A calculus of expandable stores

Continuation-and-environment-passing style translations

Hugo Herbelin' Etienne Miquey?

Unria
Université de Paris, CNRS, IRIF

) 2CNRS
ENS Paris-Saclay, Inria, LSV

LICS 2020

(sv @ Gz 111

école
normale
supérieure
paris—saclay

:DIDEROT

PARIS

1/ 20

Introduction
@0000

A computational wonderland

The A-calculus

One calculus to rule them all

2/ 20

Introduction
@0000

A computational wonderland

The A-calculus

One calculus to rule them all

A very nice abstraction:
@ Turing-complete e different evaluation strategies

o different type systems @ pure and effectful computations

2/ 20

Introduction
@0000

A computational wonderland

The A-calculus

One calculus to rule them all

A very nice abstraction:
@ Turing-complete e different evaluation strategies

o different type systems @ pure and effectful computations

Operational semantics through abstract machines
% SECD (Landin), KAM (Krivine), CEK (Felleisen and Friedman), ZINC (Leroy)...

2/ 20

Introduction
@0000

A computational wonderland

The A-calculus

One calculus to rule them all

A very nice abstraction:
@ Turing-complete e different evaluation strategies

o different type systems @ pure and effectful computations

Operational semantics through abstract machines
% SECD (Landin), KAM (Krivine), CEK (Felleisen and Friedman), ZINC (Leroy)...

Continuation-passing style (CPS) translations allow to abstract
the machine again.
@ specify an evaluation strategy
o make explicit the control flow
@ induce a type translation = syntactic model
% allowing to transfer logical properties from the target calculus

2/ 20

Introduction
(o] Jelele]

In praise of laziness

Call-by-need evaluation strategy:

@ evaluates arguments of functions only when needed

% as in call-by-name

@ shares the evaluations across all places where they are needed

9> as in call-by-value

3/20

Introduction
(o] Jelele]

In praise of laziness

Call-by-need evaluation strategy:

@ evaluates arguments of functions only when needed

% as in call-by-name

@ shares the evaluations across all places where they are needed

9> as in call-by-value

In short:
demand-driven computations + memoization

Many benefits, used in Haskell (by default) or Coq (tactic, kernel).

3/20

Introduction

[¢] lele]e}

In praise of laziness

Call-by-need evaluation strategy:

@ evaluates arguments of functions only when needed

% as in call-by-name

@ shares the evaluations across all places where they are needed

9> as in call-by-value

In short:
demand-driven computations + memoization

Many benefits, used in Haskell (by default) or Coq (tactic, kernel).

Trickier and historically less studied than CbName/CbValue.

3/20

Introduction
[e]e] Tele]

Computing with global environments

Standard abstract machines use local environments and closures:

Krivine Abstract Machine (CbName)

tu * S *x E —¢ tx(u,E)-S%xE
Ax.t % (u,E')-S* E —g t*x S kE[x:=(uE)]
X * S x E[x == (L,E)][E” —>s tx S xE

4/ 20

Introduction
[e]e] Tele]

Computing with global environments

Standard abstract machines use local environments and closures:

Krivine Abstract Machine (CbName)

tu * S *x E —¢ tx(u,E)-S%xE
Ax.t % (u,E')-S* E —g t*x S kE[x:=(uE)]
x * S *x E[x == (t,E')JE” —>s tx S *xE

Call-by-need requires a global environment to share computations.

Milner Abstract Machine (CbName)

tu * m %7 —c P ku-mx7
Axt,u-m*71 —pg btk m kr[x:=ul
x x 1 xt[x:=t]/ —s Ik 1 *r[x:=t]r’

4/ 20

Introduction
[e]e] Tele]

Computing with global environments

Standard abstract machines use local environments and closures:
Krivine Abstract Machine (CbName)

tu * S *x E —¢ tx(u,E)-S%xE
Ax.t % (u,E')-S* E —g t*x S kE[x:=(uE)]
x * S *x E[x == (t,E')JE” —>s tx S *xE

Call-by-need requires a global environment to share computations.

Milner Abstract Machine (CbName)

tu * m %7 —c P ku-mx7
Axt,u-m*71 —pg btk m kr[x:=u]
x x 1 xt[x:=t]t/ —s Ok 1 *r[x:=t]r’

Globality requires to explicitly handle addresses or a renaming
process.

4/ 20

Introduction
[e]e]e] o]

A thorn in the side

A lost paradise?
v~ Abstract machines with global environments

v" By-need abstract machines
% Sestoft’s machine, Accattoli, Barenbaum and Mazza’s Merged MAD

X Typed continuation-and-environment passing style
translation?

Several difficulties to handle:
@ How should control and environments interact?
e Can we soundly type environments?
@ ... while accounting for extensibility?

@ How to avoid name clashes?

5/20

Introduction
0000e

This paper

Typed continuation-and-environment-passing style (CEPS) translations

% i.e. understand how to soundly CEPS translate calculi with global environments

6/ 20

Introduction
0000e

This paper

Our goal

Typed continuation-and-environment-passing style (CEPS) translations

% i.e. understand how to soundly CEPS translate calculi with global environments

Contribution
@ We introduce Fy, a generic calculus used as the target of CEPS
translations, which features:
e a data type for typed stores
o explicit coercions witnessing store extensions

6/ 20

Introduction
0000e

This paper

Our goal

Typed continuation-and-environment-passing style (CEPS) translations

% i.e. understand how to soundly CEPS translate calculi with global environments

Contribution
@ We introduce Fy, a generic calculus used as the target of CEPS
translations, which features:
e a data type for typed stores
o explicit coercions witnessing store extensions

Generic?

We aim at isolating the key ingredients necessary to the definition
of well-typed CEPS translations.

6/ 20

Introduction
0000e

This paper

Our goal

Typed continuation-and-environment-passing style (CEPS) translations

% i.e. understand how to soundly CEPS translate calculi with global environments

Contribution
@ We introduce Fy, a generic calculus used as the target of CEPS
translations, which features:
e a data type for typed stores
o explicit coercions witnessing store extensions

@ We use it to implement simply-typed CEPS translations for:
v call-by-need v call-by-name v call-by-value

6/ 20

Continuation-and-environment passing
style translations

Towards typed translations

7/ 20

Backtrack and laziness

What should be the semantics of a control operator in presence of a

shared memory?

let a = catchy (fun k =
(Id,fun x = throw k x))

f = fst a
q = snd a
in f q (Id,

Id)

Okasaki, Lee & Tarditi ’93:

What does not force the ef-
fect is shared.

@ g shared @ f recomputed

4 loops...

8/ 20

Backtrack and laziness

Question

What should be the semantics of a control operator in presence of a
shared memory?

let a = catchy (fun k = Okasaki, Lee diti ’93:
(Id ,fun x = throw k x)) What does ce the ef-
f = fst a fect is sha
q = snd a @ g shared @ f recomputed
e (e, Td) 1 J recomp
4 loops...
Method:

Ariola et al. ’12:

L L " @ sequent calculus
Nothing is shared inside an effect © abstract machine

@ f recomputed @ g recomputed © (untyped) CPS translation
Y returns (Id,Id) v

8/ 20

Backtrack and laziness

Theorem [M.-Herbelin *18]

Ariola et al’s semantics is typable, normalizing and consistent.

let a - catchy (fun k = Okasaki, Lee diti ’93:
(Id,fun x = throw k x)) What does ce the ef-
f = fst a fect is sha
q = snd a @ g shared @ f recomputed
in f q (Id, 1d) 1 f recomp
% loops...
Method:

Ariola et al. ’12:

@ sequent calculus

Nothing is shared inside an effect @ abstract machine

@ f recomputed @ g recomputed @ (untyped) CPS translation

% returns (Id,Id) v/ Q realizability interpretation

8/ 20

Intuitions

(Analyzing Ariola et al. *12)

Sequent calculus:

(tle)r
Term Context Environment
Syntax
Terms ‘ Contexts

Terms tuz=V|pa.c Contexts e == E|jix.c
Weak val. Vi=o|x Catchable cont. E == F|a | j[x].{x|F)r
Strongval. v:= Ax.t [k Forcing cont. F == t-E|x

Environments Tu= ¢ | t[x :=t]| r]e := E]

Commands cu= (t|e)

9/ 20

Intuitions

(Analyzing Ariola et al. *12)

Sequent calculus:

(t]e)yr
/ T AN
Term Context Environment
Syntax
Terms Contexts

Terms tuz=V|pa.c Contexts e == E|fix.c
Weak val. Vi=olx Catchable cont. E := F|a | fi[x].{x| F)r
Strongval. v:= Ax.t [k Forcing cont. F == t-E|lx

Environments 7= ¢ | t[x:=t] | r[a := E]

Commands cu= (t]e)

9/ 20

Intuitions

(Analyzing Ariola et al. *12)

Syntax
Terms Contexts
Terms tuz=V|pa.c Contexts e == E|fix.c
Weak val. Vi=vlx Catchable cont. E := F|a | fi[x].{x| F)r
Strongval. v:= Ax.t [k Forcing cont. F u=t-E|xk
Environments T u= ¢ | t[x:=1t] | r[a := E]
Commands cu= (t]e)
Lazy reduction:
(Lazy storage) (t|] fix.c)r — ct[x :=t]
(Catch) (pa.c| Eyr — ct[a := E]
(Lookup) x| Frlx:=tlc" - (] plx] | Fr)r
(Forced eval.) (V| alx]{x | Fyz’)z - (V| F)r[x := V]’
Axtlu-Eyr — (ulpx(lE)T

9/ 20

Intuitions

(Analyzing Ariola et al. *12)
Sequent calculus:
(tle)r
/ T AN

Term Context Environment

Untyped CEPS:

[Ktleyr] = lele [7]- [t]:
7N

environment continuation
passing passing

9/ 20

Intuitions

Untyped CEPS:

[<t]e)r]

[iix.c]e

[E]e

[na.cl

V]

[alx](x 1 F)e'Te
[Fle

[x]y

[Ax.t]y

[[u . Eﬂf

(Analyzing Ariola et al. *12)

~

environment
passing

[ele []- [£]:
7N
continuation
passing

Artfe]c z[x := t]

Art.t T [E]e

AcE([e]. D)[E/a]
AE.Ez[V],

AV.Vr[x = V]['], [F]¢
AV.V r [Fl¢

AtFr(x)t (AcV.V r[x =
AtF.Ft (AutE.[t]y t[x := u] E)
Arv.w [t]e T [E]e

v’ [Fl)

9/ 20

Typing the CEPS: guidelines

[Ktleye]l = [ele] [t]e
7N

environment continuation
passing passing

10/ 20

Typing the CEPS: guidelines

Keleyr] = [ele
N

Step 1 - Continuation-passing part

l
[T] F [e]e - [A]:

10/ 20

[Kele)el = lefe [z]- [t
7N

continuation

passing
Step 1 - Continuation-passing part
[Ale = [Al— L lix.cle = At.[c]c
[Ale = [Ale— L [pa.cly = Aa.[c]c
[[AHE é [[A]]V—) 1
[[A]]V é [[A]]F_) 1
[[A]]F £ [[A]]V—> 1
[A—B], 2 [A]— [Ble— L

% In comparison, for call-by-name/call-by-value we would only have 4/3 layers.
10/ 20

Typing the CEPS: guidelines

Keleyr] = [ele
N

Step 2- Environment-passing part
l
[+ [t - [TT — [AD:]

11/ 20

Typing the CEPS: guidelines

Keleyr] = [ele
N

Step 2- Environment-passing part

l

F[t]e: [T] > A

11/ 20

Typing the CEPS: guidelines

Keleyr] = [ele
N

Step 2- Environment-passing part

l

[t : [1] = [I] e A— 1]

11/ 20

Typing the CEPS: guidelines

[Kcleye] = [e]e
7N

Step 2- Environment-passing part

|

F I [T = (I = [ey 4> D> L

11/ 20

[<tle)r]

~

Typing the CEPS: guidelines

le]e
7N

Step 2- Environment-passing part

[T]>e A
[r]> A
[T]>e A
[T]>v A
[T]>F A
[]>wA— B

(1> 11> 1> 1> > >

[T] — [[]rtA— L
[[rﬂ — [[F]]PEA—>J_
[T] — [T]>vA— L
[T] = [T]rrA— L
[[rﬂ - [[r]] l>VA_)J-
[

I - [T]»tA—[I]>eB— L

11/ 20

Typing the CEPS: guidelines

Step 3 - Extension of the environment
A possible reduction scheme:

t is needed (x| F)ri[x := t]ry

12/ 20

Typing the CEPS: guidelines

Step 3 - Extension of the environment
A possible reduction scheme:

t is needed (x| F)ri[x := t]ry
evaluation of t — (t| flx].{x | F)m)n

12/ 20

Typing the CEPS: guidelines

Step 3 - Extension of the environment
A possible reduction scheme:

t is needed (x| F)ri[x := t]ry
evaluation of t — (t| flx].{x | F)m)n
t produces a value —* (V| glx].{x | Fyr2) 7y

12/ 20

Typing the CEPS: guidelines

Step 3 - Extension of the environment
A possible reduction scheme:

t is needed (x| F)ri[x := t]ry

evaluation of t — (t| flx].{x | F)m)n

t produces a value —* (V| glx].{x | Fyr2) 7y

V is stored — (V| F)ri7'[x := V],
Key idea:

[t]t : [T] >t A should be compatible with any extension of [I']

12/ 20

Typing the CEPS: guidelines

Step 3 - Extension of the environment
Key idea:

[t]t : [T] >t A should be compatible with any extension of [I]

Store subtyping:

|B1 B, | A | Bs | Ay | By

12/ 20

Typing the CEPS: guidelines

Step 3 - Extension of the environment

Key idea:

[t]t : [T] >t A should be compatible with any extension of [I]
Store subtyping:

Translation:
|

[I— [t]t : [T] — [T] > A— J_J

12/ 20

Typing the CEPS: guidelines

Step 3 - Extension of the environment

Key idea:

[t]t : [T] >t A should be compatible with any extension of [I]
Store subtyping:

Translation:
|

[" [t : .Y—>Y>EA_>J_]

12/ 20

Typing the CEPS: guidelines

Step 3 - Extension of the environment
Key idea:

[t]t : [T] >t A should be compatible with any extension of [I]

Store subtyping:

Translation:
|
[t X - (X oY yA> 1) > 1)

(reminiscent of Kripke forcing)

12/ 20

Typing the CEPS: guidelines

Step 3 - Extension of the environment
Key idea:

[t]t : [T] >t A should be compatible with any extension of [I]

Store subtyping:

Translation:

[[]rcA = = YeA— L

[[]>rA = =Yg A— L

[T]reA = J—=YeyA— L

[[]evA = T - YepA— L

[T]»rA = I —>Te A— L
A

[f]>vA— B J—->YsA—>YegB— L

12/ 20

Typing the CEPS: guidelines

Step 4 - Avoiding name clashes

Ariola et al. work implicit relies on a-renaming on-the-fly.
% incompatible with the CEPS translation

13/ 20

Typing the CEPS: guidelines

Step 4 - Avoiding name clashes

Ariola et al. work implicit relies on a-renaming on-the-fly.
Y incompatible with the CEPS translation

Here, we use De Bruijn levels both:
@ in the source:

I(n) = (xn : T) (o | Pyelx, o= tle ——s | lxn]-(xn | F)r’)r
Fryx,: T n=|r|

Vlalxi)xi | Fyeyr —— (VT F)rlx, = VT’

13/ 20

Typing the CEPS: guidelines

Step 4 - Avoiding name clashes

Ariola et al. work implicit relies on a-renaming on-the-fly.
Y incompatible with the CEPS translation

Here, we use De Bruijn levels both:
o and the target:

{xo CA o :BJ',xZ:C!—tt:D]

!

+[t]i: A B Co D

13/ 20

Typing the CEPS: guidelines

Step 4 - Avoiding name clashes
Here, we use De Bruijn levels both:
@ and the target:

{xo tA o :Bl,xZ:CFtt:D}
|

+[t]e: A BLCo D

...where we use coercions o : I’ <:T'| to witness store extension

and keep track of De Bruijn:

E

B;

A

Bs

Ay

By

13/ 20

Fy
[Jelelelele)

A calculus of expandable stores

Introducing Fy

14/ 20

Principles

System Fy defines a parametric target for CEPS translations

15/ 20

Principles

System Fy defines a parametric target for CEPS translations

Each CEPS translation can be divided in three blocks:
@ a source calculus and its type system
S Here, simply-typed calculi

15/ 20

Principles

System Fy defines a parametric target for CEPS translations

Each CEPS translation can be divided in three blocks:

@ a syntax for stores and coercions

15/ 20

Principles

System Fy defines a parametric target for CEPS translations

Each CEPS translation can be divided in three blocks:

© the target calculus, an instance of Fy

15/ 20

Stores

In this paper, we only use lists to represent stores:

Sourcetypes A = X|A—B Fu=A| At
Store types Y == Y|O|LF|X;Y
Stores r = O|[]]|<z[t] |7’

16/ 20

Stores

In this paper, we only use lists to represent stores:

Sourcetypes A = X|A—B Fu=A| At
Store types Y == Y|O|LF|X;Y
Stores r = O|[]]|<z[t] |7’

“Appended to a store of type Y’, the store 7 is of type X.”

Trt:Yo» T Trr: Yo, Y Tr:(Xp; V)oY
Tr[]:0-,0 Fr[t]: Yo, T Tror’ e, 1Y

Remark
type of a store = list of source types

16/ 20

Stores

In this paper, we only use lists to represent stores:

Sourcetypes A = X|A—B Fu=A| At
Store types Y == Y|O|LF|X;Y
Stores r = O|[]]|<z[t] |7’

“Appended to a store of type Y’, the store 7 is of type X.”

Trt:Yo» T Trr: Yo, Y Tr:(Xp; V)oY
Tr[]:0-,0 Fr[t]: Yo, T Tror’ e, 1Y

Remark
type of a store = list of source types

» = parameter of the target

how these types are translated
16/ 20

Coercions

Explicit witnesses of list inclusions:

@ Base case ©
(€
Tre:0<:0

17/ 20

Coercions

Explicit witnesses of list inclusions:
@ Base case
F're:0<: (Z)(g)
@ Local identity
Fro:Y' <Y
F'ro":(Y,F)<:(X,F)

(<:4)

17/ 20

Coercions

Explicit witnesses of list inclusions:
@ Base case
F're:0<: (Z)(g)
@ Local identity
Fro:Y' <Y
F'rot:XY,F)<:(Y,F)

(<)

© Strict extension
F'to:Y' <Y
I'tflo:(Y,F)<:Y

(<:ﬂ)

17/ 20

Coercions

Explicit witnesses of list inclusions:
Q Base case
F're:0<: @(5)
@ Local identity
Fro:Y' <Y
F'rot:XY,F)<:(Y,F)

(<)

© Strict extension
F'to:Y' <Y
I'tflo:(Y,F)<:Y

(<:ﬂ)

Example: .’ Z
(@) : T T.UT <T.U g

- T

B i

17/ 20

Coercions

Explicit witnesses of list inclusions:
Q Base case
F're:0<: @(5)
@ Local identity
Fro:Y' <Y
F'rot:XY,F)<:(Y,F)

(<)

© Strict extension
F'to:Y' <Y
I'tflo:(Y,F)<:Y

(<:ﬂ)

e

Example: (i
0. |
HI (N e)™) : To, T,U, Ty <: T,U — ul,
Ul|.--"|T
Remark: this corresponds to the function T T =
01 el>2 e24 - L

17/ 20

System Fy

In broad lines

System F extended with stores and coercions'

TActually, false advertizing, the situation is more involved.
18/ 20

System Fy

Syntax: Store type Y + Stores © + Coercions o +
Types T:=X|T - U | | Yo, Y > T |VY.T
Terms t:=k|x|Ax.t|tu| | | Ad.t | tT | AY.t |t Y

| split r at n along o : Y’ <: Y as (Y, so,), x, (Y1, 81,61) in ¢

18/ 20

System Fy

Syntax: Store type Y + Stores © + Coercions o +

Types Tu=X|T — U | | Yo, Y = T |VY.T
Terms t:=k|x|Ax.t|tu| | | Ad.t | tT | AY.t |t Y
| split r at n along o : Y’ <: Y as (Y, so,), x, (Y1, 81,61) in ¢

Intuitively, split allows to look in

for the term expected at
position n in Y using

expected

18/ 20

System Fy

Syntax: Store type Y + Stores © + Coercions o +

Types Tu=X|T — U | | Yo, Y = T |VY.T
Terms t:=k|x|Ax.t|tu| | | Ad.t | tT | AY.t |t Y
| split r at n along o : Y’ <: Y as (Y, so,), x, (Y1, 81,61) in ¢

Intuitively, split allows to look in

for the term expected at
position n in Y using

expected .

18/ 20

System Fy

Syntax: Store type Y + Stores © + Coercions o +
Types T:=X|T - U | | Yo, Y > T |VY.T
Terms t:u=k|x|Ax.t|tu| | | Ad.t | tT | AY.t |t Y

| split r at n along o : Y’ <: Y as (Y, so,), x, (Y1, 81,61) in ¢

Three kinds of reductions:
@ split e normalization of coercions @ usual f-reduction

We have:
@ Reduction preserves typing (Subject reduction)
@ Typed terms normalize (Normalization)

Shallow embedding in Coq: https://gitlab.com/emiquey/fupsilon

18/ 20

https://gitlab.com/emiquey/fupsilon

Examples

In the paper, we take advantage of the genericity of Fy:

» parameter depending
on the translation

Frt:Yo» T
Tr[f]: Yoo, T

19/ 20

Examples

In the paper, we take advantage of the genericity of Fy:

» parameter depending
on the translation

Frt:Yo» T
Tr[f]: Yoo, T

to define well-typed CEPS for simply-typed calculi:
v call-by-need v call-by-name v call-by-value

19/ 20

Examples

In the paper, we take advantage of the genericity of Fy:

Trt: Yo T - » parameter depending

- " - on the translation
Tr[t]: Yoo, T

to define well-typed CEPS for simply-typed calculi:
v call-by-need v call-by-name v call-by-value

These translations exactly follow the intuitions we saw before:

continuation-passing + environment-passing

negative translation Kripke-style forcing

19/ 20

Examples

In the paper, we take advantage of the genericity of Fy:

Trt: Yo T - » parameter depending

- " - on the translation
Tr[t]: Yoo, T

to define well-typed CEPS for simply-typed calculi:
v call-by-need v call-by-name v call-by-value

These translations exactly follow the intuitions we saw before:

continuation-passing + environment-passing

negative translation Kripke-style forcing

Remark: we could also consider System F as source calculus, by
changing the notion of source types.

19/ 20

Conclusion
[]

Conclusion

We isolated the key ingredients for well-typed CEPS:
@ terms to represent and manipulate typed stores,

@ explicit coercions to witness store extensions.

20/ 20

Conclusion
[]

Conclusion

We isolated the key ingredients for well-typed CEPS:
@ terms to represent and manipulate typed stores,

@ explicit coercions to witness store extensions.

Fy has the benefits of being parametric:
e suitable for CEPS with different evaluation strategies
e compatible with different sources/type systems.

o compatible with different implementation of stores

20/ 20

Conclusion
[]

Conclusion

From a logical viewpoint:

CEPS = Kripke forcing interleaved with a negative translation

Connection between forcing and environment already known:

Presheaves

Forcing State monad

~_

20/ 20

Conclusion
[]

Conclusion

Open questions / further work

© Towards well-typed compilation transformations for
lazily-evaluated calculi? (cf. MetaCoq project)

20/ 20

Conclusion
[]

Conclusion

Open questions / further work

@ Exact expressiveness of Fy?

20/ 20

Conclusion
[]

Conclusion

Open questions / further work

@ Type translation as a modality?

L~ >t A is a function : store type — type

20/ 20

Conclusion
[]

Conclusion

Open questions / further work

@ Type translation as a modality?

{- > A is a function : store type — type}

OF £ Y- V<Y Y = (FY)—> L
< A = D(>E A) = D(l:l(>y A)) = ...

20/ 20

Thank you for your attention.

20/ 20

	Introduction
	

	CEPS
	F
	

	Conclusion
	

	

