
3- Krivine’s classical realizability

�is chapter aims at being a survey on Krivine’s classical realizability. Our intention is twofold. On
the one hand, we recall in broad lines the key de�nitions of Krivine’s classical realizability, and we
take advantage of this to introduce some techniques that we use in the sequel of this thesis. On the
other hand, we present standard applications of Krivine realizability to the study of the computational
content of classical proofs and to models theory. �ese applications are again loosely introduced, with
references pointing to articles where they are presented more in details. Nonetheless, we hope that this
overview justi�es our interest in the topic and in particular the third part of this manuscript, which is
dedicated to the study of algebraic structures for Krivine realizability.

3.1 Realizability in a nutshell

3.1.1 Intuitionistic realizability

�e very �rst ideas of realizability are to be found in the Brouwer-Heyting-Kolmogoro� (BHK) in-
terpretation, which was in fact anterior to its actual formulation, done independently by Heyting for
propositional logic [72] and Kolmogoro� for predicate logic [88]. �e BHK-interpretation gives the
meaning of a statement A by explaining what constitutes an evidence1 while ‘evidence of A’ for logi-
cally compound A is explained by giving evidences of its constituents. For propositional logic:

1. a evidence of A ∧ B is given by presenting a evidence of A and a evidence of B;
2. a evidence of A ∨ B is given by presenting either a evidence of A or a evidence of B (plus the

stipulation that this evidence is presented as evidence for A ∨ B);
3. a evidence of A→ B is a construction which transforms any evidence of A into a evidence of B;
4. absurdity ⊥ (contradiction) has no evidence; a evidence of A→ ⊥ is a construction which trans-

forms any evidence of A into a evidence of ⊥.

In this de�nition, notions such as “construction”, “transformation” or the very notion of “evidence”
can be understood in di�erent ways, and indeed they have been. Intuitionistic realizability can precisely
be viewed as the replacement of the notion of “evidence” by the formal notion of “realizer”, which, again,
can be de�ned in di�erent ways. �e original presentation of realizability, due to Kleene [87], de�ne
realizers as computable functions. Each function φ is in fact identi�ed to its Gödel’s number2 n, and
“transformation” is de�ned by means of function application. Kleene’s de�nition can be reformulated3

as follows:
1We voluntarily use the terminology of “evidence” instead of “proof”, to which we already gave a syntactic meaning.

Besides, if we regard the BHK-interpretation of propositions with the λ-calculus in mind, we observe that evidences of A
correspond to “values” of type A rather than “proofs”.

2In practice, any other enumeration of computable functions do the job just as well, that is to say that encoding is irrelevant
to the principle of Kleene’s realizability.

3In the original presentation, a pair (n,m) is encoded by its Gödel’s number 2n3m , left(n) is the pair (0,n) and right(m)
is the pair (1,m).

51

CHAPTER 3. KRIVINE’S CLASSICAL REALIZABILITY

1. 0 realizes >;
2. if n realizes A andm realizes B, then the pair (n,m) realizes A ∧ B;
3. if n realizes A, then left(n) realizes A∨B, and similarly, right(m) realizes A∨B ifm realizes B;
4. the function φn realizes A→ B if for anym realizing A, φn (m) realizes B;
5. a realizer of ¬A is a function realizing A→ ⊥.

�is de�nition can be revisited using the λ×+-calculus extended with natural numbers as the lan-
guage for computable functions. We do not describe formally this calculus here4, but only assume that
the calculus contains a term n̄ for each natural number n. We give the interpretation for �rst-order
arithmetic formulas (see Example 1.3).

1. t > if t *−→ 0;
2. t e1 = e2 if e�1 = e�2 and t *−→ 0;
3. t A ∧ B if t *−→ (t1,t2) such that t1 A and t2 B;
4. t A ∨ B if t *−→ ι1 (u) and u A, or if t *−→ ι2 (u) and u B;
5. t A→ B if for any u A, tu B;
6. t ¬A if t A→ ⊥;
7. t ∀x .A if for any n, t n̄ A(n);
8. t ∃x .A if t *−→ (n̄,u) and u A(n).

where e� is the valuation of the �rst-order expression e in the standard model � (see Section 1.2.4).
�e main observation is that this de�nition is purely computational, as opposed to the syntactic

de�nition of typing. In fact, it is a strict generalization of typing in the sense that it can be shown
that a term of type A is a realizer of A: this is the property of adequacy. One of the consequence of
the computational de�nition is that the relation t A is undecidable: given a term t and a formula A,
there is no algorithm deciding whether t is a realizer of A. �is is again to be opposed with the typing
relation.

If this interpretation has shown to be fruitful over the years5, it is intrinsically bound to intuitionistic
logic and incompatible with an extension to classical logic. Indeed, Kleene’s realizability takes position
against the excluded-middle, as shown by the following proposition:

Proposition 3.1. �ere exists a formula H such that the negation of ∀x (H (x) ∨ ¬H (x)) is realized.

Proof. Consider the primitive recursive function h : �2 → N de�ned by:

h(n,k) =

1 if the nth Turing machine stops a�er k steps
0 otherwise

and de�ne the formula H (x) , ∃y.(h(x ,y) = 1), also called halting predicate. Assume now that there is
a term t realizing the formula ∀x .(H (x) ∨ ¬H (x)) and de�ne u , λn.match t n with [x 7→ 1 | y 7→ 0].
�en, for any n ∈ �:

4You can think of the syntax and reduction rules of the (untyped) λ×+-calculus (Section 2.4.1) extended with terms 0,S ,rec
standing for zero, the successor and a recursion operator. �e rec operator can be de�ned in various way, the point being
that it allows to perform recursion over natural numbers. For instance, it could be given the following reduction rules :

rec 0 t0 tS → t0
rec (S u) t0 tS → tS u (rec u t0 tS)

Formally, this can also be seen as a fragment of PCF [137].
5See for instance Van Oosten’s historical essay [159] on this topic.

52

3.1. REALIZABILITY IN A NUTSHELL

1. either tn̄ *−→ ι1 (t
′) in which caseu n̄ *−→ 1 andH (n) is realized (by t ′), i.e. the nth Turing machine

halts,
2. either tn̄ *−→ ι2 (t

′) in which case u n̄ *−→ 0 and ¬H (n) is realized (by t ′), i.e. the nth Turing
machine does not halt.

�us u decides the halting problem, which is absurd. As a consequence, there is no such t , and in
particular, any term realizes the formula ¬(∀x (H (x) ∨ ¬H (x))). �

3.1.2 Classical realizability

To address the incompatibility of Kleene’s realizability with classical reasoning, Krivine introduced in
the middle of the 90s the theory of classical realizability [97], which is a complete reformulation6 of
the very principles of realizability to make them compatible with classical reasoning. Although it was
initially introduced to interpret the proofs of classical second-order arithmetic, the theory of classical
realizability can be scaled to more expressive theories such as Zermelo-Fraenkel set theory [93] or the
calculus of constructions with universes [117].

�is theory has shown in the past twenty years to be a very powerful framework, both as a tool to
analyze programs and as a way to build new models of set theory. We shall now present brie�y these
aspects before introducing formally Krivine classical realizability.

3.1.2.1 A powerful tool to reason on programs

Krivine realizability, in what concerns the analysis of programs, can be understood as a relaxation of
the Curry-Howard isomorphism. As a proof-as-program correspondence, it is indeed more �exible in
that it includes programs that are correct with respect to the execution, but that are not typable. In
other words, given a formula A and a problem t , when the Curry-Howard isomorphism somewhat said
that t is a proof of A if its syntax matches the structure of A; Krivine realizability rather has for slogan:

if t computes correctly, then it is a realizer.

For instance, the following dummy program:

program dummy (n) :
i f n=n+1 then { return ’ H e l l o ’ } e l s e { return 27 }

can not be simply typed with Nat → Nat while this program has the computational behavior that is
expected from this type: when applied to a natural number, it always returns the natural number 27.

If this example is easy to understand, it is quite arbitrary and does not bring any interesting per-
spective. Yet they are more interesting cases, for instance the term of Maurey Ma,b . �is term, de�ned
by:

Ma,b , λnm.n F (λx .a) (m F (λx .b))

where F , λ f д.д f and a,b are free variables, decides which of two natural numbers is the smaller.
Indeed, when applied to the Church numerals n and m, Ma,b nm reduces7 to a if n ≤ m and to b if
m < n. In particular, if tt and ff are the Boolean term for true and false, Mtt,ff reduces to tt if n ≤ m
and to ff otherwise. Following our realizability mo�o, since the term Mtt,ff computes the formula “n
is lower thanm”, a fortiori it should realize it 8. However, as shown by Krivine [91], it can not be typed

6As observed in several articles [129, 118], classical realizability can in fact be seen as a reformulation of Kleene’s realiz-
ability through Friedman’s A-translation [53].

7 We recall that the Church numeral n is de�ned by λ f x . f nx : 0 = λ f x .x , 1 = λ f x . f x , 2 = λ f x . f (f x), etc… �e
veri�cation of the statement is a pleasant exercise of λ-calculus.

8�is claim can be formalized with a clever de�nition of the realized formula, and is a nice (but tricky) exercise of realiz-
ability.

53

CHAPTER 3. KRIVINE’S CLASSICAL REALIZABILITY

in Peano second-order arithmetic (or System F), which is the language of Krivine realizability. �is
illustrates perfectly the fact that realizability includes strictly more programs (and not only dummy
ones) than just typed programs.

As we will see in the next sections, the de�nition of Krivine realizability interpretation of formulas
is again purely computational, and thus the relation of t A is also undecidable. Worse, the compu-
tational analysis of programs is harder than in the intuitionistic case because of the call/cc operator
which enables programs to backtrack. Even though, Krivine realizability has shown to be a powerful
tool to prove properties on the computational behavior of programs. In particular, the adequacy of the
interpretation (with respect to typing rules) gives for free the normalization of typed terms. Besides,
the computational content of a realizer can be speci�ed by means of a game-theoretic interpretation,
but we will come back to this in Section 3.5.2.

3.1.2.2 Terms as semantics

As in intuitionistic realizability, every formula A is interpreted in classical realizability as a set |A| of
programs called the realizers of A, that share a common computational behavior determined by the
structure of the formula A. �is point of view is related to the point of view of deduction (and of
typing) via the property of adequacy, that expresses that any program of type A realizes the formula A,
and thus has the computational behavior expected from the formula A.

However the di�erence between intuitionistic and classical realizability is that in the la�er, the set of
realizers ofA is de�ned indirectly, that is from a set ‖A‖ of execution contexts (represented as argument
stacks) that are intended to challenge the truth of A. Intuitively, the set ‖A‖ (which we shall call the
falsity value of A) can be understood as the set of all possible counter-arguments to the formula A. In
this framework, a program realizes the formula A—i.e. belongs to the truth value |A|—if and only if it is
able to defeat all the a�empts to refute A by a stack in ‖A‖. Another di�erence with the intuitionistic
se�ing resides in the classical notion of a realizer whose de�nition is parameterized by a pole, which
represents a particular sets of challenges and that we shall de�ne and discuss in Section 3.4.1.1.

We shall discuss the underlying game-theoretic intuition more in depth at the end of this chapter
(Section 3.5.2.2), and say a word about some surprisingly new model-theoretic perspectives brought by
this semantics (Section 3.5.3).

3.1.2.3 Modular implementation of logic

As we advocated in the previous chapter (Section 2.4.3), the proofs-as-programs interpretation of logic
suggests that any logical extension should be made through an extension of the programming language.
Krivine classical realizability precisely follows this slogan, since classical logic is obtained through the
λc -calculus which is an extension of the λ-calculus with the call/cc operator. Much more than that,
as we shall explain in Section 3.2.3, the λc -calculus is modular in essence and really turns the mo�o:

“With side-e�ects come new reasoning principles.”

into a general recipe: to extend the logic with an axiom A, one should add an extra instruction with
the adequate reduction rules, and give it the type A. If the computational behavior is indeed correct
with respect to A, then the typing rules will automatically be adequate with respect to the realizability
interpretation. �is is for instance the methodology followed by Krivine to obtain a realizer of the
axiom of dependent choice with the quote instruction, [94].

54

3.2. THE λC -CALCULUS

3.2 �e λc-calculus

3.2.1 Terms and stacks

�e λc -calculus distinguishes two kinds of syntactic expressions: terms, which represent programs, and
stacks, which represent evaluation contexts. Formally, terms and stacks of the λc -calculus are de�ned
from three auxiliary sets of symbols, that are pairwise disjoint:

1. A denumerable setVλ of λ-variables (notation: x , y, z, etc.)
2. A countable set C of instructions, which contains at least an instruction cc (denoting ‘call/cc’,

for: call with current continuation).
3. A nonempty countable set B of stack constants, also called stack bo�oms (notation: α , β , γ , etc.)

�e syntax of terms, stacks and processes is given by the following grammar:

Terms t ,u ::= x | λx .t | tu | kπ | κ x ,∈ Vλ ,κ ∈ C
Stacks π ::= α | t · π (α ∈ B, t closed)
Processes p,q ::= t ? π (t closed)

As usual, terms and stacks are considered up to α-conversion and we denote by t[u/x] the term
obtained by replacing every free occurrence of the variable x by the term u in the term t , possibly
renaming the bound variables of t to prevent name clashes. �e sets of all closed terms and of all
(closed) stacks are respectively denoted by Λ and Π.

De�nition 3.2 (Proof-like terms). – We say that a λc -term t is proof-like if t contains no continuation
constant kπ . We denote by PL the set of all proof-like terms. y

Finally, every natural numbern ∈ � is represented in the λc -calculus as the closed proof-like termn
de�ned by

n ≡ sn0 ≡ s (· · · (s︸ ︷︷ ︸
n

0) · · ·) ,

where 0 ≡ λx f . x and s ≡ λnx f . f (nx f) are Church’s encodings of zero and the successor function in
the pure λ-calculus. Note that this encoding slightly di�ers from the traditional encoding of numerals in
the λ-calculus, although the term n ≡ sn0 is clearly β-convertible to Church’s encoding λx f . f nx—and
thus computationally equivalent. �e reason for preferring this modi�ed encoding is that it is be�er
suited to the call-by-name discipline of Krivine’s Abstract Machine (KAM) we will now present.

3.2.2 Krivine’s Abstract Machine

In the λc -calculus, computation occurs through the interaction between a closed term and a stack within
Krivine’s Abstract Machine (KAM). Before turning into a central piece of classical realizability, this
abstract machine was a very standard tool to implement (call-by-name) λ-calculus [96]. Formally, we
call a process any pair t ? π formed by a closed term t and a stack π . �e set of all processes is wri�en
Λ?Π (which is just another notation for the Cartesian product of Λ by Π).

De�nition 3.3 (Relation of evaluation). We call a relation of one step evaluation any binary relation �1
over the set Λ?Π of processes that ful�lls the following four axioms:

(Push)
(Grab)
(Save)
(Restore)

tu ? π �1 t ?u · π
(λx . t) ?u · π �1 t[u/x] ? π

cc ? t · π �1 t ? kπ · π
kπ ? t · π ′ �1 t ? π

�e re�exive-transitive closure of �1 is wri�en �. y

55

CHAPTER 3. KRIVINE’S CLASSICAL REALIZABILITY

One of the speci�cities of the λc -calculus is that it comes with a binary relation of (one step) eval-
uation �1 that is not de�ned, but axiomatized via the rules (Push), (Grab), (Save) and (Restore). In
practice, the binary relation �1 is simply another parameter of the de�nition of the calculus, just like
the sets C and B. Strictly speaking, the λc -calculus is not a particular extension of the λ-calculus, but
a family of extensions of the λ-calculus parameterized by the sets B, C and the relation of one step
evaluation �1. (�e set Vλ of λ-variables—that is interchangeable with any other denumerable set of
symbols—does not really constitute a parameter of the calculus.)

3.2.3 Adding new instructions

�e main interest of keeping open the de�nition of the sets B, C and of the relation evaluation �1
(by axiomatizing rather than de�ning them) is that it makes possible to enrich the calculus with extra
instructions and evaluation rules, simply by pu�ing additional axioms about C, B and �1. On the other
hand, the de�nitions of classical realizability [97] as well as its main properties do not depend on the
particular choice of B, C and �1, although the �ne structure of the corresponding realizability models
is of course a�ected by the presence of additional instructions and evaluation rules. Standard examples
of extra instructions in the set C are:

1. �e instruction quote, which comes with the evaluation rule

(�ote) quote? t · π �1 t ?nπ · π ,

where π 7→ nπ is a recursive injection from Π to �. Intuitively, the instruction quote com-
putes the ‘code’ nπ of the stack π , and passes it (using the encoding n 7→ n described in Sec-
tion 3.2.1) to the term t . �is instruction was originally introduced to realize the axiom of depen-
dent choices [94].

2. �e instruction eq, which comes with the evaluation rule

(Eq) eq? t1 · t2 · u · v · π �1

u ? π if t1 ≡ t2

v ? π if t1 . t2

Intuitively, the instruction eq tests the syntactic equality of its �rst two arguments t1 and t2 (up
to α-conversion), giving the control to the next argumentu if the test succeeds, and to the second
next argument v otherwise. In presence of the quote instruction, it is possible to implement a
closed λc -term eq′ that has the very same computational behavior as eq, by le�ing

eq′ ≡ λx1x2 . quote (λn1y1 . quote (λn2y2 . eq natn1 n2) x2) x1 ,

where eq nat is any closed λ-term that tests the equality between two numerals (using the en-
coding n 7→ n).

3. �e instruction stop, which comes with no evaluation rule. �e only purpose of this instruction
is to stop evaluation; the contents of the facing stack is implicitly the result of the computation.
�is instruction turns out to be very useful for witness extraction procedures [118].

4. �e instruction t (‘fork’), which comes with the two evaluation rules

(Fork) t? t0 · t1 · π �1 t0 ? π and t? t0 · t1 · π �1 t1 ? π .

Intuitively, the instruction t behaves as a non deterministic choice operator, that indi�erently
selects its �rst or its second argument. �e main interest of this instruction is that it makes
evaluation non deterministic, in the following sense:

56

3.3. CLASSICAL SECOND-ORDER ARITHMETIC

De�nition 3.4 (Deterministic evaluation). We say that the relation of evaluation �1 is deterministic
when the two conditions p �1 p

′ and p �1 p
′′ imply p ′ ≡ p ′′ (syntactic identity) for all processes p, p ′

and p ′′. Otherwise, �1 is said to be non deterministic. y

�e smallest relation of evaluation, that is de�ned as the union of the four rules (Push), (Grab),
(Save) and (Restore), is clearly deterministic. �e property of determinism still holds if we enrich
the calculus with an instruction eq together with the aforementioned evaluation rules or with the
instruction quote.

On the other hand, the presence of an instruction t with the corresponding evaluation rules de�-
nitely makes the relation of evaluation non deterministic.

3.2.4 �e thread of a process and its anatomy

Given a process p, we call the thread of p and write th(p) the set of all processes p ′ such that p � p ′:

th(p) = {p ′ ∈ Λ?Π : p � p ′} .

�is set has the structure of a �nite or in�nite (di)graph whose edges are given by the relation �1 of
one step evaluation. In the case where the relation of evaluation is deterministic, the graph th(p) can
be either:

1. Finite and cyclic from a certain point, because the evaluation of p loops at some point. A typical
example is the process I?δδ ·α (where I ≡ λx . x and δ ≡ λx . xx), that enters into a 2-cycle a�er
one evaluation step:

I? δδ · α �1 δδ ? α �1 δ ? δ · α �1 δδ ? α �1 · · ·

2. Finite and linear, because the evaluation of p reaches a state where no more rule applies. For
example:

II? α �1 I? I · α �1 I? α .

3. In�nite and linear, because p has an in�nite execution that never reaches twice the same state. A
typical example is given by the process δ ′δ ′ ? α , where δ ′ ≡ λx . x x I:

δ ′δ ′ ? α �3 δ ′δ ′ ? I · α �3 δ ′δ ′ ? I · I · α �3 δ ′δ ′ ? I · I · I · α �3 · · ·

3.3 Classical second-order arithmetic

In Section 3.2 we focused on the computing facet of the theory of classical realizability. In this section,
we will now present its logical facet by introducing the language of classical second-order logic with
the corresponding type system. In Section 3.3.3, we will deal with the particular case of second-order
arithmetic and present its axioms.

3.3.1 �e language of second-order logic

�e language of second-order logic distinguishes two kinds of expressions: �rst-order expressions rep-
resenting individuals, and formulas, representing propositions about individuals and sets of individuals
(represented using second-order variables as we shall see below).

57

CHAPTER 3. KRIVINE’S CLASSICAL REALIZABILITY

3.3.1.1 First-order expressions and formulas

First-order expressions are formally de�ned as in �rst-order arithmetic (see Example 1.3) from

1. a �rst-order signature Σ which we assume to contain a constant symbol 0 (‘zero’), a unary func-
tion symbol s (‘successor’) as well as a function symbol f for every primitive recursive function
(including symbols +, ×, etc.), each of them being given its standard interpretation in � (see
Section 3.3.3).

2. A denumerable set V1 of �rst-order variables. For convenience, we shall still use the lowercase
le�ers x , y, z, etc. to denote �rst-order variables, but these variables should not be confused with
the λ-variables introduced in Section 3.2.

�is results in the following formal de�nition:

First-order terms e1,e2 ::= x | f (e1, . . . ,ek) (x ∈ V1, f ∈ Σ)

�e set FV (e) of all (free) variables of a �rst-order expression e is de�ned as expected, as well as the
corresponding operation of substitution (see De�nitions 1.5 and 1.6).

Formulas of second-order logic are de�ned from an additional set of symbols V2 of second-order
variables (or predicate variables), using the uppercase le�ers X , Y , Z , etc. to represent such variables:

Formulas A,B ::= X (e1, . . . ,ek) | A→ B | ∀x .A | ∀X .A (X ∈ V2)

We assume that each second-order variable X comes with an arity k ≥ 0 (that we shall o�en leave
implicit since it can be easily inferred from the context), and that for each arity k ≥ 0, the subset ofV2
formed by all second-order variables of arity k is denumerable.

Intuitively, second-order variables of arity 0 represent (unknown) propositions, unary predicate
variables represent predicates over individuals (or sets of individuals) whereas binary predicate vari-
ables represent binary relations (or sets of pairs), etc.

�e set of free variables of a formula A is wri�en FV (A). (�is set may contain both �rst-order and
second-order variables.) As usual, formulas are identi�ed up to α-conversion, neglecting di�erences in
bound variable names. Given a formula A, a �rst-order variable x and a closed �rst-order expression e ,
we denote by A[e/x] the formula obtained by replacing every free occurrence of x by the �rst-order
expression e in the formula A, possibly renaming some bound variables of A to avoid name clashes.

Lastly, although the formulas of the language of second-order logic are constructed from atomic
formulas only using implication and �rst- and second-order universal quanti�cations, we can de�ne
other logical constructions (negation, conjunction disjunction, �rst- and second-order existential quan-
ti�cation as well as Leibniz equality) using the so-called second-order encodings:

⊥ , ∀Z .Z

¬A , A→ ⊥

A ∧ B , ∀Z .((A→ B → Z) → Z)

A ∨ B , ∀Z .((A→ Z) → (B → Z) → Z)

A⇔ B , (A→ B) ∧ (B → A)

∃x .A(x) , ∀Z .(∀x .(A(x) → Z) → Z)

∃X .A(X) , ∀Z .(∀X .(A(X) → Z) → Z)

e1 = e2 , ∀W .(W (e1) →W (e2))

3.3.1.2 Predicates and second-order substitution

We call a predicate of arity k any expression which associates to the variable x1, . . . ,xk a formula C
depending on these variables. More formally, we could (ab)use the λ-notation to de�ne them as expres-
sions of the form P ≡ λx1 · · · xk .C where C is then an arbitrary formula. �e set of free variables of a
k-ary predicate P ≡ λx1 · · · xk .C is de�ned by FV (P) ≡ FV (C) \ {x1, . . . ,xk }, and the application of the
predicate P ≡ λx1 · · · xk .C to a k-tuple of �rst-order expressions e1, . . . ,ek is de�ned by le�ing

P (e1, . . . ,ek) ≡ (λx1 · · · xk .C) (e1, . . . ,ek) ≡ C[e1/x1, . . . ,ek/xk]

58

3.3. CLASSICAL SECOND-ORDER ARITHMETIC

(x : A) ∈ Γ
Γ ` x : A (Ax)

Γ,x : A ` t : B
Γ ` λx . t : A→ B

(→I)
Γ ` t : A→ B Γ ` t : A

Γ ` tu : B (→E)

Γ ` t : A x < FV (Γ)

Γ ` t : ∀x .A (∀1
I)

Γ ` t : ∀x .A
Γ ` t : A{x := e}

(∀1
E)

Γ ` t : A X < FV (Γ)

Γ ` t : ∀X .A (∀2
I)

Γ ` t : ∀X .A
Γ ` t : A{X := P }

(∀2
E) Γ ` cc : ((A→ B) → A) → A

(cc)

Figure 3.1: Typing rules of second-order logic

(by analogy with β-reduction). Given a formula A, a k-ary predicate variable X and an actual k-ary
predicate P , we �nally de�ne the operation of second-order substitution A[P/X] as follows:

X (e1, . . . ,ek)[P/X] , P (e1, . . . ,ek)

Y (e1, . . . ,em)[P/X] , Y (e1, . . . ,em)

(A→ B)[P/X] , A[P/X]→ B[P/X]
(∀x .A)[P/X] , ∀x .A[P/X]
(∀X .A)[P/X] , ∀X .A

(∀Y .A)[P/X] , ∀Y .A[P/X]

(Y , X)

(x < FV (P))

(Y , X , Y < FV (P))

3.3.2 A type system for classical second-order logic

We shall now present the deduction system of classical second-order logic as a type system based
on typing judgments of the form Γ ` t : A, where t is a proof-like term, i.e. a λc -term containing no
continuation constant kπ ; and A is a formula of second-order logic.

�e type system of classical second-order logic is de�ned from the typing rules of Figure 3.1. �ese
typing rules are the usual typing rules of AF2 [92], plus a speci�c typing rule for the instruction cc
which permits to recover the full strength of classical logic.

Using the encodings of second-order logic, we can derive from the typing rules of Figure 3.1 the
usual introduction and elimination rules of absurdity, conjunction, disjunction, (�rst- and second-order)
existential quanti�cation and Leibniz equality [92]. As explained in Section 1.1.2.1, the typing rule for
call/cc (law of Peirce) allows us to construct proof-terms for classical reasoning principles such as
the excluded middle, reductio ad absurdum, de Morgan laws, etc.

3.3.3 Classical second-order arithmetic (PA2)

From now on, we consider the particular case of second-order arithmetic (PA2), where �rst-order expres-
sions are intended to represent natural numbers. For that, we assume that every k-ary function symbol
f ∈ Σ comes with an interpretation in the standard model of �rst-order arithmetic (Section 1.2.4) as a
function ~ f � : �k → �, so that we can give a denotation ~e� ∈ � to every closed �rst-order expres-
sion e . Moreover, we assume that each function symbol associated to a primitive recursive de�nition
(cf Section 3.3.1.1) is given its standard interpretation in �. In this way, every numeral n ∈ � is repre-
sented in the world of �rst-order expressions as the closed expression sn (0) that we still write n, since
~sn (0)� = n.

3.3.3.1 Induction

Following Dedekind’s construction of natural numbers, we consider the predicate Nat(x) [60, 92] de-
�ned by

Nat(x) , ∀Z .(Z (0) → ∀y.(Z (y) → Z (s (y))) → Z (x)) ,

59

CHAPTER 3. KRIVINE’S CLASSICAL REALIZABILITY

that de�nes the smallest class of individuals containing zero and closed under the successor function.
One of the main properties of the logical system presented above is that the axiom of induction, that
we can write ∀x .Nat(x), is not derivable from the rules of Figure 3.1. As proved by Krivine [97, �eo-
rem 12], this axiom is not even (universally) realizable in general. To recover the strength of arithmetic
reasoning, we need to relativize all �rst-order quanti�cations to the class Nat(x) of Dedekind numerals
using the shorthands for numeric quanti�cations

∀natx .A(x) , ∀x .(Nat(x) → A(x))

∃natx .A(x) , ∀Z .(∀x .(Nat(x) → A(x) → Z) → Z)

so that the relativized induction axiom becomes provable in second-order logic [92]:

∀Z .(Z (0) → ∀natx .(Z (x) → Z (s (x))) → ∀natx .Z (x)) .

3.3.3.2 �e axioms of PA2

Formally, a formula A is a theorem of second-order arithmetic (PA2) if it can be derived from Peano
axioms (see Example 1.12), expressing that the successor function is injective and not surjective:

(PA5) ∀x .∀y.(s (x) = s (y) → x = y) (PA6) ∀x .(s (x) , 0)

and from the de�nitional equalities a�ached to the (primitive recursive) function symbols of the signa-
ture:

(PA1) ∀x .(0 + x = x) (PA2) ∀x .∀y.(s (x) + y = s (x + y))
(PA3) ∀x .(0 × x = 0) (PA4) ∀x .∀y.(s (x) × y = (x × y) + y)

etc… Unlike the non relativized induction axiom—that requires a special treatment in PA2—we shall
see in Section 3.4.6 that all these axioms are realized by simple proof-like terms.

Observe that we consider here an unusual de�nition of (PA2), since the usual one includes the
induction rule as an axiom. Nonetheless, the two theories are related through the relativization of �rst-
order quanti�cations. Namely, if A is a theorem of (PA2) with induction, then the relativized formula
ANat is a theorem of (PA2) without induction.

3.4 Classical realizability semantics

3.4.1 Generalities

Given a particular instance of the λc -calculus (de�ned from particular sets B, C and from a particular
relation of evaluation �1 as described in Section 3.2), we shall now build a classical realizability model
in which every closed formula A of the language of PA2 will be interpreted as a set of closed terms
|A| ⊆ Λ, called the truth value of A, and whose elements will be called the realizers of A.

3.4.1.1 Poles, truth values and falsity values

Formally, the construction of the realizability model is parameterized by a pole y in the sense of the
following de�nition:

De�nition 3.5 (Poles). A pole is any set of processes y ⊆ Λ?Π which is closed under anti-evaluation,
in the sense that both conditions p � p ′ and p ′ ∈ y together imply that p ∈ y for all processes
p,p ′ ∈ Λ?Π. y

Given a �xed set of processes, the following two examples are standard methods to de�ne a pole. �e
�rst one is straightforward in that it simply consists in taking the closure by anti-evaluation. �e second
one might be more disconcerting, and consists in taking the set of processes which are unreachable by
reduction.

60

3.4. CLASSICAL REALIZABILITY SEMANTICS

Example 3.6 (Goal-oriented pole). Given a set of processes P , the set of all processes that reach an
element of P a�er zero, one or several evaluation steps, that is:

⊥⊥ , {p ∈ Λ?Π : ∃p ′ ∈ P (p � p ′)}

is a valid pole. Indeed, if p,p ′ are processes such that p � p ′ and p ′ ∈ ⊥⊥, by de�nition there is a process
p0 ∈ P such that p ′ � p0. �us p � p ′ � p0 and p ∈ ⊥⊥, which concludes the proof that ⊥⊥ is closed
by anti-reduction. By de�nition, the set y is the smallest pole that contains the set of processes P as a
subset. y

Example 3.7 (�read-oriented pole). Given a set of processes P , the complement set of the union of
all threads starting from an element of P , that is:

y ,

(⋃
p∈P

th(p)
)c
≡

⋂
p∈P

(
th(p)

)c
is a valid pole. It is indeed quite easy to check that⊥⊥ is closed by anti-reduction. Consider two processes
p,p ′ such that p � p ′ and p ′ ∈ P , and assume that there is a process p0 ∈ P such that p0 � p. �en
p0 � p ′ which contradicts the fact that p ′ ∈ ⊥⊥. �us there is no such process p0 and p ∈ ⊥⊥. �is pole
is also the largest one that does not intersect P . y

Let us now consider a �xed pole y. We call a falsity value any set of stacks S ⊆ Π. Every falsity
value S ⊆ Π induces a truth value Sy ⊆ Λ that is de�ned by

Sy = {t ∈ Λ : ∀π ∈ S (t ? π) ∈ y} .

Intuitively, every falsity value S ⊆ Π represents a particular set of tests, while the corresponding truth
value Sy represent the set of all programs that passes all tests in S (w.r.t. the pole y, that can be seen as
the challenge or the referee). From the de�nition of Sy , it is clear that the larger the falsity value S , the
smaller the corresponding truth value Sy , and vice-versa.

3.4.1.2 Formulas with parameters

In order to interpret second-order variables that occur in a given formula A, it is convenient to enrich
the language of PA2 with a new predicate symbol Ḟ of arity k for every falsity value function F of arity k ,
that is, for every function F : �k → P (Π) that associates a falsity value F (n1, . . . ,nk) ⊆ Π to every
k-tuple (n1, . . . ,nk) ∈ �

k . A formula of the language enriched with the predicate symbols Ḟ is then
called a formula with parameters. Formally, this corresponds to the formulas de�ned by:

A,B ::= X (e1, . . . ,ek) | A→ B | ∀x .A | ∀X .A | Ḟ (e1, . . . ,ek) X ∈ V2,F ∈ P (Π)
�k

�e notions of a predicate with parameters and of a typing context with parameters are de�ned sim-
ilarly. �e notations FV (A), FV (P), FV (Γ), dom(Γ), A[e/x], A[P/X], etc. are extended to all formulas A
with parameters, to all predicates P with parameters and to all typing contexts Γ with parameters in
the obvious way.

3.4.2 De�nition of the interpretation function

�e interpretation of the closed formulas with parameters follows the intuition that the falsity value
‖A‖ of a formula A contains tests that terms have to challenge to be in the corresponding truth value
|A|. In particular, a test for A → B consists in a defender of A together with a test for B, while a test
for a quanti�ed formula ∀x .A (resp. ∀X .A) is simply a test for one of the possible instantiations for the
variable x (resp. X).

61

CHAPTER 3. KRIVINE’S CLASSICAL REALIZABILITY

De�nition 3.8 (Interpretation of closed formulas with parameters). �e falsity value ‖A‖ ⊆ Π of a
closed formula A with parameters is de�ned by induction on the number of connectives/quanti�ers
in A from the equations

‖Ḟ (e1, . . . ,ek)‖ , F (~e1�, . . . ,~ek �)

‖A→ B‖ , |A| · ‖B‖ =
{
t · π : t ∈ |A|, π ∈ ‖B‖

}

‖∀x .A‖ ,
⋃
n∈�

‖A[n/x]‖

‖∀X .A‖ ,
⋃

F :�k→P (Π)

‖A[Ḟ/X]‖ (if X has arity k)

whereas its truth value |A| ⊆ Λ is de�ned by |A| = ‖A‖y . Finally, de�ning > ≡ ∅̇ (recall that we have
⊥ ≡ ∀X .X), one can check that we have :

‖>‖ = ∅ |>| = Λ ‖⊥‖ = Π

y

Since the falsity value ‖A‖ (resp. the truth value |A|) of A actually depends on the pole y, we shall
write it sometimes ‖A‖y (resp. |A|y) to recall the dependency.

De�nition 3.9 (Realizers). Given a closed formula A with parameters and a closed term t ∈ Λ, we say
that:

1. t realizes A and write t A when t ∈ |A|y . (�is notion is relative to a particular pole y.)
2. t universally realizes A and write t � A when t ∈ |A|y for all poles y.

y

From these de�nitions, we clearly have

|∀x A| =
⋂
n∈�

|A{x := n}| and |∀X A| =
⋂

F :�k→P (Π)

|A{X := Ḟ }| .

On the other hand, the truth value |A→ B | of an implication A→ B slightly di�ers from its traditional
interpretation in Kleene’s realizability (Section Section 3.1.1). Writing

|A| → |B | = {t ∈ Λ : for all u ∈ Λ , u ∈ |A| implies tu ∈ |B |} ,

we can check that:

Lemma 3.10. For all closed formulas A and B with parameters:

1. |A→ B | ⊆ |A| → |B | (adequacy of modus ponens).

2. �e converse inclusion does not hold in general, unless the pole y is insensitive to the rule (Push),
that is: tu ? π ∈ y i� t ?u · π ∈ y (for all t ,u ∈ Λ, π ∈ Π).

3. In all cases, t ∈ |A| → |B | implies λx . tx ∈ |A→ B | (for all t ∈ Λ).

Proof. �ese simple statements are a nice pretext to a �rst manipulation of the de�nitions.

1. Let t ∈ |A→ B | and u ∈ |A|. To prove that tu ∈ |B |, we consider an arbitrary stack π ∈ ‖B‖. By
applying the rule (Push) we get tu ? π �1 t ?u · π . Since t ∈ |A→ B | and u · π ∈ ‖A→ B‖, the
process t ?u · π belongs to ⊥⊥. Hence tu ? π ∈ y by anti-evaluation.

62

3.4. CLASSICAL REALIZABILITY SEMANTICS

2. Let t ∈ |A| → |B |. To prove that t ∈ |A → B |, we consider an arbitrary element of the falsity
value ‖A → B‖, that is, a stack u · π where u ∈ |A| and π ∈ ‖B‖. We clearly have tu ? π ∈ y,
since tu ∈ |B | from our assumption on t . But since y is insensitive to the rule (Push), we also
have t ?u · π ∈ y.

3. Let t ∈ |A| → |B |. To prove that λx . tx ∈ |A→ B |, we consider an arbitrary element of the falsity
value ‖A→ B‖, that is, a stacku ·π whereu ∈ |A| and π ∈ ‖B‖. We have λx . tx?u ·π �1 tu?π ∈ y
(since tu ∈ |B |), hence λx . tx ?u · π ∈ y by anti-evaluation.

�

Besides, it is easy to prove that cc is indeed a universal realizer of Peirce’s law:

Lemma 3.11 (Law of Peirce). Let A and B be two closed formulas with parameters:

1. If π ∈ ‖A‖, then kπ A→ B.

2. cc � ((A→ B) → A) → A.

Proof. 1. Let π ∈ ‖A‖. To prove that kπ ∈ |A → B |, we need to check that kπ ? t · π ′ ∈ y for all
t ∈ |A| and π ′ ∈ ‖B‖. By applying the rule (Restore) we get kπ ? t · π ′ �1 t ? π ∈ y (since
t ∈ |A| and π ∈ ‖A‖), hence kπ ? t · π ′ ∈ y by anti-evaluation.

2. To prove that cc ((A→ B) → A) → A (for any pole y), we need to check that cc?t ·π ∈ y for
all t ∈ |(A→ B) → A| and π ∈ ‖A‖. By applying the rule (Save) we get cc? t · π �1 t ? kπ · π .
But since kπ ∈ |A → B | (from (1)) and π ∈ ‖A‖, we have kπ · π ∈ ‖ (A → B) → A‖, so that
t ?kπ · π ∈ y. Hence cc? t · π ∈ y by anti-evaluation.

�

3.4.3 Valuations and substitutions

In order to express the soundness invariants relating the type system of Section 3.3.3 with the classical
realizability semantics de�ned above, we need to introduce some more terminology.

De�nition 3.12 (Valuations). A valuation is a function ρ that associates a natural number ρ (x) ∈ �
to every �rst-order variable x and a falsity value function ρ (X) : �k → P (Π) to every second-order
variable X of arity k .

1. Given a valuation ρ, a �rst-order variable x and a natural number n ∈ �, we denote by ρ,x ← n
the valuation de�ned by:

(ρ,x ← n) , ρ | dom(ρ)\{x } ∪ {x ← n} .

2. Given a valuation ρ, a second-order variable X of arity k and a falsity value function F : �k →

P (Π), we denote by ρ,X ← F the valuation de�ned by:

(ρ,X ← F) , ρ | dom(ρ)\{X } ∪ {X ← F } . y

To every pair (A,ρ) formed by a (possibly open) formula A of PA2 and a valuation ρ, we associate
a closed formula with parameters A[ρ] that is de�ned by

A[ρ] , A[ρ (x1)/x1, . . . ,ρ (xn)/xn , ρ̇ (X1)/X1, . . . , ρ̇ (Xm)/Xm]

where x1, . . . ,xn ,X1, . . . ,Xm are the free variables of A, and writing ρ̇ (Xi) the predicate symbol associ-
ated to the falsity value function ρ (Xi). �is operation naturally extends to typing contexts by le�ing

(x1 : A1, . . . ,xn : An)[ρ] , x1 : A1[ρ], . . . ,xn : An[ρ] .

63

CHAPTER 3. KRIVINE’S CLASSICAL REALIZABILITY

De�nition 3.13 (Substitutions). A substitution is a �nite functionσ from λ-variables to closed λc -terms.
Given a substitution σ , a λ-variable x and a closed λc -term u, we denote by σ ,x := u the substitution
de�ned by (σ ,x := u) ≡ σ | dom(σ)\{x } ∪ {x := u}. y

Given an open λc -term t and a substitution σ , we denote by t[σ] the term de�ned by

t[σ] , t[σ (x1)/x1, . . . ,σ (xn)/xn]

where dom(σ) = {x1, . . . ,xn }. Notice that t[σ] is closed as soon as FV (t) ⊆ dom(σ). We say that a
substitution σ realizes a closed context Γ with parameters and write σ Γ if:

1. dom(σ) = dom(Γ);
2. σ (x) A for every declaration (x : A) ∈ Γ.

3.4.4 Adequacy

�e adequacy of typing judgments and typing rules with respect to a pole is de�ned exactly like the
adequacy with respect to a model (De�nition 1.17). Given a �xed pole y, we say that:

1. A typing judgment Γ ` t : A is adequate (w.r.t. the pole y) if for all valuations ρ and for all
substitutions σ Γ[ρ] we have t[σ] A[ρ].

2. More generally, we say that an inference rule
J1 · · · Jn

J0

is adequate (w.r.t. the pole y) if the adequacy of all typing judgments J1, . . . , Jn implies the ade-
quacy of the typing judgment J0.

Proposition 3.14 (Adequacy). �e typing rules of Figure 3.1 are adequate w.r.t. any pole y, as well as all
the judgments Γ ` t : A that are derivable from these rules.

Proof. �e rule for cc directly stems from Lemma 3.11, while introduction and elimination rules for
universal quanti�ers results from the de�nition of the corresponding falsity values. We will only sketch
the proof for the introduction and elimination rules of implication.

• Case (→I). Assume that Γ ` t : A→ B and Γ ` u : B are adequate w.r.t. ⊥⊥, and pick a valuation ρ
and a substitution σ such that σ Γ[ρ]. We want to show that (tu)[σ] B[ρ]. It su�ces to show that
if π ∈ ‖B[ρ]‖, then (tu)[σ]? π ∈ ⊥⊥. Applying the (Push) rule, we get :

(tu)[σ]? π � t[σ]?u[σ] · π

By hypothesis, we have u[σ] A[ρ] (and then u[σ] · π ∈ ‖ (A→ B)[ρ]‖)), and t[σ] (A→ B)[ρ], so
that t[σ]?u[σ] · π belongs to ⊥⊥. We conclude by anti-reduction.

• Case (→E). Assume that Γ,x : A ` t : B is adequate w.r.t y. �is means that for any valuation ρ, any
u A[ρ] and any σ Γ[ρ], denoting by σ ′ the substitution σ ,x := u, we have t[σ ′] B[ρ]. Let us pick
a valuation ρ and a substitution σ such that σ Γ[ρ]. We want to show that (λx .t)[σ] (A→ B)[ρ].
Let u · π be a stack in ‖ (A→ B)[ρ]‖. Applying the (Grab) rule, we have :

(λx .t)[σ]?u · π � t[σ ,x := u]? π

By hypothesis, we have u A[ρ], and so t[σ ,x := u] B[ρ]. �us t[σ ,x := u]? π belongs to ⊥⊥. and
we conclude by anti-reduction. �

Since the typing rules of Figure 3.1 involve no continuation constant, every realizer that comes from
a proof of second order logic by Proposition 3.14 is thus a proof-like term.

64

3.4. CLASSICAL REALIZABILITY SEMANTICS

3.4.5 �e induced model

It is not innocent if the sets |A| introduced in the previous sections were called truth values. Indeed,
this construction de�ned a model for second-order logic where truth values are made of λc -terms. In
a nutshell, starting from the standard model � for �rst-order expressions and an instance of the λc -
calculus (that is with call/cc only or other extras instructions), the choice of a particular pole ⊥⊥
de�nes a truth value for all formulas of the language. Naively, we could be tempted to de�ne the valid
formulas as the one whose truth value is not empty. Yet, this raises a problem of consistency:

Proposition 3.15. If ⊥⊥ , ∅, then there is a term t such that for all formula A, t ∈ |A|.

Proof. Assume that the ⊥⊥ is not empty, and let 〈t ||π 〉 be a process in ⊥⊥. �en for any formula A,
kπ t A. Indeed, for any stack ρ (and in particular any stack in ‖A‖), we have:

kπ t ? ρ � kπ ? t · ρ � t ? π

�e last process being in the pole, they all are by anti-evaluation, and thus kπ t ? ρ ∈ ⊥⊥. �

If we examine kπ t , the guilty term in the previous proof, there is two observations to do. First, it
is worth noting that independently of t and π , this term can not be typed since there is no typing rule
for continuations kπ . Second, sticking with the intuition that a realizer is a term that can challenge
successfully any tests in the falsity value, this term is morally a cheater: in front of a test ρ, it actually
refuses to challenge it, drops it and goes directly to the test π for which it already knows a winning
defender t . �erefore, the problem comes from the presence of a continuation constant, and we should
restrict truth values to terms without continuation constants, i.e. to proof-like terms.

To ease the next de�nition9, we restrict ourselves to the full standard model of PA2. In this model,
�rst-order individuals are interpreted by the elements of �, while second-order objects of arity k are
interpreted in the sets of k-ary relations on the set �. We denote this model byM.

De�nition 3.16 (Realizability model). Given the full standard modelM of PA2 and a pole ⊥⊥, we call
realizability model and denote byM⊥⊥ the model in which the validity of formulas is de�ned by:

M⊥⊥ A if and only if |A| ∩ PL , ∅
y

�e previous de�nition gives a simple criterion of consistency for realizability models:

Proposition 3.17 (Consistency). �e modelM⊥⊥ induce by the pole⊥⊥ is consistent if and only if for each
proof-like term t , there exists one stack π such that t ?⊥⊥ < ⊥⊥.

Proof. Recall that ‖⊥‖ = Π. HenceM⊥⊥ ⊥ if and only if there exists a proof-like term t such that
t ⊥, i.e. for any stack π , t ? π ∈ ⊥⊥. �usM⊥⊥ 1 ⊥ if and only if for each proof-like term t there is
at least one stack π such that t ? π < ⊥⊥. �

3.4.6 Realizing the axioms of PA2

Let us recall that in PA2, Leibniz equality e1 = e2 is de�ned by e1 = e2 ≡ ∀Z (Z (e1) → Z (e2)).

Proposition 3.18 (Realizing Peano axioms). :

1. λz . z � ∀x ∀y (s (x) = s (y) → x = y)

9�e de�nition of realizability models could be reformulated to consider a ground model of PA2 as parameter, but this
would require a formal de�nition of the models of PA2. �is would have been unnecessarily complex for the sole purpose of
perceiving the spirit of realizability models.

65

CHAPTER 3. KRIVINE’S CLASSICAL REALIZABILITY

2. λz . zu � ∀x (s (x) = 0→ ⊥) (where u is any term such that FV (u) ⊆ {z}).

3. λz . z � ∀x1 · · · ∀xk (e1 (x1, . . . ,xn) = e2 (x1, . . . ,xk))
for all arithmetic expressions e1 (x1, . . . ,xn) and e2 (x1, . . . ,xk) such that
� |= ∀x1 · · · ∀xk (e1 (x1, . . . ,xn) = e2 (x1, . . . ,xk)).

Proof. �e proof is an easy veri�cation, and can be found in [97]. �

From this we deduce the main theorem, proving that any realizability model is a model of PA2:

�eorem 3.19 (Realizing the theorems of PA2). If A is a theorem of PA2 (in the sense de�ned in Sec-
tion 3.3.3.2), then there is a closed proof-like term t such that t � A.

Proof. Immediately follows from Prop. 3.14 and 3.18. �

3.4.7 �e full standard model of PA2 as a degenerate case

It is easy to see that when the pole y is empty, the classical realizability model de�ned above collapses
to the full standard model M of PA2. For that, we �rst notice that when y = ∅, the truth value Sy

associated to an arbitrary falsity value S ⊆ Π can only take two di�erent values: Sy = Λc when S = ∅,
and Sy = ∅ when S , ∅. Moreover, we easily check that the realizability interpretation of implication
and universal quanti�cation mimics the standard truth value interpretation of the corresponding logical
construction in the case where y = ∅. It is easy to check that:

Proposition 3.20. If y = ∅, then for every closed formula A of PA2 we have

|A| =

Λ ifM |= A

∅ ifM 6|= A

An interesting consequence of the above proposition is the following:

Corollary 3.21. If a closed formula A has a universal realizer t � A, then A is true in the full standard
modelM of PA2.

Proof. If t � A, then t ∈ |A|∅. �erefore |A|∅ = Λ andM |= A. �

However, the converse implication is false in general, since the formula∀x Nat(x) (cf Section 3.3.3.1)
that expresses the induction principle over individuals is obviously true inM, but it has no universal
realizer when evaluation is deterministic [97, �eorem 12].

3.5 Applications

We present in this section some applications of Krivine realizability, both on its logical and computa-
tional facets. While we introduce theses applications in the framework of the λc -calculus, keep in mind
that they are not peculiar to this calculus. As we will see in the next sections, other calculi are suitable
for a realizability interpretation à la Krivine, and can thus bene�t from the results expressed therea�er.

3.5.1 Soundness and normalization

Once the realizability interpretation is de�ned and the adequacy proved, the soundness of the language
is a direct consequence of the adequacy. Indeed, if there was a proof t of ⊥, then by adequacy t would
be a uniform realizer of ⊥. �us the existence of one consistent model is enough to contradict this
possibility, ensuring the correction of the type system. Similarly, the normalization of the language is
also a direct consequence of the adequacy and the following observation:

66

3.5. APPLICATIONS

Proposition 3.22 (Normalizing processes). �e set ⊥⊥⇓ , {p ∈ Λ × Π : p normalizes} de�nes a valid
pole.

Proof. We need to check that ⊥⊥⇓ is closed by anti-reduction, so let p,p ′ be two processes such that
p � p ′ and p ′ ∈ ⊥⊥⇓. �e la�er means by de�nition that p ′ normalizes. Since p � p ′, necessarily p
normalizes too and thus belongs to the pole ⊥⊥⇓. �

Note that we only consider the normalization with respect to the evaluation strategy of the pro-
cesses, which corresponds to the weak-head reduction in the sense of the λ-calculus. In particular, this
is weaker than the strong and weak normalizations of the λ-calculus (see Section 2.1.5). We will use
this observation in Chapters 4 and 6 to prove normalization properties of di�erent calculi.

3.5.2 Speci�cation problem

�e speci�cation problem for a formula A can be expressed through the following question:

Which are the terms t such that t � A ?

In other words, it poses the question of exhibiting a (computational) characterization for the realizers of
A. �anks to the adequacy of the interpretation with respect to typing, such a characterization would
also apply to terms of type A.

3.5.2.1 Toy example: ∀X .X → X

In the language of second-order logic, the type of the identity function I = λx .x is described by the
formula ∀X (X → X). A closed term t ∈ Λ is said to be identity-like if t ?u · π � u ?π for all u ∈ Λ and
π ∈ Π. Examples of identity-like terms are of course the identity function I but also terms such as I I ,
δ I (where δ ≡ λx .xx), λx .cc(λk .x), cc(λk .kIδk), etc. It is easy to verify that any identity-like term is a
universal realizer of the formula ∀X .X → X . But the converse also holds, and thus provides an answer
to the speci�cation problem for the formula ∀X .(X → X).

Proposition 3.23. For all terms t ∈ Λ, we have:

t � ∀X .(X → X) ⇔ t is identity-like

Proof. �e interesting direction of the proof is from le� to right. We prove it with the so-called methods
of threads [63]. Assume t � ∀X (X → X), and consider u ∈ Λ,π ∈ Π. We want to prove that
t ?u · π � u ? π . We de�ne the pole

⊥⊥ ≡ (th(t ?u · π))c ≡ {p ∈ Λ?Π : (t ?u · π � p)}

as well as the falsity value S = {π }. From the de�nition of ⊥⊥, we know that t ?u ·π < ⊥⊥. As t Ṡ → Ṡ
and π ∈ ‖Ṡ ‖, necessarily u 1 S . �is means that u ? π < ⊥⊥, that is t ?u · π � u ? π . �

3.5.2.2 Game-theoretic interpretation

In the previous section we gave a toy example of speci�cation that was proved using the method of
threads. If this method is very useful, it has the drawbacks of becoming very painful when the formula
to specify get more complex. A more scalable way to obtain speci�cations (which uses the threads
method as a technical tool) is to strengthen the intuition of an opposition between two players under-
lying Krivine realizability. In addition to being a useful speci�cation method, this idea that realizers of
a formula are its defenders, turns out to be a helpful intuition when de�ning the realizability interpre-
tation of a language.

67

CHAPTER 3. KRIVINE’S CLASSICAL REALIZABILITY

As we only want to give an oversight of the corresponding game-theoretic intuitions, we will illus-
trate this methodology with an example. Precise de�nitions, proofs etc… can be found in [63, 64, 65].
We choose as a running example the formula Φf , ∃x .∀y. f (x) ≤ f (y), where f is any computable
function from � to �, expressing the fact that f admits a minimum. We could have chosen any arith-
metical formula (see [65]), or second-order formulas, as Peirce’s law (see [63, 64]). We believe this
example to be representative enough of the general situation and easier to understand that an example
in a second-order se�ing.

Eloise and Abelard Still writing M for the full standard model of PA2, the formula Φf naturally
induces a game between two players ∃ and ∀, that we name10 Eloise and Abelard. Both players instan-
tiate the corresponding quanti�ers in turns, Eloise for defending the formula and Abelard for a�acking
it. �e game, whose depth is bounded by the number of quanti�cations, proceeds as follows:

• Eloise has to give an integer m ∈ � to instantiate the existential quanti�er, and the game goes
on over the closed formula ∀y. f (m) ≤ f (y).

• Abelard has to give an integer n ∈ �, and the game goes on the closed formula f (m) ≤ f (n).

• Eloise has then two choices: either she backtracks to the �rst step to give another instantiation
m′ for x , and the game goes on; or she chooses to interrupt the game. If so, Eloise wins ifM �
f (m) ≤ f (n), otherwise Abelard wins. If the game goes on forever, Abelard wins.

Observe that the fact Eloise wins the game on a position (m,n) does not mean that m is a minimum
for the function f : it only means that Abelard failed in �nding an integer n such that f (n) < f (m).
Nonetheless, if Eloise actually knows that some integer m is a minimum for f , she will obviously win
the game regardless of what Abelard plays.

We say that a player has a winning strategy if (s)he has a way of playing that ensures him/her
the victory independently of the opponent moves, which corresponds to the de�nition of Coquand’s
game [27]. It is obvious from Tarski’s de�nition of truth (see Section 1.2) that the closed formula Φf is
valid in the ground model if and only if Eloise has a winning strategy.

Intuitively, Eloise is playing as a realizer should, and Abelard is an opponent choosing amongst
falsity values. �is intuition can be formalized by implementing the previous game within the λc -
calculus. A realizer will then corresponds to a winning strategy for Eloise, and reciprocally.

Relativization to canonical integers �e implementation of the previous game in the λc -calculus
actually requires a preliminary step. Indeed, as such �rst-order quanti�cations are not given any com-
putational content: integers are instantiated in formulas which are only evaluated in the end within
the ground model. To make these integers appear in the computations, we need to relativize �rst-
order quanti�cations to the class Nat(x) (just like in Section 3.3.3.1). However, if we have as expected
n̄ � Nat(n) for any n ∈ �, there are realizers of Nat(n) di�erent from n̄. Intuitively, a term t � Nat(n)
represents the integer n, but n might be present only as a computation, and not directly as a computed
value.

�e usual technique to retrieve n̄ from such a term consist in the use of a storage operator T , which
simulates a call-by-value reduction (for integers) on the �rst argument on the stack. While such a term
is easy to de�ne, it make the the de�nition of the game harder, and we do not want to bother the reader
with such technical details11. Rather than that, we de�ne a new asymmetrical implication where the
le� member must be an integer value (somehow forcing call-by-value reduction on all integers), and

10�e names Eloise and Abelard are due to �ierry Coquand, who also de�ned the game in question [27].
11For further details about the relativization and storage operator, please refer to Section 2.9 and 2.10.1 of Rieg’s Ph.D.

thesis [144].

68

3.5. APPLICATIONS

the interpretation of this new implication.

Formulas
Falsity value

A,B ::= . . . | {e} → A

‖{e} → A‖ , {n̄ · π : ~e� = n ∧ π ∈ ‖A‖}

We �nally de�ne the corresponding shorthands for relativized quanti�cations:

∀Nx A(x) , ∀x ({x } → A(x))

∃Nx A(x) , ∀Z (∀x ({x } → A(x) → Z) → Z)

which is easy to check to be equivalent (in terms of realizability) to the one de�ned in Section 3.3.3.1 [65].

Realizability game In order to play using realizers, we will slightly change the se�ing of the pre-
vious game, adding processes. One should notice that we only add more information, so that this new
game is somewhat a “decorated” version of the previous one.

To describe the match, we use processes which evolve throughout the match according to the fol-
lowing rules:

1. Eloise proposes a term t0 ∈ PL supposed to defend Φf and Abelard proposes a stack u0 · π0
supposed to a�ack the formula Φ. We say that at time 0, the process p0 := t0 ? u0 · π0 is the
current process.

2. Assume that pi is the current process. Eloise evaluates pi in order to reach one of the following
situations:

• pi � u0 ?m · t · π . If so, Eloise can decide to play by communicating her answer (t ,m) to
Abelard and standing for his answer, and Abelard must answer a new integer n together
with a new stack u ′ · π ′. �e current process then becomes pi+1 := t ?n · u ′ · π ′.

• pi � u ? π for some u,π that were previously played by Abelard in a position in which x ,y
were instantiated by (m,n). In this case, Eloise wins ifM |= f (m) ≤ f (n).

If none of the above moves is possible, then Abelard wins.

Starting with a term t is a “good move” for Eloise if and only if, proposed as a defender of the
formula, t de�nes an initial winning state (for Eloise), independently from the initial stack proposed by
Abelard. In this case, adopting the point of view of Eloise, we just say that t is a winning strategy for
the formula Φf .

�is furnishes us an answer to the speci�cation problem for the formula Φf : winning strategies of
this game exactly characterized the realizer of the formula Φf .

�eorem 3.24. If a closed λc -term t is a winning strategy for Eloise if and only if t � Φf .

Proof. �is is a particular case of the more general case of arithmetical formulas proved in [65]. �

3.5.3 Model theory

Up to this point, we only presented applications of Krivine realizability on its computational side. Yet,
we explained that realizability o�ered a way to build models for second-order logic, (this can actually
be extended, for instance for set theory [93]). More interestingly, classical realizability appears to be
a generalization of Cohen’s technique of forcing, introduced to construct a model of set theory in
which the continuum hypothesis12 is not valid. As shown by Krivine [98] and Miquel [120], the forcing

12�e continuum hypothesis expresses the fact that there is no set whose cardinality would be strictly more than the
cardinal of � and strictly less than the cardinal of R.

69

CHAPTER 3. KRIVINE’S CLASSICAL REALIZABILITY

construction can be computationally analyzed as a program transformation in the framework of the
λc -calculus. In particular, classical realizability can simulate any forcing construction13.

Even more surprising is the fact that the realizability semantics lead to the construction of new
models, studied by Krivine in a series of papers [98, 99, 100, 101]. Brie�y, the fact that ∀x .Nat(x) is
not realized witnesses that a model has more individuals than the natural numbers. In a well-chosen
model14 M⊥⊥, one can show that M⊥⊥ � Nat(n) for any n ∈ � while M⊥⊥ � ∃x .¬Nat(x). Other-
wise said, the model a�ests the presence of unnamed elements. It turns out that this allows to de�ne
“pathological” in�nite sets15 ∇n , {x : x < n} such that the following statements are valid for any
n,m ∈ �:

1. ∇2 is not well-ordered
2. there is an injection from ∇n to ∇n+1

3. there is no surjection from ∇n to ∇n+1

4. ∇m × ∇n ' ∇mn

�ese sets being subsets of P (�), observe that the �rst property implies that the axiom of choice (AC)
is not valid, while items 2 and 3 prove that the continuum hypothesis (CH) is not valid either [99].

As far as we know, usual techniques to construct model of set theory do not allow to de�ne directly
a model in which both (AC) and (CH) are not valid. Besides, a construction by means of forcing can
not break the axiom of choice, hence classical realizability is a strict generalization of forcing in this
sense. For these reasons amongst others, classical realizability tends to be a promising framework to
build new models. In particular, it justi�es our quest (Part III) for an algebraic structure as general as
possible in which the λc -calculus and these constructions can be embedded.

13An example of this is the extraction of Herbrand tree by forcing in [143].
14In Krivine’s papers, it is the model of threads, in which each proof-like term tn is associated with a stack constant αn and

the pole is de�ned as ⊥⊥ , ⋂
n∈� (th(tn ?αn))c . �is set is indeed a valid pole (see Example 3.7) and is consistent according

to Proposition 3.17.
15In the ground model or any standard model, ∇n is just {0,1, ...,n − 1} i.e. n from a set-theoretic point of view.

70

