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Forewords

This talk is about:
sequent calculus / Curry-Howard / operational semantics

But also : proofs, programs, type systems, safe computation/compilation, ...

A fairy tale

Sequent calculus provides wonderful tools!

Gives principled answers to problems such as:
@ how to soundly compile xxx?
@ how to prove normalization of Xxx?
@ how should control operators and xxx interact?

@ deciding the equivalence of normal forms
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Proofs

A bit of history, fast-tracked
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Once upon a time...

-300

Euclide

Euclide’s Elements
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Once upon a time...

A crazy dream:

“‘when there are disputes among
persons, we can simply say:

Let us calculate, without further
ado, to see who is right.”

Leibniz’s
calculus ratiocinator
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Once upon a time...

-300 1666 1879 2019

Euclide Leibniz Frege

Frege’s Begriffsschrift:

5 U C(a)
@ formal notations : f(FVt )

&(a)
@ quantifications V/3 %)
. . . (JA) =D
@ distinction:
X Vs 'x! F®)
signified signifier 0]
A(c,d)
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Once upon a time...

-300 1666 1879 1928
—
- \—"""*E(E)
Euclide Leibniz Frege Hilbert

Entscheidungsproblem (with Acker-
mann):

To decide if a formula of first-order logic is a
tautology.

% “to decide” is meant by means of a procedure

Hilbert
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Once upon a time...

-300 1666 1879 1928 1936 2019

Hilbert

Euclide Leibniz Frege
Church

A-calculus - first (negative) answer to the
Entscheidungsproblem !

LULUIULE Gy SUCLL LUAL A4 CULY 1 1L alU UULY 1L U @S & LULltal JULLL. L 1ULL LS
the lemma follow-

TaEOREM XVIII. There is no recursive function of a formula C, whose
value s 2 or 1 according as € has a normal form or not.

Mhat in 4hn wmanander Af o wall Lamnad Lammnala dhad i han o manmmal Lanea

Church
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A somewhat obvious observation

Deduction rules

AeTl
THA

I'A+ B
IT'tA=B

T'rA=>B TFHA
I'+B

(Ax)

(=)

(—E)

Typing rules
(x:A)eT
T'rx:A

I'x:Avr1t:B
I'tAx.t:A—> B

T'tt:A—>B Tru:A

(Ax)

(=)

(—E)

T'rtu:B
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Hypotheses ‘ Aj, ..., A, + B | Conclusion
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Sequent, you said?

Sequent:
Hypotheses ‘ Aj, ..., A, + B | Conclusion
Remark:
(]
MikB(ﬁ ) is almost :
TrA=B ' B
A=B '
“a la Gentzen” “a la Prawitz’

... a.k.a. natural deduction
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Gentzen’s sequent calculus (1934)

Sequent:

Hypotheses ‘ Ay, ...,ApF By,..., By ‘ Conclusions

Identity rules connect hypotheses/conclusions
T'FAA T,AFA(C ) )
TFA o ArA
Structural rules weaken, contract, permute
T'rA (oon) F'rAAA T'+o(A)
TFAA " TFAA TrA
Logical rules left/right introduction of connectives
IA+B,A T'tAA T,BrA I'+tA A TrBA

r) (=>l) (/\r)

TrA=BA " ILA= BrA TFrAABA
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Gentzen’s sequent calculus (1934)

Sequent:

Hypotheses ‘ Ai,...,Ap+By,....B, ‘ Conclusions

Proof-theoretic properties:
@ cut elimination

last rule

subformula

°
°
@ classical logic built-in
°
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Gentzen’s sequent calculus (1934)

Sequent:

Hypotheses ‘ Ay, ...,ApF By,..., By ‘ Conclusions

Symmetry

Logical rules left/right introduction of connectives
IA+B,A T'tAA T,BrA

= . A . = (=>r =>l)

I'rA= B,A I'' A= BrA
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What about the computational content?

8/22



Sequent calculus
0@e0000

Curien-Herbelin’s duality of computation
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Terms Contexts
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Curien-Herbelin’s duality of computation

Griffin (1990): classical logic = control operator

Starting observation:

calculus and Ap-calculus. Our starting point was the ob-
servation that the call-by-value discipline manipulates in-
put much in the same way as (the classical extension of)

A-calculus manipulates output. Computing M N in call-by-

Computational duality:

Terms Contexts

Sequent calculus = abstract machine-(iKe calculus

9/ 22
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Abstract machine

Reduction
(tulle) >, (tlu-e)
Ax.tlu-e) >, (tlu/x]]e)
Syntax
cu=(t]e) commands
t t,u ==
erljns e, f o= contexts
variable | X, Y,z
o | % empty
application | tu o
. |t-e application stack
A-abstraction | Ax. t
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Introducing p

(tule) >, (tlu-e)
This reduction defines (¢ u):

It is the term that, when put against | e), reduces to (t | u - e).
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Sequent calculus
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Introducing p

(tule) >, (tlu-e)
This reduction defines (¢ u):

It is the term that, when put against | e), reduces to (t | u - e).

Idea: introduce a more primitive syntax

(pa.cle) >, cle/a]

tu 2 pat|u-a)
(actually the intuitionistic version pix .c is enough)

11/ 22
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Introducing i

A regular syntax?

cu=(t]e)
tu = e, f =
| %,y | . p
| Ax.t |t-e
| pe.c | ?

Reminder:

calculus and Ap-calculus. Our starting point was the ob-
servation that the call-by-value discipline manipulates in-
put much in the same way as (the classical extension of)
A-calculus manipulates output. Computing M N in call-by-
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Introducing i

A regular syntax?

cu=(t]e)
tu = e, f =
| x,y | . B
| Ax.t |t-e
| pe.c | ?

Same idea, in the dual situation:

(Axtyufey = (letx =tinulle) >, (t|letx=D0inule)”)
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Introducing i

A regular syntax

cu=(t]e)
t,u::: e’f;::
|X,y |a’ﬁ
| Ax.t |t-e
| pa.c | fix.c

Same idea, in the dual situation:
(Axtule) > (letx =tinule)y > <t || “let x =Oin (u e)">

fix.(u | e)

(tlix.c) >, clt/x]
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Curien-Herbelin’s Apji-calculus

Syntax:
tu = cu=(t]e) e, f =
| x,y | @, B
| Axt | t-e
| pex. c | fix. c
Reduction:

Ax.t|u-ey — <u || fx.(t || e))
(t] fix.c)y — cft/x]
(ua.clle) — clefal
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Curien-Herbelin’s Apji-calculus

Syntax:

tu = cu=(t]e) e, f =
| %y
| Ax.t

| pex. c

1
=+
o

=:
?< .
o

Reduction:

Ax.t|u-ey — <u || fx.(t || e))
(¢l px.c) — cft/x]
(ua.clle) — clefal
Critical pair:
(uavc | ix.c')
/ N
clpx.c’/a] c’[pa.c/x]
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Curien-Herbelin’s Apji-calculus

Syntax:
tu = cu=(t]e) e, f =
Values : ilc;cyt : fjf } Co-values
| pex. c | fix. c
Reduction:
Ax.t|u-ey — <u || fx.(t || e))
(t| px.cy — c[t/x] teV
(pa.cle)y — cle/a] ec &
Critical pair:
ey (macelpxe)
/ N
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Sequent calculus
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Curien-Herbelin’s Apji-calculus

Syntax:
tu = cu=(t]e) e, f =
Values : ;;yt : :{i/j } Co-values
| pex. c | fix. c
Reduction:
Ax.t|u-ey — <u || fx.(t || e))
(t| px.cy — c[t/x] teV
(pa.cle)y — cle/a] ec &
Critical pair:
ey (macelpxe)
clpx.c’/a] Duality c[pa.c/x]

(again and again)
13/ 22
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Curien-Herbelin’s Apji-calculus

Syntax:
JU = =(t|e) e, f =
Values{ | | Eoff }Co—values
| |t-e
| pex. c | fix. c
Typing rules:
F'rt:A|A I'le:ArA
(t]e): (TrA)
(x:A)erT ILx:Art:B|A c:(THA a:A)
I'rx:A|A F'tAx.t:A—>B|A Trpac:AlA
(x:A) e Tru:A|A T'le:BrA c:(T,x:ArA)

Fla:ArA F'lu-e:A—>BFrA T|jixc:ArA
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Curien-Herbelin’s Apji-calculus

£,

cz=(t]e)

<

| x,y
Values | dc.t
| pex. c

Typing rules:

' A|A I'| ArA

(T+A)
A el I, Ar BJ|A
' AJ|A '+ A—>B|A
A €A ' A|A T| BFrA
| ArA T | A— BFrA

a
¥ } Co-values
-e

[x.c
T'rA, A
I+ AlA
I, ArA
T | ArA
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Curien-Herbelin’s Apji-calculus

Syntax:
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“Why should I care?”
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“Why should I care?”

Because sequent calculus is well-behaved! @
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Sequent calculus as IR

You just defined a wonderful calculus, and you are wondering:

How to define a continuation-passing style translation?

CPS translation:
[-] : source — Jsomething Benefits:

@ preserving reduction If Asomething s s6und and normalizing:

@ preserving typing @ If [¢] normalizes, then t normalizes
@ the type [ L] is not inhabited © If tistyped, then ¢ normalizes
Typically: [V] & Ak.kV © Thereisnoterm +t: L

[] = 2Ak.?

15/ 22



Benefits
0@0000000

Sequent calculus as IR

You just defined a wonderful calculus, and you are wondering:

How to define a continuation-passing style translation?

Use sequent calculus!

Slogan:
A sequent calculus is a defunctionalization of CPS representations.

% as such it defines a good intermediate representation for compilation

15/ 22



Benefits
0@0000000

Sequent calculus as IR

You just defined a wonderful calculus, and you are wondering:

How to define a continuation-passing style translation?

Solution

Use sequent calculus!

Slogan:

A sequent calculus is a defunctionalization of CPS representations.
% as such it defines a good intermediate representation for compilation
Method: Danvy’s semantics artifacts

15/ 22
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Semantics artifacts in action

Call-by-name Apji-calculus:

Terms t ==V | pua.c Contexts e
Values V :=x| Ax.t Co-values E :=

Commands ¢ == (f]e)
Reduction rules:

(¢ fix.c) — c[t/x]
(pa.c| E) - clE/a]

Ax.t]u-e) — <u " [t | e)>
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Semantics artifacts in action

Terms
Values

Contexts
Co-values

Commands ¢ == (t|e)

Small steps

(¢l ix.che
(tIE)e

(po.c| E);
(VIE):

e (Viu-e)e

v (Ax.t|u-e)y

§

~

ce[t/x]
(LI E)e

ce[E/a]
(VIEE

Vlu-eyv
(u] fxctled)e
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Semantics artifacts in action

|
I

Terms Contexts
Values Co-values

Commands ¢ == (t|e)

Small steps CPS
(tlixcye ~  clt/x] [ix.cle t 2 (x.[c]e) t
(I E)e ~ (LI E)e [E]et = t[E]e
(poclEye  ~  celE/al [.c] E 2 (Aat.[c]c) E
(VIIE): ~ (VIE)E [VI.EZE[VIv
g (Vlu-e)p  ~  (Vlu-e)y [u-e]leV £V [u];[e].
v (Axtllu-eyy o~ (ulixdtle))e [hx.t]yue 2 (Ax.e[t],)u

Preservation

’

.
e = el 55 [
16/ 22
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Semantics artifacts in action

Terms Contexts
Values Co-values

Commands ¢ == (t|e)

CPS Types translation
[fix.clet = (Ax.[c]e) t [A]l. £ [A]l;, — L
[E]et £t [E]e
1, [wediE=Qa]d)E [A]l: £ [All — L
[VI:E£E[V]y
+r Ju-e]gVEV[u];[e]e [A]lz £ [Alvy — L
L [Mxt]vue® (Axe[t])u [A— By £ [A]l: = [Blle — L

Trt:A|A = [TT: [ALlE + (21 - [AL
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Semantics artifacts in action

Normalization

Typed commands of the call-by-name Apji-calculus normalize.

Inhabitation

There is no simply-typed A-term t such that + ¢ : [L]];.

Soundness

There is no proof t such that +¢: L |.

16/ 22
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Normalization proofs

You just defined a wonderful calculus, but the CPS method is too
complex:

How can | prove normalization?
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Use sequent calculus + Krivine realizability!
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A sequent calculus specifies the interactions of terms and contexts.
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Normalization proofs

You just defined a wonderful calculus, but the CPS method is too
complex:

How can | prove normalization?

Solution
Use sequent calculus + Krivine realizability!

Slogan:

A sequent calculus specifies the interactions of terms and contexts.

% as you will see, this helps a lot the definition of a realizability interpretation

Method: Danvy’s semantics artifacts, again

17/ 22
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Realizability a la Krivine

(think of some kind of unary logical relation)

o falsity value ||A||: contexts, opponent to A

o truth value |A| : terms, player of A

@ pole 1L: commands, referee
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Realizability a la Krivine

(think of some kind of unary logical relation)

o falsity value ||A||: contexts, opponent to A

o truth value |A| : terms, player of A

@ pole 1L: commands, referee

(t|e) >co>--->cp€ L?
~ 1 € A% II closed by anti-reduction
Truth value defined by orthogonality :

|Al = |AlI* ={t e A: Ve € ||All,{t]e) € 1L}

18/ 22
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Semantic artifacts, bis

Contexts
Terms

Values
Co-values

Commands ¢ == (i e)

Small steps

L. (tlpxe)e ~ ce[t/x]
(tIEe e (t| E);

1 pac|E)y o~ ce[E/a]
(VIE), (V|E)Eg

T (Viw-eyp ~  (Vlu-ehy

Tv xtlu-eyy ~ (u]pxtle))e

§
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Semantic artifacts, bis

T Contexts
Values Co-values
Commands ¢ == (i e)
Small steps Realizability
Lo Al Axec)e ~ celt/x] I Alle £ |A|tiL
(ENE)e — ~ (t] E):
4 (pacllE)y o~ ce[E/a] Al 2 [|Allg™
VIE):  ~ (VIE)e
TE (V]u-e)g ~  (V|u-eyy JIA—= Bl & {u-e: uelA,
. A e€|B
v Grtlucey ~ (ulpxiele). ¢ € IBll}
Adequacy
Q +t:A|l- = telA, Qc:(r) = cen

Q |e:Ar- = e€ A
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Consequences

Normalizing commands

Ay £ {c: ¢ normalizes} defines a valid pole.

Proof. If ¢ — ¢’ and ¢’ normalizes, so does c. m]

Normalization

For any command ¢, if ¢ : T + A, then ¢ normalizes.

Proof. By adequacy, any typed command c belongs to the pole 1. m]

Soundness

There is no proof t such that +¢: L |.

Proof. Otherwise, t € ||, = I for any pole, absurd (1. = 0). m}
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You added sums to your favorite A-calculus, it broke all your proofs:

What can | do?
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Polarized sequent calculus

You added sums to your favorite A-calculus, it broke all your proofs:

What can | do?

Use sequent calculus + polarities!

Negative polarity Every expression is a value (CBN)
Positive polarity Every context is a covalue (CBV)
Slogan:

Polarized Auji is a good, regular syntax for programs.

% a.k.a. system L, a great syntax for call-by-push-value
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Polarized sequent calculus

You added sums to your favorite A-calculus, it broke all your proofs:

What can | do?

Use sequent calculus + polarities!

Negative polarity Every expression is a value (CBN)
Positive polarity Every context is a covalue (CBV)
Slogan:

Polarized Auji is a good, regular syntax for programs.

% a.k.a. system L, a great syntax for call-by-push-value

Method: see Munch-Maccagnoni & Scherer’s paper (LICS’15)
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Take away

Sequent calculus:
@ is more regular than natural deduction
@ corresponds to abstract-machine-like calculi (e.g. Apji-calculus)
@ provides great insights on operational semantics

22/ 22



Benefits
00000000e

Take away

Sequent calculus:
@ is more regular than natural deduction
@ corresponds to abstract-machine-like calculi (e.g. Apji-calculus)
@ provides great insights on operational semantics

A flexible tool:
@ can be decomposed with connectives of linear logic
@ can be polarized (Munch-Maccagnoni’s system L)
@ supports effectful constructors
° ..

22/ 22



Benefits
00000000e

Take away

Sequent calculus:
@ is more regular than natural deduction
@ corresponds to abstract-machine-like calculi (e.g. Apfi-calculus)
@ provides great insights on operational semantics

A flexible tool:
@ can be decomposed with connectives of linear logic
@ can be polarized (Munch-Maccagnoni’s system L)
@ supports effectful constructors
° ..

If you don’t use it already,

What are you waiting for?
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