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Summary. We study reflected solutions of the heat equation on the spatial interval
[0, 1] with Dirichlet boundary conditions, driven by an additive space-time white
noise. Roughly speaking, at any point (x, t) where the solution u(x, ) is strictly
positive it obeys the equation, and at a point (x, r) where u(x, t) is zero we add
a force in order to prevent it from becoming negative. This can be viewed as an
extension both of one-dimensional SDEs reflected at 0, and of deterministic
variational inequalities. An existence and uniqueness result is proved, which relies
heavily on new results for a deterministic variational inequality.
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0 Introduction

The aim of this paper is to study the existence of a pair (u, ) where u is a continuous
function of (x, t)e @20, 1]x R ., 5 is a measure over Q, which satisfy:

Ou  %u 0rW
0 5 st/ W=g7*"

(i) u(x,0) = ug(x), w(0,t) =u(l,£) =0, u(x,t) =0

(ili) foudn =0

where {W(x, 1), (x,t)eQ} is a Brownian sheet. Condition (iii) implies that the
support of # is included in {u = 0}. (i) says in particular that wherever u(x, t) > 0,
u solves the white noise driven parabolic SPDE:

u 0%u 0w

% (e, 1) = 55 (6 1) + 1% G ulx 1) = o

(x,1).

7 is there to “push u upward”, so that it remains nonnegative, and (iii) says that the
pushing is minimal in the sense that no pushing occurs where u(x, t) > 0, since
u cannot become negative there.

* Partially supported by DRET under contract 901636/A000/DRET/DS/SR
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We shall show that the stochastic problem (i), (i), (ili) is equivalent by trans-
lation to a deterministic problem with reflection along an irregular boundary
function. Such deterministic problems with reflection are called “inequations” and
have been widely studied by several authors, see in particular Bensoussan and
Lions [1], the bibliography therein and Mignot and Puel [6].

Most of the present paper is devoted to the proof of an existence and unique-
ness result for such an inequation. The point is that our boundary function is not
smooth enough such that we might apply the usual theory of strong solutions, and
we want both existence and uniqueness, which is not provided by the theory of
weak solutions (see in particular [6]).

Note that a similar problem has already been considered in Haussman and
Pardoux [3], in the case of a different type of driving noise and with a non constant
diffusion coefficient, using quite different methods.

The paper is organized as follows. In Sect. 1 we state the results and in Sect. 2 we
prove them.

1 Statement of the problem and of the main results

Our aim is to study an equation of the following type

ou 0%u *W

E’ai+f(x,t;u(xaf))=axat+ﬂ, (1)
t20,xel0,17,
with the Dirichlet boundary conditions
w@,t)=u(l,£)=0, t=0, 2
and the initial condition
u(x, 0) = up(x), xe[0,1]. (3)

We shall assume in what follows that the function f takes the following form:
f=[0,11xR:xR-R

(AQ) flx, t,2) = fi(x, £) + fox, £52) + f3(x, 1; 2)
with the properties that f; is jointly measurable, 1 £i < 3 and

(A1) fre () LA(O0, 1)x(0, T)), f2(x, 1; 0) = f5(x, 1, 0) = ;

T>0

(A.2) 3¢ such that |fa(x,t;2) — falx, t;7)| S c|z —r|, for all (x,t) in [0, 1]x
R,,r zin IR;
(A.3) for any (x,t)e[0, 11x R, z > f3(x, t; z) is continuous and nondecreasing,
and f5 is locally bounded.

Given ue C([0, 1] x R ;.), we shall consider the mapping (x, t) = f(x, t; u(x, t)).
We shall often below write in short /(i) for the mapping x — f(x, t; u(x, t)).

The initial condition u,(x) will be a continuous and nonnegative function which
satisfies the Dirichlet boundary conditions on [0, 1]. Set Q = [0, 1] x R.. We will
assume that W = {W(x, t), (x, t)€ Q} is a two-parameter Wiener process defined on
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a complete probability space (@, &, P). That means, W is a continuous Gaussian
process with zero mean and covariance function defined by

E[W( )W, t)Y]=x A XYt At).

We will denote by .7, the o-field generated by the random variables { W(x, s),
x€e[0,1], se[0,¢]}.

The operator —(d?/dx?*) on L*(0, 1), with the Dirichlet boundary conditions
will be denoted by A. We will denote by Co([0, 1]) the set of continuous functions
@ on [0, 1] such that ¢(0) = (1) = 0, and by C;*(D), D open subset of R, the set of
functions from D into R which are infinitely differentiable and whose support is
a compact subset of IR’,

The solution to the Eq. (1) will be a pair (1, n) such that u = {u(x, ), (x, t)e Q} is
a nonnegative and continuous stochastic process which satisfies the equality (1) in
a weak sense, and #(dx, dt) is a random measure on Q which forces the process u to
be nonnegative.

If the term # is omitted then the Eq. (1) becomes a particular case of the
parabolic stochastic differential equations studied, among others, by Walsh [7],
Manthey [5] and Buckdahn and Pardoux [2].

The Eq. (1) is formal and we have to give a rigorous meaning to the notion of
solution. This is the purpose of the following definition (we denote here and in the
sequel by (-,-) the scalar product in L2(0, 1)).

Definition 1.1 A pair (4, 1) is said to be a solution of Eq. (1) if:
(i) u = {u(x, t), (x,t)eQ} is a nonnegative, continuous and adapted process (i.c.,
u(x, t) is #,-measurable vt = 0, xe[0, 1]) with (0, £} = u(1,£) =0, t = 0, as.
(i) n(dx,dt) is a random measure on (0,1)xR, such that n((e, 1 —&)x
[0, T]) < oo for all e>0 and 7> 0, and # is adapted (ie, #(B) is &F,-
measurable if B = (0, 1)x [0, t]).
(ii1) For all t = 0 and ¢ e C ({0, 1)) we have

(s @) + [ (s, AB)ds + [ (f(1s), $)ds = (uo, ¢) + [ [ d(x)dW, )

d(x)n(dx, ds), as.

Oy

+ j‘
0
(iv) fo udn = 0.

Remark 1.2 Notice that the condition (iv) is equivalent to saying that the support
of the measure # is contained in the set {u = 0}.

All terms appearing in the Eq. (4) are continuous functions of ¢ € C((0, 1))
with respect to the topology of the uniform convergence of ¢, ¢’ and ¢” on compact
subsets of (0, 1). For the stochastic integral with respect to the two-parameter
Wiener process this continuity follows from the integration by parts formula:

O ey
O =y

pdW = -} Wi(x, t)¢' (x)dx .

The space C¢°((0, 1)) is separable for this topology. Consequently in property (iii)
the almost sure requirement is uniform in ¢ =2 0 and ¢ C((0, 1)). O

The main result of this paper is the following.
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Theorem 1.3 Suppose that f satisfies (A.0), (A.1), (A.2), (A.3) and let uge Co ([0, 17) be
a non-negative function. Then there exists a unique solution (u, n) of Eq. (1). Further-
more this solution verifies

(0, )x{t})=0 forallt=0, and %)

© ey =y

1
fx(1 = x)n(dx,dt) < oo, forall T>0. (6)
0

Before giving the proof of this theorem we need to introduce some notations. We
denote by G,(x, y) the fundamental solution of the heat equation with Dirichlet
boundary condition. That means, for any ¢ e Co([0, 1]),

(I)G, x, Yyo(y)d

is the unique solution of

dg &%
E—E =0, t>0, 0<x<x1
g(x, 0) = o(x), 0<x=1

g(0,t)=¢(1,t)=0, t=20.

Define the Gaussian random field

t1

v(x, t) —HGt (6 y)dW, + I G (x, Y)uo(y)dy . 7

It is shown in Walsh [7] that v has a version which is «-Holder continuous for
any 0 < « < 1. Moreover, v satisfies v(x, 0) = uy(x), v(0,t) = v(1,¢) =0, and v is
a weak solution of the parabolic stochastic differential equation

ov v O*W

ot ox2 oxér @®

That means, it holds that
(W, @) + § (05, Ad)ds = (ug, ) + § | d(x)dW, «, )
0 00

for all t = 0 and ¢ e C((0, 1)), almost surely.

The basic ingredient in the proof of Theorem 1.3 is the following: making use of
the change of variable z = u — v, Theorem 1.3 is easily seen to be a consequence of
the next deterministic result:

Theorem 1.4 Let v be a continuous function on Q such that v(x,0) =uy(x) and
v{0, 1) = v(1,£) = 0, for all xe[0, 1], t = 0, and suppose that f satisfies (A.0), (A.1),
(A.2), (A.3). Then there exists a unique pair (z, ) such that:

() z is a continuous function on Q verifying z(x, 0) = 0,

z(0,1) =z(1,t) =0 and z= —v.
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(i) # is a measure on (0, 1) x R, such that
(e, 1 —gyx[0,T])< oo foralle>0 and T>0
(iii)

(z, d) + f(zs, Ap)ds + f (f(zs + ), P)d (x)n(dx, ds) (10)

O ey
O‘——:*—*

for all t 2 0, ¢ CF((0, 1)),
(iv) folz(x, t) + v(x, t))n(dx, dt) =
Furthermore the measure n verifies the properties (5) and (6).

Remark 1.5 Formally, (i)—(iv) can be rewritten as follows:

0
§+Az,+f(z,+v,)20

0z
<#+AZt+f(Zt+Ut)=Zt+Ut>=0' J

This is a deterministic parabolic inequation, of a type which has been largely
studied in the literature (see e.g. Bensoussan and Lions [1], Mignot and Puel [6]
and the bibliographies therein). Note that the non linear term in the above
inequality has a very special form. However, if we define:

f—(xa t’ l") :f(x> t: T+ vt(x))

and write f(z,) for the mapping
x = f(x, 1; 2,(x))

we can rewrite our inequality in a more general form:

oz, _
a—Zt+Azt+f(z,);0

Z, = —, (11

a
<8Z‘+ Az, + f(z,), z, + v,) 0.

(11) is a parabolic inequality with the non-smooth obstacle —uv(x, ¢).

There are several existence results in the literature concerning this kind of
problem. When the obstacle is somewhat smooth, existence and uniqueness of
a “strong solution” is known. In the case of a more general obstacle, existence
of a minimal “weak solution” is known. Our situation is somehow intermediate
between the two situations known in the literature. Qur formulation will be “strong
enough” so that we shall be able to prove existence and uniqueness, although the
classical theory of strong solutions does not apply. The (apparently new) idea is to
allow the term which we call # to be a measure.
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Remark 1.6 We have not been able to decide whether 11((0 1)x [0, T]) is finite or
infinite. It is clear that #({(0,&)u(l — e 1)} x[0, T]) is large (maybe infinite?).
Indeed, the solution is forced to be zero on the boundary, and it is irregular in x (see
Walsh [7]), therefore a lot of “pushing by #” is necessary near the boundary, in
order to prevent the solution from taking negative values. Note that if we replace
the zero boundary conditions by strictly positive ones (or if we replace the zero
level of reflection by a negative one), then it is easy to see that #((0, 1) x (0, T)) < oo
as,forall T>0. 0O

2 Proof of Theorem 1.4

2.1 Reduction of the problem

In this subsection, we show that it suffices to prove the theorem under the

assumptions:

(AL) f(500€( >0 L2((0, 1) x (0, T));

(A2) f—f(-,-;0) is locally bounded;

(A.3') z—>f(x, t; z) is continuous and nondecreasing, V(x, t)e[0, 1]x R ..
Indeed, the result is equivalent to the same result with f replaced by f; + A,

where fi(x, t;r) = e #f(x, t; er), and if f satisfies (A.1), (A.2), (A.3), and A =,

fi + Al satisfies (A.1'), (A.2'), (A.3'). In order to see the equivalence, we first note

that (iii) is equivalent to the following statement:

el a . o0 0
& T () e+ | (A z)dt + [ (e + 0 )
o \ Ot ° 5
= [ ydn, Ve CP((0, ) xIR,),
Q
which for any A€ R is equivalent to

(1) —f (‘;‘ﬁtt —Mzz> dr + T (AY,, e~ *z,)dr + ojo (e ™[ f(z, + v,) + Az, Y,)dt
0 0
= [ye dn, WeC((0, )xR.).
Q

Hence (z, ) solves (1) iff

solves
#))] —Of (%‘éf z‘,> dt + of (Ay,, z,)dt + T (LG, + ;) + Az, Y)dt
0 4] 4]
= j l//dﬁa Vl//ECkw((O, I)XIR+) ’
1]

where 7, = e *y,.
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2.2 Existence of a solution

Step 1. We shall construct a solution by means of the well-known penalization
method. Fix ¢ > 0 and denote by z* the solution of the equation

0z¢ 1 -
5;+Aﬁ+ﬂﬁ+vo=gﬁ+w)1

z*(x, 0) =0 (12)
220, t) = z°(1,t)=0.

This equation has a unique solution z°€ (7o L*(0, T; H*(0, 1)) n C(Q), see
e.g. Lions [4]. Using the monotonicity property of f one can show the following
facts:

(A) z°(x, t) increases as ¢ decreases to zero.
(B) Let z* and 2° be the solutions corresponding to two different functions v and 6.
Then we have for any 7 > 0,

12— 201G < llv =015 (13)

where

lol% = sup lo(x )|, peC(Q).
AR

Proof of (A) Define F(x,t;z) =f(x, t;2) — (1/e1)z” and F,(x, t;2) = f(x, t; ) —

(1/e2)z~ where ¢; <¢,. Then F{ and F, are nondecreasing functions such that
F, < F;. Set i = z** — z*', We want to show that i < 0. We have

0
a—f +AY + Folze + o) — Fi(z +0) =0

Yo=0.

Multiplying this equality by ;" we obtain, for all T > 0,

T al//t T t *
(j) <E ,+> dr + g (A, ¥ )dt + [ (Fa(z + v)) — Fyz + o), 7 )de =0
0

It follows from Lemma 6.1, p. 132 in Bensoussan and Lions [1] that y* e L2
(0, T; H*(0, 1)) and (|| denotes the norm in L(0, 1)):

T oy, .
j<'5'€‘: )dtzil‘//rfz

o
o
ox

T T 2
§ (A, pH)de = | dr .
0 o]
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Moreover
(Falzi® + v) — F1(28 + v, Ui") = (Fa(z + 0) — Fo(z8 + 0 )
+ (F2(z +v) — Fi(z* +0.),9,)=0.
Hence |y > =0,t= 0.

Proof of (B). Set k = jv — 8L, and F,(x, t;z) =f(x, t; 2) — (1/e)2~. We have

ozf
_(?—ti + AZf+ F(zt +v,)=0
0%¢
E+A2§+Fs(2f+ﬁt)=0

2 =2z5=0.
Therefore

0
5;(Z§ —5)+ A — )+ F(zi+v) - F(& +0)=0.
Define w = (z°* — £°) — k. Multiplying the above equation by w* yields

T awt . T .
| W dt + [ (Aw,, w)dt +
) o

T
+ I (Folzf + v) — F (2 + 0,), w)de=0.
0

It holds that
(Fo(z +v)— F(8 +0),w )20

because on {(x,); w*(x,t) £0}, z2> 2+ k and then z°+ v = 2° 4+ {. Conse-
quently the same computations as made in the proof of (A) yield w™ = 0, hence
z® — 2¢ < k. By symmetry 2° — z# < k.

Step 2. For any (x,t)e[0, 1] x R, define

z(x, t) = sup z°(x, t) .
e>0
We want to show that ze C([0, 1] xR, ). Let {v,, ne N} = CZ((0, 1) x (R \{0}))
satisfy v,(x, t) = v(x, t) uniformly on compact subsets of [0, 1] x R..
Let z% denote the solution of (12) where v has been replaced by v,. From (B)
above,
£ H T

“ZE_Zn §||U—Un”£

But for each fixed n, 28 1 z, as ¢ | 0, where z, is the strong solution of an inequation
with smooth obstacle, hence — see e.g. Corollary 2.3, p. 237 of Bensoussan and
Lions 1] - z,e C([0, 1]) x R +).
Letting ¢ | 0 in the above inequality yields:
Iz = zalll S v~ vyl T>0.

The desired result follows, by letting n — 0.
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Step 3. We have to show that the function z(x, t) satisfies the conditions (i)—(iv) of
Theorem 1.4. Clearly z(x,0) = 0 and z(0, t) = z(1,£) =0 for all t 2 0.
Let y e CP ({0, 1) x R ;). From (12) we obtain

(z 6¢,> dt + f (2%, Ayr)dt +
(14)
+

g
[

m|»—

f@+ o), ¢)dt = j (zf +v)7, Y,)dt.
Q

We denote by #, the measure (1/¢)(z; + v,)”dxdt on Q. From the equality (14)
we deduce that #, converges in the distributional sense to some distribution on the
open set (0, 1) x (0, +o0). The limiting distribution is nonnegative and, therefore, it
is a measure that we denote by #. For any e C((0, 1) x [0, +00)} we have

T ( > z> dr + _f (AY,, z,)dt + }0 (f(z, + v,), ¥ )de
0 0 (15)
= [y .

2}

Actually the above convergence holds for any infinitely differentiable function
¥ on (0, 1) x R with compact support included in (0, 1} x [0, + o). So # is a distri-
bution on {0, 1) x R, and hence a measure on (0, 1) x [0, + o). Moreover it is clear
from (15) that 5((s, 1 — &) x[0,T]) < oo forall e >0and T > 0.

Multiplying the Eq. (14) by ¢ and letting & tend to zero, we obtain {3 ((z, + v,)7,
Y,)dt = 0for any y € C°((0, 1) x IR ). This implies z, + v, = 0 a.e., and z + v being
a continuous function we obtain z,(x) = v,(x), (x, t)e[0, 1Tx R ..

It only remains to check condition (iv). For each ¢ > 0 the support of 4, is
included in the set {z°+ v < 0}, which decreases when ¢ decreases. Hence the
support of # is included in {z + v £ 0} for any ¢ > 0.

Therefore j(o yxpo, 7z + v)dy < <0. By the monotone convergence theorem
f0.1yx10,71(z + v)dn < 0. Hence {0, 1)x (0, 77(z + v)dyy = 0 for all T > 0. This implies
(iv) because the measure # is concentrated on (0, 1) x IR ., by definition.

Step 4. Proof of (5) Let t5 > 0. For any 0 < § < t, we define the function
1
g(t—to+5) if t6—0=5t51,

1
W{t) = 5(t0+5—t) if to<tSst,+6

0 otherwise .

Let ¢ CL((0, 1)).
Choosing y(x, t) = ys(t)¢(x) in (15), we obtain

to to+aé to+d

=07 [ ($z)de+ 07" [ (doz)di+ [ yu(t)(46, z,)dt
to— 90 to to—§&
to+o to+s 1

+ J ¥ (fle + v), )dt = f_ég%(f)mx}?}(dx,dtl

to=—-3
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Letting § tend to zero yields fé d(x)n(dx x {t,}) =0, which implies
7((0, 1) x {to}) = 0, for any t, > 0. The same argument can be used if 7, = 0. In this
case one uses the property z(x, 0) =

Step 5. Proof of (6) For any é > 0 we define the following function

-

0 fOSx<dorl—-O6<x=£1
%(x—é) if d<x<20

P = 1 f20<x<1-26
\;(1—5—x) f1-20<x<1-9¢.

Set ¢,(x) = x(1 — x)Ps(x). _
We can apply the equality (15) to Y(x, t) = ¢4(x) 1j0,71(f) and we obtain

_ T _ T _ T1 _
(96, 27) + I(A(f)aa z)dt + | (@5, f (2. + v,))dt = | | da(x)n(dx, dr) .
0 Q 00
It just remains to prove that

T —
| (s, z;)dt

0

sup
>0

< o,

and this follows from the equality:

(Ads, 2) = 2(¢s, 2:) — < J (1= 2x)z(x)dx — 1 lfa (1- 2X)Zt(X)dx>

1 24
— Z0)(1 = &) — z,(28)2(1 — 26) — z,(1 — 28)2(1 — 26)
+z,(1 = 8)(1 —d)).

2.3 Uniqueness of the solution

Suppose that (z, ) and (z, 77) are two solutions. Define ¢ = z — z. Then for any
infinitely differentiable function y¥: (0, 1) x R, — IR whose support is contained in
[6,1 - 61x R (for some 6 > 0), and for all T > 0, we have

(Y. Ery— | (af‘ >dt + j(ft, Ayr)de + j(f(z, + 0) — [ (& + v), ,)dt
‘ (16)

= { [ y(x, t)n(dx, dt) — f j V(x, t)n(dx, dt) .
00 00

Fix 6 > 0 and let : [0, 17— R, be an infinitely differentiable function whose
support is contained in [4, 1 — J].

Let &t R> R, be an 1nﬁn1tely differentiable function, Wthh i1s symmetric
(i.e., e(x) = &(—x)), its support is contained in [—1, +1], j' L &(x)dx =1 and
it is nonnegative definite (ie., Z[ L Z, L &l — x,)y,y, >0 for any n=1,
{X1,..., %,y =Rand {y1,..., y.} = R).
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By means of the function &(x) we introduce the approximation of the identity
&, (x) = ne(nx).
Define ¢, ,(x, t) = g,(t)e,(x) and

l/’n,m = [(é(P)*En,m](P .

That means,

t+(1/m) 1

Un,m(X, 1) = < [ Je, 90)elt — s)enlx — y)dy dS) ), (17

= (1/my* 0

where we assume (1/n) < 4.
We can choose { =, ,, in (16). We are going to study the asymptotic
behaviour of each term as n and m tend to infinity.

(@)
im (f,,(T), &(T)) = [E(D)e | (18)
(b)
lim [(6‘/'" ad 5,) (19)
n,m—o 0

In fact, we have

(O mlt)
(e o

T t+(1/m)
g ) 8n(t—5)< RLe2 S)qo(y)Sm(X—J/)co(x)i(x,t)dxdy> dsdr .

=(1/m)* [0, 1}

The functlon T(s, ) = fio,172 E(3, )@ (¥)eml(x — ) @(x)E(x, t)dxdy is symmetric
(namely, TI,(s,t) = Ia(t s)). Therefore, the integral (7 [(XG/M&T &t —s)
I,(s, t)dsdt vanishes due to the property &'(s) = — &'(—s).

Hence
T  T+(/m
j. <5¢n m(t) ét> - j‘ f 8;(t — S)Fm(S, t)det
0 T~ (1/n) T
C
<—.
n
()

O s

T T1
lim (f Ya,m(x, t)n(dx, dt) — f § Yn,m(x, £)n(dx, dt))
n,m— o \0

gf(x, t)o(x)*n(dx, dt) — f f Ex, o (x)*77(dx, dt)

ov——n-]

T 1 T1 :
= [ 20x, ) (x)*n(dx, dt) — | [ z(x, )@ (x)*7(dx, dr) £ 0 (20)
00 00
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where the second equality follows from the properties [o(z + v)dy =0 and
{0 +v)d7=0.

(d
lim j(f(zt +v,) = f(& + v,), lpn,m(t))dt
n,m—o0 0
T
= ‘[ (fe+uv)—fE+v), (2, — Z_t)ﬁoz)dt =0 (21)
0

because f is nondecreasing.
(e} It holds that

) ) ) T 1 T1
liminf lim { (A, n(s), &)ds = — 3 [ E(x, 1) (@) (x)dxdz . (22)
m-w noo 0 ()
In fact, first notice that
T T
lim I(Awn,m(s): és)dS = j (Alﬁm(s)’ is)ds p
n—ow 0 ¢

where

1
Ym(x, 1) = <£ E 1)@ (Y)em(x — y)dy> @(x) .

Suppose first that £ is a smooth function. In this case, integrating by parts and
using the fact that ¢ is nonnegative definite we obtain

(Ar(t), &) = (A{ &P *enl @} &) = (& 0) *em) @, &) + (G @) % 2m) @', &)
= (& @) * &m, 0C/) + ((5:0) % &, 9C1) + ((E:0) * Em,y @'E))
2 ((69') * &m, 1) + ((5:0) % my ¢'E1)
= ((£:¢") *&m, &1) — (@) * &my 97E1)
—((Eip) *&my 0'C) — (£ @) % &y @)

= = (@) *em, 9"&) — ((Ei @) * emy 9'C1) -

Approximating ¢ by smooth functions we obtain the inequality
(AYm(2), &) 2 — (@) 2 &m, 9"E) — ((6:0) % ems 9'CL)

and if we let m tend to infinity we get (22).
Consequently, from the relations (a), (b), (), (d) and (e) we deduce

T 1

[, TYo(x)?dx < % [t [ &x )% (9*) (x)dx , (23)
0 0 o]
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for all 7> 0 and any function @ e C2((0, 1)). This inequality still holds if ¢? is
a function with compact support such that (¢?)” is a measure. Suppose that

(1

-(x—-a fa<xZa+e

e

1 fa+e<x=Zh
@*(x) = 3

%@+a—m fb<x<b+e

0 if xe[a, b+ ¢€]°,

-

where 0 <a<a+e<b<b+e< 1 From (23) we have
1 T
e &(x, TPp(x)*dx = [ dt{é(a t)* — &(a + & t)* — E(b, 1) + E(b + &, 1)}
o] 0

Set B(x) = 5 &(x, )*de. Then
pla) —pla+e —pb)+ b+ 20,

pb + ) — pla + &) = p(b) — (a) . (24)
By taking e = b — a we get

Bla + 2&) — Bla+ &) = Bla + &) — B(a) .
So,ﬁ(l(—:—l>—ﬁ<§>20for k=0,1,...,n—1, because ﬂ()—ﬁ(0)=

that means,

k+1
(1) = 0. On the other hand B(1) = 0. Therefore f ~inL _B
n

k and » and this implies § = 0. So ¢ =0, and from (16) we deduc
completes the proof of uniqueness.
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