyy ~ {(qglpalple).

§

|
[
try

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic 19/ 46

Semantic artifacts
00000080000

Semantic artifacts++

(Terms) pu=pacl|lalV (Contexts) e == fia.c | E
(Values) V u=lda.p (Co-values) Ez=a |p-e
Small steps Realizability
plpacye ~ ce[p/a] IAlle 2 |Al,™
PIBe ~ (GIB),
1, SpaclE), ~ ce[E/a] Al, = || Allg"

VIE), ~ (VIE)e

Vlg-e)p ~ Vlg-e)v A= Bllg 2 {q-e: qelAl
A e € ||Blle}

|
[
try

+v (aplg-eyy ~ {(qglpalple).

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic 19/ 46

Semantic artifacts
00000008000

Extension to second-order

I'le:Aln/x]+A
I'le:Vx.ArA

Trp:AlA x¢gFV(T,A)
F'rp:Vx.A|A

) (%)

T|e:AB/X]+A
Tle:VX.AFA

TrpiAlA XeFV(TLA)
Trp:VXA|A e

)

(Curry-style)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
00000000800

Realizability a la Krivine (2/2)

Standard model IN for 15'-order expressions

Definition (Pole)

1l € A XII of commands s.t.:

Ye,o/, (el Ac—c’) = cel

Truth value (player):
Alp = [lAllg™ ={peA: Ve |lAll.{plle) € 1L}

Falsity value (opponent):

A= Bl = {g-e: qelAlp AeelBll}
Al = llAlle™ = {p: Ve llAllg.(ple) e 1L}
IAlle = [Al," = {e: VpelAl(ple)e 1L}

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
00000000800

Realizability a la Krivine (2/2)

Standard model IN for 15'-order expressions

Definition (Pole)

1l € A XII of commands s.t.:

Ye,o/, (el Ac—c’) = cel

Truth value (player):
Alp = [lAllg™ ={peA: Ve |lAll.{plle) € 1L}

Falsity value (opponent):

A= Bl = {g-e: qelAlp AeelBll}
IVx.Alle = Unen [lA[n/x]lle
Al = llAlle™ = {p: Ve llAllg.(ple) e 1L}
IAlle = [Al," = {e: VpelAp(ple)e 1L}

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
00000000800

Realizability a la Krivine (2/2)

Standard model IN for 15'-order expressions

Definition (Pole)

1l € A XII of commands s.t.:

Ye,o/, (el Ac—c’) = cel

Truth value (player):
[Alp = [IAllE" ={pe A:Ve e |lAll{ple) € 1L}
Falsity value (opponent):
IF(ers..velle = F(e],. ... [ex])
A= Bl = {g-e: qelAlp AeelBll}
IVx.Alle = Unen llA[n/x]lle
IVXAlE = UpnkopmllALE/X]IE
Al = [lAlle" = {p: Yee llAllg.(ple) € 1L}
llAlle Al = {e: Vpe|Alp(ple)e 1}

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Semantic artifacts
00000000080

Adequacy

Valuation p:
p(x) e N p(X) : NF = P(10)
Substitution o:

cu=¢l|lo,a=p|o,a:=E

[I>

. {a(a) €lAl, Y(a:A)eT

o(a) € ||Allg Y(a:AL)eT

If o IF (' U A)[p], then:
QTrp:AlA = plo] €lAlpll, Q@ c:TrA) = clo]le L

QTlle:ArA = ef[o] €llAlp]lle

Proof. By mutual induction over the typing derivation. m]

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic 22/ 46

Semantic artifacts
0000000000 e

Results

Normalizing commands

Ay £ {c: ¢ normalizes} defines a valid pole.

Proof. If ¢ — ¢’ and ¢’ normalizes, so does c. O

Normalization

For any command ¢, if ¢ : T F A, then ¢ normalizes.

Proof. By adequacy, any typed command c belongs to the pole 1. O

Soundness

There is no proof p such that Fp: L |.

Proof. Otherwise, p € |L|, = II' for any pole, absurd (1L £0) O

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need

Classical call-by-need

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
@0000

Reminder

dPA® [Herbelin’12]:
+ control operators . .
+ dependent types F------- Subject reduction
+ co-fixpoints

+ sharing & laziness

L J

E typing/reduction preservation
Y

dLPA®?

- - + sequent calculus ' .
Allorx] { + dependent types F------- Subject reduction
+ co-fixpoints

— + sharing & laziness

T
1
. CPS-translation?
1
Y

?-calculus F------------- Normalization

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
0@000

Classical call-by-need

Classical Call-by-Need
. Sequent Calculi: ...
The A[;rx)-calculus: Ariola et al. (2012)

@ asequent calculus with explicit “stores”
@ Danvy’s method of semantics artifact:

@ derive a small-step reduction system
© derive context-free small-step reduction rules
© derive an (untyped) CPS

Questions:
% Does it normalize?
% Can the CPS be typed?

% Can we define a realizability interpretation?

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need

[e]e] le]e}

The I[lm*]-calculus

Syntax:

(Proofs)
(Weak values)
(Strong values)

Reduction rules:

(Lazy storage)

(Lookup)
(Forced eval.)

Etienne MIQUEY

p =V |pa.c ex=E|jla.c
Vi=vla
vu=Aaplk Fu=p-E|k
(Commands) c¢ =={(p|e)
(Closures) I ==cr
(Store) 7 u=€|1[a:=p]
| pga.cyt —
(uaclByr -
(al| Fyz[a := p]z’ -
(VI ilal<al F)z')r -
(Aaplq-E)r -

Eu=a | F| jla]l(a| F)r

(Contexts)
(Catchable contexts)
(Forcing contexts)

ctla :=p]
(c[E/a])T
plilalal F)r")r
(V| F)c[a :=V]’
(ql fralpl EN)t

A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
[e]e]e] le}

Semantic artifacts

Small steps:

Lo @liacr - corla=p]
PplIE)t - PlE),T
-+ P (pa.clEypt - (c[E/a])T
(VIE),T - (VIE)gt

TE (Vlila]l{al F)r")gT - (VI F)yrla:=V]r’

(VI F)gt - (VIF)yvt
TV (al| Fyyrla = p]t’ - plilalal F)yt'),t

(la.p| Fyyr - (Aap | Fygt

T F (Ada.pllq-E)pr - gl palplEY)ert

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic 28/ 46

Classical call-by-need
[e]e]e] le}

Semantic artifacts

CPS :
[Kpleyr]l = [ele [0 (eI,
1. [pa.clle := Arp.[c] z[a = p]
[ETe = Atp.pt [Ellg
1 [uecly = AcE([cl. 0)[E/a]
vl, = MEET[V],
+— g [glalal F)yx' g = AtV.V rla = V]t [F]F
[Flg = AtV.V e [F]F
1y [allo = AtF.r(a) t (AtV.V rla := V]’ [F]lF)
Aaplle = ATF.F 1 (AqrE.[[p]l, 7[a := q] E)
+F [g-Elr = Arvolgll,r [Ele

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
[e]e]e] le}

Semantic artifacts

Small-step:

Lo (Ppljia.crer —
PlE)r —
-+ p (pa.c| E)Pr - ...
VIEy,r — ...
+— E (Vlplal€al F)r)pgr — ...
(V| Fygt - ...
Vv (@lPyrla=ple —
(V] F)yr -
L F (wlg-E)pr — ...
4o (laplqg-Ey,t — ...

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic 28/ 46

Semantic artifacts

Classical call-by-need

[e]e]e] le}

Small-step:

4 e plpa.cyer
(PIE).t

1Lp (pa.c | E)pt

(VIE),r

+ E (Vlila{al F)t")gr
(VI F)gr

+V AalFyrla:=plr’
(| Fyyr

1 F (lgq-E)pr

1o (Aaplq-E)t

Etienne MIQUEY

Realizability:
(Lc ?)
lAlle :={ e? € |Al,"}
Al =1{ p? € llAllz™)
AllE = { E? €|Aly")
|Aly ={ V? € |Allr")
IAllF={ F? €A™}
|[A — Bl, :={ Aa.p? q? <€Al

= plg/a]? € |Bl:}

A sequent calculus with dependent types for classical arithmetic 28/ 46

Semantic artifacts

Classical call-by-need
[e]e]e] le}

Small-step:
4 e plpa.cyer
(PIE)et
) (pa.clE),
(VIE),T
+ E (Vlila{al F)t")gr
(VI F)gr
+V AalFyrla:=plr’
(V] F)yr
1 F (lgq-E)pr
1o (Aaplq-E)t

Realizability:
(L CAXIIXT)
lAlle :={ e? €|Al,"}

|Alp = { p? € llAllg™)
IAllg = { E? €|Aly*}
lAly ={ V? e llAllr"}
AllF = { F? €|Al,"}

|[A— Bl, ={ Aa.p? : q? €A,
= plg/a]? € |Bl;}

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic 28/ 46

Classical call-by-need
[e]e]e] le}

Semantic artifacts

Small-step: Realizability:
(L CAXIIXT)
T e plpac)r — lAlle = {(elr) € |Al,™}
PlE)et -
-+ P (pa.c|E)pr — ... |Al, = {(plr) € llAlle™}
VIEy,r — ...
+— E (Vlplal€al F)r)pgr — ... lAllg == {(El7) € |Alv "}
(VI F)gr - ...
+V (al Fyyrla:=plr" — |Aly = {(VIr) € |Allr}
(I Fyr -
-+ F (wlg-Eypr — ... lAllF := {(FI7) € |Al,*}
4o (laplqg-Ey,t — ... |A — B|, = {(Aa.pﬂ: (q17") € |Al;
= (plrr’[a = q]) € |Bl:}

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic 28/ 46

Classical call-by-need
[e]e]e]e]]

Realizability interpretation

A few novelties:
@ Term-in-store (t|7):
FV(t) € dom(r), 7 closed

@ Pole : set of closures 1L which is:
e saturated:

ct’"ell and c¢r —> '’ implies c¢re 1
e closed by store extension:

ctell and 77" implies c¢r’ €l

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
[e]e]e]e]]

Realizability interpretation

A few novelties:

@ Term-in-store (t|7):
FV(t) € dom(r), 7 closed

@ Pole : set of closures 1L which is:
e saturated:

ct’"ell and c¢r —> '’ implies c¢re 1
e closed by store extension:
ctell and 77" implies c¢r’ €l
@ Orthogonality :
(tlr)dL(elr’) & 7,7’ compatible A (t|e)rr’ € L.

@ Realizers: definitions derived from the small-step rules!

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
[e]e]e]e]]

Realizability interpretation

Adequacy

Forall 1., if r IFT and T +, ¢, thencr € L.

Normalization

If +; ct then ¢t normalizes.

Proof: The set 1L| = {ct € Cp : ct normalizes } is a pole.

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Classical call-by-need
[e]e]e]e]]

Realizability interpretation

Adequacy

Forall 1L, if r IFT and T +. ¢, then ct € 1L.

Normalization

If k7 ¢t then ¢t normalizes.

Proof: The set 1L | = {ct € Cy : ct normalizes } is a pole.

Initial questions:
% Does it normalize? Yes!
3 Can the CPS be typed? Yes! (but it is complicated...)
% Can we define a realizability interpretation? Yes!

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A sequent calculus with dependent types

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
[Jelelelolelelelele)

Reminder

dPA® [Herbelin’12]:
+ control operators . .
+ dependent types F------- Subject reduction
+ co-fixpoints

+ sharing & laziness

L J

: typing/reduction preservation
1
dLPA®?

—+ sequent calculus
dL? —{[declloendent types F------- Subject reduction
+ co-fixpoints
+ sharing & laziness

T
1
. CPS-translation?
1
Y

?-calculus F------------- Normalization

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
(] Ielelolelelelele)

A classical sequent calculus with dependent types

Can this work?
Iy g I

T,a:Avp:Bla]| A) Trq:A|A Tle:B[gl+A eV
TrAap:MgaBlA T|q-e:Mga.BrA :

(Aaplq e :(TFA)

(Cur)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
(] Ielelolelelelele)

A classical sequent calculus with dependent types

Can this work?
Iy g I

T,a:Avp:Bla]| A Trq:A|A Tle:BlglrA g€V

T+ Aap:TgwBlA " T|q-€:Mgn.BFA =

(Cur)
(Aaplg-e): (TrA)
—
I Fa:Arp:Bla]|A T,a:Ale:BlglrA
A Mismatch

: ple)y: T,a:ArA) Y
Trq:A|A T |jalple):ArA
(Cut

(qlpalple)): (I'rA)

Etienne MiQUEY A sequent calculus with dependent types for classical arithmetic

dL
(] Ielelolelelelele)

A classical sequent calculus with dependent types

Can this work? v

H}’ H.q H_e

T,a:Avp:Bla]| A Trq:A|A Tle:B[gl+A 9ev,
TrAap:HgayBlA 7 T'|q-e:Mga.BFA
(Aaplg-e): (T'FA)

(Cur)

—

I, Fa:Arp:Bla]|A T,a:Ale:Blg]FA;{IpHalg}

ple):T,a: Ar A;{alg)

F'rqg:A|A T'|fpalple): Ar A;{lq}
qliaplen : @ F Ay (1]

(Cur)

()
(Cur)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
[e]e] Telolelelelele)

Apji-calculus + dependent types with:
@ a list of dependencies:

Trp:A|Ajo Tle:ArAollp) A €A,
(ple): (TrA0)

@ a value restriction

(Cur)

Is it enough?
@ subject reduction
@ normalization
@ consistency as a logic
@ suitable for CPS translation

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
[e]e] Telolelelelele)

Apji-calculus + dependent types with:
@ a list of dependencies:

Trp:A|Ajo Tle:ArAollp) A €A,
(ple): (TrA0)

@ a value restriction

(Cur)

Is it enough?
@ subject reduction v/
@ normalization v/
@ consistency as a logic v/
@ suitable for CPS translation X

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL

[e]e] le]e]ele]ele]e)

Apji-calculus + dependent types with:
@ a list of dependencies:

Trp:A|Ajo Tle:ArAollp) A €A,
(ple): (TrA0)

@ a value restriction

(Cur)

Is it enough?
@ subject reduction v/
@ normalization v/
@ consistency as a logic v/
@ suitable for CPS translation X

[q] [pa<ple)] = M (Aa. lpi ieL)
~nA ~-B(a) ~B(g)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
[e]e]e] Tolelelelele)

Toward a CPS translation (1/2)

This is quite normal:
@ we observed a desynchronization
@ we compensated only within the type system
% we need to do this already in the calculus!

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
[e]e]e] Tolelelelele)

Toward a CPS translation (1/2)

This is quite normal:
@ we observed a desynchronization
@ we compensated only within the type system
% we need to do this already in the calculus!

Who’s guilty ?
Kql fa-plen] = lq] (Aa-[p][e])

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
[e]e]e] Tolelelelele)

Toward a CPS translation (1/2)

This is quite normal:
@ we observed a desynchronization
@ we compensated only within the type system
% we need to do this already in the calculus!

Who’s guilty ?
[Kqlpaplen] = gl (Aa.[p][e])

Motto: [p] shouldn’t be applied to [e] before [q] has reduced

(Iq] (Aa.[p])) €]

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
[e]e]e] Tolelelelele)

Toward a CPS translation (1/2)

This is quite normal:
@ we observed a desynchronization
@ we compensated only within the type system
% we need to do this already in the calculus!
Who’s guilty ?
Kqlfa-plie)] = lq] (Aa.[p]le])

Motto: [p] shouldn’t be applied to [e] before [q] has reduced

(Iq] (Aa.[p])) €]

So, we’re looking for:

(Aaplq-e)—=(u? Lqlpalpl ?)) e

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
[e]e]e] Tolelelelele)

Toward a CPS translation (1/2)

This is quite normal:
@ we observed a desynchronization
@ we compensated only within the type system
% we need to do this already in the calculus!
Who’s guilty ?
Kqlfa-plie)] = lq] (Aa.[p]le])

Motto: [p] shouldn’t be applied to [e] before [q] has reduced

(Iq] (Aa.[p])) €]

So, we’re looking for:

(aplq-e) - (utp gl palpltp)) I e)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL

[e]e]e]e] lelelelele)

Toward a CPS translation (2/2)

[Aaplq-e] — (Iq] (Aa.[p])[e]

@ Is any g compatible with such a reduction ?
@ s this typable ?

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL

[e]e]e]e] lelelelele)

Toward a CPS translation (2/2)

[Aaplq-e] — (Iq] (Aa.[p])[e]

@ Is any g compatible with such a reduction ?

@ If g eventually gives a value V:

(Iq] Aa.[p])[e] = (Aa[pD[VDIel — [PILIVI/alle] = [plV/allle] v

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
[e]elele] Yelelelele)

Toward a CPS translation (2/2)

[Aaplq-e] — (Iq] (Aa.[p])[e]

@ Is any g compatible with such a reduction ?

@ If g eventually gives a value V:
(Iq] Aa.[p])[e] = (Aa[pD[VDIel — [PILIVI/alle] = [plV/allle] v

@ If [q] — A_.t and drops its continuation (meaning t : L):

(Iq] (Aa-[p])]el = ((A--)Aa.[p])]e] — t[e] X

A sequent calculus with dependent types for classical arithmetic

dL
[e]elele] Yelelelele)

Toward a CPS translation (2/2)

[Aaplq-e] — (Iq] (Aa.[p])[e]

Questions:

@ Is any g compatible with such a reduction ? ~~ ¢ € NEF

@ If q eventually gives a value V:
(Iq] Aa.[p])[e] = (Aa[pD[VDIel — [PILIVI/alle] = [plV/allle] v

@ If [q] — A_.t and drops its continuation (meaning t : L):

(Iq] (Aa-[p])]el = ((A--)Aa.[p])]e] — t[e] X

Negative-elimination free (Herbelin’12)

Values + one continuation variable + no application

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic 35/ 46

dL
[e]elele] Yelelelele)

Toward a CPS translation (2/2)

[Aaplq-e] — (Iq] (Aa.[p])[e]

@ Is any g compatible with such a reduction ? ~~ ¢ € NEF
@ s this typable ?

Naive attempt:

(lq] (Aafp])) el
~—— ——" ——
(A—)J_)—>J_ H(a:A)—'—'B(a) ﬂB[q]

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
[e]elele] Yelelelele)

Toward a CPS translation (2/2)

[Aaplq-e] — (Iq] (Aa.[p])[e]

@ Is any g compatible with such a reduction ? ~~ ¢ € NEF
@ s this typable ?

Naive attempt:

([q] (daf[p]) [e]
S~—— S—— S~——
(A—>?)—? (4.4)~—B(a) —B[q]
—=B(q)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
[e]elele] Yelelelele)

Toward a CPS translation (2/2)

[Aaplq-e] — (Iq] (Aa.[p])[e]

@ Is any g compatible with such a reduction ? ~~ ¢ € NEF
@ s this typable ?

Friedman’s trick:

([q] (Aa.fp]) el
N—— N—— N———
VR.(A—>R?)—R? Il (4.4)~—B(a) -B[q]
I|B

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL

[e]e]e]e] lelelelele)

Toward a CPS translation (2/2)

[Aaplq-e] — (Iq] (Aa.[p])[e]

@ Is any g compatible with such a reduction ? ~~ ¢ € NEF
Q Is this typable ? ~~ parametric return-type
Better:
(lq] (Aafp]) el
~—— ~—— ~——
VR.(I1(4.4)R(a))—R(q) I1(g.4)——B(a) -B[q]
—=B(q)

(Remark: not possible without g € NEF)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
00000@0000

An extension of dL with:
@ delimited continuations
@ dependent types restricted to the NEF fragment

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic 36/ 46

dL

[e]e]e]e]e] lelelele)

An extension of dL with:
@ delimited continuations
@ dependent types restricted to the NEF fragment

Reduction rules:

(utp-p I tp) le) — (ple))
c—oc = {utp.c | e) — (utp.c’ | e)

(Aaplq-e) — (utp gl jiaipltp)) | e) (q € NEF)
(Aaplq- ey — (gl fialpe))) (q ¢ NEF)
(priple) = (utppll palprfaltp)) | e)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
00000@0000

An extension of dL with:
@ delimited continuations
@ dependent types restricted to the NEF fragment

Typing rules:
Regular mode Dependent mode

Trp:A|A Tle:ArA Trp:A|A Tle:AryAtp:Bollp)

(ple):T+A <p||€>:erA,tb:B;U

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
00000@0000

An extension of dL with:
@ delimited continuations
@ dependent types restricted to the NEF fragment

Typing rules:
Regular mode Dependent mode

Trp:A|A Tle:ArA Trp:A|A Tle:AryAtp:Bollp)

(ple):T+A <p||€>:erA,tb:B;U

Use of ¢ limited to tp:

c:(Trg Atp: A {-])) Be A, .
Tt it tp; = ~ tpe
Futpec: Al A T |tp:Arg Atp: B;of:|p}

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
00000@0000

An extension of dL with:
@ delimited continuations
@ dependent types restricted to the NEF fragment

Typing rules:
Regular mode Dependent mode

Trp:A|A Tle:ArA Trp:A|A Tle:AryAtp:Bollp)

(ple):T+A <p||€>:erA,tb:B;0

Use of ¢ limited to tp:

c:(Trg Atp: A {-])) Be A, .
Tt it tp; = ~ tpe
Futpec: Al A T |tp:Arg Atp: B;of:|p}

c:(TFA) A ¢ - ¢ = ¢ :(TFrA)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
000000@000

Typed CPS translation

Target language:
TlLlt=u|VeNA| INA | DB | VX.A
Normalization:
If [¢] normalizes so does c.
Proof. Thorough analysis of the several reduction rules. O
Types-preserving:

The translation is well-typed.

Proof. Using parametric return types for terms and NEF proofs. m]
Consistency:

Fp:l
Proof. [L] = (L — 1) - L. o

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
[e]e]eleloYele] Tolo)

An extension of dL with:

o delimited continuations

@ dependent types restricted to the NEF fragment
Regular mode Dependent mode

© Trp:A|A Tle:ArA |[Trp:A|A Tle:Avrg Atp:Bof|p)
(pley:TrA (plley:Tra Atp:Bio

@ delimited scope of dependencies:

c:(Crg Atp: A {)) . Be A, .
T+ptpe:AlA tPr T |tp:Arg Atp: Biof-|p} tPe
@ Mission accomplished?

e subject reduction

o normalization

@ consistency as a logic
o CPS translation

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
[e]e]eleloYele] Tolo)

An extension of dL with:

o delimited continuations
@ dependent types restricted to the NEF fragment
Regular mode Dependent mode
© Trp:A|A Tle:ArA |TFp:A|A Tle:AryAtp:Biollp)
pley:TrHA (pley:Try Atp:B;o
@ delimited scope of dependencies:
c:(Crg Atp: A {)) . Be A, .
- tpy ~ ~ tpg
Futpc: Al A T |tp:Arg Atp: Byof:|p}
@ Mission accomplishedv’
o subject reduction v’ o (Bonus) embedding into
o normalization v Rodolphe’s calculus v/
e consistency as a logic v/ % realizability
o CPS translation v/ interpretation

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000000080

Rodolphe’s calculus in a nutshell

Recipe:
@ Call-by-value evaluation
@ Classical language (ua.t control operator)
@ Second-order logic, with encoding of dependent product:

I(4:4)B £ VYa(a € A— B)

Semantical value restriction

Soundness and type safety proved by a realizability model:

rrt:A = plkT = t[p]€||A||;;J‘

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
0000000080

Rodolphe’s calculus in a nutshell

Recipe:
@ Call-by-value evaluation
@ Classical language (ua.t control operator)
@ Second-order logic, with encoding of dependent product:

I(4:4)B £ VYa(a € A— B)

Semantical value restriction

Soundness and type safety proved by a realizability model:
Frrt:A = plET = tlple ||A||/§L

Semantical value restriction:

@ observational equivalence: t = u
@ u € A restricted to values

@ typing rules up to this equivalence (hence undecidable!)

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dL
000000000e

Embedding

Easy check:

NEF C semantical values

We define an embedding of proofs and types that:

@ is correct with respect to typing

F'rp:A|A = (T UA)F [p],: A"

@ is adequate with his realizability model

Trp:A|A A olF(TUA)* = [plyo € IA|

@ allows to transfer Rodolphe’s safety results

Fp:l

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

dLPA®: a sequent calculus with dependent
types for classical arithmetic

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

A classical sequent calculus with:

o stratified dependent types :

o terms: t,us=...|witp
o formulas: A,B:=...|¥xTA|3xTA| Mgay.Blt=u
@ proofs: p.qi=...| Axp | (t,p) | Aa.p

@ a restriction to the NEF fragment
@ arithmetical terms:

taus=...]0]S()]| rec;y[to |ts] | Ax.t | tu

@ stores:
tu=¢|rla:=p.] | rla:=¢]
@ inductive and coinductive constructions:
£,q == ... | fix,’m[p|p] | cofix,tm p

@ a call-by-value reduction and lazy evaluation of cofix

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

End of the road

dPA“

+ control operators . .
+ dependent types ------- Subject reduction
+ co-fixpoints

+ sharing & laziness

T
1
1 ?
1

Y

dLPA®?

+ sequent calculus - -
+ dependent types F------- Subject reduction
+ co-fixpoints

+ sharing & laziness

T
1
1
07
1

Y

?-calculus F------------- Normalization

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

End of the road

dPA“

+ control operators .)
+ dependent types F------- Subject reduction
+ co-fixpoints

+ sharing & laziness

| macros v’
s + Y
dLPA® vV
+ sequent calculus . .
+ dependent types ------- Subject reduction

+ co-fixpoints
+ sharing & laziness

mmmmmmmmm—mmm- o - > Normalization
realizability

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Realizability interpretation

Same methodology:
@ small-step reductions
@ derive the realizability interpretation

Resembles z[lm*]—interpretation, plus:
@ dependent types from Rodolphe’s calculus

@ co-inductive formulas

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Realizability interpretation

Same methodology:
@ small-step reductions
@ derive the realizability interpretation

Resembles Z[lvf*]—interpretation, plus:
@ dependent types from Rodolphe’s calculus:

M(ea).B = VYa.(a€A— B)

@ co-inductive formulas

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Realizability interpretation

Same methodology:
@ small-step reductions
@ derive the realizability interpretation

Resembles Z[lvf*]—interpretation, plus:
@ dependent types from Rodolphe’s calculus
@ co-inductive formulas: by finite approximations

IV Allr £ Unen I1FS Il

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Realizability interpretation

Same methodology:
@ small-step reductions

@ derive the realizability interpretation

Resembles I[lw*]—interpretation, plus:
@ dependent types from Rodolphe’s calculus

@ co-inductive formulas: by finite approximations

Consequences of adequacy:

Normalization

If T ks ¢, then c is normalizable.

Fapae p L

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Conclusion

What did we learn?
o classical call-by-need:
o realizability interpretation
e typed continuation-and-store-passing style translation
@ dependent classical sequent calculus:

o list of dependencies
o use of delimited continuations for soundness
e dependently-typed continuation-passing style translation

o dLPA®:

e soundness and normalization,
o realizability interpretation of co-fixpoints

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Further work

@ Classical call-by-need:
e typing the CPS with Kripke forcing

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Further work

@ Classical call-by-need:

e typing the CPS with Kripke forcing
Q stb:

e Connection with:

@ Pédrot-Tabareau’s Baclofen Type Theory?
@ Vakar’s categorical presentation?
@ Bowman et. al. CPS for CC?

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Further work

@ Classical call-by-need:
o typing the CPS with Kripke forcing

e Connection with:
@ Pédrot-Tabareau’s Baclofen Type Theory?
@ Vakar’s categorical presentation?
@ Bowman et. al. CPS for CC?

e Dependent types & effects:

A-calculus | embed. | Apj-calculus CPS
CbN CbN

A-calculus

A-calculus embed. Apfi-calculus CPS
CbV CbV

A-calculus

4

HiH

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Further work

@ Classical call-by-need:
o typing the CPS with Kripke forcing
Q stb:
e Connection with:
@ Pédrot-Tabareau’s Baclofen Type Theory?
@ Vakar’s categorical presentation?
@ Bowman et. al. CPS for CC?

e Dependent types & effects:

A-calculus
CbN embed.
A,uy—calc‘u.lus CPS
+ polarities
A-calculus embed.
CbVv

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Further work

@ Classical call-by-need:
o typing the CPS with Kripke forcing
Q stb:
e Connection with:
@ Pédrot-Tabareau’s Baclofen Type Theory?
@ Vakar’s categorical presentation?
@ Bowman et. al. CPS for CC?

e Dependent types & effects:

MLTT (CbN) embed
(ot f——{

MLTT (Cbv) [embed.

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Further work

@ Classical call-by-need:
o typing the CPS with Kripke forcing
Q stb:
e Connection with:
@ Pédrot-Tabareau’s Baclofen Type Theory?
@ Vakar’s categorical presentation?
@ Bowman et. al. CPS for CC?

e Dependent types & effects:

MLTT (CbN) embed
(ot f——{

MLTT (Cbv) [embed.

© Realizability:
e Connection with realizer for DC using bar recursion?
o Algebraic counterpart of side-effects in realizability structures?

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

Thank you for you attention.

Etienne MIQUEY A sequent calculus with dependent types for classical arithmetic

	A constructive proof of DC
	Semantic artifacts
	Classical call-by-need
	dL
	dLPA

