
9- Algebraization of realizability

In the �rst parts of this thesis, we introduced several calculi for which we gave a Krivine realizability
interpretation. Namely, in addition to Krivine’s λc -calculus, we presented interpretations for the call-
by-name, call-by-value and call-by-need λµµ̃-calculi, for dLt̂p and for dLPAω . Amongst others, we
could cite Munch-Maccagnoni’s interpretation for System L [126], Lepigre’s interpretation for his call-
by-value calculus with a semantical value restriction [108], or Jaber’s interpretation of SECD machine
code [80]. Since classical realizability interpretations provide powerful tools for computational analysis
of programs, it naturally raises the question of knowing what is, in a calculus, the structure necessary
to the de�nition of a classical realizability interpretation.

�e structures of classical realizability Additionally, as we brie�y mentioned in Section 3.5.3,
the recent work of Krivine revealed impressive new perspectives in using realizability from a model-
theoretic point of view. In [98] and [99], Krivine introduced the notion of realizability algebras, which
constitute the classical counterpart of partial combinatory algebras for intuitionistic realizability. He
showed how these structures allow for the construction of models of ZF. Relying on realizability al-
gebras, he de�ned in particular a model in which neither the continuum hypothesis nor the axiom of
choice are valid (see Section 3.5.3), bringing then new perspectives from a model-theoretic point of
view.

Roughly speaking, a realizability algebra contains the minimal structure to be a suitable target for
compiling the λc -calculus. It consists of three sets: a set of terms Λ (which contains a certain set of
combinators1), a set of stacks Π and a set of processes Λ ? Π together with a preorder relation � on
Λ ? Π. �ese elements are axiomatized in such a way that the relation � behaves like the reduction
of the abstract machine for the λc -calculus. Such a structure is indeed present in each of the cases we
studied in this thesis.

�e structures of intuitionistic realizability On the other hand, in the continuity of Kleene and
Troelstra’s tradition of intuitionistic realizability (see [159] for an historical overview), Hyland, John-
stone and Pi�s introduced in the 1980s the notion of tripos [79, 135]. A major application of triposes is
the e�ective topos E f f , later introduced by Hyland in [78], which allows for an analysis of realizability
in the general framework of toposes. Let us brie�y outline the tripos underlying Kleene realizability.
Recall that in Kleene realizability, a formula is realized by natural numbers (see Chapter 3). To each
closed formula φ we can then associate the set of its realizers {n ∈ � : n 
 φ}, which belongs to P (�).
�is structure can be generalized to interpret a predicate φ (x ), where the free variable x ranges over a
set X , as a function from X to P (�) which associates to each x ∈ X the set {n ∈ � : n 
 φ (x )}. For
instance, given a set X , we can de�ne the equality =X as the function:

=X : (x ,y) ∈ (X × X ) 7→



� if x = y
∅ otherwise

1See [98] for the full de�nition. �e key point is that the set of combinators is complete with respect to the λ-calculus and
contains cc .
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CHAPTER 9. ALGEBRAIZATION OF REALIZABILITY

Following the realizability interpretation, we can interpret predicate logic, for instance we de�ne2:

(φ → ψ ) (x ) , {n ∈ � : ∀m ∈ φ (x ),n(m) ∈ ψ (x )} .

�is naturally induces an entailment relation `X on predicates for each setX . Given φ,ψ two predicates
over X , we say that φ `X ψ if there exists n ∈ � such that for all x ∈ X , n realizes (φ → ψ ) (x ), that is
to say:

φ `X ψ ,
⋂
x ∈X

(φ → ψ ) (x ) , ∅ .

�e entailment relation `X de�nes in fact a preorder on predicates. Moreover, the set of predicates
equipped with this preorder (P (�)X ,`X ) broadly de�nes a Heyting algebra3. Indeed, in addition to the
arrow→, the connectives ∧, ∨ can be de�ned as in Kleene realizability. It is almost direct4 to show that
for any set X :

χ ∧ φ `X ψ ⇔ χ `X φ → ψ

Given two sets X ,Y , any function f : X → Y induces a function f ∗ from P (�)Y to P (�)X by precom-
posing any φ : Y → P (�) by f : φ ◦ f : X → P (�). In terms of logic, f ∗ corresponds to the operation
of reindexing the variables of a predicate φ along f .

Before turning to a more formal introduction, the last logical notions we want to mention in this
context are the quanti�ers, whose presentation is due to Lawvere’s work [105]. Consider the particular
case of a projection π : Γ × X → Γ. It gives rise to a function π ∗ : P (�)Γ → P (�)Γ×X , which turns
any predicate φ on Γ into a predicate π ∗ (φ) on Γ × X . On the contrary, since existential and universal
quanti�ers onX bind a variable, they are de�ned as functions from P (�)Γ×X → P (�)Γ , in such a way5

that the following equivalences hold for all φ ∈ P (�)Γ and for allψ ∈ P (�)Γ×X :

ψ `Γ×X π ∗ (φ) if and only if ∃X (ψ ) `Γ φ
π ∗ (φ) `Γ×X ψ if and only if φ `Γ ∀X (ψ )

Up to this point, the structure we exhibited is called a hyperdoctrine, due to F. William Lawvere [105].
In broad terms, a hyperdoctrine is de�ned by a similar structure where the sets P (�)X are generalized
to arbitrary Heyting algebras (HX ,`X ). A tripos, as we will see, is a hyperdoctrine with the extra-
assumption that there exists a set Prop (here P (�)) of “propositions” and a generic “truth predicate”
tr ∈ HProp (here the identity function idP (�)), such that for any predicate φ in HX , there exists a
function χφ : X → Prop which veri�es:

φ a`X χ ∗φ (tr)

Triposes, which were studied and de�ned by Andrew Pi�s during his PhD thesis [135, 136], have been
conducive to the categorical analysis of realizability.

Towards a categorical presentation of classical realizability For a long time, Krivine classical
realizability and the categorical approach to realizability seemed to have no connections. �e situa-
tion changed in the past ten years, notably thanks to �omas Streicher who built an important bridge
in [151]. A�er reformulating the Krivine’s abstract machine of the λc -calculus as an abstract Krivine

2Remember that a natural number n is identi�ed with the nth recursive function of a �xed enumeration.
3Strictly speaking, it actually de�nes a Heyting prealgebra, that is to say a Heyting algebra whose career is a preorder

(whitout the property of anti-symmetry) instead of a poset.
4In terms of recursive functions, the le�-to-right implication is merely curry�cation and vice-versa.
5We let the reader check that in the general case of a function f : X → Y , we can de�ne the quanti�ers by

∃f (φ) (y) ,
⋃
x ∈X ( f (x ) =Y y ∧ φ (x )) ∀f (φ) (y) ,

⋂
x ∈X ( f (x ) =Y y → φ (x ))
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structure (AKS), Streicher proved that from each AKS one may construct a �ltered ordered partial com-
binatory algebra and a tripos. Later on, in a series of papers from 2013-2015 [44, 44, 45] Walter Ferrer
Santos, Jonas Frey, Mauricio Guillermo, Octavio Malherbe and Alexandre Miquel developed the theory
of Krivine ordered combinatory algebras (KOCA) for classical realizability. �eir main purpose was to
try to abstract as much as possible the essence of abstract Krivine structures, in order to get a struc-
ture which is as general as possible and which captures the necessary ingredients to generate Krivine
models (i.e. triposes).

�is part of the thesis is in line with this general purpose. In the next chapters, we will introduce
the notion of implicative algebras, developed by Alexandre Miquel [121]. As we shall see, these are
structures which encompass all the structure necessary to the de�nition of classical realizability models.
In particular, the λc -calculus and the ordered combinatory algebras are de�nable within implicative
algebras. In addition, they allow for simple criteria to determine whether the induced realizability tripos
collapses to a forcing tripos. Based on the arrow connective, implicative algebras somewhat re�ect
the enriched la�ice structure underlying Krivine realizability interpretation of logic. A�er introducing
these structures, we will present the notion of disjunctive algebras and conjunctive algebras. Respectively
based on the ’par’ ` and the tensor ⊗ connectives together with a negation, these structures re�ects the
corresponding decompositions of the arrow in linear logic. As we will explain, these decompositions
can be interpreted in terms of evaluation strategies: disjunctive algebras naturally arise from a call-
by-name fragment of Munch-Maccagnoni’s System L [126], while conjunctive algebras correspond to
a call-by-value fragment of the same.

9.1 �e underlying lattice structure

9.1.1 Classical realizability

Let us start by arguing that through the Curry-Howard interpretation of logic, and especially in re-
alizability, there is an omnipresent la�ice structure. �is structure is reminiscent of the concept of
subtyping, which makes concrete, in a programming language, a well-known fact in mathematics: if f
is a function whose domain is a set X (say the set �), and if S is a subset of X (say � ⊂ �), then f can
be restricted to a function f |S of domain S . Similarly, in object-oriented programming, if a program p
takes as input any object in a classC , if D is a class which inherits of the structure ofC , p can be applied
to any object in D. �is idea is usually re�ected in the theory of typed calculus by a subtyping relation,
o�en denoted by <: , where T <:U means that T is more precise as a type. For instance, type systems
including a subtyping relation (see [22] for instance) usually have the rules:

Γ ` p : T T <:U
Γ ` p : U (Sub)

U1 <:T1 T2 <:U2
T1 → T2 <:U1 → U2

(S-Arr)

�e �rst rule, called subsumption, says that we can always replace a type by a supertype. �e second
one expresses that the arrow is contravariant on its le�-hand side and covariant on its right-hand
side. To say it di�erently, if we think of T <:U as “T is more constrained than U is”, and consider the
rule nat<: real, a function of type real → nat is indeed more constrained than a function of type
real→ real, itself more constrained than the type nat→ real. Besides, as suggested by the notation,
the subtyping relation is re�exive and anti-symmetric, it thus induces a preorder on types.

�is relation is implicit in classical realizability, in the sense that the subsumption rule is always
adequate: if A<:B, for any pole, if t 
 A then t 
 B (see [144, Proposition 3.1.1]). In terms of truth
values, this means that if A<:B, then ‖A‖ ⊇ ‖B‖ (and hence |A| ⊆ |B |). We said that this relation was
implicit, and indeed, even when the relation is not syntactically de�ned, given a pole ⊥⊥ it is always
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CHAPTER 9. ALGEBRAIZATION OF REALIZABILITY

possible to de�ne a semantic notion of subtyping6:

Subtyping A ≤⊥⊥ B , for all valuations ρ, ‖B‖ρ ⊆ ‖A‖ρ

In this case, the relation ≤ being induced from (reversed) set inclusions, it comes with a richer structure
of complete la�ice, where the meet ∧ is de�ned as a union and the join ∨ as an intersection. Observe
that in particular, this corresponds to the interpretation of universal quanti�ers in classical realizability:

‖∀x .A‖ρ ,
⋃
n∈�

‖A‖ρ[x 7→n] =
k
{‖A‖ρ[x 7→n] : n ∈ �}

In this la�ice structure, quanti�ers are thus naturally de�ned as meets and joins, while the logical
connectives ∧ and ∨, in the case of realizability, are interpreted in terms of products and sums. To sum
up, classical realizability then correspond to the following picture:

Realizability: ∀ =
c

∧ = × ∃ =
b

∨ = +

9.1.2 Forcing

In turn, in the cases of semantics given by Heyting algebras (for intuitionistic logic) or Boolean algebras
(for classical logic), quanti�ers and connectives are both interpreted in terms of meets and joins. To
put it di�erently, the universal quanti�er is semantically de�ned as an in�nite conjunction, while the
existential one is de�ned as an in�nite union. �ese cases are not di�erent from Kripke semantics for
intuitionistic logic or Cohen forcing in the case of classical logic.

Let us �rst examine the case of Kripke models to show that they induce Heyting algebras. Consider
indeed a Kripke model (W ,≤,D,V ) (see Chapter 1). �en let us denote byU the set of upward closed
subsets ofW :

U , {U ⊆ W : ∀v,w ∈ W ,v ∈ U ∧v ≤ w ⇒ w ∈ U }

�e intersection (resp. the union) of upward closed sets being itself upward closed, (U ,⊆) de�nes a
la�ice structure, whose higher element > isW . In fact, this structure is even a Heyting algebra, where
for any sets U ,V ∈ U , the arrow is de�ned by:

U → V , {w ∈ W : ∀v ∈ W ,w ≤ v ∧v ∈ U ⇒ v ∈ V }

It is routine to check that U → V belongs to U and that it satis�es the properties of the implication
operation in Heyting algebras7. Moreover, it can be shown8 that the validity under Kripke semantics
in the model (W ,≤,D,V ) corresponds to the interpretation in the Heyting algebra (U ,⊆):

~φ�U = {w ∈ W : w 
 φ}

and thusU � φ, that is to say ~φ�U = >, if and only if ∀w ∈ W ,w 
 φ.
Regarding Cohen forcing, a very similar construction allows us to reduce it to the case of Boolean-

valued models [14]. Loosely speaking, Cohen forcing is a construction which, starting from a ground
model M of set theory and a poset (P ,≤) of forcing conditions, de�nes a new model M[G] where
G is a generic �lter on P . Without entering into the de�nition of M[G], we can brie�y explain how
the validity inM[G] can be understood in terms of Boolean algebras. First, any poset (P ,≤P ) can be

6Note that this de�nition is speci�c to classical realizability, in the intuitionistic case, semantic subtypingA<:B is de�ned
as the inclusion |A| ⊆ |B | of truth value. In the classical se�ing, semantic subtyping is thus de�ned as the reversed inclusion
of falsity values ‖B‖ ⊆ ‖A‖, which is a strictly stronger condition (in fact, the inclusion of truth value |A| ⊆ |B | does not
constitute a valid de�nition of subtyping in the classical case).

7Both direction of the equivalence U ∩ X ⊆ V ⇔ X ⊆ U → V are simple exercises.
8See for instance [47] for a complete proof.
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embedded by an order-preserving morphism to RO (P ) the complete Boolean algebra of regular open
sets9 of P . �e embedding e in question maps every forcing condition p to the interior of the closure of
the following open set:

Op = {q ∈ P : q ≤ p} .

Writing B for the Boolean algebra RO (P ), the forcing relation can then be de�ned by:

p 
 φ , e (p) ≤ ~φ�B

where ~·�B is the interpretation in the Boolean-valued modelMB . Finally, the validity of a formula
φ inM[G] is broadly10 de�ned by the existence of a condition p ∈ G which forces φ. �e truth value
under the forcing translation can thus be interpreted in terms of Boolean algebras.

For these reasons, we can say that the interpretation of connectives and quanti�cations in intu-
itionistic (Kripke) and classical (Cohen) forcing amount to their interpretations in Heyting and Boolean
algebras, respectively. �is situation can be summarized by:

Forcing: ∀ = ∧ =
c

∃ = ∨ =
b

In this sense, the realizability interpretation is therefore, a priori, more general than the forcing one.

9.2 A types-as-programs interpretation

Let us put the focus back on the la�ice structure in realizability, and more speci�cally to the subtyp-
ing relation. Given a �xed pole ⊥⊥, the semantic de�nition of the subtyping relation that we gave is
equivalent to:

A ≤⊥⊥ B if for all t , whenever t 
 A then t 
 B

Formulas are thus ordered according to their truth values, which are set of realizers. Loosely speaking,
we are identifying formulas with their realizers. On the other hand, many semantics allows us to
associate terms with their principal types. For instance, the identity I = λx .x can be identi�ed to its
principal type ∀X .X → X ; doing so, the fact that I 
 nat → nat can be read as ∀X .X → X ≤ nat →
nat at the level of formulas. Identifying terms with their principal type allows us to associate to each
realizer the truth value of its principal types (to which it belongs). In other words, it corresponds to the
following informal inclusion:

Realizers ⊆ Truth values

But what can be said about the reverse inclusion? In order to consider truth values as realizers we
should be able to li� the operations of λ-abstraction and application at the level of truth values. As
we shall see in the next chapters, this is in fact perfectly feasible in simple algebraic structures, called
implicative structures. In these structures, that we present in Chapter 10, truth values can be regarded
as generalized realizers and manipulated as such. In particular, it suggests that the previous inclusion
of realizers into truth values could actually be turned into an equality:

Realizers = Truth values

An important feature of implicative structures is thus that they allow to formalize this identi�cation.
In particular, any truth value a will be identi�ed with the realizer whose principal type is a itself.
Implicative structures are complete la�ices equipped with a binary operationa → b verifying properties

9For the order topology. Regular open sets are open sets which are equal to the interior of their closure.
10To be more accurate, a formula ϕ (x1, ...xn ) is valid inM[G] if there exists a condition p in G which forces ϕ (x1, ...xn )

where x i is a name in MB for xi . We really do not want to formally introduced forcing here, an introduction in terms of
Boolean-valued model is given in [14].
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coming from the logical implication. As we will see, they indeed allow us to interpret both the formulas
and the terms in the same structure. For instance, the ordering relation a ≤ b will encompass di�erent
intuitions depending on whether we regard a and b as formulas or as terms. Namely, a ≤ b will be
given the following meanings:

• the formula a is a subtype of the formula b;
• the term a is a realizer of the formula b;
• the realizer a is more de�ned than the realizer b.

�e last item correspond to the intuition that if a is a realizer of all the formulas of which b is a realizer,
a is more precise than b, or more powerful as a realizer. �erefore, a and b should be ordered.

In terms of the Curry-Howard correspondence, this means that not only do we identify types with
formulas and proofs with programs, but we also identify types and programs. Visually, this corresponds
to the following situation:

FormulasTypes

Proofsλ-terms

which is to be compared with the corresponding diagram in Section 2.3.
Because we consider formulas as realizers, any formula will be at least realized by itself. In partic-

ular, the lowest formula ⊥ is realized. While this can be dazzling at �rst sight, it merely re�ects that
implicative structures do not come with an intrinsic criterion of consistency. To this purpose, we will
introduce the notion of separator, which is similar to the usual notion of �lter for Boolean algebras. Im-
plicative algebras will be de�ned as implicative structures equipped with a separator. As we shall see,
they capture the algebraic essence of classical realizability models. In particular, we will embed both
the λc -calculus and its type system in such a way that the adequacy is preserved. Furthermore, we will
see that they give rise to the usual realizability triposes, and that they provide us with simple criteria
to determine whether the induced triposes collapse to forcing triposes. Implicative algebras therefore
appear to be the adequate algebraic structure to study classical realizability and the models it induces.

9.3 Organization of the third part

Above all, we shall warn the reader that the very concept of implicative algebras—as well as the dif-
ferent results that we present about it—in this manuscript are not ours. �ey are due to Alexandre
Miquel, who have been giving numerous talks on the topic [121], but they are unpublished for the time
being. In particular, the next chapter should not be taken as a scienti�c contribution peculiar to this
thesis, even our presentation of the subject is deeply in�uenced by Miquel’s own presentation. Our
only contribution about implicative algebras is the Coq formalization that we will mention in the next
chapter.

First, we recall in the next section some de�nitions of basic algebraic structures and some vocabu-
lary from category theory that are used in the sequel. Next, in the last section of this chapter, we present
the algebraic structures prior this work which are used in the study of realizability from a categorical
point of view. �is last section is intended to be a brief survey of the work of Streicher [151] and Ferrer,
Frey, Guillermo, Malherbe and Miquel [45] on the topic. �is will naturally lead us to the de�nitions of
implicative algebras in the following chapter.
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Chapter 10 is then devoted to the presentation of implicative algebras. We �rst introduce the notion
of implicative structures and give a few examples. Next, we show how to embed both the λc -calculus
and its second-order type system while proving the adequacy of the embedding. We then introduce the
notion of separators and implicative algebras, and show how they induce realizability triposes.

In Chapter 11, we present a similar structure which is based on the decomposition of the arrow
a → b as ¬a ∨ b. We �rst give a computational account for this decomposition in a fragment of
Munch-Maccagnoni’s system L, and explain how it is related to the choice of a call-by-name evaluation
strategy for the λ-calculus. We then introduce the notion of disjunctive algebras, which we relate to
the implicative ones. Similarly, we present in Chapter 12 a structure based on the decomposition of the
arrow a → b as ¬(a ∧ ¬b) and follow the same process towards the de�nition of conjunctive algebras.

�is part of the thesis is supported by a Coq development11, in which most of the results are proved.
My motivation for this development was twofold. First, I should confess that I started it as an (amusing)
exercise to be�er understand implicative algebras. Because I was probably the �rst in the position of
checking Miquel’s de�nitions and results, I thought that the best way to do it might be to formalize
everything. Second, insofar as implicative algebras aim, on a long-term perspective, at providing a
foundational ground for the algebraic analysis of realizability models, a Coq formalization also seemed
to be a good way of laying the foundations of these structures.

9.4 Categories and algebraic structures

9.4.1 Lattices

We recall some de�nitions and properties about la�ices. Since the proofs are very standard, we omit
them and refer the reader to the Coq formalization if needed.

De�nition 9.1 (La�ice). A la�ice is a partially ordered set (L,≤) such that that any pair of elements
a,b ∈ L admits:

1.• a greatest lower bound, which we write a ∧ b;
2.• a lowest upper bound, which we write a ∨ b.

y

In order to interpret the quanti�cations, we will pay a�ention to arbitrary meets and joins, hence
to complete la�ices:

De�nition• 9.2. A la�ice L, is said to be meet-complete (resp. join-complete) if any subset A ⊆ L
admits a greatest lower bound (resp. lowest upper bound), wri�en ∧

a∈A a or simply ∧
A (resp. ∨a∈A a

and ∨
A). It is said to be complete if it is both meet- and join-complete. y

�e following theorem states that any meet-complete la�ice is also join-complete and vice-versa:

�eorem• 9.3. If L is a meet-complete la�ice, then L is a complete la�ice with the join operation de�ned
by: ∨

a∈A

a ,
∧

a∈ub (A)

a

where ub (A) is the set of upper-bounds of A. �e converse direction is similar.

Any complete la�ice has a lowest and a highest element, which we write ⊥ and >:

Proposition 9.4. In any complete la�ice L, the following holds:
11�e source of the Coq development can be browsed or downloaded from here• [122]. We use the bullet to denote the

statements which are formalized in the development. In the electronic version of the manuscript, these statements are given
with an hyperlink pointing directly to their Coq counterpart.
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1.• > =
∧
∅ =

∨
L 2.• ⊥ =

∨
∅ =

∧
L

Finally, we recall that reversing the order of a (complete) la�ice still gives a (complete) la�ice where
meet and join are exchanged:

Proposition• 9.5. If (L,≤) is a complete la�ice, then (L, /) where a / b , b ≤ a is a complete la�ice.

9.4.2 Boolean algebras

We recall the de�nition and some key properties of Boolean algebras.

De�nition• 9.6. A Boolean algebra is a quadruple (B,≤,⊥,>) such that:

• (B,≤,∨,∧) is a bounded la�ice, > being the upper bound of B and ⊥ its lower bound
• B is distributive, in the sense that:

a ∨ (b ∧ c ) = (a ∨ b) ∧ (a ∨ c ) a ∧ (b ∨ c ) = (a ∧ b) ∨ (a ∧ c ) (∀a,b,c ∈ B)

• every element a ∈ B has a complement, which we write ¬a, in the sense that:

a ∨ ¬a = > a ∧ ¬a = ⊥ (∀a ∈ B)

A Boolean algebra is said to be complete if it is complete as a la�ice. y

We state some properties of Boolean algebras, in particular the commutation of the negation with
the other internal laws:

Proposition 9.7. If B is a complete Boolean algebra, the following hold:

1.• b = ¬a if and only if (a ∨ b = >) and (a ∧ b = ⊥) (∀a,b ∈ B)

2.• ¬¬a = a (∀a ∈ B)

3.• ¬(a ∨ b) = (¬a) ∧ (¬b) and ¬(a ∧ b) = (¬a) ∨ (¬b) (∀a,b ∈ B)

Finally, we recall the commutation of the negation with arbitrary joins and meets in complete
Boolean algebras:

�eorem 9.8. If B is a complete Boolean algebra, then the following holds for any A ⊆ B:

1.• ¬
∧
{a : a ∈ A} = ∨

{¬a : a ∈ A} 2.• ¬
∨
{a : a ∈ A} = ∧

{¬a : a ∈ A}

All these commutations can be interpreted in terms of logical commutation in Boolean-valued mod-
els. �e �rst ones indicate that the internal logic of Boolean-valued models (and in particular of forcing
models) has an involutive negation and that De Morgan’s laws are satis�ed. �e former theorem indi-
cate that negation commutes with quanti�ers as follows:

¬∀ = ∃¬ ¬∃ = ∀¬

�ese equalities will not hold in general in implicative algebras. Be�er, they will precisely characterize
the collapse of the induced realizability triposes to forcing ones. In this sense, these commutations show
that implicative algebras are a strict re�nement of Boolean algebras. As such, they also are the sign that
implicative algebras might provide us with models which are a priori more general than Boolean-valued
models.
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9.4. CATEGORIES AND ALGEBRAIC STRUCTURES

9.4.3 Categories

We brie�y introduce some standard notions of category theory in order to further de�ne the notions
of hyperdoctrine and tripos.

De�nition 9.9. A category C is given by a class of objects together with a class of morphisms C (a,b)
for each pair a,b ∈ C of objects, as well as:

• an associative composition of morphism, which is wri�en д ◦ f for all f ∈ C (a,b),д ∈ C (b,c ),
• a morphism ida ∈ C (a,a) (identity) for each a ∈ C, such that:

∀f ∈ C (a,b), f ◦ ida = idb ◦ f = f
y

�e property required for the identity and the associativity of the composition can be expressed in
terms of diagrams, by requiring that the following diagrams commute12:

a b

a b

f

ida
f

idb

f

a

b

c

d

f

д ◦ f

д

h ◦ д

h

In the sequel, we will o�en express properties by means of diagrams. Most of the algebraic structures
that we mentioned until here can be regarded as particular categories with extra structure. �e class
of a given structure (say the Boolean algebras, the la�ices) also form a category in general, whose
morphisms are the structure-preserving functions. For instance, the following structures are categories:

• Set, the category of sets, whose objects are sets and whose morphisms are the functions between
sets;

• Poset, the category whose objects are posets and whose morphisms are order-preserving func-
tions;

• any poset (P ,≤) can be regarded as a category whose objects are its elements, and where there
is morphism between two objects x and y when x ≤ y;

• Lat, the category of la�ices, is formed with la�ices as objects and functions preserving the meet
∧ and the join ∨ as morphisms;

• any la�ice (L,≤) can be considered in itself as a category;
• etc.

We recall some standard de�nitions about objects and morphisms:

De�nition 9.10. Let C be a category:

• A morphism f : a → b is said to be invertible if there exists a morphism д : b → a such that
д ◦ f = ida et f ◦ д = idb

• a and b are said to be isomorphic if there exists f ∈ C (a,b) invertible
• an object t is said to be terminal if ∀a ∈ C,∃!f : a → t

• an object i is said to be initial if ∀a ∈ C,∃!f : i → a
y

12�at is to say that if we take an element of the object a, the images we will obtain by two paths leading to the same object
will be equal.
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De�nition 9.11 (Dual category). Let C and D be two categories. We de�ne:

• Cop the dual category of C as being the category with the same objects in which morphisms and
the composition are reversed: Cop (a,b) = C (b,a), f ◦Cop д = д ◦C f

• C × D the product category of C and D, whose objects are pairs of objects (c ∈ C,d ∈ D), and
whose morphisms are pairs of morphisms, identities pairs of identities and where the composition
is de�ned componentwise. y

9.4.4 Functors

�e notion of (covariant) functor is a natural generalization of the usual notion of morphism:

De�nition 9.12 (Functor). Let C and D be two categories. A covariant functor F from C to D is a
correspondence that maps each object a of C to an object F (a) of D, and each morphism f in C (a,b)
to a morphism F ( f ) in D (F (a),F (b)) for all a,b ∈ C, which preserves:

• the identity: ∀a ∈ C,F (ida ) = idF (a)

• the composition: ∀f ∈ C (a,b),д ∈ C (b,c ),F (д ◦ f ) = F (д) ◦ F ( f )
y

Example 9.13. For instance, we can de�ne the powerset functor P : Set → Set which constructs the
subsets of a set:

P :



x 7→ P (x )

( f : x → y) 7→ P f :
{
P (x ) → P (y)
s 7→ f (s ) y

�e composition of functors is de�ned canonically. An isomorphism of categories is as a functor
which is bijective both on objects and on morphisms (or equivalently as a functor which is invertible
for the composition of functors). �is allows us to de�ne Cat, the category whose objects are categories
and whose morphisms are functors.

�e previous de�nition can be extended to the notion of contravariant functors, which reverse mor-
phisms and the composition:

De�nition 9.14 (Contravariant functor). A contravariant functor F from C to D from C to D is a
correspondence that maps each object a of C to an object F (a) of D, and each morphism f in C (a,b)
to a morphism F ( f ) in D (F (b),F (a)) for all a,b ∈ C, such that:

∀f ∈ C (a,b),∀д ∈ C (b,c ),F (д ◦ f ) = F ( f ) ◦ F (д)

Equivalently, a contravariant functor is a functor from Cop to D. y

Being given two categories, we can thus study the class of functors between these two categories.
Actually, we can even equip this class with operators, which are called natural transformations:

De�nition 9.15 (Natural transformation). Let C andD be two categories, and F ,G : C → D two func-
tors. A natural transformation α from F toG is a family of morphisms (αa )a∈C , with αa ∈ D (F (a),G (a))
for all a ∈ C and such that for all f ∈ C (a,b), the following diagram commutes:

F (a) F (b)

G (a) G (b)

F (f )

αa αb

G (f )
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If in addition, for any object a ∈ C, the morphism αa is invertible, we say that α is a natural bijection.
A functor F : C → D is then called an equivalence of categories when there exists a functorG : D → C
and two natural bijections from F ◦ G (resp. G ◦ F ) to the identity functor of C (resp. the one of D).
�is notion generalizes the one of isomorphisms of categories. y

De�nition 9.16 (Adjunction). Let C and D be categories, an adjunction between C and D is a triple
(F ,G,φ) where:

• F is a functor from D to C;
• G is a functor from C to D;
• for all c ∈ C,d ∈ D, φc,d is a bijection from C (F (d ),c ) to D (d ,G (c )), natural in c and d .

We denote it by F a G, F is said to be the le� adjoint (of G), and vice-versa. y

We introduce a last de�nition describing a broad class of categories. �ese categories allow for
instance to give a categorical counterpart to the λ-calculus, see for instance [8] for an introductory
presentation.

De�nition 9.17 (Cartesian category). Let C be a category, a,b ∈ C. A product of a and b is a triple
(a × b,πa ,πb ), where a × b ∈ C, π 1

a×b ∈ C (a × b,a) and π 2
a×b ∈ C (a × b,b) are such that for all

f ∈ C (c,a),д ∈ C (c,b), there exists a unique morphism 〈f ,д〉 ∈ C (c,a × b) such that the following
diagrams commutes:

c

a × ba b

〈f ,д〉

f д

π 1
a×b π 2

a×b

A category is said Cartesian if it contains a terminal object > and if every pair of objects has a product.
A Cartesian category is said to be closed if for any object c ∈ C, the functor (·) × c : C → C has a
right-adjoint, which we write c → (·). y

9.4.5 Hyperdoctrines and triposes

We can now de�ne the structures which allow for a categorical approach of realizability. First, we recall
the de�nition of Heyting algebras:

De�nition• 9.18. A Heyting algebraH is a bounded la�ice such that for all a,b ∈ H there is a greatest
element x ofH such that a ∧ x ≤ b. �is element is denoted a → b. y

In any Heyting algebra, one de�nes the pseudo-complement ¬a of any element a by se�ing ¬a ,
(a → ⊥). By de�nition, a∧¬a = ⊥ and¬a is the largest element having this property. However, it is not
true in general that a ∨¬a = >, thus ¬ is only a pseudo-complement, not a real complement, as would
be the case in a Boolean algebra. A complete Heyting algebra is a Heyting algebra that is complete as a
la�ice. Observe that Heyting algebras form a category13 HA whose morphisms F : H → H ′ are the
morphisms of the underlying la�ice structure preserving Heyting’s implication: F (a → b) = F (a) →
F (b) for all a,b ∈ H .

In the category of Heyting algebras, we have a particular notion of adjunction, which is peculiar to
partially ordered sets:

13Formally, HA is a subcategory of the category Ord of pre-orders. �is category is sometimes called of Heyting prealgebras
since the equality is induced by the preorder relation a = b , a ≤ b ∧ b ≤ a. In the literature this equality is sometimes
wri�en a � b and called an isomorphism to distinguish it from the equality of pre-ordered sets.
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De�nition 9.19 (Galois connection). A Galois connection between two posets A,B is a pair of function
f : A→ B,д : B → A such that:

f (x ) ≤ y ⇔ x ≤ д(y)
y

For instance, the following examples are Galois connections:

• the natural injection and the �oor form a Galois connection between � and R:

∀n ∈ �,∀x ∈ R, (n ≤ x ⇔ n ≤ bxc)

• in any Heyting algebraH , given a ∈ H , we have:

∀x ,y ∈ H , (a ∧ x ≤ y ⇔ x ≤ a → y)

• in any la�ice L, (binary) meets and joins are respectively the le� and right adjoints of a Galois
connection formed with the diagonal morphism ∆ : L → L × L.

Proposition 9.20. If ( f ,д) is a Galois connection between two ordered sets A,B, then:

1. f and д are monotonic functions,

2. д is fully determined by f (and thus unique) and vice-versa.

Proof. It is easy to check that indeed, f is uniquely determined by д:

f (x ) = min {y ∈ B : x ≤ д(y)} (for all x ∈ A)

and vice-versa. �

We are now ready to de�ne the key notion of (�rst-order) hyperdoctrine, due to Lawvere [105].
While there are many de�nitions of this notion in the literature, they are not always equivalent. Here,
we follow Pi�’s presentation [136] by adopting a minimal de�nition. �is de�nition captures exactly
the notion of �rst-order theory with equality.

De�nition 9.21 (Hyperdoctrine). Let C be a Cartesian closed category. A �rst-order hyperdoctrine over
C is a contravariant functor T : Cop → HA with the following properties:

1. For each diagonal morphism δX : X → X × X in C, the le� adjoint to T (δX ) at the top element
> ∈ T (X ) exists. In other words, there exists an element =X ∈ T (X × X ) such that for all
φ ∈ T (X × X ):

> ≤ T (δX ) (φ) ⇔ =X ≤ φ

2. For each projection π 1
Γ,X : Γ ×X → Γ in C, the monotonic function T (π 1

Γ,X ) : T (Γ) → T (Γ ×X )
has both a le� adjoint (∃X )Γ and a right adjoint (∀X )Γ :

φ ≤ T (π 1
Γ,X ) (ψ ) ⇔ (∃X )Γ (φ) ≤ ψ

T (π 1
Γ,X ) (φ) ≤ ψ ⇔ φ ≤ (∀X )Γ (ψ )

3. �ese adjoints are natural in Γ, i.e. given s : Γ → Γ′ in C, the following diagrams commute:

T (Γ′ × X ) T (Γ × X )

T (Γ′) T (Γ)

T (s × idX )

(∃X )Γ′ (∃X )Γ

T (s )

T (Γ′ × X ) T (Γ × X )

T (Γ′) T (Γ)

T (s × idX )

(∀X )Γ′ (∀X )Γ

T (s )
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�is condition is also called the Beck-Chevaley conditions.

�e elements of T (X ), as X ranges over the objects of C, are called the T -predicates. y

Let us give some intuitions about this de�nition, which are related to the informal introduction of
hyperdoctrine we did at the beginning of the chapter:

• �e base category C is the domain of discourse, that is to say that its elements are types or contexts
(whence the suggestive notations X and Γ) on which the predicates range. Its morphisms thus
correspond to substitutions, while products Γ × Γ′ should be understood as the concatenations
of contexts.

• �e functor T associates to each context Γ ∈ C the sets of predicates over Γ. It might be helpful
to think of the elements of T (Γ) as formulas φ (x1, . . . ,xn ) of free variables x1 : X1, ...,xn : Xn
with Γ ≡ X1, . . . ,Xn . �e structure of Heyting algebra means that predicates can be compound
by means of the connectives ∧,∨,→ and that these operations respect the laws of intuitionistic
propositional logic.

• �e functoriality of T , that is the fact that each morphism s : Γ → Γ′ in C induces a morphism
T (s ) : T (Γ′) → T (Γ), is to be understood as the existence of substitutions on formulas. In
other words, if φ (x ) is a predicate ranging over Γ and s is as above, then T (s ) (φ) is intuitively
the predicate φ (s (y)).

• �e ordering on formulas corresponds to the inclusion of predicates in the sense of the associated
theory, that is to say:

φ ≤ ψ ≡ ∀(x : Γ).(φ (x ) ⇒ ψ (x ))

�e induced equality on formulas is then extensional or, to put it di�erently, a relation of equi-
provability:

φ = ψ ≡ ∀(x : Γ).(φ (x ) ⇔ ψ (x ))

• With these intuitions in mind, the diagonal morphism δX is nothing more than the function
which duplicates variables, and the �rst condition simply means that:

∀(x : X ).(> ⇒ φ (x ,x )) ⇔ ∀(x ,y : X ).(x = y ⇒ φ (x ,y))

• As explained in the introduction, since both quanti�ers ∃x : X . and ∀x : X . bind the variable x ,
turning any formula ranging over Γ × X into a formula ranging over Γ, it is natural to interpret
them as morphism from T (Γ × X ) to T (Γ). As for their de�nitions as le� and right adjoints of
the projection π 1

Γ×X , i.e.:

φ ≤ T (π 1
Γ×X ) (ψ ) ⇔ (∃X )Γ (φ) ≤ ψ

T (π 1
Γ×X ) (φ) ≤ ψ ⇔ φ ≤ (∀X )Γ (ψ )

they correspond to the following logical equivalences which characterize them:

∀(y : Γ,x : X ).(φ (y,x ) ⇒ ψ (y)) ⇔ ∀(y : Γ).(∃(x : X ).φ (y,x )) ⇒ ψ (y)
∀(y : Γ,x : X ).(φ (y) ⇒ ψ (y,x )) ⇔ ∀(y : Γ).φ (y) ⇒ ∀(x : X ).ψ (y,x )

• Using the equality predicates and the adjoints for �rst projections, one can show that in fact for
every morphism f : X → Y , T ( f ) : T (Y ) → T (X ) has le� and right adjoints, which for any
y ∈ Y are intuitively given by:

∃( f ) (φ) (y) ≡ ∃(x : X ).( f (x ) = y ∧ φ (x ))
∀( f ) (φ) (y) ≡ ∀(x : X ).( f (x ) = y ⇒ φ (x ))
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• Finally, the Beck-Chevaley conditions simply express that the quanti�ers are compatible with
the substitution. For instance, in the le�-hand side diagram for the existential quanti�er, given
Γ,Γ′,X ∈ C and a morphism s : Γ → Γ′, the commutation of the diagram requires that:

T (s ) ◦ (∃X )Γ′ = (∃X )Γ ◦ (T (s × idX ))

In terms of substitutions, the previous equality is nothing more than the requirement that for
any φ ∈ T (Γ′ × X ) and any y ′ ∈ Γ′:

(∃(x : X ).φ (y,x ))[y := s (y ′)] = ∃(x : X ).(φ (s (y ′),x ))

�e commutation of the other diagram gives the same equality for the universal quanti�er.

Remembering the introduction of this chapter, the de�nition of Kleene’s realizability naturally in-
duces a hyperdoctrine structure where each set X is associated to the Heyting algebra (P (�)X ,`X ).
Actually, any complete Heyting algebra gives rise to a hyperdoctrine whose structure is very similar:

Example 9.22 (Hyperdoctrine of a complete Heyting algebra). LetH be a complete Heyting algebra.
�e functor T : Setop → HA given by:

T (X ) = HX and T ( f ) :
{
HY → HX

д 7→ (x 7→ д( f (x )))
for any f ∈ X → Y

de�nes a hyperdoctrine. �e T -predicates are indexed families of elements ofH , ordered componen-
twise. �e equality predicates are given by:

=X (x ,x ′) ,



> if x = x ′

⊥ if x , x ′

where > (resp. ⊥) is the greatest (resp. least) element of H . �e adjoints are de�ned thanks to the
completeness ofH :

(∃X )Γ (φ) (y) =
∨
x ∈X

φ (y,x ) (∀X )Γ (φ) (y) =
∧
x ∈X

φ (y,x )

�e Beck-Chevaley conditions are easily veri�ed. In the case of the existential quanti�er, for all Γ,Γ′,X ∈
C, any φ ∈ H Γ×X and any s : Γ → Γ′, we have:

(T (s ) ◦ (∃X )Γ′ ) (φ) = T (s ) (y ′ 7→
∨

x ∈X φ (y
′,x ))

= y 7→
∨

x ∈X φ (s (y),x )
= y 7→

∨
x ∈X T (s × idX ) (φ)

= ((∃X )Γ ◦ T (s × idX )) (φ)
y

Hyperdoctrines are thus tailored to furnish a categorical representation of theories in �rst-order
intuitionistic predicate logic. It was then observed that when a hyperdoctrine has enough structure,
the model it gives can be somewhat internalized into a topos14. �e hyperdoctrines for which this
construction is possible were called triposes by Hyland, Johnstone and Pi�s in [79].

14We will not introduce toposes in this thesis. A topos can regarded as a generalization of the category of sets, as such, the
set-theoretic foundations of mathematics can expressed in terms of toposes. Toposes are useful structures for the categorical
analysis of (high-order) logic. �e standard reference for logic interpretation through toposes is Johnstone’s book Sketches of
an elephant [85].
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De�nition 9.23 (Tripos). A tripos over a Cartesian closed category C is a �rst-order hyperdoctrine
T : Cop → HA which has a generic predicate, i.e. there exists an object Prop ∈ C and a predicate
tr ∈ T (Prop) such that for any object Γ ∈ C and any predicateφ ∈ T (Γ), there exists a (not necessarily
unique) morphism χφ ∈ C (Γ,Prop) such that:

φ = T (χφ ) (tr)
y

Before giving some examples, we shall say that:

• the object Prop ∈ C, as the notation suggests, is the type of propositions;
• the generic predicate tr ∈ T (Prop) is the truth predicate;
• for each predicate φ ∈ T (Γ), the arrow χφ ∈ C (Γ,Prop) is then a propositional function repre-

senting φ, since for any x ∈ Γ, we intuitively have:

tr(χφ (x )) ≡ φ (x )

Example 9.24.

1. �e example described in the introduction for Kleene’s realizability indeed de�nes a tripos.
2. Given a complete Heyting algebra, the hyperdoctrine given by the functor T (X ) = HX (see

Example 9.22) is a tripos, with Prop being de�ned as (the underlying set of) H , and the truth
predicate being given by tr , idH ∈ T (H ).

y

9.5 Algebraic structures for (classical) realizability

9.5.1 OCA: ordered combinatory algebras

Finally, we recall in this section the di�erent algebraic structures arising from realizability. We �rst
present the notion of ordered combinatory algebras, abbreviated in OCA, which is a variant15 of Hofstra
and Van Oosten’s notion of ordered partial combinatory algebras [76].

De�nition 9.25 (OCA). An ordered combinatory algebra is a quintuple (A,≤,app,k,s ), which we sim-
ply write A, where:

• ≤ is a partial order over A,
• app : (a,b) 7→ ab is a monotonic function16 from A ×A to A,
• k ∈ A is such that kab ≤ a for all a,b ∈ A,
• s ∈ A is such that sabc ≤ ac (bc ) for all a,b,c ∈ A.

y

Given an ordered combinatory algebra A, we de�ne the set of downward closed subsets of A,
which we write D (A):

D (A) , {S ⊂ A : ∀a ∈ A,∀b ∈ S ,a ≤ b ⇒ a ∈ S }

�e standard realizability tripos onA is de�ned by the functor T which associates to each setX ∈ Setop
the set of functions D (A)X , which is equipped with the ordering:

φ `X ψ , ∃a ∈ A.∀x ∈ X .∀b ∈ A.(b ∈ φ (x ) ⇒ ab ∈ ψ (x ))

15In partial combinatory algebras, the application is de�ned as a partial function.
16Observe that the application, which is wri�en as a product, is neither commutative nor associative in general.
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�e type of propositions Prop is de�ned as D (A) itself and the generic predicate is de�ned as the
identity of D (A). While this de�nition is standard17 in the framework of intuitionistic realizabil-
ity [160]—the reader might in particular recognize the structure underlying the example we gave in
the introduction—, its counterpart for classical logic is slightly di�erent.

In his paper [151], Streicher exhibits the notion of abstract Krivine structure (which we write AKS),
which he shows to be a particular case of OCA. Yet,the so-called Krivine tripos he constructs a�erwards
is de�ned as a functor mapping any set X to the set of functions AX with values in A (instead of a
powerset likeD (A)). To this purpose, he considers �ltered ordered combinatory algebras, which are the
given of an OCA with a �lter:

De�nition 9.26 (Filter). If A is an OCA, a �lter over A is a subset Φ ⊆ A such that:

• k ∈ Φ and s ∈ Φ,
• Φ is closed under application, i.e. if a,b ∈ Φ then ab ∈ Φ.

y

Remark 9.27. It is a well-known fact that Hilbert’s combinators K and S are complete with respect to
the λ-calculus, in the sense that any closed λ-terms can be encoded as a combination of K and S which
is adequate with the β-reduction. Similarly, in an ordered combinatory algebra, any λ-terms t can be
encoded as a combination t∗ of k and s such that the β-reduction is re�ected through the ordering: for
any λ-terms t (x ) and u, we have18:

((λx .t )u)∗ ≤ (t[u/x])∗

We shall thus abuse the notation to write closed λ-terms as if they were elements A. Besides, by
de�nition of the notion of �lter, any �lter Φ contains all the closed λ-terms. y

9.5.2 AKS: abstract Krivine structures

Krivine abstract structures are merely an axiomatization of the Krivine abstract machine viewed as an
algebraic structure:

De�nition 9.28 (AKS). An abstract Krivine structure is a septuple (Λ,Π,app,push,k ,k ,s,cc,PL,⊥⊥)
where:

1. Λ and Π are non-empty sets, respectively called the terms and stacks of the AKS;
2. app : t ,u 7→ tu if a function (called application) from Λ × Λ to Λ;
3. push : t ,π 7→ t · π if a function (called push) from Λ × Π to Π;
4. k : π 7→ kπ if a function from Π to Λ (kπ is called a continuation);
5. k , s and cc are three distinguished terms of Λ;
6. ⊥⊥ ⊆ Λ × Π (called the pole) is a relation between terms and stacks, also wri�en t ? π ∈ ⊥⊥. �is

relation ful�lls the following axioms for all terms t ,u,v ∈ Λ and all stacks π ,π ′ ∈ Λ:

tu ? π ∈ ⊥⊥ whenever t ?u · π ∈ ⊥⊥
k ? t · u · π ∈ ⊥⊥ whenever t ? π ∈ ⊥⊥

s ? t · u · v · π ∈ ⊥⊥ whenever tv (uv ) ? π ∈ ⊥⊥
cc ? t · π ∈ ⊥⊥ whenever t ? kπ · π ∈ ⊥⊥
kπ ? t · π

′ ∈ ⊥⊥ whenever t ? π ∈ ⊥⊥

17To be exact, the very central notion is the one of partial combinatory algebras [160], which is not ordered and where app
is de�ned as a partial function. In this case, the tripos associates to each sets the set of functions P (A)X with values in the
powerset of A rather than in D (A).

18See [45] for instance for a proof.

248



9.5. ALGEBRAIC STRUCTURES FOR (CLASSICAL) REALIZABILITY

7. PL ⊆ Λ is a subset of Λ (whose elements are called the proof-like terms), which contains k ,s,cc
and is closed under application.

y

It is obvious that any realizability model (in the sense given in Chapter 3) induces an abstract
Krivine structure. In fact, almost all the de�nitions that we used in the previous chapters when de�ning
realizability interpretations can be restated in terms of abstract Krivine structures. Given any subset
of stacks X ⊆ Π (which we call a falsity value), we write X⊥⊥ for its orthogonal set with respect to the
pole:

X⊥⊥ , {t ∈ Λ : ∀π ∈ X ,t ? π ∈ ⊥⊥}

Orthogonality for subsets X ⊆ Λ (i.e. a truth value) is de�ned identically. As usual we write t⊥⊥π for
t ? π ∈ ⊥⊥ and t⊥⊥X (resp. X⊥⊥π ) for t ∈ X⊥⊥ (resp. π ∈ X⊥⊥). �e set of falsity values closed under
bi-orthogonality is then de�ned by:

P⊥⊥ (Π) , {X ∈ P (Π) : X = X⊥⊥⊥⊥}

With these de�nitions, from any abstract Krivine structure can be constructed a �ltered ordered com-
binatory algebra:

Proposition 9.29 (From AKS to OCA). If (Λ,Π,app,push,k ,k,s,cc,PL,⊥⊥) is an abstract Krivine struc-
ture, then the quintuple (P⊥⊥ (Π),≤,app′, {k }⊥⊥, {s}⊥⊥) is an OCA, with:

• X ≤ Y , X ⊇ Y

• app′(X ,Y ) , {π ∈ Π : ∀t ∈ Y⊥⊥.t · π ∈ X }⊥⊥⊥⊥

Besides, Φ , {X ∈ P⊥⊥ (Π) : ∃t ∈ PL.t⊥⊥X } de�nes a �lter for this OCA.

Proof. See [151] or [45]. �

Given a �ltered ordered combinatory algebra (A,Φ), one can de�ne the functor T : Setop → A:

T (X ) = AX and T ( f ) :
{
AY → AX

д 7→ (x 7→ д( f (x )))
for any f ∈ X → Y

endowed with the following entailment relation:

φ `X ψ , ∃a ∈ Φ.∀x ∈ X .aφ (x ) ≤ ψ (x ) (for all X ∈ Set)

In such a case, we shall refer to a as a realizer. It is easy to show that the entailment relation `X actually
de�nes an order relation on T (X ). �erefore, this functor always de�nes what is called an indexed
preorder. In the particular case where the �ltered OCA arises from an AKS, it can even be shown that
the functor T actually de�nes a tripos, which Streicher calls a Krivine tripos [151, �eorem 5.10].

9.5.3 IOCA: implicative ordered combinatory algebras

In the continuity of Streicher’s work, Ferrer et al. de�ned a subclass of ordered combinatory algebras
which possess precisely the additional structure necessary to make of the previous functor a tripos [45].
�ese algebras, which they call Krivine ordered combinatory algebras (KOCA), thus provide us with an
algebraic interpretation of Krivine classical realizability. It turns out that they are naturally de�nable
as a particular case of a slightly more general class of algebras, called implicative ordered combinatory
algebras (IOCA). As we shall see, a KOCA, which is the classical counterpart of an IOCA, is obtained
by adding to the la�er a combinator corresponding to the usual call/cc operator.
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De�nition 9.30 (IOCA). An implicative ordered combinatory algebra consists of an octuple of the shape
(A,≤,app,imp,k,s,e,Φ), which we simply write A or (A,Φ), where:

• ≤ is a partial order over A, and A is meet-complete as a poset;
• app : (a,b) 7→ ab is a monotonic function from A ×A to A,
• imp : a,b 7→ a → b is a monotonic function from Aop × A → A (i.e. imp is monotonic in its

second component, antitonic in the �rst);
• Φ ⊆ A is a �lter, closed by application and such that k ,s,e ∈ Φ;
• the following holds for all a,b,c ∈ A:

– kab ≤ a

– sabc ≤ ac (bc )

– if a ≤ b → c then ab ≤ c

– if ab ≤ c then ea ≤ b → c

y

Observe that in particular, any IOCA is a �ltered OCA. �e extra requirement of an arrow, as the
reader might have guessed, equips the sets (AX ,`X ) with a structure of Heyting algebra. In other
words, when A is an IOCA, the functor T : X 7→ AX is a tripos. Indeed, thanks to combinatorial
completeness of k and s , we can de�ne a meet through the usual encoding of pairs in λ-calculus. We
de�ne:

t , λxy.x f , λxy.y p , λxyz.zxy p0 , λx .(xt) p1 , λx .(xf)

which ensures that p0 (pab) ≤ a and p1 (pab) ≤ b. �is allows us to de�ne a map ∧ : A × A → A by
a∧b , pab. As for the arrow, the imp operations naturally induces an arrow on formulas such that for
any X ∈ Set, and any φ,ψ ,θ ∈ AX , we have:

φ `X ψ → θ if and only if φ ∧ψ `X θ

Since we believe it might help the reader to see the connection with realizability, we sketch the proof
of this statement. From le� to right, the implication is trivial since if there exists u ∈ Φ such that for all
a ∈ φ (x ),b ∈ ψ (x ) and c ∈ θ (x ), ua ≤ b → c , then by de�nition of the arrow (ua)b ≤ c . �erefore, we
can de�ne the realizer r , λx .(xu) which belongs to Φ and veri�es that r (pab) ≤ c .

From right to le�, the proof is very similar: if there exists u ∈ Φ such that for all a ∈ φ (x ),b ∈ ψ (x )
and c ∈ θ (x ), u (pab) ≤ c , in particular we have (λy.u (pay))b ≤ c . �erefore, by de�nition of the arrow,
we have that e (λy.u (pay)) ≤ b → c and thus λx .e (λy.u (pxy)) is the expected realizer.

�e complete proof that the functor T is a tripos can be found in [45].

9.5.4 KOCA: Krivine ordered combinatory algebras

�is notion of IOCA can be slightly enforced to obtain the notion of Krivine ordered combinatory al-
gebras, that should be simply understood as the usual addition of call/cc to go from an intuitionistic
se�ing to the classical one:

De�nition 9.31 (KOCA). A Krivine ordered combinatory algebra is an implicative combinatory algebra
equipped with a distinguished element c ∈ Φ such that for all a,b ∈ A:

c ≤ ((a → b) → a) → a
y

Example 9.32. Any complete Boolean algebra B induces a KOCA by de�ning:

ab , a ∧ b a → b , ¬a ∨ b Φ , {>} s , k , e , c , >

Broadly, Boolean algebras are trivial KOCA where all the realized elements are collapsed to >. y
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Interestingly, any abstract Krivine structure gives rise to a Krivine ordered combinatory algebra,
and vice-versa. In both cases, the induced triposes (by the AKS and the KOCA) are equivalent. �is
justi�es the claim that the la�er indeed captures the necessary additional structure that allows an OCA
induced from an AKS to be a tripos. �ese results are a re�nement of Proposition 9.29:

Proposition 9.33 (From AKS to KOCA). If (Λ,Π,app,push,k ,k,s,cc,PL,⊥⊥) is an abstract Krivine
structure, then the nonuple (P⊥⊥ (Π),≤,app′,imp′, {k }⊥⊥, {s}⊥⊥, {cc}⊥⊥, {e}⊥⊥,Φ) is a KOCA, with:

• X ≤ Y , X ⊇ Y ;

• app′(X ,Y ) , {π ∈ Π : ∀t ∈ Y⊥⊥.t · π ∈ X }⊥⊥⊥⊥;

• imp′(X ,Y ) , {t · π ∈ Π : t ∈ X⊥⊥ ∧ π ∈ Y }⊥⊥⊥⊥;

• e , s (k (skk ));

Besides, Φ , {X ∈ P⊥⊥ (Π) : ∃t ∈ PL.t⊥⊥X } de�nes a �lter for this OCA.

Proposition 9.34 (From KOCA to AKS ). If (A,≤,appA ,impA ,k,s,c,e,Φ) is a KOCA, then the septuple
de�ned by (A,A,app,push,k ,k,s,c,PL,⊥⊥) is an abstract Krivine structure, where:

• ⊥⊥ ,≤ i.e. t⊥⊥π , t ≤ π ;

• app(t ,u) , appt (t ,u) = tu;

• push(t ,π ) , imp(t ,π ) = t · π ;

• kπ , π → ⊥;

• PL , Φ;

• k , e (bek ), s , e (b (be (be ))s ), c , e c ,

where b is an abbreviation for s (ks )k .

Proof. See [45, �eorem 5.11] for the �rst proposition, [45, �eorem 5.13] for the second. �

Without considering in details the proofs of the correspondences between AKS and KOCA or their
associated triposes, it is worth noting that when going from a KOCAA to a AKS, both sets Λ and Π are
de�ned as A. �is means in particular that realizers and their opponents live in the same world, and
the orthogonality relation is simply re�ected by the order. �at is t⊥⊥π if t ≤ π , and more generally if
X ⊆ P (Π), t⊥⊥X if for any x ∈ X , t ≤ x . If, as advocated in Section 9.2, we identify a closed formula
A with its falsity values ‖A‖, we recover the intuition that t 
 A is re�ected by the ordering t ≤ ‖A‖.
With these ideas in mind, we are now ready to see the more general notion of implicative algebra.
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