A sequent calculus with dependent types for classical arithmetic

Etienne Miquey

Équipe Gallinette, INRIA LS2N, Université de Nantes

Workshop Réalisabilité 13 Juin 2018

A constructive proof of dependent choice compatible with classical logic

000000000

The Curry-Howard correspondence

The Curry-Howard correspondence		
	Mathematics	Computer Science
	Proofs	Programs
	Propositions	Types
	Deduction rules	Typing rules
	$\frac{\Gamma \vdash A \Rightarrow B \Gamma \vdash A}{\Gamma \vdash B} \ (\Rightarrow_E)$	$\frac{\Gamma \vdash t : A \to B \Gamma \vdash u : A}{\Gamma \vdash t \; u : B} \; (\to_E)$

Benefits:

Program your proofs!

Prove your programs!

Limitations

A constructive proof of DC

•00000000

Elilitations			
Mathematics	Computer Science		
$A \vee \neg A$ $\neg \neg A \Rightarrow A$	try catch x := 42		
All sets can be well-ordered	random()		
Sets that have the same elements are equal	stop goto		

 \hookrightarrow We want more!

Classical logic = Intuitionistic logic + $A \lor \neg A$

1990: Griffin discovered that call/cc can be typed by Peirce's law (well-known fact: Peirce's law $\Rightarrow A \lor \neg A$)

Classical Curry-Howard:

$$\lambda$$
-calculus + call/cc

Other examples

- quote instruction ~ dependent choice
- monotonic memory ~ Cohen's forcing
- ...

With side-effects come new reasoning principles

Classical logic = Intuitionistic logic + $A \lor \neg A$

1990: Griffin discovered that call/cc can be typed by Peirce's law (well-known fact: Peirce's law $\Rightarrow A \lor \neg A$)

Classical Curry-Howard:

$$\lambda$$
-calculus + call/cc

Other examples

- quote instruction ~ dependent choice
- monotonic memory ~ Cohen's forcing
- ...

The motto

With side-effects come new reasoning principles.

Extending Curry-Howard

Classical logic = Intuitionistic logic + $A \lor \neg A$

1990: Griffin discovered that call/cc can be typed by Peirce's law (well-known fact: Peirce's law $\Rightarrow A \lor \neg A$)

Classical Curry-Howard:

$$\lambda$$
-calculus + call/cc

Other examples:

- quote instruction ~ dependent choice
- monotonic memory ~ Cohen's forcing
- ...

The motto

With side-effects come new reasoning principles.

Teaser

The motto

With side-effects come new reasoning principles.

We will use several **computational features**:

- dependent types
- streams

- lazy evaluation
- shared memory

to get a proof for the axioms of dependent and countable choice that is compatible with **classical logic**.

The axiom of choice

A constructive proof of DC

000000000

Axiom of Choice:

$$AC : \forall x^A . \exists y^B . P(x, y) \rightarrow \exists f^{A \to B} . \forall x^A . P(x, f(x))$$

The axiom of choice

A constructive proof of DC

Axiom of Choice:

$$AC : \forall x^{A}. \exists y^{B}. P(x, y) \rightarrow \exists f^{A \rightarrow B}. \forall x^{A}. P(x, f(x))$$
$$:= \lambda H. (\lambda x. \text{wit } (H x), \lambda x. \text{prf } (H x))$$

Computational content through dependent types:

$$\frac{\Gamma, x : T \vdash t : A}{\Gamma \vdash \lambda x . t : \forall x^{T} . A} (\forall_{I}) \qquad \frac{\Gamma \vdash p : A[t/x] \quad \Gamma \vdash t : T}{\Gamma \vdash (t, p) : \exists x^{T} . A} (\exists_{I})$$

$$\frac{\Gamma \vdash p : \exists x^{T} . A(x)}{\Gamma \vdash \text{wit } p : T} \text{ (wit)} \qquad \frac{\Gamma \vdash p : \exists x^{T} . A(x)}{\Gamma \vdash \text{prf } p : A(\text{wit } p)} \text{ (prf)}$$

Bad news

A constructive proof of DC

dependent sum + classical logic = 🙎

Choice:

$$\vdash t: \forall x \in A. \exists y \in B. P(x, y) \to \exists f \in B^A. \forall x \in A. P(x, f(x))$$

Excluded-middle:

$$\vdash s: \forall x \in X. \exists y \in \{0,1\}. (U(x) \land y = 1) \lor (\neg U(x) \land y = 0)$$

$$\vdash ts: \exists f \in \{0,1\}^X. \forall x \in X. (U(x) \land f(x) = 1) \lor (\neg U(x) \land f(x) = 0)$$

Bad news

A constructive proof of DC

dependent sum + classical logic = 🙎

Choice:

$$\vdash t: \forall x \in A. \exists y \in B. P(x,y) \to \exists f \in B^A. \forall x \in A. P(x,f(x))$$

Excluded-middle:

$$\vdash s: \forall x \in X. \exists y \in \{0,1\}. (U(x) \land y = 1) \lor (\neg U(x) \land y = 0)$$

Take U undecidable:

$$+ ts: \exists f \in \{0,1\}^X . \forall x \in X . (U(x) \land f(x) = 1) \lor (\neg U(x) \land f(x) = 0)$$

 \hookrightarrow i.e. wit(ts) computes the uncomputable...

Bad news

A constructive proof of DC

One can define:

On the degeneracy of Σ -Types Herbelin (2005)

$$H_0 := \operatorname{call/cc}_{\alpha}(1, \operatorname{throw}_{\alpha}(0, p)) : \exists x.x = 0$$

and reach a contradiction:

$$(\mathsf{wit}\,H_0,\mathsf{prf}\,H_0) \to \underbrace{(1,\overbrace{p})}_{\exists x.x \equiv 0}$$

Bad news

A constructive proof of DC

One can define:

On the degeneracy of Σ -Types

$$H_0 := \operatorname{call/cc}_{\alpha}(1, \operatorname{throw}_{\alpha}(0, p)) : \exists x.x = 0$$

and reach a contradiction:

$$(\mathsf{wit}\,H_0,\mathsf{prf}\,H_0) \to \underbrace{(1,\overbrace{p})}_{\exists x.x \equiv 0}$$

We need to:

share

restrict dependent types

A constructive proof of dependent choice, compatible with ... Herbelin (2012)

Restriction to countable choice:

$$AC_{\mathbb{N}}: \forall x^{\mathbb{N}}.\exists y^{B}.P(x,y) \to \exists f^{\mathbb{N}\to B}.\forall x^{\mathbb{N}}.P(x,f(x))$$

Proof:

$$AC := \lambda H.(\lambda n. \text{if } n = 0 \text{ then wit}(H \ 0) \text{ else}$$
 if $n = 1 \text{ then wit}(H \ 1) \text{ else} \dots$, $\lambda n. \text{if } n = 0 \text{ then prf}(H \ 0) \text{ else}$ if $n = 1 \text{ then prf}(H \ 1) \text{ else} \dots$)

Toward a solution?

A constructive proof of dependent choice, compatible with ... Herbelin (2012)

Restriction to countable choice:

$$AC_{\mathbb{N}}: \forall x^{\mathbb{N}}.\exists y^{B}.P(x,y) \to \exists f^{\mathbb{N}\to B}.\forall x^{\mathbb{N}}.P(x,f(x))$$

Proof:

$$AC_{\mathbf{N}} := \lambda H. \mathbf{let} \, H_0 = H \, \mathbf{0} \, \mathbf{in}$$
 $\mathbf{let} \, H_1 = H \, \mathbf{1} \, \mathbf{in}$... $(\lambda n. \mathbf{if} \, n = 0 \, \mathbf{then} \, \mathbf{wit} \, H_0 \, \mathbf{else}$ $\mathbf{if} \, n = 1 \, \mathbf{then} \, \mathbf{wit} \, H_1 \, \mathbf{else} \, \ldots \, \lambda n. \mathbf{if} \, n = 0 \, \mathbf{then} \, \mathbf{prf} \, H_0 \, \mathbf{else}$ $\mathbf{if} \, n = 1 \, \mathbf{then} \, \mathbf{prf} \, H_1 \, \mathbf{else} \, \ldots \,)$

Toward a solution?

A constructive proof of dependent choice, compatible with ... Herbelin (2012)

Restriction to countable choice:

$$AC_{\mathbb{N}}: \forall x^{\mathbb{N}}.\exists y^{B}.P(x,y) \to \exists f^{\mathbb{N}\to B}.\forall x^{\mathbb{N}}.P(x,f(x))$$

• Proof:

$$AC_{\mathbb{N}} := \lambda H.$$
let $H_{\infty} = (H\ 0, H\ 1, \dots, H\ n, \dots)$ in $(\lambda n. \text{ wit (nth } n\ H_{\infty}), \lambda n. \text{ prf (nth } n\ H_{\infty}))$

Toward a solution?

A constructive proof of dependent choice, compatible with ... Herbelin (2012)

Restriction to countable choice:

$$AC_{\mathbb{N}}: \forall x^{\mathbb{N}}.\exists y^{B}.P(x,y) \to \exists f^{\mathbb{N}\to B}.\forall x^{\mathbb{N}}.P(x,f(x))$$

• Proof:

$$AC_{\mathbb{N}} := \lambda H. \operatorname{let} H_{\infty} = \operatorname{cofix}_{bn}^{0}(H \ n, b(S(n))) \operatorname{in}$$

 $(\lambda n. \operatorname{wit} (\operatorname{nth} n \ H_{\infty}), \lambda n. \operatorname{prf} (\operatorname{nth} n \ H_{\infty}))$

dPA^ω (Herbelin's recipe)

A proof system:

A constructive proof of DC

• classical:

$$p,q ::= \dots \mid \operatorname{catch}_{\alpha} p \mid \operatorname{throw}_{\alpha} p$$

• with stratified **dependent types** :

- terms: $t, u := ... \mid \text{wit } p$
- formulas: $A, B := ... \mid \forall x^T . A \mid \exists x^T . A \mid \Pi_{(a:A)} . B \mid t = u$
- proofs: $p,q := ... \mid \lambda x.p \mid (t,p) \mid \lambda a.p$
- a syntactical restriction of dependencies to NEF proofs
- call-by-value and sharing:

$$p,q ::= \dots \mid \text{let } a = q \text{ in } p$$

• with inductive and coinductive constructions:

$$p,q ::= \dots \mid \mathsf{fix}_{bn}^t[p_0 \mid p_S] \mid \mathsf{cofix}_{bn}^t p_S$$

• lazy evaluation for the cofix

dPA^ω (Herbelin's recipe)

A proof system:

• classical:

$$p,q ::= \dots \mid \operatorname{catch}_{\alpha} p \mid \operatorname{throw}_{\alpha} p$$

- with stratified **dependent types** :
 - terms: $t, u := ... \mid \text{wit } p$
 - formulas: $A, B := ... \mid \forall x^T . A \mid \exists x^T . A \mid \Pi_{(a:A)} . B \mid t = u$
 - proofs: $p,q := ... \mid \lambda x.p \mid (t,p) \mid \lambda a.p$
- a syntactical restriction of dependencies to NEF proofs
- call-by-value and sharing:

$$p,q ::= \dots \mid \text{let } a = q \text{ in } p$$

• with inductive and **coinductive** constructions:

$$p,q := \dots \mid \text{fix}_{bn}^t[p_0 \mid p_S] \mid \text{cofix}_{bn}^t p$$

• lazy evaluation for the cofix

State of the art

A constructive proof of DC

Subject reduction

If $\Gamma \vdash p : A$ and $p \rightarrow q$, then $\Gamma \vdash q : A$.

Normalization

If $\Gamma \vdash p : A$ then p is normalizable.

requires

Consistency

$$\nvdash_{dPA^{\omega}} \bot$$

Roadmap

Remark: CPS usually factorize through sequent calculi!

Roadmap

Danvy's semantic artifacts

CPS translation

Continuation-passing style translation: $\llbracket \cdot \rrbracket : source \rightarrow \lambda^{machin}$

preserving reduction

$$t \xrightarrow{1} t' \qquad \Rightarrow \qquad \llbracket t \rrbracket \xrightarrow{+} \llbracket t' \rrbracket$$

$$[t] \xrightarrow{+} [t']$$

preserving typing

$$\Gamma \vdash t$$
:

$$\Rightarrow$$

$$\Gamma \vdash t : A \implies \llbracket \Gamma \rrbracket \vdash \llbracket t \rrbracket : \llbracket A \rrbracket$$

the type ¶⊥∥ is not inhabited

Benefits

If λ^{machin} is sound and normalizing:

- If [t] normalizes, then t normalizes
- 2 If t is typed, then t normalizes
- **1** The source language is sound, *i.e.* there is no term $\vdash t : \bot$

Continuation-passing style translation: $\llbracket \cdot \rrbracket : source \rightarrow \lambda^{machin}$

- preserving reduction
- preserving typing
- the type $[\![\bot]\!]$ is not inhabited

Benefits

If λ^{machin} is sound and normalizing:

- If [t] normalizes, then t normalizes
- ② If *t* is typed, then *t* normalizes
- **3** The source language is sound, *i.e.* there is no term $\vdash t : \bot$

Danvy's methodology

- an operational semantics
- a small-step calculus or abstract machine
- a continuation-passing style translation
- a realizability model

Defunctionalized Interpreters for Call-by-Need Evaluation Danvy et al. (2010)

The duality of computation Curien/Herbelin (2000)

Syntax:

A constructive proof of DC

$$\begin{array}{ll} \text{(Proofs)} & p ::= a \mid \lambda a.p \mid \mu \alpha.c \\ \text{(Contexts)} & e ::= \alpha \mid p \cdot e \mid \tilde{\mu} a.c \\ \text{(Commands)} & c ::= \langle p \parallel e \rangle \end{array}$$

Typing rules:

$$\begin{array}{c} \Gamma \vdash t : A \mid \Delta \qquad \Gamma \mid e : A \vdash \Delta \\ \hline \langle t \parallel e \rangle : (\Gamma \vdash \Delta) \\ \hline \frac{(a : A) \in \Gamma}{\Gamma \vdash a : A \mid \Delta} \qquad \qquad \frac{\Gamma, a : A \vdash p : B \mid \Delta}{\Gamma \vdash \lambda a . p : A \rightarrow B \mid \Delta} \\ \hline \frac{(\alpha : A) \in \Delta}{\Gamma \mid \alpha : A \vdash \Delta} \qquad \qquad \frac{\Gamma \vdash p : A \mid \Delta \qquad \Gamma \mid e : B \vdash \Delta}{\Gamma \mid p \cdot e : A \rightarrow B \vdash \Delta} \end{array}$$

$$\frac{c : (\Gamma \vdash \Delta, \alpha : A)}{\Gamma \vdash \mu \alpha . c : A \mid \Delta}$$

$$\frac{c : (\Gamma, a : A \vdash \Delta)}{\Gamma \mid \tilde{\mu} a . c : A \vdash \Delta}$$

The duality of computation Curien/Herbelin (2000)

Syntax:

A constructive proof of DC

(Proofs)
$$p := a \mid \lambda a.p \mid \mu \alpha.c$$

(Contexts) $e := \alpha \mid p \cdot e \mid \tilde{\mu} a.c$
(Commands) $c := \langle p \mid e \rangle$

Typing rules:

$$\frac{\Gamma \vdash A \mid \Delta \qquad \Gamma \mid \quad A \vdash \Delta}{(\Gamma \vdash \Delta)}$$

$$\frac{A \in \Gamma}{\Gamma \vdash A \mid \Delta} \qquad \frac{\Gamma, \quad A \vdash B \mid \Delta}{\Gamma \vdash \quad A \to B \mid \Delta} \qquad \frac{\Gamma \vdash \Delta, \quad A}{\Gamma \vdash \quad A \mid \Delta}$$

$$\frac{A \in \Delta}{\Gamma \mid \quad A \vdash \Delta} \qquad \frac{\Gamma \vdash A \mid \Delta \quad \Gamma \mid \quad B \vdash \Delta}{\Gamma \mid \quad A \to B \vdash \Delta} \qquad \frac{\Gamma, \quad A \vdash \Delta}{\Gamma \mid \quad A \vdash \Delta}$$

$$\frac{\Gamma \vdash \Delta, \quad A}{\Gamma \vdash \quad A \mid \Delta}$$

$$\frac{\Gamma, \quad A \vdash \Delta}{\Gamma \mid \qquad A \vdash \Delta}$$

The duality of computation Curien/Herbelin (2000)

Syntax:

A constructive proof of DC

$$\begin{array}{ll} \text{(Proofs)} & p ::= a \mid \lambda a.p \mid \mu \alpha.c \\ \text{(Contexts)} & e ::= \alpha \mid p \cdot e \mid \tilde{\mu} a.c \\ \text{(Commands)} & c ::= \langle p \parallel e \rangle \end{array}$$

Typing rules:

$$\begin{array}{c} \Gamma \vdash t : A \mid \Delta \qquad \Gamma \mid e : A \vdash \Delta \\ \hline \langle t \parallel e \rangle : (\Gamma \vdash \Delta) \\ \hline \frac{(a : A) \in \Gamma}{\Gamma \vdash a : A \mid \Delta} \qquad \qquad \frac{\Gamma, a : A \vdash p : B \mid \Delta}{\Gamma \vdash \lambda a . p : A \rightarrow B \mid \Delta} \\ \hline \frac{(\alpha : A) \in \Delta}{\Gamma \mid \alpha : A \vdash \Delta} \qquad \qquad \frac{\Gamma \vdash p : A \mid \Delta \qquad \Gamma \mid e : B \vdash \Delta}{\Gamma \mid p \cdot e : A \rightarrow B \vdash \Delta} \end{array}$$

$$\frac{c : (\Gamma \vdash \Delta, \alpha : A)}{\Gamma \vdash \mu \alpha . c : A \mid \Delta}$$

$$\frac{c : (\Gamma, a : A \vdash \Delta)}{\Gamma \mid \tilde{\mu} a . c : A \vdash \Delta}$$

The $\lambda\mu\tilde{\mu}$ -calculus

Syntax:

(Proofs)
$$p := a \mid \lambda a.p \mid \mu \alpha.c$$

(Contexts) $e := \alpha \mid p \cdot e \mid \tilde{\mu} a.c$
(Commands) $c := \langle p \parallel e \rangle$

Reduction:

$$\langle \lambda a.p \parallel q \cdot e \rangle \rightarrow \langle q \parallel \tilde{\mu} a. \langle p \parallel e \rangle \rangle$$
$$\langle p \parallel \tilde{\mu} a.c \rangle \rightarrow c[p/a]$$
$$\langle \mu \alpha.c \parallel e \rangle \rightarrow c[e/\alpha]$$

$$b \in \mathcal{P}$$
 $e \in \mathcal{E}$

The duality of computation Curien/Herbelin (2000)

Critical pair:

$$\langle \mu \alpha.c \parallel \tilde{\mu} a.c' \rangle$$

$$c[\tilde{\mu} a.c'/\alpha] \qquad \qquad c'[\mu \alpha.c/a]$$

Syntax:

A constructive proof of DC

The duality of computation Curien/Herbelin (2000)

(Proofs)
$$p := V \mid \mu \alpha.c$$
 (Values) $V := a \mid \lambda a.p$ (Contexts) $e := E \mid \tilde{\mu}a.c$ (Co-values) $E := \alpha \mid p \cdot e$ (Commands) $c := \langle p \parallel e \rangle$

Reduction:

$$\begin{array}{ll} \langle \lambda a.p \parallel q \cdot e \rangle & \rightarrow & \langle q \parallel \tilde{\mu} a. \langle p \parallel e \rangle \rangle \\ \langle p \parallel \tilde{\mu} a.c \rangle & \rightarrow & c[p/a] & p \in \mathcal{P} \\ \langle \mu \alpha.c \parallel e \rangle & \rightarrow & c[e/\alpha] & e \in \mathcal{E} \end{array}$$

Critical pair:

air:
$$\langle \mu \alpha.c \parallel \tilde{\mu} a.c' \rangle$$
 $c[\tilde{\mu} a.c'/\alpha]$ $c'[\mu \alpha.c/a]$

Call-by-name $\lambda \mu \tilde{\mu}$ -calculus

Syntax:

```
(Proofs ) p := V \mid \mu\alpha.c (Contexts) e := E \mid \tilde{\mu}a.c (Values ) V := a \mid \lambda a.p (Co-values) E := \alpha \mid p \cdot e (Commands) c := \langle p \parallel e \rangle
```

Reduction rules:

$$\begin{array}{cccc} \langle p \parallel \tilde{\mu}a.c \rangle & \to & c[p/a] \\ \langle \mu\alpha.c \parallel E \rangle & \to & c[E/\alpha] \\ \langle \lambda a.p \parallel q \cdot e \rangle & \to & \langle q \parallel \tilde{\mu}a.\langle p \parallel e \rangle \rangle \end{array}$$

Semantic artifacts

A constructive proof of DC

Small steps

A constructive proof of DC

(Proofs) $p ::= V \mid \mu \alpha.c$ (Contexts) $e ::= E \mid \tilde{\mu}a.c$ (Values) $V ::= a \mid \lambda a.p$ (Co-values) $E ::= \alpha \mid p \cdot e$ (Commands) $c ::= \langle p \parallel e \rangle$

Small steps

CPS

 $\llbracket \tilde{\mu}a.c \rrbracket_e p \triangleq (\lambda a. \llbracket c \rrbracket_c) p$

$$\begin{bmatrix} \mathbf{E} \end{bmatrix}_{e} p \triangleq p \ [\mathbf{E}]_{E} \\
[\mu\alpha.c]_{p} E \triangleq (\lambda\alpha.[c]_{c}) E \\
[V]_{p} E \triangleq E \ [V]_{V} \\
[\mathbf{q} \cdot \mathbf{e}]_{E} V \triangleq V \ [\mathbf{q}]_{p} \ [\mathbf{e}]_{e} \\
[\lambda a.p]_{V} q e \triangleq (\lambda a.e \ [p]_{p}) q$$

Small steps

CPS

$$\begin{split} & [\tilde{\mu}a.c]_e p \triangleq (\lambda a.[c]_c) p \\ & [E]_e p \triangleq p [E]_E \\ \\ & [\mu\alpha.c]_p E \triangleq (\lambda\alpha.[c]_c) E \\ & [V]_p E \triangleq E [V]_V \\ & [q \cdot e]_E V \triangleq V [q]_p [e]_e \end{split}$$

 $[\![\lambda a.p]\!]_V q e \triangleq (\lambda a.e [\![p]\!]_p) q$

$$c \stackrel{1}{\leadsto} c' \qquad \Rightarrow \qquad [\![c]\!]_c \stackrel{+}{\rightarrow}_{\beta} [\![c']\!]_c$$

A constructive proof of DC

CPS

$\begin{bmatrix} \tilde{\mu}a.c \\ e \end{bmatrix} e p \triangleq (\lambda a. [c]_c) p \\ [E]_e p \triangleq p [E]_E$ $\begin{bmatrix} \mu \alpha.c \\ p \end{bmatrix} e \triangleq (\lambda \alpha. [c]_c) E \\ [V]_p E \triangleq E [V]_V$ $\begin{bmatrix} q \cdot e \\ e \end{bmatrix} e V \triangleq V [q]_p [e]_e$ $V [[\lambda a.p]_V q e \triangleq (\lambda a. e [[p]_p) q$

Types translation

$$[A]_{e} \triangleq [A]_{p} \to \bot$$

$$[A]_{p} \triangleq [A]_{E} \to \bot$$

$$[A]_{E} \triangleq [A]_{V} \to \bot$$

$$[A \to B]_{V} \triangleq [A]_{p} \to [A]_{e} \to \bot$$

$$\Gamma \vdash p : A \mid \Delta \implies$$

$$[\![\Gamma]\!]_p, [\![\Delta]\!]_E \vdash [\![p]\!]_p : [\![A]\!]_p$$

Consequences

Normalization

Typed commands of the call-by-name $\lambda\mu\tilde{\mu}$ -calculus normalize.

Inhabitation

There is no simply-typed λ -term t such that $\vdash t : [\![\bot]\!]_p$.

Proof.
$$[\![\bot]\!]_p = (\bot \to \bot) \to \bot$$
 and $\lambda x.x$ is of type $\bot \to \bot$.

Soundness

There is no proof p such that $\vdash p : \bot \mid$.

Realizability \hat{a} la Krivine (1/2)

Intuition

- falsity value ||A||: contexts, opponent to A
- truth value |A|: proofs, player of A
- pole ⊥: commands, referee

$$\langle p \parallel e \rangle > c_0 > \cdots > c_n \in \perp \!\!\! \perp ?$$

 $\rightsquigarrow \bot\!\!\!\bot \subset \Lambda \star \Pi$ closed by anti-reduction

Truth value defined by **orthogonality**:

$$|A| = ||A||^{\perp} = \{ p \in \Lambda : \forall e \in ||A||, \langle p \mid | e \rangle \in \perp \rfloor$$

Intuition

A constructive proof of DC

- falsity value ||A||: contexts, opponent to A
- truth value |A|: proofs, player of A
- pole ⊥: commands, referee

$$\langle p \parallel e \rangle > c_0 > \cdots > c_n \in \bot\!\!\!\bot?$$

 $\rightsquigarrow \bot\!\!\!\bot \subset \Lambda \star \Pi$ closed by anti-reduction

Truth value defined by **orthogonality**:

Realizability \hat{a} la Krivine (1/2)

Intuition

• falsity value ||A||: contexts, opponent to A

Semantic artifacts

- truth value |A|: proofs, player of A
- pole ⊥: commands, referee

$$\langle p \parallel e \rangle > c_0 > \cdots > c_n \in \bot\!\!\!\bot?$$

 $\rightsquigarrow \bot \!\!\!\bot \subset \Lambda \star \Pi$ closed by anti-reduction

Truth value defined by **orthogonality**: $|A| = ||A||^{\perp \perp} = \{p \in \Lambda : \forall e \in ||A||, \langle p || e \rangle \in \perp \perp \}$

Realizability \dot{a} la Krivine (1/2)

Intuition

- falsity value ||A||: contexts, opponent to A
- truth value |A|: proofs, player of A
- pole ⊥: commands, referee

$$\langle p \parallel e \rangle > c_0 > \cdots > c_n \in \perp \!\!\! \perp ?$$

 $\rightsquigarrow \bot \!\!\!\bot \subset \Lambda \star \Pi$ closed by anti-reduction

Truth value defined by **orthogonality**: $|A| = ||A||^{\perp} = \{p \in \Lambda : \forall e \in ||A||, \langle p || e \rangle \in \perp L\}$

Realizability \hat{a} la Krivine (1/2)

Intuition

- falsity value ||A||: contexts, opponent to A
- truth value |A|: proofs, player of A
- pole ⊥: commands, referee

$$\langle p \parallel e \rangle > c_0 > \cdots > c_n \in \perp \!\!\! \perp ?$$

 $\rightsquigarrow \bot \!\!\! \bot \subset \Lambda \star \Pi$ closed by anti-reduction

Truth value defined by **orthogonality** : $|A| = ||A||^{\perp \perp} = \{p \in \Lambda : \forall e \in ||A||, \langle p || e \rangle \in \perp \perp \}$

Intuition

A constructive proof of DC

- falsity value ||A||: contexts, opponent to A
- truth value |A|: proofs, player of A
- pole ⊥: commands, referee

$$\langle p \parallel e \rangle > c_0 > \cdots > c_n \in \perp \!\!\! \perp ?$$

 $\rightsquigarrow \bot \!\!\! \bot \subset \Lambda \star \Pi$ closed by anti-reduction

Truth value defined by **orthogonality**:

$$|A| = ||A||^{\perp \perp} = \{ p \in \Lambda : \forall e \in ||A||, \langle p \mid e \rangle \in \perp \perp \}$$

(Terms)
$$p := \mu \alpha.c \mid a \mid V$$

(Values) $V := \lambda a.p$

$$\begin{array}{ll} \textit{(Contexts)} & e ::= \tilde{\mu} a.c \mid E \\ \textit{(Co-values)} & E ::= \alpha \mid p \cdot e \end{array}$$

Small steps

(Terms)
$$p ::= \mu \alpha.c \mid a \mid V$$

(Values) $V ::= \lambda a.p$

$$\begin{array}{ll} \textit{(Contexts)} & e ::= \tilde{\mu} a.c \mid E \\ \textit{(Co-values)} & E ::= \alpha \mid p \cdot e \end{array}$$

Small steps

Realizability

$$||A||_{e} \triangleq |A|_{p}^{\perp}$$

$$|A|_{p} \triangleq ||A||_{E}^{\perp}$$

$$||A \rightarrow B||_{E} \triangleq \{q \cdot e : q \in |A|_{p} \\ \land e \in ||B||_{e}\}$$

Extension to second-order

$$\frac{\Gamma \mid e : A[n/x] \vdash \Delta}{\Gamma \mid e : \forall x.A \vdash \Delta} \ (\forall_l^1)$$

$$\frac{\Gamma \vdash p : A \mid \Delta \quad x \notin FV(\Gamma, \Delta)}{\Gamma \vdash p : \forall x.A \mid \Delta} \ (\forall_r^1)$$

$$\frac{\Gamma \mid e : A[B/X] \vdash \Delta}{\Gamma \mid e : \forall X.A \vdash \Delta} \ (\forall_l^2)$$

$$\frac{\Gamma \vdash p : A \mid \Delta \quad X \notin FV(\Gamma, \Delta)}{\Gamma \vdash p : \forall X.A \mid \Delta} \ (\forall_r^2)$$

(Curry-style)

Standard model N for 1st-order expressions

Definition (Pole)

A constructive proof of DC

 $\bot\!\!\!\!\bot\subseteq\Lambda\times\Pi$ of commands s.t.:

$$\forall c, c', (c' \in \bot \!\!\!\bot \land c \rightarrow c') \implies c \in \bot \!\!\!\!\bot$$

Truth value (player):

$$|A|_p = ||A||_E^{\perp \perp} = \{ p \in \Lambda : \forall e \in ||A||, \langle p \parallel e \rangle \in \perp \perp \}$$

Falsity value (opponent):

```
\begin{split} \|F(e_{1},\ldots,e_{k})\|_{E} &= F(\llbracket e_{1} \rrbracket,\ldots,\llbracket e_{k} \rrbracket) \\ \|A \to B\|_{E} &= \{q \cdot e : q \in |A|_{p} \land e \in \|B\|_{e}\} \\ \|\forall x.A\|_{E} &= \bigcup_{n \in \mathbb{N}} \|A[n/x]\|_{E} \\ \|\forall X.A\|_{E} &= \bigcup_{f:\mathbb{N}^{k} \to \mathcal{P}(\Pi)} \|A[\dot{f}/X]\|_{E} \\ \|A|_{p} &= \|A\|_{E}^{\perp \perp} &= \{p : \forall e \in \|A\|_{E}, \langle p \parallel e \rangle \in \perp \perp\} \\ \|A\|_{e} &= \|A\|_{p}^{\perp \perp} &= \{e : \forall p \in |A|_{p}, \langle p \parallel e \rangle \in \perp \perp\} \end{split}
```

Standard model N for 1st-order expressions

Definition (Pole)

A constructive proof of DC

 $\bot\!\!\!\!\bot\subseteq\Lambda\times\Pi$ of commands s.t.:

$$\forall c, c', (c' \in \bot\!\!\!\bot \land c \rightarrow c') \implies c \in \bot\!\!\!\bot$$

Truth value (player):

$$|A|_p = ||A||_E^{\perp \perp} = \{ p \in \Lambda : \forall e \in ||A||, \langle p \parallel e \rangle \in \perp \perp \}$$

Falsity value (opponent):

```
\begin{split} \|\dot{F}(e_{1},\ldots,e_{k})\|_{E} &= F([\![e_{1}]\!],\ldots,[\![e_{k}]\!]) \\ \|A \to B\|_{E} &= \{q \cdot e : q \in |A|_{p} \land e \in \|B\|_{e}\} \\ \|\forall x.A\|_{E} &= \bigcup_{n \in \mathbb{N}} \|A[n/x]\|_{E} \\ \|\forall X.A\|_{E} &= \bigcup_{F:\mathbb{N}^{k} \to \mathcal{P}(\Pi)} \|A[\dot{F}/X]\|_{E} \\ |A|_{p} &= \|A\|_{E}^{\perp \perp} &= \{p : \forall e \in \|A\|_{E}, \langle p \parallel e \rangle \in \perp \perp\} \\ \|A\|_{e} &= |A|_{p}^{\perp \perp} &= \{e : \forall p \in |A|_{p}, \langle p \parallel e \rangle \in \perp \perp\} \end{split}
```

Standard model N for 1st-order expressions

Definition (Pole)

A constructive proof of DC

 $\bot\!\!\!\!\bot\subseteq\Lambda\times\Pi$ of commands s.t.:

$$\forall c, c', (c' \in \bot\!\!\!\bot \land c \rightarrow c') \implies c \in \bot\!\!\!\bot$$

Truth value (player):

$$|A|_p = ||A||_E^{\perp \perp} = \{ p \in \Lambda : \forall e \in ||A||, \langle p \parallel e \rangle \in \perp \perp \}$$

Falsity value (opponent):

```
\begin{split} \|\dot{F}(e_{1},\ldots,e_{k})\|_{E} &= F(\llbracket e_{1} \rrbracket,\ldots,\llbracket e_{k} \rrbracket) \\ \||A \to B||_{E} &= \{q \cdot e : q \in |A|_{p} \land e \in \|B\|_{e}\} \\ \||\forall x.A\|_{E} &= \bigcup_{n \in \mathbb{N}} \|A[n/x]\|_{E} \\ \||\forall X.A\|_{E} &= \bigcup_{f:\mathbb{N}^{k} \to \mathcal{P}(\Pi)} \|A[\dot{F}/X]\|_{E} \\ \||A|_{p} &= \|A|_{E}^{\perp \perp} &= \{p : \forall e \in \|A\|_{E}, \langle p \parallel e \rangle \in \perp \bot\} \\ \||A\|_{e} &= |A|_{p}^{\perp \perp} &= \{e : \forall p \in |A|_{p}, \langle p \parallel e \rangle \in \perp \bot\} \end{split}
```

Adequacy

A constructive proof of DC

Valuation ρ :

$$\rho(x) \in \mathbb{N} \qquad \qquad \rho(X) : \mathbb{N}^k \to \mathcal{P}(\Pi)$$

Substitution σ :

$$\sigma ::= \varepsilon \mid \sigma, a := p \mid \sigma, \alpha := E$$

$$\sigma \Vdash \Gamma \triangleq \begin{cases} \sigma(a) \in |A|_p & \forall (a:A) \in \Gamma \\ \sigma(\alpha) \in ||A||_E & \forall (\alpha:A^{\perp}) \in \Gamma \end{cases}$$

Adequacy

If $\sigma \Vdash (\Gamma \cup \Delta)[\rho]$, then:

Proof. By mutual induction over the typing derivation.

Results

Normalizing commands

 $\perp \!\!\! \perp_{\Downarrow} \triangleq \{c : c \text{ normalizes}\}\ \text{defines a valid pole.}$

Proof. If $c \rightarrow c'$ and c' normalizes, so does c.

Normalization

For any command c, if $c : \Gamma \vdash \Delta$, then c normalizes.

Proof. By adequacy, any typed command c belongs to the pole $\perp \!\!\! \perp_{\parallel}$.

Soundness

There is no proof p such that $\vdash p : \bot \mid$.

Proof. Otherwise, $p \in |\bot|_p = \Pi^{\perp}$ *for any pole, absurd* $(\bot \triangleq \emptyset)$.

Classical call-by-need

A constructive proof of DC

Classical call-by-need

The $\lambda_{[lv\tau\star]}$ -calculus:

• a sequent calculus with explicit "stores"

Semantic artifacts

- Danvy's method of semantics artifact:
 - derive a small-step reduction system
 - derive context-free small-step reduction rules
 - derive an (untyped) CPS

Questions:

- Does it normalize?
- \rightarrow Can the CPS be typed?
- → Can we define a realizability interpretation?

Classical Call-by-Need Sequent Calculi: ... Ariola et al. (2012)

Syntax:

A constructive proof of DC

$$\begin{array}{llll} \text{(Proofs)} & p ::= V \mid \mu\alpha.c & e ::= E \mid \tilde{\mu}a.c & \text{(Contexts)} \\ \text{(Weak values)} & V ::= v \mid a & E ::= \alpha \mid F \mid \tilde{\mu}[a].\langle a \parallel F \rangle \tau & \text{(Catchable contexts)} \\ \text{(Strong values)} & v ::= \lambda a.p \mid k & F ::= p \cdot E \mid \kappa & \text{(Forcing contexts)} \\ & & \text{(Commands)} & c ::= \langle p \parallel e \rangle & \\ & & \text{(Closures)} & l ::= c\tau \\ & & & \text{(Store)} & \tau ::= \epsilon \mid \tau[a := p] \\ \end{array}$$

Reduction rules:

A constructive proof of DC

Small steps:

CPS:

A constructive proof of DC

A constructive proof of DC

Small-step:

A constructive proof of DC

Small-step:

Realizability:

$$\langle p \parallel \tilde{\mu}a.c \rangle_{e}\tau \rightarrow \dots$$

$$\langle p \parallel E \rangle_{e}\tau \rightarrow \dots$$

$$\langle \mu\alpha.c \parallel E \rangle_{p}\tau \rightarrow \dots$$

$$\langle V \parallel E \rangle_{p}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{\tau}\rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[$$

A constructive proof of DC

Small-step:

Realizability:

$$\langle p \parallel \tilde{\mu}a.c \rangle_{e}\tau \rightarrow \dots$$

$$\langle p \parallel E \rangle_{e}\tau \rightarrow \dots$$

$$\langle \mu\alpha.c \parallel E \rangle_{p}\tau \rightarrow \dots$$

$$\langle V \parallel E \rangle_{p}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle \tau' \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle \tau' \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{V}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rangle_{E}\tau \rightarrow \dots$$

$$\langle V \parallel \tilde{\mu}[a].\langle a \parallel F \rangle_{E}\tau \rangle_{E}\tau$$

A constructive proof of DC

Small-step:

Realizability:

$$(\coprod \subseteq \Lambda \times \Pi \times \tau)$$

$$\|A\|_{e} := \{(e|\tau) \in |A|_{p}^{\perp}\}$$

$$|A|_{p} := \{(p|\tau) \in \|A\|_{E}^{\perp}\}$$

$$\|A\|_{E} := \{(E|\tau) \in |A|_{V}^{\perp}\}$$

$$|A|_{V} := \{(V|\tau) \in \|A\|_{F}^{\perp}\}$$

$$\|A\|_{F} := \{(F|\tau) \in |A|_{v}^{\perp}\}$$

$$|A \to B|_{v} := \{(\lambda a.p|\tau) : (q|\tau') \in |A|_{t}$$

$$\Rightarrow (p|\tau\tau'|a := q) \in |B|_{t}\}$$

A few novelties:

A constructive proof of DC

• Term-in-store $(t|\tau)$:

$$FV(t) \subseteq dom(\tau), \tau closed$$

- Pole: set of closures ⊥ which is:
 - saturated:

$$c'\tau' \in \bot$$
 and $c\tau \to c'\tau'$ implies $c\tau \in \bot$

• closed by store extension:

$$c\tau \in \bot$$
 and $\tau \lhd \tau'$ implies $c\tau' \in \bot$

Orthogonality:

$$(t|\tau) \perp \!\!\! \perp (e|\tau') \triangleq \tau, \tau' \text{ compatible } \land \langle t \parallel e \rangle \overline{\tau \tau'} \in \perp \!\!\!\! \perp.$$

• **Realizers**: definitions derived from the small-step rules!

A few novelties:

A constructive proof of DC

• Term-in-store $(t|\tau)$:

$$FV(t) \subseteq dom(\tau), \tau closed$$

- Pole: set of closures ⊥ which is:
 - saturated:

$$c'\tau' \in \bot$$
 and $c\tau \to c'\tau'$ implies $c\tau \in \bot$

• closed by store extension:

$$c\tau \in \bot$$
 and $\tau \lhd \tau'$ implies $c\tau' \in \bot$

Orthogonality:

$$(t|\tau) \perp \!\!\! \perp (e|\tau') \triangleq \tau, \tau' \text{ compatible } \wedge \langle t \parallel e \rangle \overline{\tau \tau'} \in \perp \!\!\!\! \perp.$$

• **Realizers**: definitions derived from the small-step rules!

Adequacy

For all $\bot\!\!\bot$, if $\tau \Vdash \Gamma$ and $\Gamma \vdash_c c$, then $c\tau \in \bot\!\!\bot$.

Normalization

If $\vdash_l c\tau$ then $c\tau$ normalizes.

Proof: The set $\perp \!\!\! \perp_{\downarrow \!\!\! \downarrow} = \{c\tau \in C_0 : c\tau \text{ normalizes }\}$ is a pole.

Adequacy

For all $\perp\!\!\!\perp$, if $\tau \Vdash \Gamma$ and $\Gamma \vdash_c c$, then $c\tau \in \perp\!\!\!\perp$.

Normalization

If $\vdash_l c\tau$ then $c\tau$ normalizes.

Proof: The set $\perp \!\!\! \perp_{\downarrow \!\!\! \downarrow} = \{c\tau \in C_0 : c\tau \text{ normalizes }\}$ is a pole.

Initial questions:

- → Does it normalize? Yes!
- ← Can the CPS be typed? *Yes!* (but it is complicated...)
- → Can we define a realizability interpretation? Yes!

A sequent calculus with dependent types

A constructive proof of DC

Reminder

A constructive proof of DC

dL

A classical sequent calculus with dependent types

Can this work?

$$\frac{\Pi_{p}}{\vdots \qquad \qquad \Pi_{q} \qquad \qquad \Pi_{e}}{\vdots \qquad \qquad \vdots \qquad \qquad \vdots} \\ \frac{\Gamma, a: A \vdash p: B[a] \mid \Delta}{\Gamma \vdash \lambda a. p: \Pi_{(a:A)}.B \mid \Delta} \xrightarrow{(\rightarrow_{r})} \frac{\Gamma \vdash q: A \mid \Delta \quad \Gamma \mid e: B[q] \vdash \Delta \quad q \in V}{\Gamma \mid q \cdot e: \Pi_{(a:A)}.B \vdash \Delta} \xrightarrow{(\mathsf{Cut})} (\rightarrow_{l})$$

A classical sequent calculus with dependent types

Can this work?

A constructive proof of DC

$$\begin{array}{c|c} \Pi_{p} & \Pi_{q} & \Pi_{e} \\ \vdots & \vdots & \vdots \\ \frac{\Gamma, a: A \vdash p: B[a] \mid \Delta}{\Gamma \vdash \lambda a. p: \Pi_{(a:A)}.B \mid \Delta} \xrightarrow{(\rightarrow_{r})} & \frac{\Gamma \vdash q: A \mid \Delta \quad \Gamma \mid e: B[q] \vdash \Delta \quad q \in V}{\Gamma \mid q \cdot e: \Pi_{(a:A)}.B \vdash \Delta} \xrightarrow{(\text{Cut})} \\ \frac{\langle \lambda a. p \parallel q \cdot e \rangle : (\Gamma \vdash \Delta)} \end{array}$$

$$\begin{array}{c} \Pi_{q} \\ \vdots \\ \Gamma \vdash q : A \mid \Delta \end{array} \underbrace{ \begin{array}{c} \Gamma, a : A \vdash p : \underline{\mathcal{B}}[a] \mid \Delta \quad \Gamma, a : A \mid e : \underline{\mathcal{B}}[q] \vdash \Delta \\ \hline \left(\begin{array}{c} \langle p \parallel e \rangle : (\Gamma, a : A \vdash \Delta) \\ \hline \Gamma \mid \tilde{\mu} a. \langle p \parallel e \rangle : A \vdash \Delta \end{array} \right)}_{\left(\begin{array}{c} \langle q \parallel \tilde{\mu} a. \langle p \parallel e \rangle \rangle : (\Gamma \vdash \Delta) \end{array} \right)} Mismatch \\ \end{array}$$

dL

Can this work? ✓

$$\begin{array}{c|c} \Pi_{p} & \Pi_{q} & \Pi_{e} \\ \vdots & \vdots & \vdots \\ \hline \Gamma, a: A \vdash p: B[a] \mid \Delta \\ \hline \Gamma \vdash \lambda a.p: \Pi_{(a:A)}.B \mid \Delta \end{array} (\rightarrow_{r}) & \frac{\Gamma \vdash q: A \mid \Delta \quad \Gamma \mid e: B[q] \vdash \Delta \quad q \in V}{\Gamma \mid q \cdot e: \Pi_{(a:A)}.B \vdash \Delta} \\ \hline \langle \lambda a.p \parallel q \cdot e \rangle : (\Gamma \vdash \Delta) & \text{(Cut)} \end{array}$$

$$\begin{array}{c} \Pi_{q} & \frac{\Gamma,a:A\vdash p:B[a]\mid \Delta \quad \Gamma,a:A\mid e:B[q]\vdash \Delta;\{\cdot|p\}\{a|q\}}{\langle p\parallel e\rangle:\Gamma,a:A\vdash \Delta;\{a|q\}} \\ \vdots & \frac{\langle p\parallel e\rangle:\Gamma,a:A\vdash \Delta;\{a|q\}}{\Gamma\mid \tilde{\mu}a.\langle p\parallel e\rangle:A\vdash \Delta;\{.|q\}} \\ \frac{\Gamma\mid \tilde{\mu}a.\langle p\parallel e\rangle:(\Gamma\vdash \Delta);\{\cdot|\cdot\}}{\langle q\parallel \tilde{\mu}a.\langle p\parallel e\rangle\rangle:(\Gamma\vdash \Delta);\{\cdot|\cdot\}} \end{array} \text{(Cut)}$$

dL

A constructive proof of DC

$\lambda \mu \tilde{\mu}$ -calculus + dependent types with:

a list of dependencies:

$$\frac{\Gamma \vdash p : A \mid \Delta; \sigma \quad \Gamma \mid e : A' \vdash \Delta; \sigma\{\cdot \mid p\} \quad A' \in A_{\sigma}}{\langle p \parallel e \rangle : (\Gamma \vdash \Delta; \sigma)} \ \ \text{(Cut)}$$

a value restriction

Is it enough?

- subject reduction
- normalization
- consistency as a logic
- suitable for CPS translation

Classical call-by-need

dL

A constructive proof of DC

$\lambda \mu \tilde{\mu}$ -calculus + dependent types with:

a list of dependencies:

$$\frac{\Gamma \vdash p : A \mid \Delta; \sigma \quad \Gamma \mid e : A' \vdash \Delta; \sigma\{\cdot \mid p\} \quad A' \in A_{\sigma}}{\langle p \parallel e \rangle : (\Gamma \vdash \Delta; \sigma)} \ \ \text{(Cut)}$$

a value restriction

Is it enough?

- subject reduction √
- normalization √
- consistency as a logic √
- suitable for CPS translation X

$\lambda \mu \tilde{\mu}$ -calculus + dependent types with:

a list of dependencies:

$$\frac{\Gamma \vdash p : A \mid \Delta; \sigma \quad \Gamma \mid e : A' \vdash \Delta; \sigma\{\cdot \mid p\} \quad A' \in A_{\sigma}}{\langle p \parallel e \rangle : (\Gamma \vdash \Delta; \sigma)} \ \ _{\text{(Cut)}}$$

a value restriction

Is it enough?

- subject reduction √
- normalization √
- consistency as a logic √
- suitable for CPS translation X

$$\llbracket q \rrbracket \llbracket \tilde{\mu}a.\langle p \parallel e \rangle \rrbracket = \underbrace{\llbracket q \rrbracket}_{\neg \neg A} (\lambda a. \underbrace{\llbracket p \rrbracket}_{\neg \neg B(a)} \underbrace{\llbracket e \rrbracket}_{\neg B(g)})$$

dL

Toward a CPS translation (1/2)

This is quite normal:

- we observed a desynchronization
- we compensated only within the type system
- \rightarrow we need to do this already in the calculus!

$$\llbracket \langle q \parallel \tilde{\mu}a.\langle p \parallel e \rangle \rangle \rrbracket = \llbracket q \rrbracket (\lambda a.\llbracket p \rrbracket \llbracket e \rrbracket)$$

$$(\llbracket q \rrbracket (\lambda a. \llbracket p \rrbracket)) \llbracket e \rrbracket$$

This is quite normal:

- we observed a desynchronization
- we compensated only within the type system
- \rightarrow we need to do this already in the calculus!

Who's guilty?

$$\llbracket \langle q \parallel \tilde{\mu}a.\langle p \parallel e \rangle \rangle \rrbracket = \llbracket q \rrbracket (\lambda a.\llbracket p \rrbracket \llbracket e \rrbracket)$$

Motto: $\llbracket p \rrbracket$ shouldn't be applied to $\llbracket e \rrbracket$ before $\llbracket q \rrbracket$ has reduced

$$(\llbracket q \rrbracket (\lambda a. \llbracket p \rrbracket)) \llbracket e \rrbracket$$

This is quite normal:

- we observed a desynchronization
- we compensated only within the type system
- \rightarrow we need to do this already in the calculus!

Who's guilty?

$$[\![\langle q \parallel \tilde{\mu}a.\langle p \parallel e \rangle\rangle]\!] = [\![q]\!] (\lambda a.[\![p]\!][\![e]\!])$$

Motto: [p] shouldn't be applied to [e] before [q] has reduced

$$(\llbracket q \rrbracket (\lambda a. \llbracket p \rrbracket)) \llbracket e \rrbracket$$

This is quite normal:

- we observed a desynchronization
- we compensated only within the type system
- \rightarrow we need to do this already in the calculus!

Who's guilty?

$$\llbracket \langle q \parallel \tilde{\mu}a.\langle p \parallel e \rangle \rangle \rrbracket = \llbracket q \rrbracket (\lambda a.\llbracket p \rrbracket \llbracket e \rrbracket)$$

Motto: [p] shouldn't be applied to [e] before [q] has reduced

$$(\llbracket q \rrbracket (\lambda a. \llbracket p \rrbracket)) \llbracket e \rrbracket$$

$$\langle \lambda a.p \parallel q \cdot e \rangle \rightarrow \langle \mu ? . \langle q \parallel \tilde{\mu} a. \langle p \parallel ? \rangle \rangle \parallel e \rangle$$

dL

Toward a CPS translation (1/2)

This is quite normal:

- we observed a desynchronization
- we compensated only within the type system
- \rightarrow we need to do this already in the calculus!

Who's guilty?

$$\llbracket \langle q \parallel \tilde{\mu}a.\langle p \parallel e \rangle \rangle \rrbracket = \llbracket q \rrbracket (\lambda a.\llbracket p \rrbracket \llbracket e \rrbracket)$$

Motto: [p] shouldn't be applied to [e] before [q] has reduced

$$(\llbracket q \rrbracket (\lambda a. \llbracket p \rrbracket)) \llbracket e \rrbracket$$

$$\langle \lambda a.p \parallel q \cdot e \rangle \rightarrow \langle \mu t \hat{p}. \langle q \parallel \tilde{\mu} a. \langle p \parallel t \hat{p} \rangle \rangle \parallel e \rangle$$

$$\llbracket \langle \lambda a.p \parallel q \cdot e \rangle \rrbracket \xrightarrow{?} (\llbracket q \rrbracket (\lambda a.\llbracket p \rrbracket)) \llbracket e \rrbracket$$

Questions:

- \bigcirc Is any q compatible with such a reduction?
- Is this typable?

$$\llbracket \langle \lambda a.p \parallel q \cdot e \rangle \rrbracket \xrightarrow{?} (\llbracket q \rrbracket (\lambda a. \llbracket p \rrbracket)) \llbracket e \rrbracket$$

Questions:

A constructive proof of DC

- Is any q compatible with such a reduction?
 - If q eventually gives a value V:

$$(\llbracket q \rrbracket (\lambda a. \llbracket p \rrbracket)) \llbracket e \rrbracket \to ((\lambda a. \llbracket p \rrbracket) \llbracket V \rrbracket) \llbracket e \rrbracket \to \llbracket p \rrbracket [\llbracket V \rrbracket / a] \llbracket e \rrbracket = \llbracket p [V / a] \rrbracket \llbracket e \rrbracket \quad \checkmark$$

• If $[\![q]\!] \to \lambda_- t$ and drops its continuation (meaning $t : \bot$):

$$(\llbracket q \rrbracket (\lambda a. \llbracket p \rrbracket)) \llbracket e \rrbracket \to ((\lambda_{-}t)\lambda a. \llbracket p \rrbracket) \llbracket e \rrbracket \to t \llbracket e \rrbracket$$

$$[\![\langle \lambda a.p \parallel q \cdot e \rangle]\!] \xrightarrow{?} ([\![q]\!] (\lambda a.[\![p]\!]))[\![e]\!]$$

Questions:

A constructive proof of DC

- Is any q compatible with such a reduction?
 - If q eventually gives a value V:

$$(\llbracket q \rrbracket (\lambda a. \llbracket p \rrbracket)) \llbracket e \rrbracket \to ((\lambda a. \llbracket p \rrbracket) \llbracket V \rrbracket) \llbracket e \rrbracket \to \llbracket p \rrbracket \llbracket \llbracket V \rrbracket / a \rrbracket \llbracket e \rrbracket = \llbracket p \llbracket V / a \rrbracket \rrbracket \llbracket e \rrbracket \quad \checkmark$$

• If $[\![q]\!] \to \lambda_- t$ and drops its continuation (meaning $t : \bot$):

$$(\llbracket q \rrbracket (\lambda a. \llbracket p \rrbracket)) \llbracket e \rrbracket \to ((\lambda_{-}t)\lambda a. \llbracket p \rrbracket) \llbracket e \rrbracket \to t \llbracket e \rrbracket$$

dL

$$\llbracket \langle \lambda a.p \parallel q \cdot e \rangle \rrbracket \xrightarrow{?} (\llbracket q \rrbracket (\lambda a.\llbracket p \rrbracket)) \llbracket e \rrbracket$$

Questions:

A constructive proof of DC

• Is any q compatible with such a reduction?

 $\rightsquigarrow q \in NEF$

• If q eventually gives a value V:

$$(\llbracket q \rrbracket (\lambda a. \llbracket p \rrbracket)) \llbracket e \rrbracket \to ((\lambda a. \llbracket p \rrbracket) \llbracket V \rrbracket) \llbracket e \rrbracket \to \llbracket p \rrbracket [\llbracket V \rrbracket / a] \llbracket e \rrbracket = \llbracket p [V/a] \rrbracket \llbracket e \rrbracket \quad \checkmark$$

• If $[\![q]\!] \to \lambda_- t$ and drops its continuation (meaning $t : \bot$):

$$([\![q]\!] (\lambda a.[\![p]\!]))[\![e]\!] \to ((\lambda_{-}t)\lambda a.[\![p]\!])[\![e]\!] \to t[\![e]\!]$$

Negative-elimination free (Herbelin'12)

Values + one continuation variable + no application

$$\llbracket \langle \lambda a.p \parallel q \cdot e \rangle \rrbracket \xrightarrow{?} (\llbracket q \rrbracket (\lambda a.\llbracket p \rrbracket)) \llbracket e \rrbracket$$

Questions:

A constructive proof of DC

• Is any q compatible with such a reduction?

 $\rightsquigarrow q \in NEF$

2 Is this typable?

Naive attempt:

$$(\underbrace{\llbracket q \rrbracket}_{(A \to \bot) \to \bot}$$

$$(\underbrace{\lambda a.\llbracket p\rrbracket}_{\Pi_{(a:A)}\neg\neg B(a)})) \qquad \underbrace{\llbracket e\rrbracket}_{\neg B[q]}$$

$$\llbracket \langle \lambda a.p \parallel q \cdot e \rangle \rrbracket \xrightarrow{?} (\llbracket q \rrbracket (\lambda a.\llbracket p \rrbracket)) \llbracket e \rrbracket$$

Questions:

• Is any q compatible with such a reduction?

 $\rightsquigarrow q \in NEF$

2 Is this typable?

Naive attempt:

$$(\underbrace{A \to ?) \to ?} \qquad (\underbrace{\lambda a. \llbracket p \rrbracket})) \qquad \underbrace{\llbracket e \rrbracket}_{\neg B[q]}$$

$$\underbrace{\Pi_{(a:A)} \neg \neg B(a)} \qquad \underbrace{\neg B[q]}$$

$$[\![\langle \lambda a.p \parallel q \cdot e \rangle]\!] \xrightarrow{?} ([\![q]\!] (\lambda a.[\![p]\!]))[\![e]\!]$$

Questions:

 \bigcirc Is any q compatible with such a reduction?

 $\rightsquigarrow q \in NEF$

2 Is this typable?

Friedman's trick:

$$(\underbrace{\begin{bmatrix} q \end{bmatrix}}_{\forall R.(A \to R?) \to R?} \underbrace{(\underbrace{\lambda a. \llbracket p \rrbracket}_{\Pi_{(a:A)} \neg \neg B(a)}))}_{\Pi_{(a:A)} \neg \neg B(a)} \underbrace{\llbracket e \rrbracket}_{\neg B[q]}$$

$$[\![\langle \lambda a.p \parallel q \cdot e \rangle]\!] \xrightarrow{?} ([\![q]\!] (\lambda a.[\![p]\!]))[\![e]\!]$$

Questions:

- \bigcirc Is any q compatible with such a reduction?
- $\rightsquigarrow q \in \mathsf{NEF}$

2 Is this typable?

→ parametric return-type

Better:

$$\underbrace{ \begin{pmatrix} \left[q \right] \\ \forall R. (\Pi_{(a:A)}R(a)) \rightarrow R(q) \end{pmatrix} \begin{pmatrix} \left[\lambda a. \left[p \right] \\ \Pi_{(a:A)} \neg \neg B(a) \end{pmatrix} \end{pmatrix}}_{\neg B[q]} \underbrace{ \begin{pmatrix} \left[\lambda a. \left[p \right] \\ \Pi_{(a:A)} \neg \neg B(a) \end{pmatrix} \end{pmatrix} }_{\neg B[q]}$$

(Remark: not possible without $q \in NEF$)

An extension of dL with:

- delimited continuations
- dependent types restricted to the NEF fragment

An extension of dL with:

- delimited continuations
- dependent types restricted to the NEF fragment

Reduction rules:

$$\langle \mu \hat{\mathbf{tp}}. \langle p \parallel \hat{\mathbf{tp}} \rangle \parallel e \rangle \rightarrow \langle p \parallel e \rangle$$

$$c \rightarrow c' \Rightarrow \langle \mu \hat{\mathbf{tp}}. c \parallel e \rangle \rightarrow \langle \mu \hat{\mathbf{tp}}. c' \parallel e \rangle$$

$$\vdots$$

$$\langle \lambda a.p \parallel q \cdot e \rangle \rightarrow \langle \mu \hat{\mathbf{tp}}. \langle q \parallel \tilde{\mu} a. \langle p \parallel \hat{\mathbf{tp}} \rangle \rangle \parallel e \rangle$$

$$\langle \lambda a.p \parallel q \cdot e \rangle \rightarrow \langle q \parallel \tilde{\mu} a. \langle p \parallel e \rangle \rangle$$

$$\langle prf p \parallel e \rangle \rightarrow \langle \mu \hat{\mathbf{tp}}. \langle p \parallel \tilde{\mu} a. \langle prf a \parallel \hat{\mathbf{tp}} \rangle \rangle \parallel e \rangle$$

$$\langle prf p \parallel e \rangle \rightarrow \langle \mu \hat{\mathbf{tp}}. \langle p \parallel \tilde{\mu} a. \langle prf a \parallel \hat{\mathbf{tp}} \rangle \rangle \parallel e \rangle$$

An extension of dl. with:

- delimited continuations
- dependent types restricted to the **NEF** fragment

Typing rules:

Regular mode

Dependent mode

$$\frac{\Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : A \vdash \Delta}{\langle p \parallel e \rangle : \Gamma \vdash \Delta} \qquad \frac{\Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : A \vdash_d \Delta, \hat{\operatorname{tp}} : B; \sigma\{\cdot \mid p\}}{\langle p \parallel e \rangle : \Gamma \vdash_d \Delta, \hat{\operatorname{tp}} : B; \sigma}$$

An extension of dl. with:

- delimited continuations
- dependent types restricted to the NEF fragment

Typing rules:

Regular mode

Dependent mode

$$\frac{\Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : A \vdash \Delta}{\langle p \parallel e \rangle : \Gamma \vdash \Delta}$$

$$\frac{\Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : A \vdash_d \Delta, \hat{\mathsf{tp}} : B; \sigma\{\cdot \mid p\}}{\langle p \parallel e \rangle : \Gamma \vdash_d \Delta, \hat{\mathsf{tp}} : B; \sigma}$$

Use of σ limited to tp:

$$\frac{c: (\Gamma \vdash_d \Delta, \hat{\mathsf{tp}} : A; \{\cdot | \cdot\})}{\Gamma \vdash \mu \hat{\mathsf{tp}}.c : A \mid \Delta} \hat{\mathsf{tp}}_I$$

$$\frac{B \in A_{\sigma}}{\Gamma \mid \hat{\mathsf{tp}} : A \vdash_d \Delta, \hat{\mathsf{tp}} : B; \sigma\{\cdot \mid p\}} \ \hat{\mathsf{tp}}_E$$

An extension of dl. with:

- delimited continuations
- dependent types restricted to the NEF fragment

Typing rules:

Regular mode

Dependent mode

$$\frac{\Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : A \vdash \Delta}{\langle p \parallel e \rangle : \Gamma \vdash \Delta}$$

$$\frac{\Gamma \vdash p : A \mid \Delta \quad \Gamma \mid e : A \vdash_d \Delta, \hat{\mathsf{tp}} : B; \sigma\{\cdot \mid p\}}{\langle p \parallel e \rangle : \Gamma \vdash_d \Delta, \hat{\mathsf{tp}} : B; \sigma}$$

Use of σ limited to tp:

$$\frac{c: (\Gamma \vdash_d \Delta, \hat{\operatorname{tp}}: A; \{\cdot|\cdot\})}{\Gamma \vdash \mu \hat{\operatorname{tp}}. c: A \mid \Delta} \ \hat{\operatorname{tp}}_I \qquad \frac{B \in A_\sigma}{\Gamma \mid \hat{\operatorname{tp}}: A \vdash_d \Delta, \hat{\operatorname{tp}}: B; \sigma\{\cdot|p\}} \ \hat{\operatorname{tp}}_E$$

$$c: (\Gamma \vdash \Delta) \land c \rightarrow c' \Rightarrow c': (\Gamma \vdash \Delta)$$

Typed CPS translation

A constructive proof of DC

Target language:

$$\top \mid \bot \mid t = u \mid \forall x^{\mathbb{N}} A \mid \exists x^{\mathbb{N}} A \mid \Pi_{(a:A)} B \mid \forall X.A$$

Normalization:

If [c] normalizes so does c.

Proof. Thorough analysis of the several reduction rules.

Types-preserving:

The translation is well-typed.

Proof. Using parametric return types for terms and NEF proofs.

Consistency:

$$\nvdash p: \bot$$
.

Proof.
$$\llbracket \bot \rrbracket = (\bot \to \bot) \to \bot$$
.

Bilan

A constructive proof of DC

An extension of dl. with:

- delimited continuations
- dependent types restricted to the **NEF** fragment

Dependent mode

delimited scope of dependencies:

$$\frac{c: (\Gamma \vdash_d \Delta, \hat{\mathsf{tp}} : A; \{\cdot | \cdot\})}{\Gamma \vdash \mu \hat{\mathsf{tp}}.c : A \mid \Delta} \hat{\mathsf{tp}}_I$$

$$\frac{B \in A_{\sigma}}{\Gamma \mid \hat{\mathsf{tp}} : A \vdash_{d} \Delta, \hat{\mathsf{tp}} : B; \sigma\{\cdot \mid p\}} \ \hat{\mathsf{tp}}_{E}$$

- Mission accomplished?
 - subject reduction
 - normalization
 - consistency as a logic
 - CPS translation

Bilan

A constructive proof of DC

An extension of dl. with:

- delimited continuations
- dependent types restricted to the NEF fragment

Regular mode

Dependent mode

delimited scope of dependencies:

$$\frac{c: (\Gamma \vdash_d \Delta, \hat{\mathsf{tp}} : A; \{\cdot | \cdot\})}{\Gamma \vdash \mu \hat{\mathsf{tp}}.c : A \mid \Delta} \hat{\mathsf{tp}}_I$$

$$\frac{B \in A_{\sigma}}{\Gamma \mid \hat{\mathsf{tp}} : A \vdash_{d} \Delta, \hat{\mathsf{tp}} : B; \sigma\{\cdot \mid p\}} \hat{\mathsf{tp}}_{E}$$

- Mission accomplished√
 - subject reduction √
 - normalization ✓
 - consistency as a logic √
 - CPS translation √

- (Bonus) embedding into Rodolphe's calculus ✓
 - → realizability interpretation

Rodolphe's calculus in a nutshell

Recipe:

- Call-by-value evaluation
- Classical language ($\mu\alpha.t$ control operator)
- Second-order logic, with encoding of dependent product:

$$\Pi_{(a:A)}B \stackrel{\triangle}{=} \forall a(a \in A \to B)$$

- Semantical value restriction
- Soundness and type safety proved by a realizability model:

$$\Gamma \vdash t : A \implies \rho \Vdash \Gamma \implies t[\rho] \in ||A||_{\rho}^{\perp \perp}$$

Semantical value restriction:

- observational equivalence: $t \equiv u$
- $u \in A$ restricted to values
- typing rules up to this equivalence (hence undecidable!)

Rodolphe's calculus in a nutshell

Recipe:

- Call-by-value evaluation
- Classical language ($\mu\alpha.t$ control operator)
- Second-order logic, with encoding of dependent product:

$$\Pi_{(a:A)}B \triangleq \forall a(a \in A \to B)$$

- Semantical value restriction
- Soundness and type safety proved by a realizability model:

$$\Gamma \vdash t : A \implies \rho \Vdash \Gamma \implies t[\rho] \in ||A||_{\rho}^{\perp \perp}$$

Semantical value restriction:

- observational equivalence: $t \equiv u$
- $u \in A$ restricted to values
- typing rules up to this equivalence (hence undecidable!)

Embedding

Easy check:

NEF ⊆ semantical values

We define an embedding of proofs and types that:

• is correct with respect to typing

$$\Gamma \vdash p : A \mid \Delta \implies (\Gamma \cup \Delta)^* \vdash \llbracket p \rrbracket_p : A^*$$

is adequate with his realizability model

$$\Gamma \vdash p : A \mid \Delta \quad \wedge \quad \sigma \Vdash (\Gamma \cup \Delta)^* \qquad \Rightarrow \qquad \llbracket p \rrbracket_p \sigma \in |A|$$

• allows to transfer Rodolphe's safety results

$$\nvdash p: \bot$$

dLPA^ω: a sequent calculus with dependent types for classical arithmetic

$dLPA^{\omega}$

A constructive proof of DC

A classical sequent calculus with:

- stratified dependent types :
 - $t, u := \dots \mid \text{wit } p$ • terms:
 - formulas: $A,B := ... \mid \forall x^T.A \mid \exists x^T.A \mid \Pi_{(a:A)}.B \mid t = u$
 - proofs: $p,q ::= ... \mid \lambda x.p \mid (t,p) \mid \lambda a.p$
- a restriction to the NEF fragment
- arithmetical terms:

$$t,u ::= \dots \mid 0 \mid S(t) \mid \operatorname{rec}_{xy}^{t}[t_0 \mid t_S] \mid \lambda x.t \mid t u$$

stores:

$$\tau ::= \varepsilon \mid \tau[a := p_\tau] \mid \tau[\alpha := e]$$

• inductive and coinductive constructions:

$$p,q ::= \dots \mid \operatorname{fix}_{bn}^t[p \mid p] \mid \operatorname{cofix}_{bn}^t p$$

• a call-by-value reduction and lazy evaluation of cofix

End of the road

End of the road

Same methodology:

A constructive proof of DC

- small-step reductions
- derive the realizability interpretation

Resembles $\overline{\lambda}_{[lv\tau\star]}$ -interpretation, plus:

- dependent types from Rodolphe's calculus
- co-inductive formulas

Same methodology:

A constructive proof of DC

- small-step reductions
- derive the realizability interpretation

Resembles $\bar{\lambda}_{[lv\tau\star]}$ -interpretation, plus:

• dependent types from Rodolphe's calculus:

$$\Pi_{(a:A)}.B \triangleq \forall a.(a \in A \rightarrow B)$$

co-inductive formulas

Same methodology:

A constructive proof of DC

- small-step reductions
- derive the realizability interpretation

Resembles $\overline{\lambda}_{[lv\tau\star]}$ -interpretation, plus:

- dependent types from Rodolphe's calculus
- co-inductive formulas: by finite approximations

$$\|v_{Xx}^tA\|_f \triangleq \bigcup_{n \in \mathbb{N}} \|F_{A,t}^n\|_f$$

Same methodology:

A constructive proof of DC

- small-step reductions
- derive the realizability interpretation

Resembles $\lambda_{\lceil I_{2/T} \star \rceil}$ -interpretation, plus:

- dependent types from Rodolphe's calculus
- co-inductive formulas: by finite approximations

Consequences of adequacy:

If $\Gamma \vdash_{\sigma} c$, then c is normalizable.

Consistency

$$\nvdash_{\text{dLPA}^{\omega}} p : \bot$$

Conclusion

A constructive proof of DC

What did we learn?

- classical call-by-need:
 - realizability interpretation
 - typed continuation-and-store-passing style translation
- dependent classical sequent calculus:
 - list of dependencies
 - use of delimited continuations for soundness
 - dependently-typed continuation-passing style translation
- dLPA^ω:
 - soundness and normalization,
 - realizability interpretation of co-fixpoints

- Classical call-by-need:
 - typing the CPS with Kripke forcing
 - \bigcirc dL_{tp}:
 - Connection with:
 - Pédrot-Tabareau's Baclofen Type Theory?
 - Vákár's categorical presentation?
 - - Connection with realizer for DC using bar recursion?
 - Algebraic counterpart of side-effects in realizability structures?

- Classical call-by-need:
 - typing the CPS with Kripke forcing
- 4 dL_{fn}:
 - Connection with:
 - Pédrot-Tabareau's Baclofen Type Theory?
 - Vákár's categorical presentation?
 - Bowman et. al. CPS for CC?
- - Connection with realizer for DC using bar recursion?
 - Algebraic counterpart of side-effects in realizability structures?

- Classical call-by-need:
 - typing the CPS with Kripke forcing
- \mathbf{Q} $dL_{\hat{\mathbf{tp}}}$:
 - Connection with:
 - Pédrot-Tabareau's Baclofen Type Theory?
 - Vákár's categorical presentation?
 - Bowman et. al. CPS for CC?
 - Dependent types & effects:

- - Connection with realizer for DC using bar recursion?
 - Algebraic counterpart of side-effects in realizability structures?

- Classical call-by-need:
 - typing the CPS with Kripke forcing
- \mathbf{Q} $dL_{\hat{\mathbf{tp}}}$:
 - Connection with:
 - Pédrot-Tabareau's Baclofen Type Theory?
 - Vákár's categorical presentation?
 - Bowman et. al. CPS for CC?
 - Dependent types & effects:

- - Connection with realizer for DC using bar recursion?
 - Algebraic counterpart of side-effects in realizability structures?

- Classical call-by-need:
 - typing the CPS with Kripke forcing
- 4 dL_{tn}:
 - Connection with:
 - Pédrot-Tabareau's Baclofen Type Theory?
 - Vákár's categorical presentation?
 - Bowman et. al. CPS for CC?
 - Dependent types & effects:

- - Connection with realizer for DC using bar recursion?
 - Algebraic counterpart of side-effects in realizability structures?

- Classical call-by-need:
 - typing the CPS with Kripke forcing
- \mathbf{Q} $dL_{\hat{\mathbf{tp}}}$:
 - Connection with:
 - Pédrot-Tabareau's Baclofen Type Theory?
 - Vákár's categorical presentation?
 - Bowman et. al. CPS for CC?
 - Dependent types & effects:

- Realizability:
 - Connection with realizer for DC using bar recursion?
 - Algebraic counterpart of side-effects in realizability structures?

 $dLPA^{\omega}$

Thank you for you attention.