
5- �e starting point: dPAω

Axiom of choice

�e axiomatization of a theory, as we explained in Chapter 1, is to be understood as an intent to give
a formal and truthful representation of a given world or structure. As long as this structure deals with
�nite objects that have a concrete representation in the physical world, it is easy to agree on what
it “is” or “should be” (and thus on whether the axiomatization is truthful). However, as soon as the
theory involves in�nite objects, this question quickly turns out to be more the ma�er of one’s personal
“religion” than the empirical observation of a physical object. In particular, some undeniable properties
of �nite objects become much more questionable in the case of in�nite sets. Consider for instance the
following problem, as presented1 by Russell [146, pp.125-127]:

[Imagine a] millionaire who bought a pair of socks whenever he bought a pair of shoes, and
never at any other time, and who had such a passion for buying both that at last he had ℵ0
pairs of shoes and ℵ0 pairs of socks. �e problem is: How many shoes had he, and how many
socks?

�e cardinal ℵ0 de�nes exactly the in�nite quantity of natural numbers: an in�nite set is of cardinality
ℵ0 if it can be enumerated by the natural numbers. In particular, since there is a bijection from � ×�
to �, ℵ0 is not increased by doubling.

One would naturally suppose that he had twice as many shoes and twice as many socks as he
had pairs of each, and that therefore he had ℵ0 of each […].

To prove this claim, it is thus necessary and su�cient to give an enumeration of the millionaire’s shoes
and socks. Yet, this is not possible a priori:

In our case it can be done with the shoes, but not with the socks, except by some very arti�cial
device. �e reason for the di�erence is this: Among shoes we can distinguish right and le�, and
therefore we can make a selection of one out of each pair, […] but with socks no such principle
of selection suggests itself […].

We may put the ma�er in another way. To prove that a class has ℵ0 terms, it is necessary and
su�cient to �nd some way of arranging its terms in a progression. �ere is no di�culty in
doing this with the shoes. �e pairs are given as forming an ℵ0, and therefore as the �eld of a
progression. Within each pair, take the le� shoe �rst and the right second, keeping the order
of the pair unchanged; in this way we obtain a progression of all the shoes. But with the socks
we shall have to choose arbitrarily, with each pair, which to put �rst; and an in�nite number
of arbitrary choices is an impossibility. Unless we can �nd a rule for selecting, i.e. a relation
which is a selector, we do not know that a selection is even theoretically possible. […]
�e case of the socks, with a li�le goodwill on the part of the reader, may serve to show how a
selection might be impossible.

1Russell actually presented the story with boots. We replaced it with shoes in the quote, which we found to be more
asymmetric. Russell might never had one of these ugly (and symmetric) plastic rain boots.

99

CHAPTER 5. THE STARTING POINT: dPAω

More generally, it is unclear if one should be able to pick an element of an in�nite set, and from a
theoretical point of view, this indeed requires an extra axiom, called the axiom of choice. �is axiom,
which was �rst introduced by Zermelo in the realm of set theory [163], is functionally expressed by:

AC , (∀x ∈ A.∃y ∈ B.P (x ,y)) → (∃f ∈ BA.∀x ∈ A.P (x , f (x)))

which stipulates the existence of a choice function2. �is axiom was shown to be independent of
Zermelo-Fraenkel set theory (ZF)3. Even if it is very tempting to consider natural the possibility of
selecting one element within an in�nite set (since it is for �nite sets), such an axiom leads to very sur-
prising consequences. �e most striking example one is certainly the Banach-Tarski paradox [9], which
shows that the unit ball

B := {(x ,y,z) ∈ R3 : x2 + y2 + z2 = 1}

in three dimensions can be disassembled into a �nite number of pieces, which can then be reassembled
(a�er translating and rotating each of the pieces) to form two disjoint copies of the ball B.

Another dazzling paradox is a variant of the famous riddle where a column of prisoners is facing a
wall, each of them having a black or white hat on his head of which he ignores the color. Each prisoner
(from the end of the line) has to guess in turns his hat color. �ey are eventually released if at most one
prisoner is wrong. �ey are allowed to talk through a strategy in the beginning, and they indeed have
a way to end up free in this situation. Now, let us turn the prisoners around and consider the following
in�nite version:

A countable in�nite number of prisoners are placed on the natural numbers, facing in the
positive direction (i.e. everyone can see an in�nite number of prisoners). Hats will be placed
and each prisoner will be asked what his hat color is.

�

However, to complicate things, prisoners cannot hear previous guesses or whether they were
correct. In this situation, what is the best strategy?

Admi�ing the axiom choice4, the answer is quite counter-intuitive: the prisoners have a (common)
strategy to guess the color of their own hat, in such a way that only a �nite number of them will make
wrong guesses. Even more shocking, the strategy is so robust that we could consider any number of
colors (even an uncountable one), the prisoners will still only make a �nite number of wrong guesses…
�e solution is le� to the sagacity of the reader5 but the “problem” here is very similar to the Banach-
Tarski paradox, where the pieces used in this decomposition are highly pathological in nature and
cannot be constructed without the axiom of choice.

In short, the question of knowing whether the axiom of choice is wrong or not can not be given
any mathematical answer. Indeed, the axiom of choice is independent from the axioms of set theory.

2If we de�ne the predicate P (x ,y) as y ∈ x , it exactly says that if all the sets x ∈ A are non-empty, there exists a choice
function: (∀x ∈ A.x , ∅) → ∃f ∈ ∪AA .∀x ∈ A. f (x) ∈ x .

3Gödel proved that the theory ZF + AC is consistent, and Cohen proved the same for the theory ZF + ¬AC. Details on
these proofs and much more about the axiom of choice can be found for instance in Jech’s book on the topic [83].

4We also assume that each prisoner can see the ω prisoners in front of him, have in�nite memory and so forth.
5Clue: the de�nition of clever equivalence classes and the use of AC to pick representatives can be helpful. �e full answer

is available here [125].

100

https://cornellmath.wordpress.com/2007/09/13/the-axiom-of-choice-is-wrong/

5.1. COMPUTATIONAL CONTENT OF THE AXIOM OF CHOICE

Intuitively, the axiom of choice does not re�ect anything concrete in our living world. Adding it or
not to a theory is thus a ma�er of one’s belief, with its logical strength as bene�ts and its paradoxical
consequences as withdraws.

Dependent and countable choices

In fact, a huge part of mathematics does not require the axiom of choice in full strength. For instance,
most of analysis6 can be done in a system of axioms containing a weaker form of choice, namely the
axiom of dependent choice. �is axiom expresses the possibility of constructing a sequence where each
element has to be chosen in function of the anterior. Formally, it is de�ned by:

DC , (∀x ∈ A.∃y ∈ A.P (x ,y)) → ∀x0 ∈ A.∃f ∈ A
�.(f (0) = x0 ∧ ∀n ∈ �.P (f (n), f (S (n))))

�is axiom does not lead to the paradoxical consequences of the full axiom of choice, and is in practice
expressive enough for most of the mathematics7.

Another weaker form of choice, which is actually the one involved in Russell shoes-and-socks
metaphor, is the axiom of countable choice. It is simply de�ned as the axiom of choice where uni-
versal variables are bound to the set of natural numbers �:

AC� , (∀x ∈ �.∃y ∈ B.P (x ,y)) → ∃f ∈ B�.∀x ∈ �.P (x , f (x))

It is quite easy to check that the full axiom of choice (AC) implies the axiom of dependent choice
(DC), which itself implies the axiom of countable choice (AC�) (converse implications are false). De-
pendent and countable choices are the axiom that will be at the heart of this part of the monograph.

5.1 Computational content of the axiom of choice

5.1.1 Martin-Löf Type �eory

In the line of Curry-Howard isomorphism, it is natural to wonder what is the computational content of
the axiom choice, that is, what would be a program whose type is (AC). In fact, through the Brouwer-
Heyting-Kolmogoro� interpretation of intuitionistic logic (see Section 3.1.1), a proof of ∀x .∃y.P (x ,y)
is precisely a function which associates to any m a proof of ∃y.P (m,y), which is itself a pair made
of a certi�cate n and a proof of P (m,n). �us, there exists de facto a function f such that for any m,
P (m, f (m)) holds. Otherwise said, through this interpretation, the axiom of choice should then be a
trivial theorem.

�is idea is the key of Martin-Löf’s proof for the axiom choice in his constructive type theory [115].
One of the crucial di�erences with the di�erent theories we presented until here, is that types (i.e. for-
mulas) are now dependent on terms (i.e. on proofs). Just like �rst-order arithmetic includes a quanti�ca-
tion ∀x .A ranging over natural numbers and leading to formulas A[n/x] for each possible instantiation
n ∈ � of x , Martin-Löf type theory includes a dependent product type wri�en Π(x : A).B where the
variable x ranges over the terms of type A. In particular, if t is a term of type Π(x : A).B and u is a term
of type A, the term tu is then of type B[u/x]:

Γ,x : A ` t : B
Γ ` λx .t : Π(x : A).B

(ΠI)
Γ ` t : Π(x : A).B Γ ` u : A

Γ ` tu : B[u/x]
(ΠE)

6Notably, Baire category theorem has been proved equivalent to the axiom of dependent choice. More generally, a large
class of theorems whose proof are done by constructing a sequence by induction requires this axiom.

7More details on this (and more generally on the axiomatic strength required by theorems of mathematics) can be found
in the introduction of Simpson’s book [149].

101

CHAPTER 5. THE STARTING POINT: dPAω

It is worth noting that in the case where B does not refer to x , these rules exactly correspond to the
usual rules (→I) and (→E).

�e fact that formulas can now refer to terms allows us to strengthen the rules for existential quan-
ti�cation. �ey now re�ect the BHK interpretation for existential proofs, which inhabits a dependent
sum type wri�en Σ(x : A).B: a proof term of type Σ(x : A).B is a pair (t ,u) such that t—the witness—is
of type A, while u—the proof —is of type B[t/x]. Dually to this construction, there are now two elimi-
nation rules8: one with a destructor wit to extract the witness, the second one with a destructor prf
to extract the proof:

Γ ` t : A Γ ` u : B[t/x]
Γ ` (t ,u) : Σ(x : A).B

(ΣI)
Γ ` t : Σ(x : A).B
Γ ` wit t : A (wit)

Γ ` t : Σ(x : A).B
Γ ` prf t : B[wit t/x]

(prf)

Note that this extension of types with dependencies corresponds to the horizontal axis of the λ-cube
(Section 2.4.2). In the sequel, we will present in more details a full dependent system with its type
system and reduction rules. As for now, let us just mention that these terms reduce as follows:

(λx .t)u → t[u/x] wit (t ,u) → t prf (t ,u) → u

�ese reductions naturally induce a relation on types: we write A . B if reducing some term occurring
in A yields B. �e re�exive-symmetric-transitive closure of this relation is wri�en A ≡ B and the type
system includes a conversion rules according to this relation:

Γ ` t : A A ≡ B
Γ ` t : B (CONV)

Having said this, we dispose of enough structure to give a proof term for the axiom of choice, which
is nothing more than an implementation of the intuition above: given a proof H of Π(x : A).Σ(y :
B).P (x ,y), the choice function simply maps any x to the witness ofHx , while the proof that this function
is sound w.r.t. P returns the corresponding witness. �is term can indeed be given the type of the axiom
of choice:

` λH .(λx . wit (Hx),λx . prf (Hx)) : AC

where AC is de�ned in terms of dependent product and sum:

AC , Π(x : A).Σ(y : B).P (x ,y) → Σ(f : Π(x : A).B).Π(x : A).P (x , f (x))

5.1.2 Incompatibility with classical logic

Unsurprisingly, this proof does not scale to classical logic (otherwise the axiom of choice would be a
theorem of Zermelo-Fraenkel set theory, which is a classical theory). We give two explanations for this,
�rst a metaphysical argument for this natural limitation in terms of computability, second a technical
description of the incompatibility of classical logic and dependent types.

8Actually, the original presentation [115] only has one rule, called dependent elimination rule, given by:

Γ ` c : Σ(x : A).B Γ,x : A,y : B[x] ` d : C[(x ,y)]
Γ ` E (c,λxy.d) : C[c]

(ΣE)

As for the reduction rule, it was de�ned by:

E ((t ,u),λxy.d[(x ,y)]) → d[(t ,u)]

It is easy to check that de�ning the primitives wit c and prf c respectively by tE (c,λxy.x) and E (c,λxy.y) allow to recover
the corresponding typing and reduction rules, and vice-versa.

102

5.1. COMPUTATIONAL CONTENT OF THE AXIOM OF CHOICE

5.1.2.1 Computing the uncomputable

Imagine that we could dispose, in a type theoretic (or BHK interpretation, realizability) fashion, of a
classical framework including a proof term t for the axiom of choice:

` t : ∀x ∈ A.∃y ∈ B.P (x ,y) → ∃f ∈ BA.∀x ∈ A.P (x , f (x))

Consider now any undecidable9 predicateU (x) over a domainX . Since we are in a classical framework,
using the middle-excluded, the formula U (x) ∨ ¬U (x) is true for any x ∈ X . �is can be strengthened
into the formula:

∀x ∈ X .∃y ∈ {0,1}.(U (x) ∧ y = 1) ∨ (¬U (x) ∧ y = 0)

which is provable as well and thus should have a proof termu. Now, this has the shape of the hypothesis
of the axiom of choice, so that by application of t to u, we should obtain a term:

` t u : ∃f ∈ {0,1}X .∀x ∈ X .(U (x) ∧ f (x) = 1) ∨ (¬U (x) ∧ f (x) = 0)

In particular, the term wit (t u) would be a function which, for any x ∈ X , outputs 1 ifU (x) is true, and
0 otherwise. �is is absurd, since U is undecidable.

�is handwavy explanation gives us a metamathematical argument on the impossibility of having
a proof system which is classical as a logic, entails the axiom of choice and where proofs fully compute.
Since the existence of consistent classical theories with the axiom of choice (like set theory) has been
proven, the incompatibility is to be found with the constructive character of Martin-Löf type theory.
Actually, the compatibility of AC with constructive theories is very sensitive to the de�nition of “con-
structive” and is already discussed10. In the next sections, we will present an intent to give a proof of
the axiom of dependent choice that is constructive and yet compatible with classical logic.

5.1.2.2 Inconsistency

Technically, another reason why Martin-Löf type theory cannot scale to classical logic is that the simul-
taneous presence of control operators and dependent types leads to inconsistencies. �is was observed
by Herbelin [69] in a weaker se�ing, which we recap herea�er.

Let us adopt here a strati�ed presentation of dependent types, by syntactically distinguishing terms—
that represent mathematical objects—from proof terms—that represent mathematical proofs. In other
words, we syntactically separate the categories corresponding to witnesses and proofs in dependent
sum types. Consider a minimal logic of Σ-types and equality, whose formulas, terms (only representing
natural number) and proofs are de�ned as follows:

Formulas A,B ::= t = u | ∃x�.A
Terms t ,u ::= n ∈ � | wit p
Proofs p,q ::= refl | subst p q | (t ,p) | prf p

Let us explain the di�erent proof terms by presenting their typing rules. First of all, the pair (t ,p) is a
proof for an existential formula ∃x�.A (or Σ(x : �).A) where t is a witness for x and p is a certi�cate
for A[t/x]. �is implies that both formulas and proofs are dependent on terms, which is usual in math-
ematics. What is less usual in mathematics is that, as in Martin-Löf type theory, dependent types also
allow for terms (and thus for formulas) to be dependent on proofs, by means of the constructors wit p

9�at is to say that U (x) is a predicate such that there exists no program p which, given any input x ∈ X , computes
whether U (x) is true or not.

10�ere is plenty of literature on constructive choiceless mathematics. �e reader can for instance read this very interesting
argument of Andrej Bauer rejecting AC in a constructive (in the sense of computable) se�ing: https://mathoverflow.net/
a/23043.

103

https://mathoverflow.net/a/23043
https://mathoverflow.net/a/23043

CHAPTER 5. THE STARTING POINT: dPAω

and prf p. �e typing rules are the same as in the previous section for Σ-types, except that there are
separated typing judgments for terms, which can only be of type �.:

Γ ` p : A(t) Γ ` t : �
Γ ` (t ,p) : ∃x�A

(∃I)
Γ ` (t ,p) : ∃x�.A

Γ ` prf p : A[wit p/x]
(prf)

Γ ` t : ∃x�.A
Γ ` wit t : � (wit)

n ∈ �
Γ ` n : �

�en, refl is a proof term for equality, and subst p q allows to use a proof of an equality t = u to
convert a formula A(t) into A(u):

t → u
Γ ` refl : t = u (refl)

Γ ` p : t = u Γ ` q : B[t]
Γ ` subst p q : B[u]

(subst)

�e reduction rules for this language, which are safe with respect to typing, are then:

wit (t ,p) → t prf (t ,p) → p subst refl p → p

Starting from this (sound) minimal language, Herbelin showed that its classical extension with the
control operators call/cck and throw k permits to derive a proof of 0 = 1 [69]. �e call/cck operator,
which is a binder for the variable k , is intended to catch its surrounding evaluation context. On the
contrary, throw k (in which k is bound) discards the current context and restores the context captured
by call/cck . �e addition to the type system of the typing rules for these operators (that are similar
to the di�erent control operators presented in the prelude):

Γ,k : ¬A ` p : A
Γ ` call/cck p : A

Γ,k : ¬A ` p : A
Γ,k : ¬A ` throw k p : B

allows the de�nition of the following proof:

p0 , call/cck (0,throw k (1,refl)) : ∃x�.x = 1

Intuitively such a proof catches the context, give 0 as witness (which is incorrect), and a certi�cate that
will backtrack and give 1 as witness (which is correct) with a proof of the equality.

If besides, the following reduction rules11 are added:

wit (call/cck p) → call/cck (wit (p[k (wit { })/k]))
call/cck t → t (k < FV (t))

then we can formally derive obtain a proof of 1 = 0. Indeed, the seek of a witness by the term wit p0
will reduce to call/cck 0, which itself reduces to 0. �e proof term refl is thus a proof of wit p0 = 0,
and we obtain indeed a proof of 1 = 0:

` p0 : ∃x�.x = 1
` prf p0 : wit p0 = 1 (prf)

wit p0 → 0
` refl : wit p0 = 0 (refl)

` subst (prf p0) refl : 1 = 0
(subst)

�e bo�om line of this example is that the same proofp0 is behaving di�erently in di�erent contexts
thanks to control operators, causing inconsistencies between the witness and its certi�cate. �e easiest
and usual approach to prevent this is to impose a restriction to values (which are already reduced) for
proofs appearing inside dependent types and within the operators wit and prf , together with a call-
by-value discipline. In particular, in the present example this would prevent us from writing wit p0
and prf p0.

11Technically this requires to extend the language to authorize the construction of terms call/cck t and of proofs
throw t . �e �rst rule expresses that call/cck captures the context wit { } and replaces every occurrence of throw k t
with throw k (wit t). �e second one just expresses the fact that call/cck can be dropped when applied to a term t which
does not contain the variable k .

104

5.2. A CONSTRUCTIVE PROOF OF DEPENDENT CHOICE COMPATIBLE WITH CLASSICAL LOGIC

5.2 A constructive proof of dependent choice compatible with classi-
cal logic

We shall now present dPAω , a proof system that was introduced by Herbelin [70] as a mean to give
a computational content to the axiom of choice in a classical se�ing. �e calculus is a �ne adaptation
of Martin-Löf proof which circumvents the di�erent di�culties caused by classical logic. Rather than
restating dPAω in full details, for which we refer the reader to [70], let us describe informally the
rationale guiding its de�nition and the properties that it veri�es. We shall then present the missing bit
of his calculus which led us to this work, namely the normalization, and our approach to prove it.

5.2.1 Realizing countable and dependent choices in presence of classical logic

As we saw in Section 5.1.1, the dependent sum type of Martin-Löf’s type theory provides a strong
existential elimination, which allows us to prove the full axiom of choice. �e proof is simple and
constructive:

ACA := λH .(λx . wit (Hx),λx . prf (Hx))
: ∀xA.∃yB .P (x ,y) → ∃f A→B .∀xA.P (x , f (x))

To scale up this proof to classical logic, the �rst idea in Herbelin’s work [70] is to restrict the
dependent sum type to a fragment of his system which is called negative-elimination-free (nef). �is
fragment contains slightly more proofs than just values, but is still computationally compatible with
classical logic.

�e second idea is to represent a countable universal quanti�cation as an in�nite conjunction. �is
allows us to internalize into a formal system the realizability approach of [15, 40] as a direct proofs-
as-programs interpretation. Informally, let us imagine that given a proof H : ∀xA.∃yB.P (x ,y), we could
create the sequenceH∞ = (H0,H1, . . . ,Hn, . . .) and select itsnth-element with some function nth. �en
one might wish that

λH .(λn. wit (nth n H∞),λn. prf (nth n H∞))

could stand for a proof for AC�. However, even if we were e�ectively able to build such a term, H∞
might still contain some classical proof. �erefore two copies of H n might end up being di�erent
according to the contexts in which they are executed, and then return two di�erent witnesses. �is
problem could be �xed by using a shared version of H∞, say

λH . leta = H∞ in (λn. wit (nth n a),λn. prf (nth n a)) .

It only remains to formalize the intuition of H∞. �is is done by means of a coinductive �xpoint
operator. We write cofixtbx [p] for the co �xpoint operator binding the variables b and x , where p is a
proof and t a term. Intuitively, such an operator is intended to reduce according to the rule:

cofixtbx [p] → p[t/x][λy.cofixtbx [p]/b]

�is is to be compared with the usual inductive �xpoint operator which we write indtbx [p0 | pS] (which
binds the variables b and x) and which reduces as follows:

ind0
bx [p0 | pS] → p0 indS (t)bx [p0 | pS] → pS [t/x][indtbx [p0 | pS]/b]

�e presence of coinductive �xpoints allows us to consider the proof term cofix0
bn[(Hn,b (S (n)))],

which implements a stream eventually producing the (informal) in�nite sequence H∞. Indeed, this
proof term reduces as follows:

cofix0
bn[(Hn,b (S (n)))]→ (H 0,cofix1

bn[(Hn,b (S (n)))]) → (H 0, (H 1,cofix2
bn[(Hn,b (S (n))))]) → . . .

105

CHAPTER 5. THE STARTING POINT: dPAω

�is allows for the following de�nition of a proof term for the axiom of countable choice:

AC� := λH . leta = cofix0
bn[(Hn,b (S (n)))] in (λn. wit (nth n a),λn. prf (nth n a)) .

Whereas leta = . . . in . . . suggests a call-by-value discipline, we cannot a�ord to pre-evaluate each
component of the stream. In turn, this imposes a lazy call-by-value evaluation discipline for coinductive
objects. However, this still might be responsible for some non-terminating reductions, all the more as
classical proofs may contain backtrack.

If we analyze what this construction does at the level of types12, at �rst approximation it turns a
proof (H) of the formula ∀x�.A(x) (with A(x) = ∃y.P (x ,y) in that case) into a proof (the stream H∞)
of the (informal) in�nite conjunction A(0) ∧ A(1) ∧ A(2) ∧ Formally, a proof cofixtbx [p] is an
inhabitant of a coinductive formula, wri�en ν tXxA (where t is a terms and which binds the variables X
and n). �e typing rule is given by:

Γ ` t : T Γ,x : T ,b : ∀yT.Xy ` p : A
Γ ` cofixtbx [p] : ν tXxA

(cofix)

with the side condition that X can only occurs in positive position in A. Coinductive formulas are
de�ned with a reduction rules which is very similar to the rule for the co-�xpoint:

ν tXxA . A[t/x][ν tXyA/Xy]

In particular, the term cofix0
bn[(Hn,b (S (n))] is thus an inhabitant of a coinductively de�ned (in�nite)

conjunction, wri�en ν0
Xn (A(n) ∧X (S (n))). �is formula indeed reduces accordingly to the reduction of

the stream:

ν0
Xn (A(n) ∧ X (S (n))) . A(0) ∧ [ν1

Xn (A(n) ∧ X (S (n)))] . A(0) ∧A(1) ∧ [ν0
Xn (A(n) ∧ X (S (n)))]

More generally, at the level of formulas, the key was to identify the formulaA(x) and a suitable law
д : �→ T to turn a proof of ∀xT.A(x) into the conjunctionA(д(0))∧A(д(1))∧A(д(2))∧ In the case
of the axiom of countable choice, this law was simply this identity. In the case of the axiom of dependent
choice, the law д we are looking for is precisely the choice function. We can thus use the same trick to
de�ne a proof term for DC. �e stream we actually construct corresponds to the coinductive formula
νx0
Xn[∃y�.(P (x ,y) ∧ X (y))], which ultimately unfolds into:

νx0
Xn[∃y.(P (x ,y) ∧ X (y))] . · · · . ∃x�1 .(P (x0,x1) ∧ ∃x

�
2 .(P (x1,x2) ∧ ∃x

�
3 .(P (x2,x3) ∧ . . .)))

Given a proofH : ∀x .∃y.P (x ,y) and a term x0 , we can de�ne a stream corresponding to this coinductive
formula by str x0 := cofixx0

bn[(dest H n as ((y,c)) in (y, (c, (b y)))]. �is term reduces as expected:

(x0,str x0) → (x0, (x1, (p1,str x1))) → (x0, (x1, (p1, (x2, (p2,str x2))))) → . . .

where pi : P (xi−1,xi). From there, it is almost direct to extract the choice function f (which maps any
n ∈ � to xn) and the corresponding certi�cate that (f (0) = x0 ∧ ∀n ∈ �.P (f (n), f (S (n)))). In practice,
it essentially amounts to de�ne the adequate nth function. We will give a complete de�nition of the
proof term for the axiom of dependent choice in Chapter 8.

12We delay the formal introduction of a type system and the given of the typing derivation for AC� to Chapter 8.

106

5.2. A CONSTRUCTIVE PROOF OF DEPENDENT CHOICE COMPATIBLE WITH CLASSICAL LOGIC

5.2.2 An overview of dPAω

Formally, the calculus dPAω is a proof system for the language of classical arithmetic in �nites types
(abbreviated PAω), where the ‘d’ stands for “dependent”. Its strati�ed presentation allows us to separate
terms (the arithmetical objects) from proofs. Finite types and formulas are thus separated as well,
corresponding to the following syntax:

Types T ,U ::= � | T → U
Formulas A,B ::= > | ⊥ | t = u | A ∧ B | A ∨ B | Πa : A.B | ∀xT .A | ∃xT .A | ν tx,f A

Terms, denoted by t ,u, ... are meant to represent arithmetical objects, their syntax thus includes:

• a term 0 and a successor S ;
• an operator rectxy[t0 | tS] for recursion, which binds the variables x and y: where t is the term

on which the recursion is performed, t0 is the term for the case t = 0 ans tS is the term for case
t = S (t ′);

• λ-abstraction λx .t to de�ne functions;
• terms application t u;
• a wit constructor to extract the witness of a dependent sum.

As for proofs, denoted by p,q, ..., they contain:

• pairs (p,q) to prove logical conjunctions;
• destructors of pairs split p as (a1,a2) in q which binds the variables a1 and a2 in q;
• injections ιi (p) for the logical disjunction;
• pa�ern-matching case p of [a1.p1 | a2.p2] which binds the variables a1 in p1 and a2 in p2;
• a proof term refl which is the proof of atomic equalities t = t ;
• subst p q which eliminates an equality proof p : t = u to get a proof of B[u] from a proof q : B[t];
• pairs (t ,p) where t is a term and p a proof for the dependent sum type;
• prf p which allows us to extract the certi�cate of a dependent pair;
• non-dependent destructors dest p as (x ,a) in q which binds the variables x and a in q;
• abstractions over terms λx .p and applications p t ;
• (possibly) dependent abstractions over proofs λa.p and applications p q;
• a construction leta = p inq, which binds the variable a in q and which allows for sharing;
• operators indtax [p0 | pS] and cofixtbx [p] that we already described for inductive and coinductive

reasoning;
• control operators catchα p (which binds the variable α in p) and throw α p (where α is a variable

and p a proof)
• exfalso p where p is intended to be a proof of false.

�is results in the following syntax:

Terms t ,u ::= x | 0 | S (t) | rectxy[t0 | tS] | λx .t | t u | wit p

Proofs p,q ::= a | ιi (p) | case p of [a1.p1 | a2.p2] | (p,q) | split p as (a1,a2) in q

| (t ,p) | prf p | dest p as (x ,a) in q | λx .p | p t

| λa.p | p q | leta = p inq | refl | subst p q

| indtax [p0 | pS] | cofixtbx [p] | exfalso p | catchα p | throw α p

107

CHAPTER 5. THE STARTING POINT: dPAω

�e problem of degeneracy caused by the conjoint presence of classical proofs and dependent types
is solved by enforcing a compartmentalization between them. Dependent types are restricted to the set
of negative-elimination-free proofs (nef), which are a generalization of values preventing from back-
tracking evaluations by excluding expressions of the form p q, p t , exfalso p, catchα p or throw αp
which are outside the body of a λx or λa. Syntactically, they are de�ned by:

Values V1,V2 ::= a | ιi (V) | (V1,V2) | (t ,V) | λx .p | λa.p | refl
nef N1,N2 ::= a | ιi (N) | case p of [a1.N1 | a2.N2] | (N1,N2) | split N1 as (a1,a2) in N2

| (t ,N) | prf N | dest N1 as (x ,a) in N2 | λx .p
| λa.p | leta = N1 inN2 | refl | subst N1 N2
| indtax [N0 | NS] | cofixtbx [N]

�is allows to restrict typing rules involving dependencies, notably the rules for prf or let = in:

Γ ` p : ∃xT .A(x) p ∈ nef
Γ ` prf p : A(wit p)

(prf)
Γ ` p : A Γ,a : A ` q : B a < FV (B) if p < nef

Γ ` leta = p inq : B[p/a]
(Cut)

About reductions, let us simply highlight the fact that they globally follow a call-by-value discipline,
for instance in this sample:

(λa.p) q → leta = q inp
leta = (p1,p2) inp → leta1 = p1 in leta2 = p2 inp[(a1,a2)/a]
leta = V inp → p[V /a]

except for co-�xpoints which are lazily evaluated:

F [leta = cofixtbx [q] inp] → leta = cofixtbx [q] in F [p]
leta = cofixtbx [q] inD[a] → leta = q[λy.cofixybx [q]/b][t/x] inD[a]

In the previous rules, the �rst one expresses the fact that evaluation of co-�xpoint under contexts F []
are momentarily delayed. �e second rules precisely corresponds to a context where the co-�xpoint is
linked to a variable a whose value is needed, a step of unfolding is then performed.

�e full type system, as well as the complete set of reduction rules, are given in [70], and will be
restated with a di�erent presentation in Chapter 8. In the same paper, some important properties of
the calculus are given. In particular, dPAω veri�es the property of subject reduction, and provided it is
normalizing, there is no proof of false.

�eorem 5.1 (Subject reduction). If Γ ` p : A and p → q, then Γ ` q : A.

Proof (sketch). By induction on the derivation of p → q, see [70]. �

�eorem 5.2 (Conservativity). Provided dPAω is normalizing, if A is→-ν -wit -∀-free, and `dPAω p : A,
there is a value V such that `HAω V : A.

Proof (sketch). Considering a closed proof p ofA, p can be reduced. By analysis of the di�erent possible
cases, it can be found a closed value of type A. �en using the fact that A is a→-ν-wit -∀-free formula,
V does not contain any subexpression of the form λx .p or λa.p, by extension it does not contain either
any occurrence of exfalso p, catchα p or throw αp and is thus a proof of A already in HAω . �

�eorem 5.3 (Consistency). Provided dPAω is normalizing, it is consistent, that is: 0dPAω p : ⊥.

Proof. �e formula ⊥ is a particular case of→-ν-wit -∀-free formula, thus the existence of a proof of
false in dPAω would imply the existence of a contradiction already in HAω , which is absurd. �

108

5.3. TOWARD A PROOF OF NORMALIZATION FOR dPAω

�e last two results rely on the property of normalization. Unfortunately, the proof sketch that is
given in [70] to support the claim that dPAω normalizes turns out to be hard to formalize properly. Since,
moreover, dPAω contains both control operators (allowing for backtrack) and co-�xpoints (allowing
in�nite objects, like streams), which can be combined and interleaved, we should be very suspicious a
priori about this property. Anyhow, the proof sketch from [70] to use metamathematical arguments,
which are more distant from a computational analysis through a proof by realizability or by means of a
continuation-passing style translation. Such proofs are of interest in themselves already for what they
taught us about the �ne behavior of a calculus.

5.3 Toward a proof of normalization for dPAω

5.3.1 �e big picture

An important part of this thesis has been devoted to the search for a proof of normalization for dPAω

by means of a realizability interpretation or by a continuation-passing-style translation. Aside from the
very result of normalization, this approach is of interest for di�erent reasons which are deeply related
to the di�culties of obtaining such a proof. Indeed, a direct continuation-passing style is very harsh to
obtain for dPAω as such. In addition to the di�culties caused by control operators and co-�xpoints, the
reduction system is de�ned in a natural-deduction style with contextual rules (as in the rule to reduce
proofs of the shape leta = cofixtbx [p] inD[a]) where the contexts involved can be of arbitrary depth.
�is kind of rules are, in general and especially in this case, very di�cult to translate faithfully through
a continuation-passing style translation.

All in all, there are several di�culties in ge�ing a direct proof by CPS or realizability. Hence, we
shall study them separately, hopefully solving them independently will lead us to a solution to the main
problem. Roughly, our strategy consists of two steps:

1. reduce dPAω to an equivalent presentation in a sequent calculus fashion,
2. use the methodology of semantic artifacts to de�ne a CPS or a realizability interpretation.

Indeed, a sequent calculus presentation of a calculus is usually a good intermediate step for compilation
or for CPS translations [39]. �is presentation should of course verify at least the property of subject
reduction and its reduction system should mimic the one of dPAω . Schematically, this corresponds to
the following roadmap where question marks indicate what is to be done:

dPAω [Herbelin’12]:
+ control operators
+ dependent types
+ co-�xpoints
+ sharing & lazyness

dLPAω ?
+ sequent calculus
+ dependent types
+ co-�xpoints
+ sharing & lazyness

Target language ?

Subject reduction X Subject reduction ? Normalization X

CPS ?

To be fair, this approach is idealistic. In particular, we will not formally de�ne an embedding for
the �rst arrow, since we are not interested in dPAω for itself, but rather in the computational content of
the proofs for countable and dependent choice. Hence, we will content ourself with a sequent calculus
presentation of dPAω which allows for similar proof terms, which we call dLPAω , without bothering
to prove that the reduction systems are equivalent. As for the second arrow, as advocated in the previ-
ous section, the search for a continuation-passing style translation or a realizability interpretation can
coincide for a large part. We shall thus apply the methodology of semantic artifacts and in the end,
choose the easiest possibility.

109

CHAPTER 5. THE STARTING POINT: dPAω

From this roadmap actually arises two di�erent subproblems that are already of interest in them-
selves. Forge�ing about the general context of dPAω , we shall �rst wonder whether these easier ques-
tions have an answer:

1. Is it possible to de�ne a (classical) sequent calculus with a form of dependent types? If so, would
it be compatible with a typed continuation-passing style translation?

2. Can we prove the normalization of a call-by-need calculus with control operators? Can we de�ne
a Krivine realizability interpretation of such a calculus?

5.3.2 Realizability interpretation and CPS translation of classical call-by-need

Fortunately, there were already some work in the direction proposed by the second item. In two con-
secutive articles, Ariola et al. studied the question of de�ning sequent-calculus style versions of call-
by-need, leading to a natural extension of call-by-need with control operators [6, 4]. Such a calculus
can be expressed in the framework of the λµµ̃-calculus (Chapter 4), and by applying the same method-
ology of semantic artifacts, the authors showed how to derive (an untyped) CPS translation to the pure
λ-calculus. �is translation is in fact an environment-and-continuation-passing style translation, so
that there is no direct way of inferring a type translation from the computational one. �e question
thus becomes: can we type this translation to prove the normalization of a call-by-need calculus with
control operators? Does this translation lead to a realizability interpretation as it usually does with the
call-by-name and call-by-value λµµ̃-calculi?

We shall see in Chapter 6 that the methodology of semantics artifacts can be pushed one step further
to obtain a realizability interpretation for the λ[lvτ?]-calculus, a call-by-need calculus with control
operators and explicit stores. Aside to prove the normalization of the calculus, this also open the door
to the interpretation of stores, memory cells in Krivine realizability. Besides, this interpretation a type
system, which is an extension of system F and that we call Fϒ. �is allows us to type the CPS translation
from [4]. Interestingly, we will see that through the translation, the preservation of typing for the store
(which is extensible) is obtained by means of a Kripke-style forcing. As far as we know, all these results
constitute new contributions.

5.3.3 A sequent calculus with dependent types

�e �rst question, that is to develop a (classical) sequent calculus with dependent types and to ensure
the compatibility with a CPS translation, is harder. Indeed, while sequent calculi smoothly supports
abstract machine and continuation-passing style interpretations, there is no such presentation of a
language with dependent types. Besides, viewed the other way round—can we add control operators to
a language with dependent types?—, the question has to do with the more general problem of including
side-e�ects in (dependent) type theory. �is issue is one of the hot topic from the past few years in
theoretical computer science, in that it aims at �lling the gap between type theories and mainstream
languages. If there have been proposals for di�erent classes of side-e�ects, mainly through monads,
control operators and classical logic usually do not �t in the picture.

In Chapter 7, we shall start from the call-by-value λµµ̃-calculus and see how to design a minimal
language with a value restriction and a type system that includes a list of explicit dependencies to
maintain type safety. We will then show how to relax the value restriction and introduce delimited
continuations to directly prove the consistency by means of a continuation-passing-style translation.
�e translation will faithfully embody the dependencies and preserve the normalization. Finally, we
will relate our calculus to a similar system by Lepigre [108], whose consistency is proved by means of
a realizability interpretation. We present a methodology to transfer properties from his system to our
calculus, in particular we can infer proofs of normalization and soundness for our calculus.

110

