JOURNAL OF FUNCTIONAL ANALYSIS 112, 447458 (1993)

Absolute Continuity of the Law of
the Solution of a Parabolic SPDE

ETIENNE PARDOUX*

Lab. de Mathématiques, URA 225, Université de Provence,
F 13331 Marseille Cedex 3, France, and INRIA

AND
ZHANG TUSHENG'

Department of Mathematics, Universitetet i Oslo,
PB 1053 Blindern, N-0316 Oslo 3, Norway

Communicated by Paul Malliavin

Received April 1992

Let {u(t,x);120,0<x<1} denote the solution of a white noise driven
parabolic stochastic partial differential equation with Dirichlet boundary condi-
tions. Using Malliavin’s calculus, we give a necessary and sufficient condition for
the law of the r.v. u(s, x) to a possess a density. ' 1993 Academic Press, Inc.

1. INTRODUCTION

Consider the following stochastic partial differential equation,

8 FE
6—‘: (1, x) =a—; (¢, x)+ (1, x; u(t, x))

+g(t, x u(t, x)) Wt,x); >0, O<x<l (1)
(0, x) = uy(x); u(t,0)=u(z,1)=0, =0,

where W denotes space-time white noise, w, € Co([0,1]) (ie, u is
continuous and uy(0)=uy,(1)=0) is a deterministic function, /,g: R, x
[0,1]xR—> R are measurable and locally bounded functions which
are differentiable with respect to their third argument, the derivatives
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J'=20f/0z, g’ = dg/dz being locally bounded. We suppose moreover that g
is jointly continuous and that there exists ¢ such that

f(e, x2) gl x o)<l + |z12), (t.x,z)eR, x[0,1]1xR. (2)

We normally write f(u(s, x)) instead of f(s, x; u(s, x)), and similarly with

f.g and g'.
Equation (1) is formulated rigorously as

1
u(1, x) :f G, J(x, yv)uy(yv)dy
4]
ot 1
+ 6 Lo fts, vy dy ds
0v0

[
[ ]G xp)gtuts 1) Wiy, ds), 3)
0“0

2

where G ,(x, y) denotes the kernel of ¢’?, A being the operator 3%/0x? on
(0, 1) with Dirichlet boundary conditions.

It is shown in Gydngy and Pardoux [3] that under the above conditions
Eq. (3) has a unique adapted solution {u(s,x);7=0,0<x<1} with
continuous paths.

The aim of this paper is to prove:

THEOREM 1.1, Ler (1, x)€ (0, ) x (0, 1). The law of the r.v. u(t, x) is
absolutely continuous with respect to Lebesgue measure iff there exists
se [0, 1) such that g(s, -; u(s, - ))#0.

This result will follow from:

THEOREM 1.2,  Suppose that g(0, y; ug(y))#0 for some ye[0,1]. Then
for any t >0 and 0 < x < 1, the law of the r.v. u(t, x) is absolutely continuous
with respect to Lebesgue measure.

The paper is organised as follows. In Section 2, we formulate a suf-
ficient condition given by the Malliavin Calculus for the conclusion of
Theorem 1.2 to hold, and compute the Wiener space derivative of u(z, x).
In Section 3 we prove a result about the support of the solution of a linear
SPDE, which allows us to prove Theorem 1.2, and we finally prove
Theorem 1.1,

We note that there does not seem to be any other alternative approach
to our result. This is a big difference with most of the results produced by
the Malliavin calculus applied to “ordinary” SDEs.
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2. MALLIAVIN CALCULUS, AND APPLICATION TO
Our WHITE NoIse DriveN SPDE

We note that the stochastic integral in (2) is an It6 integral with respect
to the Brownian sheet { W(¢, x); (4, x)e R, x [0, 1]}. Let this Brownian
sheet be the canonical process defined on 2= Cy(R, x [0, 1]) (the space
of continuous functions on R, x [0, 1] which are zero whenever one of
their arguments is zero), equipped with its Borel o-field #, and the
“Brownian sheet measure” P.

Let S denote the set of “simple random variables™ of the form

F=f(W(h,), ..., W(hy)),

where de N, h,e L} (R, x (0, 1)), and W(h,) denotes the Wiener integral

1
W(h,):ju L h(1,x) Widx, di), 1<i<d,

1)

and fe C(RY). For such a r.v. F, we define its “derivative’

{D, F,(t,x)eR, x(0, 1)}

by
d (Qf
D, F=73 ——(Wh), .., Why) hi(1, x)
=10
and its | - ||, , norm by
1FI3 s = E(F? + I DFl T2, « 0.11)-
We denote by D' ? the closure of S with respect to the norm || -/, ,.

D" ? is a Hilbert space. It is the domain of the closure of the derivation
operator D (which we still denote D).

We can also define directional derivatives as follows. For any
he LY(R, x(0,1)), Fe S as above

d
DhF=£ f( W(h|)+ C(h» h] )v sy W(hd) + C(hw hd))ln:()'

D, can be extended as a closed operator on L*(£2), with domain
D, > D" Furthermore, for any orthonormal basis {h,,n=1,2,..} of
LY (R, x (0, 1)), we have that Fe D" iff Fe D, for each n>1 and

i E[(D, F)]< o

n=1
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In that case,

Dr“\'F: Z Dhthn(” x)

n=1

=Y (h,, DF)hy1, x),
n=1
where (-,-) denotes the scalar product in L*(R, x(0, 1)), and for
he L3R, x (0, 1)),

D,F= Z (h,. DF)(h,,, h).

n=1

Let F=a{W(s,x); 0<s<t, 0<x<1} v .4, where 4 denotes the
collection of P-null sets of #. We say that a random field {v(¢, x); >0,
0<x<1} is adapted if for each (r,x)eR, x[0,1], v(s, x) is F
measurable.

Following Bouleau and Hirsch [1] and Nualart and Pardoux [5]
we state the:

DeriNiTION 2.1. D! 2 denotes the set of random variables F to which

one can associate a se/c{iilence {(R2,,F,)} =« F xD"? such that:
(1) 2,c2,,.,.n21;1,82,=2 as.
(i) Flo,=F,lg.n>1

Such a sequence {(£2,, F,)]} is called a localizing sequence for F.

The following result, which follows from the local property of D, is
proved in Bouleau and Hirsch [1] and Nualart and Pardoux [S]:

PROPOSITION 2.2. Let FeD,?. There exists a unique measurable

Sfunction of (t, x, w) DF such that for any localizing sequence {(R,, F,)},
I, DF=1, DF,, dt dx dP ae.

The following result is an immediate consequence of Proposition 7.1.4 in
Bouleau and Hirsch [1]:

PROPOSITION 2.3. Let F be a (real valued) random variable. A sufficient
condition for the law of F to be absolutely continuous with respect to
Lebesgue measure is that

(i) FeD!\?

loc

(i) [DF| 2. x>0 as
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We now turn to the solution # of Eq.(3). Let 1>0 and O<x< 1.

We first need to show that u(s, x)eD,;? and compute D,u(t, x) for
he LAR, x (0, 1)).

PROPOSITION 2.4. For any (1,x)e(0, +oc)x (0, 1), u(t, x)eDL2, and

loc

for any he LA (R, x (0, 1)), D, u(t, x) is the unique solution of the following
SPDE:

! 1
Djult, x)= jo f G, (x, v)g(uls, y)) h(s, y) dv ds
7 i
[ [ G 30 (s, ) Dysals, y) dy s
oY

1l
+ [ [ Gt y) &' tuls, ) Dyuts, y) Wid, ds)
0o

t=20, xe[0,1].

Proof. Note that the equation for D,u formally reads
¢ a2 ,
5, Dault, x) === D ult, x)+ 1" (u(t, x)) Dyult, x)
+g'(u(t, X)) Dyu(t, x) Wit, x)
+g(u(t, x)) h(t, x), 120, 0<x<1;

D,u(0, x)=D,u(t,0)=D,u(t, 1)=0, 0<x<1, >0

Under our standing assumptions, we have (see [3]) that for any 7> 0,
p=1,

E( sup lu(t, x)|”) < 0.

0<1<7.0sxxg1

Hence, since f, f', g, g are locally bounded, it follows from Definition 2.1
and Proposition 2.2 that it suffices to prove the result (with the reinforced
statement u(1, x)e D" ?) under the additional assumption that f, /', g, and
g’ are bounded, which we assume for the rest of this proof.

Let {e;,i=1,2,..} be an orthonormal basis of L*(0, 1) consisting of
smooth functions which vanish at 0 and at 1. We first show that for
peL*(R,) and A(t, x)=p(t)e,(x), u(t,x)eD,, and derive the equation
for D,u.

Let us approximate the SPDE for « by a sequence of SDEs.
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Let {ul""(1); 1<i<n, 120} denote the solution of the SDE

dul "ty = — Z (eje;)ul™(1) a’l+< ( Z ul " (1) e,), e,) di

i=1 j—1

+ (g( Y1) (> e,) AW
i=1

ut "O) = (uy, €;), 1<i<n;

with ¢” =1 if i<m and x7" =0 if i>m. Since {u7"(r)} is the solution of
an SDE with C| coefficients, driven by the finite dimensional Wiener

process { W'!: 1 <i<m,t=0}, it follows from the results in Watanabe [8]
that u/-"(1)e D" 7,

Dl "m()=0 for m</|,

and for m=/, {D,u""(t); 20,1 <i<n} in the unique solution of the
SDE

dDu’"( <g<z u't "'(l)e,), ,) p(1) dt — Z (e;,e;) Dyu-"" (1) dr

=1

+(fr Z un m 1)€> Z Dhun m(l)é’k,(),>dt

k=1

+ ym <g (Z “n m ) Z D;,ll" m e:) du/lr,

;-1 k=1
D,ul"(0)=0, I1<i<gn

Now we have that

<Z u" iy e, ( z D"t D) e, ')>~»(u(r, x), v(t, X))

i=1 i=1

in LX(82), if we let first # — oo, then m — o, where v satisfies the SPDE
t el
u(t, X)=f J G, J(x,y)gluls, y)) his, y)dyds
0v0
t sl .
+[ 76wy £ tuts, ) et ) dy ds
0 Y0

oAl
+f J G, J(x, ) g (u(s, 1) v(s, y) W(dy, ds).
00
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Indeed, the convergence as n — «¢ to a pair of SPDEs driven by the m
dimensional Wiener process (W, .., W) is the well-known convergence
of the Galerkin method, see, e.g., Pardoux [6] (the pointwise convergence
in {1, x) follows from the integral representation of the equations), and then
the convergence as m — 2o follows from Lemma 2.1 in [2].

Hence from the closedness property of the operator D,,

v(t, x)=D,u(t, x).

It remains to show that if {h,} is an orthonormal basis of
L*(R, x (0, 1)), each h, being of the same form as above,

S (D, ult, 1)) < ot

n=1

But

1l
E(\D,, ult, x)|2)<c5fj G? (x. p)(D,, uls. v))* dy ds
0 Y0

+cF [I f] G, J(x, »)gluls, v)) b (s, v)dvds ) .
Y0 Y0

Hence, if V(1) £sup EY"_,|D, ult, x)|?, ¢ denoting a constant

whose value may vary from one line to another, but which is independent
of m,

1

(1)<(J- ,[: () Vu(s)dyds+c L:J Gl (x,y)dyds

0
ol l/
1+ IH(Y’ )

( [—S

l+ ,,,u)d ds )
0 o\/v*u /{—

se(1+
se(1]
( a’s
(

1

+

V,(u) du)

n « (—s)(v—u)

<c| 1+ V,,,(u)du)

Y0

and

V, (< ce”,
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for all me N. Hence sup, EY.7_, |D, u(t, x)|* < oc. We have proved that
u(t, x)e D2 The equation for D,u when 4 is not of the form considered
in the first part of this proof follows by linearity and continuity with
respect to h. |}

3. ProoF OF THEOREMS 1.1 AND 1.2

We first prove Theorem 1.2. In view of Proposition 2.3 and 2.4 all we
need to show is that the condition g(0, y; us(y)) #0 for some ye [0, 1]
implies that || Du(t, x)| >0 a.s., for any given +>0 and 0 <x< 1.

Suppose for instance that for some O <y <1, g(0, y;uy(y))>0. Since
(s, z) = g(s, z; u(s, z)) is a.s. continuous, there exists ¢ >0 and a stopping
time 7 s.t. 0 <t <t as. and

(6, z; u(8,z))>0, y—e<z<y+e 0<0<1.

Note that
t al
|Du(t, )| >0 | [ 1Dy ult, x)| d= db >0
0 Y0

and a sufficient condition for this is that

T perte
f f 1D, .ult, x)| dz df > 0. (4)
0 Yy—¢

However, it follows easily from the comparison theorem in Donati-Martin
and Pardoux [2] that for any heL*(QxR_ x[0,1];dPxdtxdx)
such that h(s,y) i1s %, measurable for each (s,y) and supp(k)c
{(s,¥) 805, y;u(s, )20}, Dyult, x)20. Hence D, _u(t,x)=20 as., for
any (0,z)e [0, t]x[y—eg y+e]

Now (4) is equivalent to

Jr f + D, .u(t, x)dz d§ >0,

0 Yy

and a sufficient condition for the conclusion of Theorem 1.2 to hold is that

y+e
[ Dpueydz>0  as, vo<o<r (5)

¥y

But

y+e
o(0; 1, x) éj Dy .ult, x) dz

yoe
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is the unique solution of the SPDE

yv+e

(8¢t x) =J G, 4(x, z)gu(B, 2)) d=

v—¢

+ Jl fl G, (X z2) f(u(s, z))v(8;s,2)d= ds
00

+J’ .[l G, J(x,z)g'(uls, z)v(8;s, z) W(dz, ds). (6)
oo

Indeed, for any pe L* (R, ), v,(1, x) & [§ p(8) p(6; 1, x) dB coincides with
D,u(t, x), where h(t, x)=p(t)I;,_, ., 4(x), since the two quantities solve
the same equation.

Hence the result will follow from

PROPOSITION 3.1. Under the above assumptions,

v(B;t, x}>0, Vi>0, O0<x<l; as.

Proof. Our proof is inspired by that of a similar result in Mueller [4].
However, we rely on a cruder (and simpler) estimate. Since v(f;-) is
a.s. continuous, it suffices to prove that for any fixed 1>0, O<x <1,
v(0;t, x)>0 as.

Using a standard localization procedure, one can easily see that it
suffices to prove the result under the assumption that f°, g, and g’ are
bounded. For the sake of simplifying the notations we choose =0, and
write v(7, x) for v(0; 1, x). We note that v solves the lincar SPDE

dv &% .
~a—t=—é?+f’(u) v+g'(u)yoW

v(0) =g,
where
(P(Z) = I[y - L,y+n](z) g(u(oa Z))

> ﬂ‘[yfe, y+r,](z)

for some f>0. From the comparison theorem in Donati-Martin and
Pardoux [2], it suffices to prove the result with

CP(Z) = ﬁl[,\' - & y+e](:)

580:112:2-15
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and by linearity we can as well choose f=1. Hence we are reduced to
prove our result with

o(z)= I[a.h](:)3

where 0 <a < b <1 are arbitrary. Moreover, 0(f, x) = e“v(¢, x) satisfies the
same equation as v, but with f"(«) replaced by f'(u)+ ¢. Hence we can
assume that f'(u)=0, and again from the same comparison theorem, it
suffices to prove the result with /'(«)=0. Hence

1
ol )= [ G lx ») @(v) dy
Q

+ j' fl G, {x vig'(uls, v)) ois, v) Widy, ds). (7)
0 Y0

Suppose for instance that

a<x<l

(the case 0 < x < a is treated analogously). Let meN. For k=1,2,..,m,
consider the event

kt
Ek = {U <'r;’ > 2 “kl[u, h+dk,c‘m]( : )},

where d> 0 is such that x<b+d< 1, and x>0 is given by

x=13 inf inf

Ilsk<m asysb+dkimvy

b+ dik - tym
J. Gr;‘m(za ,V ) dZ.

Let 6 > 0 be an arbitrarily small number. We show that for m large enough,
Oog<ksm—1,

. o
PE;, JEcr - nEN<. (8)

Suppose for a moment that (8) is true. Then

é
P(E,  \JE A - f‘EJ)?l—;

and

PE, - mE,,,)2<1—£>
m

=1-4.
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Hence

P(u(t, x)>0)= Plo(t, ) Z o™, o y(-))

Z 1 - 5’
and since o is arbitrary,
P(u(t, x)>0)=1.

It remains to prove (8). It suffices in fact to show that
0
P(EJ)<—. (9)
m

From the definition of « and (7), it is easily seen that (9) is a consequence
of the

LemMMA 3.2.  For any 8 >0, there exists mge N such that for any m=my,

t 0
L2 (;;J") ‘ >a><;;,

where v3(t, ) & [4 [4 G, (1, 2) g'(u(s, 2)) v(s, 2) W(dz, ds).

Proof. 1t suffices to show that there exists n, p> 1, and ¢ such that

P( sup

ogysl

E( sup o (e, yN") < et”. (10)

O0<yxl

In order to prove (10), we first note that

ol a2
E(lv(s, y)l")@(jo fo G? (v, z)dz ds) ,

since g’ is bounded and E(supy<, <0<, <1 10(s, ¥)|") < ¢ Hence

n/2

4 i ‘
Elloo(t )"y < e <J'O L Gi_,(y,z)dz ds) ",

where 2/r +2/g=1. Provided r <3, hence g > 6, we deduce
E(jo (¢, ") < et™. (11)

Similarly, we obtain, following the computations in Corollary 3.4 of
Walsh [7],

E(lvy(t, x) —vy(t, ¥)|"y S efx — pi™? 1, (12)
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Inequality (10) now follows from (11), (12}, and Corollary 1.2 in [7], if
we choose n>¢g>6. |

It remains to prove that Theorem 1.1 follows from Theorem 1.2. First
note that if g(s, p;u(s,y))=0 on [0,t]1x[0,1], then wu(z x) 1is
deterministic. If that is not the case, then there exists a random time 7 such
that 0< T'<t as. and a %, measurable random element Xe [0, 1] such
that g(7, X; u(T, X)) #0. By conditioning by .%;, the result now follows
from Theorem 1.2.
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