
Introduction

“�e truth, the whole truth, and nothing but the truth.” �is famous oath could have constituted, back in
the 17th century, Leibniz’s profession of faith in seek of his calculus ratiocinator. Indeed he envisioned
that every philosophical dispute may be se�led by a calculation [107]1:

“�e only way to rectify our reasonings is to make them as tangible as those of the Mathemati-
cians, so that we can �nd our error at a glance, and when there are disputes among persons,
we can simply say: Let us calculate [calculemus], without further ado, to see who is right.
[…] if controversies were to arise, there would be no more need of disputation between two
philosophers than between two calculators. For it would su�ce for them to take their pencils
in their hands and to sit down at the abacus, and say to each other […]: Let us calculate”

While there are reasonable doubts about whether Leibniz intended for the so-called calculus ratiocinator,
the system or device used to perform these logical deductions, to be an actual machine2 or simply an
abstract calculus, it is certain that he hoped to reduce all human reasonings to computation.

Alas, an obstacle—and not the least— was standing on his way: at the time, reasoning was taking
the form of informal text, even in mathematics. Leibniz was then about to initiate a long path towards
the formalization of mathematics. As a �rst step, he proposed the concept of characteristica universalis
which was meant to embody every human concept. Leibniz indeed had a combinatorial view of human
ideas, thinking that they “can be resolved into a few as their primitives” [106, p. 205]. �is idealistic
language should thereby assign a character to each primitive concept, from which we could form char-
acters for derivative concepts by means of combinations of the symbols: “it would be possible to �nd
correct de�nitions and values and, hence, also the properties which are demonstrably implied in the de�ni-
tions” [106, p. 205]. Leibniz thus intended for the characteristica universalis to be a universal language,
which was to be employed in the computation of the calculus ratiocinator. If, at the end of the story,
this dream turned out to be a chimera, we should acknowledge that his set idea of relating logic to
computation was brightly visionary. Due do this connection, we can trumpet that this thesis is part of
a tradition of logic initiated by Leibniz himself. To �nd our way back from the present dissertation to
the calculus ratiocinator, let us identify a few milestones3 along the path.

It actually took two centuries until a major step was made in direction of a formalization of math-
ematics. In the meantime, the scienti�c community had to handle an episode which shook the very
foundations of mathematics: the discovery of non-Euclidean geometries. Two millenia earlier, Euclid
gave in his Elements the �rst axiomatic presentation of geometry. He placed at the head of his treatise a
collection of de�nitions (e.g. “a line is a length without breadth” ), common notions (e.g. “things equal to

1For the reader looking for a good old exercise of Latin, here comes the original quote [106, p. 200]: �o facto, quando
orientur controversiae, non magis disputatione opus erit inter duos philosophus, quam inter duos computistas. Su�ciet enim
calamos in manus sumere sedereque ad abacos, et sibi mutuo (accito si placet amico) dicere: calculemus.

2Leibniz was one of the pioneers of mechanical calculator with his Stepped Reckoner, the �rst machine with all four
arithmetic abilities.

3Amusingly, calculus precisely means stone in Latin. Despite serious scrupula, we could not refrain ourselves from annoy-
ing the reader with this insigni�cant observation.

7



CONTENTS

the same thing are also equal to one another” ) and �ve postulates (e.g. “to draw a straight-line from any
point to any point” ). Amongst these postulates, the ��h, also called the parallel postulate, has literally
retained mathematicians’ a�ention for a thousand years:

If a straight line crossing two straight lines makes the interior angles on the same side less than
two right angles, the two straight lines, if extended inde�nitely, meet on that side on which
are the angles less than the two right angles.

Because of its surprising prolixity with respect to the �rst four postulates, numerous a�empts were
made with the aim of deducing the parallel postulate from the �rst four, none of them showed to be
successful. In the 1820s, Nikolai Lobachevsky and János Bolyai independently tackled the problem in
a radically new way. Instead of trying to obtain a proof of the parallel postulate, Bolyai considered a
theory relying only on the �rst four postulates, which he called “absolute geometry” [19], leaving the
door open to a further speci�cation of the parallel postulate or its negation. In turn, Lobatchevsky built
on the negation of the parallel postulate a di�erent geometry that he called “imaginary” [110]. Inter-
estingly, to justify the consistency of his system, Lobachevsky argued that any contradiction arising
in his geometry would inevitably be matched by a contradiction in Euclidean geometry. �is appears
to be the earliest a�empt of a proof of relative consistency4. A few years later, Bernhard Riemman
published a dissertation in which he also constructed a geometry without the parallel postulate [145].
For the �rst time, some mathematical theories were neither relying on synthetic a priori judgments nor
on empirical observations, and yet, they were consistent in appearance. �eses new geometries, by
denying traditional geometry its best claim to certainty, posed to the community of mathematicians a
novel challenge: How can it be determined for sure that a theory is not contradictory? If Leibniz was our
�rst milestone on the way, we would like the second one to mark this question.

For years, non-Euclideans geometries have been the target of virulent criticism, the colorful lan-
guage of which the decency forbids us from transcribing here. One of the strongest opponent to these
geometries was Go�lob Frege, who notably wrote: “No man can serve two masters. One cannot serve the
truth and the untruth. If Euclidean geometry is true, then non-Euclidean geometry is false.” [49]. Frege was
thus in line with the ground postulate of Leibniz’s calculus ratiocinator that the truth of any statement
can be decided. In this perspective, Frege accomplished a huge step for the formalization of mathe-
matics. In 1879, he introduced his Begri�sschi� [48], a formal language to express formulas and proofs.
Frege aimed at expressing abstract logic by wri�en signs in a more precise and clear manner than it
would be possible by words (which is not without recalling Leibniz’s intentions with the characteristica
universalis). Especially, Frege was responsible for the introduction of the quanti�ers ∀—“for all”—and
∃—“there exists”—and most importantly of a proof system based on axioms and inference rules. �ereby,
he paved the way for a syntactic study of proofs, emphasizing the provability of formulas.

On the other hand, the earlier work of Boole [20] did not lead to a language peculiar to logical
considerations, but rather to the application of the laws (and symbols) of algebra5 to the realm of logic.
In particular, Boole’s approach consists in assigning a truth value to each proposition, pointing out the
semantic notion of validity of formulas.

Despite Boole and Frege advances, when the 20th century began, the existence of calculus ratioci-
nator was still a plausible expectation in light of the state of the art in logic. Even without matching

4Actually, there is an earlier trace of such a proof in �omas Reid’s work [142]. He de�ned a non-Euclidean geometry, his
so-called “geometry of visibles”, that he described as being the one perceived by the Idomenians, some imaginary beings de-
prived of the notion of thickness. Reid claims that the “visible” space can be represented by an arbitrary sphere encompassing
the space. �is can also be considered as a relative consistency proof, asserting that the geometry of visibles is consistent if
spherical geometry is. A detailed discussion on Reid’s geometry can be found in [36].

5According to Boole, “the operations of Language, as an instrument of reasoning, may be conducted by a system of signs
composed of […] literal symbols x ,y, ... […] signs of operation, as =, −, × […] the sign of identity =. And these symbols of Logic
are in their use subject to de�nite laws, partly agreeing with and partly di�ering from the laws of the corresponding symbols in
the science of Algebra” [20, Chapter II].

8



CONTENTS

Leibniz’s ambition of deciding the validity of any philosophical statement, the problem of deciding
the truth merely within mathematics was still an open question. In 1900, Hilbert drew up a list of
twenty-three problems—another milestone along our travel time—the second of which was to prove
the compatibility of the arithmetical axioms, “that is, that a �nite number of logical steps based upon
them can never lead to contradictory results” [73]. Rooted in this question, Hilbert established in the
1920s a program aiming at a formalization of all mathematics in axiomatic form, together with a proof
that this axiomatization is consistent. Hilbert’s manifesto for a quest of foundations climaxed with the
slogan “No ignorabimus” during a radio broadcast in 19306 [74]:

“For us mathematicians, there is no ‘ignorabimus’, and, in my opinion, there is none whatso-
ever for the natural sciences. In place of this foolish ‘ignorabimus’ let our watchword on the
contrary be: We must know — we shall know!”

In continuation of his program, Hilbert raised with Ackermann another fundamental question in 1928,
which is known as the Entscheidungsproblem [75]: to decide if a formula of �rst-order logic is a tautol-
ogy. By “to decide” is meant via an algorithm, by means of a procedure. �e signi�cation of “algorithm”
should be taken in context: the very concept of computer was yet unknown, an algorithm was thus
to be understood as a methodical way of solving a problem, as a computational recipe. By pu�ing the
computation at the heart of the problem, the Entscheidungsproblem enters directly into the heritage of
Leibniz quest for a calculus ratiocinator.

Unfortunately, Hilbert’s �ne aspirations were quickly sha�ered. First by Gödel [61], who proved
in 1931 that any consistent logical system, provided that it is expressive enough, featured a formula
which is not provable in this system, nor is its negation. Worst, he showed in particular that the consis-
tency of arithmetic could not be proved within arithmetic, giving then a de�nitive and negative answer
to Hilbert’s second problem. As for the Entscheidungsproblem, Church [25, 26] and Turing [153, 154]
independently proved that no algorithm could ever decide the validity of �rst-order formulas. Both
answers relied on a speci�c de�nition of the notion of computability, captured in one case by Turing
machines, by the λ-calculus in the case of Church. Church and Turing proved that both formalisms
were equivalent, laying the ground of a uni�ed de�nition of what are the “computable” functions. In
other words, the concept of computer was born.

Leaving aside a few decades and some noteworthy discoveries, the second to last milestone on
our journey, arguably the most important one concerning this thesis, is due to Curry [33, 34] and
Howard [77], in 1934 and 1969 respectively. Independently, they both observed that the proofs of a
constructive subset of mathematics, called intuitionistic logic, coincide exactly with a typed subset
of the λ-calculus. �is observation had a particularly signi�cant consequence: by asserting that (in-
tuitionistic) proofs were nothing less than programs, it put the computation at the center of modern
proof theory. Furthermore, it brought kind of a small revolution by giving the possibility of designing
altogether a proof system and a programming language, bug-free by essence.

While the proofs-as-programs correspondence seemed for a time to be bounded to intuitionistic
logic and purely functional programming language, Gri�n discovered in 1990 that Scheme’s control
operator call/cc could be typed by a non-constructive principle named the law of Peirce [62]. Several
calculi were born from this somewhat accidental breakthrough, allowing for a direct computational
interpretation of classical logic. Especially, Krivine developed the theory of classical realizability based
on an extension of the λ-calculus with call/cc, in which he tried to obtain programs for well-known
axioms. In so doing, he adopted a conquerent state-of-mind, proposing to push further the limits of
Curry-Howard correspondence by programming new proofs.

6In case some readers would not have found satisfaction with the former Latin exercise, here his the original German
declaration: “Für uns gibt es kein Ignorabimus, und, meiner Meinung nach, auch für die Naturwissenscha� überhaupt nicht.
Sta� des törichten Ignorabimus, heiße im Gegenteil unsere Losung: Wir müssen wissen — wir werden wissen!”.

9



CONTENTS

Yet, it would be unfair to reduce classical realizability, our last milestone, to its sole contribution
to proof theory. To highlight its particular signi�cance, allow us a slight digression back to the early
1900s. Indeed, we eluded in our presentation the fact that mathematics were a�ected by the so-called
foundational crisis. To cut a long story short, Frege axiomatized in his Begri�sschi� [48] a set theory
built on Cantor’s earlier ideas. �is theory was intended to lay a foundational ground to the de�nition
of all mathematics, but a few years later a paradox was discovered by Russell, proving the theory to be
inconsistent. If the axiomatization of set theory was �nally corrected by Zermelo and Fraenkel, further
to this episode, the question of proving the consistency of a given axiomatization has been a central
issue for logicians of the 20th century. Two axioms were particularly controversial, namely the axiom
of choice and the continuum hypothesis. Relying on Boole’s notion of validity, Gödel �rst proved in
1938 that both were consistent with Zermelo-Fraenkel set theory [66]. Cohen �nally proved that these
axioms were independent from set theory, by showing that their negations were also consistent with
set theory. To this end, he developed the technique of forcing to construct speci�c models in which
these axioms are not valid.

At the edge of the last decade, Krivine showed in an impressive series of papers [98, 99, 100, 101]
that classical realizability also furnishes a surprising technique of model construction for classical the-
ories. In particular, he proved that classical realizability subsumes forcing models, and even more, gives
raise to unexpected models of set theories. Insofar as it opens the way for new perspectives in proof
theory and in model theory, we can safely state that classical realizability plays an important role in
the (modern) proofs-as-programs correspondence.

�is thesis is in line with both facets of classical realizability. On the one hand, from the point
of view of syntax and provability, we continue here a work started by Herbelin in 2012 [70] which
provides a proof-as-program interpretation of classical arithmetic with dependent choice. Half of this
thesis is devoted to proving the correctness of Herbelin’s calculus, called dPAω , which takes advantage
of several extensions of the proofs-as-programs correspondence to interpret the axiom of dependent
choice. We rephrase here Herbelin’s approach in a slightly di�erent calculus, dLPAω , of which we
analyze the di�erent computational features separately. We �nally prove the soundness of dLPAω ,
which allows us to a�rm:

Constructive proofs of the axioms of countable and dependent choices can be obtained in clas-
sical logic by reifying the choice functions into the stream of their values.

On the other hand, from the viewpoint of semantics and validity, we pursue the algebraic analysis
of the models induced by classical realizability, which was �rst undertaken by Streicher [150], Ferrer,
Guillermo, Malherbe [44, 45, 43], and Frey [50, 51]. More recently Miquel [121] proposed to lay the
algebraic foundation of classical realizability within new structures which he called implicative algebras.
�ese structures are a generalization of Boolean algebras (the common ground of model theory) based,
as the name suggests, on an internal law representing the implication. Notably, implicative algebras
allow for the interpretation of both programs (i.e. proofs) and their types (i.e. formulas) in the same
structure. In this thesis, we deal with two similar notions: disjunctive algebras, which rely on internal
laws for the negation and the disjunction, and conjunctive algebras, centered on the negation and the
conjunction. We show how these structures underly speci�c models induced by classical realizability,
and how they relate to Miquel’s implicative algebras. In particular, if this part of the thesis were to be
reduced to a take-away message, we would like this message to be:

�e algebraic analysis of the models that classical realizability induces can be done within
simple structures, amongst which implicative algebras de�ne the more general framework.

10



CONTENTS

�e main contributions of this thesis can be stated as follows.

1. A realizability interpretation à la Krivine of the λ[lvτ?]-calculus [4], which is a call-by-need calcu-
lus with control and explicit stores. �is interpretation provides us with a proof of normalization
for this calculus. In addition, it leads us toward a typed continuation-and-store-passing style
translation, which relies on the untyped translation given in [4]. We relate the store-passing
style translation with Kripke forcing translations.

2. A classical sequent calculus with dependent types, which we call dL. While dependent types
are known to misbehave in presence of classical logic, we soundly combine both by means of a
syntactic restriction for dependent types. We show how the sequent calculus presentation brings
additional di�culties, which we solve by making use of delimited continuations. In particular,
we de�ne a typed continuation-passing style translation carrying the dependencies.

3. A proofs-as-programs interpretation of classical arithmetic with dependent choice, which we
dLPAω . Our calculus is an adaptation of Herbelin’s dPAω system, given in a sequent calculus
presentation. Drawing on the techniques previously developed for the λ[lvτ?]-calculus and dL,
we de�ned a realizability interpretation of dLPAω . �is implies in particular the soundness and
the normalization of dLPAω , properties which were not proved yet for dPAω .

4. A Coq formalization of Miquel’s implicative algebras [121]. Since implicative algebras aim, on
a long-term perspective, at providing a foundational ground for the algebraic analysis of real-
izability models, I believe that having a Coq development supporting the theory is indeed an
appreciable feature.

5. �e de�nition and the study of disjunctive algebras. We show how these structures, which are
similar to implicative structures, naturally arise from realizability models based on the decom-
position of the implication A → B as ¬A ∨ B. We study the intrinsic properties of disjunctive
algebras, and we prove that they are particular cases of implicative algebras.

6. �e notion of conjunctive algebra, which relies on the decomposition of the implication A → B
as ¬(A∧¬B). We explain how these structures naturally underly the realizability interpretations
of some speci�c call-by-value calculus. We then prove that any disjunctive algebra induces a con-
junctive algebra by duality. �e converse implication and the properties of conjunctive algebras
are yet to be studied.

�e thesis itself is broadly organized according to the contributions listed above. We give here a
description of the di�erent chapters which compose this manuscript.

�e �rst part of this thesis consists of a preliminary introduction to the scienti�c topics involved in
the thesis. We a�empt to be as self-contained as possible, and in particular these chapters are there to
introduce well-known de�nitions and illustrate techniques which are relevant to the later contributions.
As such, experts in the �eld should feel free to skip this part, all the more as back references are made
to these chapters when necessary.

In Chapter 1, we give a self-contained introduction to formal logic, and present the concepts of
theory, proof, and model. We come back in details to the notions of provability and validity evoked in
the introduction, which we illustrate with several examples. Hopefully, this chapter should be accessible
to anyone with a scienti�c background.

In Chapter 2, we introduce the λ-calculus, which is the fundamental model of computation for the
study of functional programming languages. We �rst present the untyped λ-calculus, and we focus on
the key properties that are in play in the study of such a calculus. We then present the simply-typed λ-
calculus and the proofs-as-programs correspondence. Once again, this chapter is meant to be accessible
to curious non-specialists, which may understand here the second half of this thesis title.

In Chapter 3, we give a survey of Krivine’s classical realizability. In particular, we introduce the
λc -calculus with its abstract machine, and we give in details the de�nition of classical realizability. We

11



CONTENTS

then present some of its standard applications, both as a tool to analyze the computational behavior of
programs and as a technique of model construction.

In Chapter 4, we present Gentzen’s sequent calculus. together with its computational counterpart,
Curien and Herbelin’s λµµ̃-calculus. We take advantage of this section to illustrate (on the call-by-name
and call-by-name λµµ̃-calculi) the bene�ts of continuation-passing style translations and their relations
with realizability interpretations à la Krivine. In particular, the expert reader might be interested in our
observation that Danvy’s methodology of semantic artifacts can be used to derive realizability inter-
pretations.

�e second part of this thesis is devoted to the study of a proof system allowing for the de�nition
of a proof term for the axiom of dependent choice.

In Chapter 5, we give a comprehensive introduction to Herbelin’s approach to the problem with
dPAω [70]. We explain how the di�erent computational features of dPAω—namely dependent types,
control operators and a co-inductive �xpoint which is lazily evaluated—are used to prove the axioms of
countable and dependent choices. We then focus on the di�culties in proving the soundness of dPAω ,
which are precisely related to the simultaneous presence of all these features. Finally, we present our
approach to the problem, and the organization of the subsequent chapters.

In Chapter 6, we present a call-by-need calculus with control, the λ[lvτ?]-calculus. �is calculus
features explicit environments in which terms are lazily stored, which we use a�erwards in dLPAω . To
prepare the later proof of normalization for dLPAω , we prove the normalization of the λ[lvτ?]-calculus
by means of a realizability interpretation. We also give a typed continuation-and-store passing style,
whose computational content highlights the already known connection between global memory and
forcing translations.

In Chapter 7, we introduce dL, a sequent calculus with control and dependent types. Here again,
the underlying motivation is to pave the way for the further introduction of dLPAω . Nonetheless, such
a calculus is an interesting object in itself, which motivates our thorough presentation of the topic.
We thus explain how control and dependent types can be soundly combined by means of a syntactic
restriction of dependencies. We show how the challenge posed by the sequent calculus presentation can
be solved thanks to the unexpected use of delimited continuations. �e la�er has the signi�cant bene�ts
of making the calculus suitable for a typed continuation-passing style carrying the dependencies.

Finally, in Chapter 8, we present dLPAω , a calculus which soundly combines all the computational
features of dPAω in a sequent calculus fashion. We give a realizability interpretation for dLPAω , whose
de�nition relies on the interpretations previously de�ned for the λ[lvτ?]-calculus and dL. We deduce
from this interpretation the soundness and normalization of dLPAω , the primary objectives of this part
of the thesis.

�e third part of the thesis is dedicated to the study of algebraic structures arising from the models
that Krivine’s classical realizability induces.

In Chapter 9, we give a detailed introduction to the topic, starting from Kleene intuitionistic real-
izability to eventually reach the notion of realizability triposes. In particular, we recall some standard
de�nitions of the categorical analysis of logic. �en we present the algebraic approach to classical
realizability and the structures that are involved.

In Chapter 10, we present Miquel’s implicative algebras [121], which aim at providing a general
algebraic framework for the study of classical realizability models. We �rst give a self-contained pre-
sentation of the underlying implicative structures. We then explain how these structures can be turned
into models by means of separators. Finally, we show the construction of the associated triposes to-
gether with some criteria to determine whether the induced model amounts to a forcing construction.

12



CONTENTS

In Chapter 11, we follow the rationale guiding the de�nition of implicative algebras to introduce
the notion of disjunctive algebra. Our main goal in this chapter is to draw the comparison with the
implicative case, and especially to justify that the la�er provides a more general framework than dis-
junctive algebras. A�er studying the properties peculiar to disjunctive algebras, we eventually prove
that they indeed are particular cases of implicative algebras.

Last, in Chapter 12, we a�empt to follow the same process in order to de�ne the notion of conjunc-
tive algebra. If we succeed in proving that any disjunctive algebra give raise to a conjunctive algebra by
duality (which is to be related with the well-known duality between call-by-name and call-by-value),
we do not prove the converse implication. We conclude by saying a word on the perspectives and
questions related to the algebraization of classical realizability.

13


