A calculus of expandable stores Continuation-and-environment-passing style translations

Hugo Herbelin¹

Étienne Miquey²

¹Inria Université de Paris, CNRS, IRIF

²CNRS ÉNS Paris-Saclay, Inria, LSV

LICS 2020

école — — — — normale — — — supérieure — — paris — saclay — — —

The λ -calculus

One calculus to rule them all

A very nice abstraction

- Turing-complete
 different evaluation strategies
- different type systems
 pure and effectful computations

Operational semantics through **abstract machines**9 SECD (Landin), KAM (Krivine), CEK (Felleisen and Friedman), ZINC (Leroy)...

- specify an evaluation strategy
- make explicit the control flow
- induce a type translation ≡ **syntactic model**

The λ -calculus

One calculus to rule them all

A very nice abstraction:

Turing-complete

- different evaluation strategies
- different type systems
- pure and effectful computations

Operational semantics through **abstract machines**9 SECD (Landin), KAM (Krivine), CEK (Felleisen and Friedman), ZINC (Leroy)...

- specify an evaluation strategy
- make explicit the control flow
- induce a type translation ≡ syntactic model
 - → allowing to transfer logical properties from the target calculus

The λ -calculus

One calculus to rule them all

A very nice abstraction:

Turing-complete

- different evaluation strategies
- different type systems
- pure and effectful computations

Operational semantics through abstract machines

↔ SECD (Landin), KAM (Krivine), CEK (Felleisen and Friedman), ZINC (Leroy)...

- specify an evaluation strategy
- make explicit the control flow
- induce a type translation ≡ syntactic model
 - *♀* allowing to transfer logical properties from the target calculus

The λ -calculus

One calculus to rule them all

A very nice abstraction:

Turing-complete

- different evaluation strategies
- different type systems
- pure and effectful computations

Operational semantics through abstract machines

↔ SECD (Landin), KAM (Krivine), CEK (Felleisen and Friedman), ZINC (Leroy)...

- specify an evaluation strategy
- make explicit the control flow
- induce a type translation ≡ syntactic model
 - *♀* allowing to transfer logical properties from the target calculus

In praise of laziness

Call-by-need evaluation strategy:

- evaluates arguments of functions only when needed

 → as in call-by-name
- shares the evaluations across all places where they are needed

 + as in call-by-value

In short

demand-driven computations + memoization

Many benefits, used in Haskell (by default) or Coq (tactic, kernel)

Trickier and historically less studied than CbName/CbValue

In praise of laziness

Call-by-need evaluation strategy:

- evaluates arguments of functions only when needed

 → as in call-by-name
- shares the evaluations across all places where they are needed
 → as in call-by-value

In short:

demand-driven computations + memoization

Many benefits, used in Haskell (by default) or Coq (tactic, kernel).

Trickier and historically less studied than CbName/CbValue.

In praise of laziness

Call-by-need evaluation strategy:

- evaluates arguments of functions only when needed

 → as in call-by-name
- shares the evaluations across all places where they are needed
 → as in call-by-value

In short:

demand-driven computations + memoization

Many benefits, used in Haskell (by default) or Coq (tactic, kernel).

Trickier and historically less studied than CbName/CbValue.

Standard abstract machines use local environments and closures:

Krivine Abstract Machine (CbName)

Call-by-need requires a global environment to share computations.

Milner Abstract Machine (ChName)

Globality requires to explicitly handle addresses or a **renaming process**.

Computing with global environments

Standard abstract machines use local environments and closures:

Krivine Abstract Machine (CbName)

Call-by-need requires a global environment to share computations.

Milner Abstract Machine (CbName)

Globality requires to explicitly handle addresses or a **renaming process**.

Computing with global environments

Standard abstract machines use local environments and closures:

Krivine Abstract Machine (CbName)

Call-by-need requires a global environment to share computations.

Milner Abstract Machine (CbName)

Globality requires to explicitly handle addresses or a **renaming process**.

A thorn in the side

A lost paradise?

- √ Abstract machines with global environments
- ✓ By-need abstract machines

 ⊕ Sestoft's machine, Accattoli, Barenbaum and Mazza's Merged MAD
- X Typed continuation-and-environment passing style translation?

Several difficulties to handle:

- How should control and environments interact?
- Can we soundly type environments?
- ... while accounting for extensibility?
- How to avoid name clashes?

This paper

Our goal

Typed continuation-and-environment-passing style (CEPS) translations

← i.e. understand how to soundly CEPS translate calculi with global environments

Contribution

- We introduce F_{Υ} , a **generic** calculus used as the target of CEPS translations, which features:
 - a data type for typed stores
 - explicit coercions witnessing store extensions
- We use it to implement simply-typed CEPS translations for:

 √ call-by-need
 ✓ call-by-name
 ✓ call-by-value

Our goal

Typed continuation-and-environment-passing style (CEPS) translations

⊕ i.e. understand how to soundly CEPS translate calculi with global environments

Contribution

- We introduce F_{Υ} , a **generic** calculus used as the target of CEPS translations, which features:
 - a data type for typed stores
 - explicit coercions witnessing store extensions

This paper

Our goal

Typed continuation-and-environment-passing style (CEPS) translations

← i.e. understand how to soundly CEPS translate calculi with global environments

Contribution

- We introduce F_{Υ} , a **generic** calculus used as the target of CEPS translations, which features:
 - a data type for typed stores
 - explicit coercions witnessing store extensions

Generic?

We aim at isolating the key ingredients necessary to the definition of well-typed CEPS translations.

This paper

Our goal

Typed continuation-and-environment-passing style (CEPS) translations

↔ i.e. understand how to soundly CEPS translate calculi with global environments

Contribution

- We introduce F_{Υ} , a **generic** calculus used as the target of CEPS translations, which features:
 - a data type for typed stores
 - explicit coercions witnessing store extensions
- We use it to implement simply-typed CEPS translations for:
 - √ call-by-need
- √ call-by-name
 √ call-by-value

Introduction

Continuation-and-environment passing style translations

Towards typed translations

Backtrack and laziness

Question

What should be the semantics of a control operator in presence of a shared memory?

```
let a = catch<sub>k</sub> (fun k \Rightarrow
 (Id, fun x \Rightarrow \text{throw } k \times ))
     f = fst a
    q = snd a
in f q (ld, ld)
```

Okasaki, Lee & Tarditi '93:

What does not force the effect is shared.

- q sharedf recomputed
- \hookrightarrow loops...

Backtrack and laziness

Question

What should be the semantics of a control operator in presence of a shared memory?

```
let a = catch<sub>k</sub> (fun k \Rightarrow
 (Id, fun x \Rightarrow \text{throw } k \times))
     f = fst a
    q = snd a
in f q (ld, ld)
```

Ariola et al. '12:

Nothing is shared inside an effect

- f recomputed q recomputed
- \hookrightarrow returns (Id,Id) \checkmark

Okasaki, Lee Trditi '93:

What does not rece the effect is shar

- q sharedf recomputed
- \hookrightarrow loops...

Method:

- sequent calculus
- abstract machine
- (untyped) CPS translation

Backtrack and laziness

Theorem

[M.-Herbelin '18]

Ariola *et al.*'s semantics is typable, normalizing and consistent.

```
let a = catch<sub>k</sub> (fun k \Rightarrow
 (Id, fun x \Rightarrow \text{throw } k \times)
     f = fst a
    q = snd a
in f q (ld, ld)
```

Okasaki, Lee Trditi '93:

What does n fect is shar

rce the ef-

- q sharedf recomputed

 \hookrightarrow loops...

Ariola et al. '12:

Nothing is shared inside an effect

- f recomputed q recomputed
- \hookrightarrow returns (Id,Id) \checkmark

Method:

- sequent calculus
- abstract machine
- (untyped) CPS translation
- realizability interpretation

(Analyzing Ariola et al. '12)

Sequent calculus:

Syntax

(Analyzing Ariola et al. '12)

Sequent calculus:

Syntax

Terms	Contexts
Terms $t, u ::= V \mid \mu \alpha.c$ Weak val. $V ::= v \mid x$ Strong val. $v ::= \lambda x.t \mid k$	Contexts $e ::= E \mid \tilde{\mu}x.c$ Catchable cont. $E ::= F \mid \alpha \mid \tilde{\mu}[x].\langle x \mid F \rangle \tau$ Forcing cont. $F ::= t \cdot E \mid \kappa$
Environments $\tau ::= \varepsilon \mid \tau[x := t] \mid \tau[\alpha := E]$ Commands $c ::= \langle t \parallel e \rangle$	

(Analyzing Ariola et al. '12)

Syntax

Terms	Contexts
Terms $t, u ::= V \mid \mu \alpha.c$ Weak val. $V ::= v \mid x$ Strong val. $v ::= \lambda x.t \mid k$	Contexts $e ::= E \mid \tilde{\mu}x.c$ Catchable cont. $E ::= F \mid \alpha \mid \tilde{\mu}[x].\langle x \mid F \rangle \tau$ Forcing cont. $F ::= t \cdot E \mid \kappa$
Environments $\tau := \varepsilon \mid \tau[x := t] \mid \tau[\alpha := E]$ Commands $c := \langle t \parallel e \rangle$	

Lazy reduction:

(Analyzing Ariola et al. '12)

Sequent calculus:

Untyped CEPS:

(Analyzing Ariola et al. '12)

 $[\![\langle t \parallel e \rangle \tau]\!] \simeq [\![e]\!]_{e} [\![\tau]\!]_{\tau} [\![t]\!]_{t}$

Untyped CEPS:

 $\begin{aligned} & [\![x]\!]_{\mathsf{v}} & := & \lambda \tau \boldsymbol{F}.\tau(x) \, \tau \, (\lambda \tau \boldsymbol{V}.V \, \tau[x := V]\tau' \, [\![F]\!]_{\mathsf{f}}) \\ & [\![\lambda x.t]\!]_{\mathsf{v}} & := & \lambda \tau \boldsymbol{F}.F \, \tau \, (\lambda u \tau E. [\![t]\!]_{\mathsf{t}} \, \tau[x := u] \, E) \end{aligned}$

 $\llbracket F \rrbracket_{\mathsf{E}} := \lambda \tau \mathbf{V} . V \tau \llbracket F \rrbracket_{\mathsf{f}}$

 $\llbracket u \cdot E \rrbracket_{\mathsf{f}} := \lambda \tau v \cdot v \, \llbracket t \rrbracket_{\mathsf{f}} \, \tau \, \llbracket E \rrbracket_{\mathsf{E}}$

(1/4)

CEPS

0000000

Step 1 - Continuation-passing part

Step 1 - Continuation-passing part

 $[\]hookrightarrow$ In comparison, for call-by-name/call-by-value we would only have 4/3 layers.

(2/4)

(2/4)

(3/4)

Step 3 - Extension of the environment

A possible reduction scheme:

t is needed
$$\langle x | F \rangle \tau_1[x := t] \tau_2$$

(3/4)

Step 3 - Extension of the environment

A possible reduction scheme:

$$\begin{array}{ll} t \text{ is needed} & \langle x \parallel F \rangle \tau_1[x := t] \tau_2 \\ \text{evaluation of } t & \rightarrow \langle t \parallel \tilde{\mu}[x].\langle x \parallel F \rangle \tau_2 \rangle \tau_1 \end{array}$$

(3/4)

Step 3 - Extension of the environment

A possible reduction scheme:

```
 \begin{array}{ll} \textit{t is needed} & & \langle x \parallel F \rangle \tau_1[x := t] \tau_2 \\ \textit{evaluation of t} & & \rightarrow \langle t \parallel \tilde{\mu}[x].\langle x \parallel F \rangle \tau_2 \rangle \tau_1 \\ \textit{t produces a value} & & \rightarrow^* \langle V \parallel \tilde{\mu}[x].\langle x \parallel F \rangle \tau_2 \rangle \tau_1 \boxed{\tau'} \\ \end{array}
```

(3/4)

Step 3 - Extension of the environment

A possible reduction scheme:

```
 \begin{array}{ll} \textit{t is needed} & & \langle x \parallel F \rangle \tau_1[x := t] \tau_2 \\ \textit{evaluation of } t & \rightarrow & \langle t \parallel \tilde{\mu}[x].\langle x \parallel F \rangle \tau_2 \rangle \tau_1 \\ \textit{t produces a value} & \rightarrow^* & \langle V \parallel \tilde{\mu}[x].\langle x \parallel F \rangle \tau_2 \rangle \tau_1 \boxed{\tau'} \\ \textit{V is stored} & \rightarrow & \langle V \parallel F \rangle \tau_1 \tau'[x := V] \tau_2 \\ \end{array}
```

Key idea:

 $[\![t]\!]_t : [\![\Gamma]\!] \triangleright_t A$ should be compatible with any extension of $[\![\Gamma]\!]$

(3/4)

Step 3 - Extension of the environment

Key idea:

 $[t]_t : [\Gamma] \triangleright_t A$ should be compatible with any extension of $[\Gamma]$

Store subtyping:

<:

(3/4)

Step 3 - Extension of the environment

Key idea:

 $[t]_t : [\Gamma] \triangleright_t A$ should be compatible with any extension of $[\Gamma]$

Store subtyping:

$$\Gamma' <: \Gamma$$

Translation:

$$\begin{array}{c|c} \Gamma \vdash_{\mathsf{t}} t : A \\ & \downarrow \\ \\ \hline \vdash \llbracket t \rrbracket_{\mathsf{t}} : \llbracket \Gamma \rrbracket \to \llbracket \Gamma \rrbracket \triangleright_{\mathsf{E}} A \to \bot \\ \end{array}$$

Step 3 - Extension of the environment

Key idea:

 $[t]_t : [\Gamma] \triangleright_t A$ should be compatible with any extension of $[\Gamma]$

Store subtyping:

$$\Gamma' <: \Gamma$$

Translation:

Step 3 - Extension of the environment

Key idea:

 $[t]_t : [\Gamma] \triangleright_t A$ should be compatible with any extension of $[\Gamma]$

Store subtyping:

$$\Gamma' <: \Gamma$$

Translation:

$$\Gamma \vdash_{\mathsf{t}} t : A$$

$$\left[\vdash \llbracket t \rrbracket_t : \forall \Upsilon <: \llbracket \Gamma \rrbracket. \Upsilon \to (\forall \Upsilon' <: \Upsilon. \Upsilon' \to \Upsilon' \triangleright_{\mathsf{V}} A \to \bot) \to \bot \right]$$

(reminiscent of Kripke forcing)

Step 3 - Extension of the environment

Key idea:

 $[t]_t : [\Gamma] \triangleright_t A$ should be compatible with any extension of $[\Gamma]$

Store subtyping:

 $\Gamma' <: \Gamma$

Translation:

(4/4)

Step 4 - Avoiding name clashes

Ariola *et al.* work implicit relies on α -renaming on-the-fly.

 \hookrightarrow incompatible with the CEPS translation

(4/4)

Step 4 - Avoiding name clashes

Ariola *et al.* work implicit relies on α -renaming on-the-fly.

 \hookrightarrow incompatible with the CEPS translation

Here, we use De Bruijn levels both:

• in the source:

$$\frac{\Gamma(n) = (x_n : T)}{\Gamma \vdash_V x_n : T} \qquad \begin{aligned} \langle x_n \parallel F \rangle \tau[x_n := t] \tau & \xrightarrow{n = \mid \tau \mid} & \langle t \parallel \tilde{\mu}[x_n].\langle x_n \parallel F \rangle \tau' \rangle \tau \\ \langle V \parallel \tilde{\mu}[x_i].\langle x_i \parallel F \rangle \tau' \rangle \tau & \xrightarrow{n = \mid \tau \mid} & \langle V \parallel \uparrow_i^n F \rangle \tau[x_n := V] \uparrow_i^n \tau' \end{aligned}$$

(4/4)

Step 4 - Avoiding name clashes

Ariola *et al.* work implicit relies on α -renaming on-the-fly. \hookrightarrow *incompatible with the CEPS translation*

Here, we use De Bruijn levels both:

• and the target:

$$x_0: A, \alpha_1: B^{\perp}, x_2: C \vdash_{\mathsf{t}} t: D$$

$$\downarrow$$

$$\vdash \llbracket t \rrbracket_{\mathsf{t}}: A, B^{\perp}, C \vdash_{\mathsf{t}} D$$

(4/4)

Step 4 - Avoiding name clashes

Here, we use De Bruijn levels both:

• and the target:

$$[x_0 : A, \alpha_1 : B^{\perp}, x_2 : C \vdash_{\mathsf{t}} t : D]$$

$$\downarrow$$

$$[\vdash [\![t]\!]_{\mathsf{t}} : A, B^{\perp}, C \vdash_{\mathsf{t}} D]$$

...where we use **coercions** $\sigma : \Gamma' <: \Gamma$ to witness store extension and keep track of De Bruijn:

Introduction

A calculus of expandable stores

Introducing F_{Υ}

The motto

System F_{Υ} defines a *parametric* target for CEPS translations

Each CEPS translation can be divided in three blocks

- a source calculus and its type system
- a syntax for stores and coercions
- the target calculus, an instance of F_{Υ}

Principles

The motto

System F_{Υ} defines a *parametric* target for CEPS translations

Each CEPS translation can be divided in three blocks:

- a source calculus and its type system
 - → Here, simply-typed calculi
- a syntax for stores and coercions
- \odot the **target calculus**, an instance of F_{Υ}

Principles

The motto

System F_{Υ} defines a *parametric* target for CEPS translations

Each CEPS translation can be divided in three blocks:

- a source calculus and its type system
- a syntax for stores and coercions
- \odot the target calculus, an instance of F_{Υ}

Principles

The motto

System F_{Υ} defines a *parametric* target for CEPS translations

Each CEPS translation can be divided in three blocks:

- a source calculus and its type system
- a syntax for stores and coercions
- **1** the **target calculus**, an instance of F_{Υ}

In this paper, we only use lists to represent stores:

Source types
$$A$$
::= $X \mid A \rightarrow B$ F $F ::= A \mid A^{\perp}$ Store types Υ ::= $Y \mid \emptyset \mid \Upsilon, F \mid \Upsilon; \Upsilon'$ Stores τ ::= $\delta \mid [] \mid \tau[t] \mid \tau; \tau'$

"Appended to a store of type Υ' , the store τ is of type Υ ."

$$\frac{\Gamma \vdash t : \Upsilon_0 \blacktriangleright T}{\Gamma \vdash [] : \emptyset \triangleright_{\tau} \emptyset} \qquad \frac{\Gamma \vdash t : \Upsilon_0 \blacktriangleright_{\tau} T}{\Gamma \vdash [t] : \Upsilon_0 \triangleright_{\tau} T} \qquad \frac{\Gamma \vdash \tau : \Upsilon_0 \triangleright_{\tau} \Upsilon \quad \Gamma \vdash \tau' : (\Upsilon_0; \Upsilon) \triangleright_{\tau} \Upsilon'}{\Gamma \vdash \tau; \tau' : \Upsilon_0 \triangleright_{\tau} \Upsilon; \Upsilon'}$$

Romark

type of a store = list of source types

how these types are translated = > = parameter of the target

Stores

 $\vdash \tau : \Upsilon' \,{\triangleright_\tau} \,\Upsilon$

In this paper, we only use **lists** to represent stores:

Source types
$$A$$
::= $X \mid A \rightarrow B$ F $F ::= A \mid A^{\perp}$ Store types Υ ::= $Y \mid \emptyset \mid \Upsilon, F \mid \Upsilon; \Upsilon'$ Stores τ ::= $\delta \mid [] \mid \tau[t] \mid \tau; \tau'$

$\vdash \tau : \Upsilon' \triangleright_{\tau} \Upsilon$

"Appended to a store of type Υ' , the store τ is of type Υ ."

$$\frac{\Gamma \vdash t : \Upsilon_0 \blacktriangleright T}{\Gamma \vdash [] : \emptyset \triangleright_\tau \emptyset} \qquad \frac{\Gamma \vdash t : \Upsilon_0 \blacktriangleright T}{\Gamma \vdash [t] : \Upsilon_0 \triangleright_\tau T} \qquad \frac{\Gamma \vdash \tau : \Upsilon_0 \triangleright_\tau \Upsilon \quad \Gamma \vdash \tau' : (\Upsilon_0; \Upsilon) \triangleright_\tau \Upsilon'}{\Gamma \vdash \tau; \tau' : \Upsilon_0 \triangleright_\tau \Upsilon; \Upsilon'}$$

Remark

type of a store = list of source types

how these types are translated = **▶** = **parameter** of the target

Stores

$$\vdash \tau : \Upsilon' \triangleright_{\tau} \Upsilon$$

In this paper, we only use **lists** to represent stores:

Source types
$$A$$
::= $X \mid A \rightarrow B$ F $F ::= A \mid A^{\perp}$ Store types Υ ::= $Y \mid \emptyset \mid \Upsilon, F \mid \Upsilon; \Upsilon'$ Stores τ ::= $\delta \mid [] \mid \tau[t] \mid \tau; \tau'$

$\vdash \tau : \Upsilon' \triangleright_{\tau} \Upsilon$

"Appended to a store of type Υ' , the store τ is of type Υ ."

$$\frac{\Gamma \vdash t : \Upsilon_0 \blacktriangleright T}{\Gamma \vdash [] : \emptyset \triangleright_\tau \emptyset} \qquad \frac{\Gamma \vdash t : \Upsilon_0 \blacktriangleright T}{\Gamma \vdash [t] : \Upsilon_0 \triangleright_\tau T} \qquad \frac{\Gamma \vdash \tau : \Upsilon_0 \triangleright_\tau \Upsilon \quad \Gamma \vdash \tau' : (\Upsilon_0; \Upsilon) \triangleright_\tau \Upsilon'}{\Gamma \vdash \tau; \tau' : \Upsilon_0 \triangleright_\tau \Upsilon; \Upsilon'}$$

Remark

type of a store = list of source types

how these types are translated = **▶** = **parameter** of the target

Explicit witnesses of list inclusions:

Base case

$$\overline{\Gamma \vdash \varepsilon : \emptyset <: \emptyset}^{(\varepsilon)}$$

2 Local identity

$$\frac{\Gamma \vdash \sigma : \Upsilon' <: \Upsilon}{\Gamma \vdash \sigma^+ : (\Upsilon', F) <: (\Upsilon, F)} (<:_+)$$

Strict extension

$$\frac{\Gamma \vdash \sigma : \Upsilon' <: \Upsilon}{\Gamma \vdash \uparrow \sigma : (\Upsilon', F) <: \Upsilon} (<:_{\uparrow})$$

Example:

$$\frac{\cdots}{\vdash \uparrow ((\uparrow \varepsilon)^{++}) : T_0, T, U, T_1 <: T, U}$$

Explicit witnesses of list inclusions:

Base case

$$\overline{\Gamma \vdash \varepsilon : \emptyset <: \emptyset}^{(\varepsilon)}$$

2 Local identity

$$\frac{\Gamma \vdash \sigma : \Upsilon' <: \Upsilon}{\Gamma \vdash \sigma^+ : (\Upsilon', F) <: (\Upsilon, F)} (<:_+)$$

Strict extension

$$\frac{\Gamma \vdash \sigma : \Upsilon' <: \Upsilon}{\Gamma \vdash \uparrow \sigma : (\Upsilon', F) <: \Upsilon} (<:_{\uparrow})$$

Example

$$\cdots$$

 $\vdash \uparrow ((\uparrow \varepsilon)^{++}) : T_0, T, U, T_1 <: T, U$

Coercions

$\vdash \sigma : \Upsilon' <: \Upsilon$

Explicit witnesses of list inclusions:

Base case

$$\Gamma \vdash \varepsilon : \emptyset <: \emptyset$$

2 Local identity

$$\frac{\Gamma \vdash \sigma : \Upsilon' <: \Upsilon}{\Gamma \vdash \sigma^+ : (\Upsilon', F) <: (\Upsilon, F)} (<:_+)$$

Strict extension

Example

$$\vdash \uparrow ((\uparrow \varepsilon)^{++}) : T_0, T, U, T_1 <: T, U$$

Coercions

Explicit witnesses of list inclusions:

Base case

$$\overline{\Gamma \vdash \varepsilon : \emptyset <: \emptyset}^{(\varepsilon)}$$

2 Local identity

$$\frac{\Gamma \vdash \sigma : \Upsilon' <: \Upsilon}{\Gamma \vdash \sigma^+ : (\Upsilon', F) <: (\Upsilon, F)} (<:_+)$$

Strict extension

$$\frac{\Gamma \vdash \sigma : \Upsilon' <: \Upsilon}{\Gamma \vdash \bigcap \sigma : (\Upsilon', F) <: \Upsilon} (<:_{\uparrow})$$

Example:

Remark: this corresponds to the function

Explicit witnesses of list inclusions:

Base case

$$\overline{\Gamma \vdash \varepsilon : \emptyset <: \emptyset}^{(\varepsilon)}$$

Local identity

$$\frac{\Gamma \vdash \sigma : \Upsilon' <: \Upsilon}{\Gamma \vdash \sigma^+ : (\Upsilon', F) <: (\Upsilon, F)} (<:_+)$$

Strict extension

$$\frac{\Gamma \vdash \sigma : \Upsilon' <: \Upsilon}{\Gamma \vdash \bigcap \sigma : (\Upsilon', F) <: \Upsilon} (<:_{\uparrow})$$

Example:

$$\frac{\dots}{+ \uparrow ((\uparrow \varepsilon)^{++}) : T_0, T, U, T_1 <: T, U}$$

Remark: this corresponds to the function

$$\bullet 1 \mapsto 2$$

$$\triangleright 2 \mapsto 4$$

In broad lines

System F extended with stores and coercions¹

¹Actually, false advertizing, the situation is more involved.

Syntax: Store type Υ + Stores τ + Coercions σ +

Types $T ::= X \mid T \to U \mid \Upsilon' <: \Upsilon \to T \mid \Upsilon \triangleright_{\tau} \Upsilon' \to T \mid \forall \Upsilon.T$ Terms $t ::= k \mid x \mid \lambda x.t \mid t u \mid \lambda s.t \mid t \sigma \mid \lambda \delta.t \mid t \tau \mid \lambda Y.t \mid t \Upsilon$ $\mid \text{split } \tau \text{ at } n \text{ along } \sigma : \Upsilon' <: \Upsilon \text{ as } (Y_0, s_0, \delta_0), x, (Y_1, s_1, \delta_1) \text{ in } t$

Syntax: Store type Υ + Stores τ + Coercions σ +

Types
$$T ::= X \mid T \to U \mid \Upsilon' <: \Upsilon \to T \mid \Upsilon \triangleright_{\tau} \Upsilon' \to T \mid \forall \Upsilon.T$$

Terms $t ::= k \mid x \mid \lambda x.t \mid t u \mid \lambda s.t \mid t \sigma \mid \lambda \delta.t \mid t \tau \mid \lambda Y.t \mid t \Upsilon$
 $\mid \text{split } \tau \text{ at } n \text{ along } \sigma : \Upsilon' <: \Upsilon \text{ as } (Y_0, s_0, \delta_0), x, (Y_1, s_1, \delta_1) \text{ in } t$

Intuitively, split allows to look in Υ' for the term *expected at* position n in Υ using $\sigma : \Upsilon' <: \Upsilon$:

Syntax: Store type Υ + Stores τ + Coercions σ +

Types
$$T ::= X \mid T \to U \mid \Upsilon' <: \Upsilon \to T \mid \Upsilon \triangleright_{\tau} \Upsilon' \to T \mid \forall \Upsilon.T$$

Terms $t ::= \mathbf{k} \mid x \mid \lambda x.t \mid t u \mid \lambda s.t \mid t \sigma \mid \lambda \delta.t \mid t \tau \mid \lambda \Upsilon.t \mid t \Upsilon$
 $\mid \text{split } \tau \text{ at } n \text{ along } \sigma : \Upsilon' <: \Upsilon \text{ as } (Y_0, s_0, \delta_0), x, (Y_1, s_1, \delta_1) \text{ in } t$

Intuitively, split allows to look in Υ' for the term *expected at* position n in Υ using $\sigma : \Upsilon' <: \Upsilon$:

Syntax: Store type
$$\Upsilon$$
 + Stores τ + Coercions σ +

Types
$$T ::= X \mid T \to U \mid \Upsilon' <: \Upsilon \to T \mid \Upsilon \triangleright_{\tau} \Upsilon' \to T \mid \forall Y.T$$

Terms $t ::= k \mid x \mid \lambda x.t \mid t u \mid \lambda s.t \mid t \sigma \mid \lambda \delta.t \mid t \tau \mid \lambda Y.t \mid t \Upsilon$
 $\mid \text{split } \tau \text{ at } n \text{ along } \sigma : \Upsilon' <: \Upsilon \text{ as } (Y_0, s_0, \delta_0), x, (Y_1, s_1, \delta_1) \text{ in } t$

Three kinds of reductions:

- split
 normalization of coercions • usual β -reduction
- We have:

Properties

Reduction preserves typing

(Subject reduction)

2 Typed terms normalize

(Normalization)

Shallow embedding in Coq: https://gitlab.com/emiquey/fupsilon

Examples

In the paper, we take advantage of the genericity of F_{Υ} :

to define well-typed CEPS for simply-typed calculis

√ call-by-need

√ call-by-name

√ call-by-value

These translations exactly follow the intuitions we saw before:

negative translation

Kripke-style forcing

Examples

In the paper, we take advantage of the genericity of F_{Υ} :

to define well-typed CEPS for simply-typed calculi:

These translations exactly follow the intuitions we saw before:

negative translation

Kripke-style forcing

In the paper, we take advantage of the genericity of F_{Υ} :

to define well-typed CEPS for simply-typed calculi:

These translations exactly follow the intuitions we saw before:

In the paper, we take advantage of the genericity of F_{Υ} :

$$\frac{\Gamma \vdash t : \Upsilon_0 \blacktriangleright T}{\Gamma \vdash [t] : \Upsilon_0 \blacktriangleright_T T} \leftarrow \bigcirc$$

$$\stackrel{\blacktriangleright \text{ parameter depending on the translation}}{}$$

to define well-typed CEPS for simply-typed calculi:

These translations exactly follow the intuitions we saw before:

We isolated the **key ingredients** for well-typed CEPS:

- terms to represent and manipulate typed stores,
- 2 explicit **coercions** to witness store extensions.

F_{Υ} has the benefits of being **parametric**:

- suitable for CEPS with different evaluation strategies
- compatible with different sources/type systems.
- compatible with different implementation of stores

We isolated the **key ingredients** for well-typed CEPS:

- terms to represent and manipulate typed stores,
- explicit coercions to witness store extensions.

F_{Υ} has the benefits of being **parametric**:

- suitable for CEPS with different evaluation strategies
- compatible with different sources/type systems.
- compatible with different implementation of stores

From a logical viewpoint:

CEPS ≅ Kripke forcing interleaved with a negative translation

Connection between forcing and environment already known:

- Towards well-typed compilation transformations for lazily-evaluated calculi? (cf. MetaCoq project)
- 2 Exact expressiveness of F_{Υ} ?
- Type translation as a modality?

- Towards well-typed compilation transformations for lazily-evaluated calculi? (cf. MetaCoq project)
- **2** Exact expressiveness of F_{Υ} ?
- Type translation as a modality?

- Towards well-typed compilation transformations for lazily-evaluated calculi? (cf. MetaCoq project)
- 2 Exact expressiveness of F_{Υ} ?
- Type translation as a modality?
 - $\cdot \triangleright_{\mathsf{t}} A$ is a function : store type \mapsto type

- Towards well-typed compilation transformations for lazily-evaluated calculi? (cf. MetaCoq project)
- 2 Exact expressiveness of F_{Υ} ?
- Type translation as a modality?

$$\cdot \triangleright_{\mathsf{t}} A$$
 is a function : store type \mapsto type

$$\Box \mathcal{F} \triangleq \Upsilon \mapsto \forall \Upsilon' <: \Upsilon.\Upsilon' \to (\mathcal{F}\Upsilon') \to \bot$$
$$\cdot \triangleright_{\mathsf{f}} A = \Box(\cdot \triangleright_{\mathsf{f}} A) = \Box(\Box(\cdot \triangleright_{\mathsf{V}} A)) = \dots$$

Thank you for your attention.