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We prove existence and uniqueness of the solution of a white noise driven
parabolic SPDE, in case the drift is measurable and satisfies a “one sided linear
growth condition,” and the diffusion coefficient is nondegenerate, has a locally
Lipschitz derivative, and satisfies a linear growth condition. The proof combines
arguments similar to those of Gyongy and Pardoux together with an estimate of the
density of the solution of the equation without drift, which is obtained with the help
of the Malliavin calculus. %1 1994 Academic Press, Inc.

1. INTRODUCTION

Consider the following white noise driven nonlinear SPDE:

u 2

(1, ¥)=6

6—(! x)+ flu)(t, x)+ glu)t, x) Wi, x),

¢
ot

t>0,0<x<1; (1.1)
u(0, x)=uy(x),0<x < 1; w(t, ) =u(,1)=0,t20;
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where {W(1, x)} is a formal expression for the “space-time white noise,”
Slu)(t, x) := f(¢, x; u(t, x)) and similarly for g, with

R x[0,11xR-R
g R, x[0,}]xR-R,

and uge Co([0, 1]} (Co([0, 1]) stands for the set of continuous functions
on [0, 1] which vanish at the endpoint 0 and 1). Equation (1.1) is a formal
writing. One rigorous formulation of (1.1) is the “weak formulation™:

(1, @) = s 9) + [ (u(s), @) ds+ [ (fla)(s) 0) s

+IrJ @(x) g(u)(s, x) W(ds, dx)
00
Vt>0, ¢eC*R)suchthato(0)=¢(1)=0. (1.2)

In (1.2), (-, -) denotes the scalar product in L*(0, 1). The second rigorous
formulation is the integral formulation:

ult, x) = jol G(x, y) uo(y) dy + fo j G, .(x, y) flu)s, v)dv ds

1
¢}
t ol
+[ 76, ) glalts, ) Wids, dy),
00
120,0<x<1, (1.3)

where {G(x, y)} stands for the fundamental solution of the heat equation
in R, x [0, 1] with Dirichlet boundary conditions, i.e., {see Feller [3]):

1 (2n+y—x)2> < (2n+y+x)2>}
-—|—exp|{ - ——————— .

X1 "=Z;°c {exp( 2t 2t

Note that the results given in this paper hold true also in case of
homogeneous Neumann boundary conditions. The proofs are in fact
simpler in that latter case.

It is shown in Walsh [11] that the two formulations (1.2) and (1.3) are
equivalent, provided the random fields f(#) and g(u) are locally bounded.

Existence and uniqueness of a solution to the above equation is proved
in [11] under Lipschitz continuity assumptions on f and g. Strong and
weak existence and existence/uniqueness results under weaker assumptions
can be found in Gyoéngy and Pardoux [6]. In the case of a constant

Gx, y)=
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diffusion coefficient, it is shown in Gyongy and Pardoux [4] that the
equation has a unique strong solution in case of a measurable drift
coefficient f which is locally bounded and satisfies a so-called “one sided
linear growth condition.” The result is extended to a class of nonnecessarily
locally bounded drifts in [5]. In those two papers, the case of Neumann
boundary conditions is treated in detail, and the necessary adaptations for
the case of Dirichlet boundary conditions are indicated at the end.

In this paper, the assumptions concerning the drift f are those of [4],
while the diffusion coefficient does not vanish, has a locally Lipschitz
derivative, and satisfies a linear growth condition. It is shown that the
equation has a unique strong solution. We treat only the case of Dirichlet
boundary conditions, which is the hardest one.

Note that our results are close to those of Veretennikov [10] in the case
of “ordinary” SDEs. However, we are not able to dispence with the
Lipschitz continuity of the derivative of the diffusion coefficient. Note also
that the one dimensionality of the solution is crucial in our approach.

Most of the methods of proofs are very close to those in [4], except for
the first step, which consists in an L”-estimate of the density of the solution
of the equation without drift. That estimate is very easy in the case of
constant g since the density is Gaussian and known explicitly. In the
present situation, the estimate is obtained via Malliavin’s calculus.

Malliavin’s calculus has been first applied to the equation under study in
Pardoux and Zhang Tusheng [9] in order to obtain the existence of a
density for the law of u(¢, x), where +>0 and 0 < x < 1, under a very mild
condition. It has been further developed in Bally and Pardoux [1] in order
to establish the existence and smoothness of the density of the law of
(u(t, xq), ult, x5), o, (u(t, x,)), for t>0, 0<x, <x,< --- <x,<1, under a
nondegeneracy assumption. We exploit here some of the tools in [1] in
order to estimate the density.

The paper is organized as follows. Section 2 is devoted to a precise
statement of the assumptions, Section 3 to the estimation of the density.
Section 4 contains some preparatory results for the existence theorem.
Section 5 establishes the existence and uniqueness results under restrictive
assumptions, which Section 6 extends to the general case, and gives a
comparison and a continuity theorem.

2. ASSUMPTIONS AND NOTATIONS

We consider Eq. (1.1) (ie, Eq.(l1.2) or equivalently (1.3)). The
“space—time white noise” W(dl, dx) is defined as follows. We are given a
zero mean Gaussian random field

{W(B), Be (R, x [0, 1]}}
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defined on a probability space (£2, #, P), with covariance given by

E[W(B) W(C)] = dt dx.

BnC

For any he L*(R, x [0, 1]), we can define the Wiener integral

Lu J[o.l] ht, x) Widt, dx).

Let %, denote the completion of
o{ W(B), Be B([0, 1]x [0, 11)}.

We denote by £ the c-algebra of %-progressively measurable subsets
of xR, . For any 2® #([0,1]) measurable random field {¢(¢, x)}
satisfying

1
Ef.[wummm<w,
R, *0
we can define the 1t6 integral

N JOI olt, x) Widr, dx).

That integral can for example be considered as a stochastic integral with
respect to a martingale measure; see Walsh [117].

We look for a Z® ([0, 1]) measurable and a.s. continuous solution
{u(s, x);, (1, x)e R, x [0, 1]} of (1.2) (or equivalently (1.3)).

Let us now formulate three sets of assumptions on fand g. We say that
the pair (f, g) satisfies the set of assumptions (A) whenever f and g are
measurable mappings from R, x [0, 1] x R into R and R {0} respectively,
which satisfy moreover:

(Ai) fand |g| ' are locally bounded;

(Ail) for all T>0, there exists C(7) such that for any
(r,x;r)e[0, TIx[0,1]1xR,

e xS C(TY1 +r?)
g(t, x; )2 < C(TH +77).
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(Aiil) g(f, x, -)e WE=(R)' for ditxdx almost all (4,x) in R, x

loc

[0,17; g, dg/ér, and 3%g/or* are locally bounded on R, x [0, 1] x R.

We say that the pair (f, g) satisfies the restricted set of assumptions
(RA) whenever it satisfies (A) and moreover

(RA) f.|gl ', g 0g/dr, °g/dr® are bounded on R, x [0, 1] xR.

Finally, we say that the pair (f, g) satisfies the restricted set of smooth-
ness assumptions (RSA) whenever (f, g) satisfies (A) and moreover:

(RSA1) f(t, x, -)e W>™(R) for any (¢, x)in R, x [0, 1].

(RSAii) f, 8f/or, éf16r%, |g| ', g, Jg/or, and °g/dr? are bounded on
R, x[0,1]xR.

3. AN A Priorl ESTIMATE FOR THE DENSITY OF
THE LAW OF THE SOLUTION

In this section, we assume that the pair (f, g) satisfies (RSA). Then
Eq. (1.2) has a unique solution {u(t, x); (¢, x)e R, x [0, 1]}. Moreover it
follows from Pardoux and Zhang Tusheng [9] that forany 1> 0,0 <x <1,
the law of the random variable u(¢, x) has a density p, (-) with respect to
Lebesgue measure.

This section is devoted to the proof of:

THEOREM 3.1.  Assume (RSA). Then for any T>0 and 1 < g <2, there
exists a constant K (f, g), which depends only on T, q and the bounds
which are assumed in (RSAIii), such thar:

T pl
[ 1pedole dy dx di <Ky (£ 9. (34)
0 Y0 YR

It follows from a standard approximation argument that it suffices to
prove the result with the additional assumption:

(RSAiii) f(¢t, x; -), g(t, x; -)e C*(R), for any (1, x)e R, x [0, 1].

We now fix T>0, and we delete the subscript T from the constant K.
Let us now recall several elementary facts about the Malliavin calculus
for the space-time white noise W. We denote A,={(t,x):te[0, T],

' WZ>(R) denotes the space of functions from R into R which are of class C', the first
derivative being absolutely continuous and the almost everywhere second derivative being
locally bounded.
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xe(0, 1)} and L*(A;) the L?-space with respect to the Lebesgue measure.
For he L} (A;) we let

Wi(h) = jrj' h(t, x) W(dx, dt).

0 Yo
The space of “smooth functionals™ is
‘¢= {sz( W(hl)9 bde) W(hn)) :fe CZO(R"’ R)s

hie LA (Ag), 1<i<nneN}.

For Fe.% one defines the derivatives

D'zk)F= i ail ot aikf( W(hl)5 ey W(hn)) hil(al) BRI hiﬂ(dn)’

i =1

where &, = 8/0x’, a=(a,, .., 2,) and a;= (r, z,)e Ad;, 1 <ign.
For keN and p>1, %, , is the closure of & with respect to the
seminorm

k
IFl ko= 1FIl , + _Z (E(IDVFI7))'™”

with
|IDVF| 2 =: j IDVDF? da (do = Lebesgue measure).
A7
One also considers L: ¥ — L*(2) given by

LF=3} 0,f(W(h,), ... W(h,)) W(h,)

i=1
-y 0,6, f(W(h,), ..., W(h,))<{h;, h;>,
Lj=1

where -, -> denotes the inner product in L*(A4;).

L is a closable operator and one denotes by Dom L its domain. It is well
known that Dom L=2Z, =:(\,> Nken~ % ,- The functionals we work
with are in 2. The basic formulas in this case are the following:

(i) L(FG)=FLG+GLF~2{DF, DG>
(i) De(F)=¢'(F)DF (3.5)
(i) E({DF, DG))= E(FLG)= E(GLF),

for F,Ge 2, and ¢ € C™(R) (actually much less regularity is needed).
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One defines
oy.={(DF,DF

and assumes that y.= 1/0 exists and is in 2. Then, a standard calcula-
tion based on (3.5) (see Ikeda and Watanabe [7] for details) yields

E(¢'(F))=E(@(F) H,), (3.6)
with
Hy= —y.LF—(Dyy, DF>. (3.7)
We need the evaluation
IH el < Uy plla (ILF+ 2(E | D?FI5)'), (3.8)

where || ||, is the norm in L3(R).
Note that by (3.5ii), Dy,= —73 Do, and further

(Do, DFy=2[  DE}FD{" FD{}'F dx df.

Ay

This is easy to see on simple functionals and then, by taking limits, it
extends to Fe %, . Next, by Schwarz’s inequality

172
1Dy, DY <2 |y, (Lz (D2FY dx dﬁ)

12
x (f (D\VF)? (DYVF)? da d[f)
A‘T
=2 [y4 |1D®Fl,.

Now (3.8) follows from Schwarz’s inequality.
We now prove:

LEMMA 3.2. Let Fe&, such that y. exists and is in &,. Then
PoF dx)= pux)dx with p.e C*(R) and the following evaluations hold:

PHx) <N HElly (PO 2 [x])'2, (3.9)

and, for every p=1 and a, >0 such that ap <2 < fip

JR |p () dx <Ky IH A (IFIZ + LFIG). (3.10)
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Proof. The existence and the regularity of p, is a consequence of
Malliavin’s absolute continuity theorem. Let us prove (3.9). Take
@ e C*(R) such that ¢ 20, [, @(x)dx=1 and @(x)=0 for |x|>1. For
6> 0 one defines

@s(x)=08""o(x/5)

p00=[ gsndy  and Y= @)y

One has: 0< ¢, Y;< 1, and ¢5=0,, Yy5= —@,. Then, by (3.6) and the
continuity of p,

prx)=lim [ pAy)ps(y—x)dy
=0 YR

= lim E(@;(F—x))

3—0

= lim E($5(F—x))
o —0

= lim E(¢;(F—x) Hg)
30

SE(lps o Hp)

Next, by Schwarz’s inequality
pr(x)<IH e, (P(Fzx)'7. (3.11)

The same argument with ; instead of ¢, yields
Pr(X)S | H )y (P(F< X)) (3.12)

By using (3.11) for x>0 and (3.12) for x <0 one gets (3.9).
Let us now prove (3.10). One writes

[ 1peCen” dx<IH, 15 (j[l | (PUFI > [x)))2 d
Rz Iy a)
[-1.1¥
1
<||Hgl4 (LA e |1"2(E|F| Vo2 dx

+J[ 111 1’C|ﬂ02(EIFIﬁ)12dY>
<K,z W HAE (VFP2+ I FIG2),

with Ka.ﬁ = “‘[ 1,1] lY| /2 dx + j[, L1 |x\ —Fei2 dx. l
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Now we want to apply Lemma 3.2 to F=u(¢, x) in order to get (3.4).

For that sake we need to evaluate the quantities in the RHS of (3.8), and
for this we need the following evaluations on G:

LemMa 3.3. (i) There is a constant C> 0 such that
J"r . L] G? (x,y)dvds=G \/7_7 (1—¢ 141 _ g 20 - x)ny2
Jor12<x<land O<y<t. (3.13)
J.r’ . LI G? (x, dvds=C \/E (1 —e V41— o= 2im)2

for0<x<12and 0<n<t (3.14)

(i) For eachQO<q<3 and 0<a<(3—gq) A 1, there exists a constant
K such that

t sl
[ [ G x p dyds <Ko n (1= x)yr e 0 02
[URgY)

for0<x <1 and t >0. (3.15)
Proof. (1) Note first that
! (v x)2r (¥ +x)42¢ (=24 y+x)P2e
Glx, p)B—m= (e " Ve rRE_p (2t
2nt
U e
— e > .x)s-/(l_e ..,(\,‘r_e 2(1 — x)(! ,\),‘r).
2nt

This is because
e (2n+ y - P2 —e™ 2n+ v+ x)52r 2 0 fOl' n 2 1’
and

RN} _ . Y
e-l2n+) ")”2[—6‘ (2n 2+.\+,\)‘Zl>0 for n<—1.

Take now x>1, ye[x—1%,x] and > 1—5>0. One has

1 . . , ‘ 2
G,, s(x’ }’,)2 efl.\— w2 - .\|(1 _e——lﬂlt] _e—fZ(I - x) m)
2n(t—s)
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and consequently

j'Ln J;i 1/4 Gi_(x, ) dy ds

> (1 __e—l,“ttn__e—lll*x]ls‘n)z

0o 1 y 2
XJ‘ .[ (——"'_._.———__. e(xy'“z(lf"v'> d_V ds
t—ndx- 14 \/27r(t—s)
> C\/E(l _e~l/4r]_e—2(17x]2/‘y7)2.

If x <! one computes the same lower bound with ye [x, x + ;] instead
of ye[x—1 x] and gets the same result with x instead of (1 —x). So
(3.13) and (3.14) are proved.

Let us now check (3.15). Denote by B* Brownian motion starting from
x and by t* the first time that B™ exist [0, 1 ]. Then G (x, y) is the density
of the semigroup of the Markov process obtained by killing B* at time t~.
So, by the Markov property

G (x, y)=E(G,,(B*(u/2), y); T° = u/2). (3.16)
Note also that

! o Y |
f G ,(a, y)dysKJ [ e‘“-""“] dy<K'jue= "2 (3.17)
0 ) oL/ nu

By using (3.16) and Holder’s inequality first and (3.17), one gets

1
J, 61 ey

H
<E( [ 160 aalB(r=s)2) 0 i (1= 572)
0
<KP(t* > (1—$)/2)/(t —5)~ D72, (3.18)
It is well known that P(t¥2 u) < Ku~"?(x A (1 —x)). Since P(1* = u) <

1, one has

Ja
which, together with (3.18), yields
ol 4 ds
q y y i X
ot ey ds< K 00y [ o

=K(x A (1—x))*ePe=22 |
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Let us denote by o, . the Malliavin covariance matrix of u(z, x) and
prove

LEMMA 34.  Assurme (RSAIii). Then

/0, s < K(f; @)1+ 1//1 (x A (1 —x))). (3.19)

Proof. Consider the equation satisfied by D, u(r, x) (Eq.(3.15) in
Bally and Pardoux [1]). A standard uniqueness argument shows that

D:’l‘.'i)u(r’ x) = g(u)(r’ Z) S(r,:)(,’ x)y

where S is the solution of the equation
t al
Salte X) =G, 6,20+ [ |Gyl ) €5, 9) Syl ) Widy, dis)

t pl
6 e ) Pt 1) Syl 1) dy ds,
r o

where g'(u)(s, y) = (Cg/0r)(s, y; u(s, ¥)), f'(u)(s, y)=(ffor)(s, y; uls, y)).
Since |g] is bounded away from zero, it follows that

t pl
sz | [ 82 () dzar
00

Fix some 7>0, take ¢>0 such that 1 —2exp(—1/4T¢)> 1 and define
h,(x)=¢(x A (1 —x))% Then, by (3.13) and (3.14)

r

fl G2 (x, y)dyds> Cﬁ\/r (x A (1—x))
4]

J 1 — h(x)k) 2k

forevery 0<t<T, xe(0,1), and k= 1.
1t follows that

14
o, =C J.
(1

(r,2)

1
j S2 (1, x)dz dr
he(x)ik2) 70

\Y%

2 ! 1
—czf f G2 (x, z) dz dr — 263, (1, x) — 2c2T,(1, x)
3 11 - htx)k?) Yo

2
>C # % (x A (1= x)) = 2621, X) — 230,(1, ),
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with

L= LT 60 tx »gs

(1 — he(x)ik?)
2
x S(r.:)(ss _V) W(d}’, ds)) dZ dr

r

seo=[ (]G s

2
X S(r,:](s’ y) d_y ds) dZ dl‘.

Let us denote a=C3-c? \/5/3 -\/;(x A (1—x)) and write

4 =4} 4
E((l/a,,.K)“)s(é) PO<1/o, < 1ja)+ 3 (k“) P(’—‘<—‘—<k“).

k=1 a a O-l.,\' a

One dominates the first term in the RHS by (1/a)* and, for k> 1, one
writes

1 k+1
P </f< gi—) < P(o,  <alk)
a

<P <2€2(lk(t, X))+ (1, x)) = 5’1];)

a

a
SP I 3 25 P AT Z_T-
(k(’ Y) 8c2k>+ (J‘(’ x) 8c~k)

2 10
<(8‘;k) (E 1L (t, )"+ E | Ju(t, x)|'°).

By (A.6) in Bally and Pardoux [1]

E L (t, )| < K(f, g)(eh,(x)/k*)"°

=K'(f, g) a®/k*,

and the same for J(1, x).
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One concludes that

=~ rk+ I\ (k1 k+1 = k4 1\ /8ck\1° a®
() e )sn s () (55) =
=1

Pt a a o, X a a

x

=:K"{/, g)< 0.

LemMMa 3.5, Assume (RSAii). Then, for every 0 <a <1 and >0
(E1DPu(t, x)|13)" S K(f, g)x A (1—x))¥2 e 0208 = (3.20)
and
(E |Lu(t, x)|*)'"* < K(f, g)(x A (1 —x))¥2 e 0 -=a-e (3.21)
Proof. Let a=(& a) with a=(fz), a=(rz), O<r<F<t and
z,ze(0,1). Then, the equation (Eq.(3.16) in Bally and Pardoux [11)
satisfied by D®u is

DPu(t, x)=G, (x, Z) g'(u)(d) D u(d)

+Jl fo‘ G, J(x, ¥) f"(uls, y) DMuls, y) DMu(s, y) dy ds

+ f,’ Ll G,o(x, ¥) &"()(s, ) Dy us, y) Duls, y) Widy, ds)
+ f: Ll G,_(x, ) f(u)(s, ¥) DPuls, y)dy ds

+£ JOI G, _J(x, ¥) g'(u)s, y) DPu(s, y) W(dy, ds)

5
=Y I, x).
i=1
We shall prove that each IY'(s, x), 1 <i< T, satisfies (3.20). The proof is
similar for each i, so we check (3.20) for 1¢%'(¢, x) only.
We make the convention DPu(s, y)=0 for 7x=s. For every
(s, y)eR, x[0, 1], a runs in 4% so we may consider

Aol
Mk )= ]G ) £ W5 ) DPuls, y) Widy, ds). 0<h <
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as an L*(A3)-valued martingale. Its increasing process is

0= {16, 5, ¥) € s, ) DPuls, 3) 3, v ds

l/'g

h sl
<lglx ( fo f G (x, y)dy ds)
h Al ljp
x(j [ 1D%uts, )13, dyds) :
0 Y0

where p, g > 1 are conjugate numbers.
Then, by Burholder’s inequality for Hilbert space valued martingales
(see, e.g., Métivier [8, E.2. p. 212])

2\ t/4 ‘
(E } | 190 21 e ) = (EIM(5, ) )"

SK(EKM>@0)H

£ el 1/4
<kife o) (14 [ E1Duts, 10 )
1/2¢q

! 1
x (f f G (x, y)dy ds> . (3.22)
[ORd)
The same argument as in [ 1] show that
t al
f j E [ D®ufs, y)]| Bqz, dy ds < 0
0Y0

and (3.15) yields

1/2¢4

t ol
(f |, 62, y)dyds) SK(x A (1= x))72 020
00

Now, by taking ¢ sufficiently close to 1, (3.20) is proved.

Let us prove (3.21). Since u(t, x)e 2., it follows that u(z, x)e Dom L.
On the other hand, it is easy to prove (one uses the discretized Eq. (3.4) in
[1] and the definition of L on smooth functionals) that Lu(z, x) is the
solution of the equation

SBO 120 2-18
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! 1
Lu(t, X):.f I G, (x, p) gu)s, y) W(dy, ds)

00
1 ol

B J;) J;) Glfs(x’ }’)f”(ll)(s, _}’) Oy dy ds
t ol

B fo _[0 G, (x, ) g"(u)s, y)a,  W(dy, ds)

w1 6w ) S s, ) Luts, y) dy ds
¢}

+[ [ Gt ) & )s. ) Luls, ») Wiy, ds)
00

=: Y 1%, x). (3.23)

i=1

Let A> 1. Burholder’s and Holder’s inequalities yield

A2 ) 174

o tet
(E9( ) <K (1] (E ' [ [ 6 xne, avds
070

[} 1124
<kigl ([ | o2 sy as)

Al2pN 1A

SK(f, g)(x A (1 —x))¥2 ot mmia—e (3.24)

¢l
J j ol dyds
00 ’

the last inequality holding for ¢ sufficiently close to 1. The same inequality
holds for 7" and 7%
Now, by using (3.23), (3.24), and Burkholder’s inequality, one gets

A2

r al
E|Lu(t, x)* <K+ KE“ f G2 (x, y) |Lu(s, ¥)|* dy ds
0vo

A2A

<K+K ( fo LI G (x, y)dy ds)

. L jol E |Lu(s, y)|* dy ds,
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where 1' is the conjugate of /2. If A>6 then 24'<3 and so [,
G¥ [(x, y)dyds<oo. Then, a Gronwall type argument permits us to
conclude that

sup E |Lu(t, x)}* < oo, Vi> 1.

1x

So the reasoning in (3.24) holds for /™ and I also and (3.21) is
proved. |

Proof of Theorem 3.1. By Lemmas 3.4 and 3.5

[Huioolla S KL )1+ /020 A (1= x))) £ 7500 A (1= )220

<K(f, g)(l +t"““+°"/4’(x A (1_.\,)))——(n+(2' 1]J’2D.

Since sup, , |lu(t, x)|| , < oo, Yp 2 1, (3.10) yields

fnr jol fR 1P, (1)) dy dx di

T dt ! dx
SK(f; g) (1 +J;) Ip(;;+(l+al/‘4i.J‘0 (X A (] _x))p(f:+(2 1)2))' (325)

If p <2 one may choose a < 1 sufficiently close to 1 and ¢ > 0 sufficiently
close to 0 in order to get p(e + (1 +a)/4) <1, p(e+(2—ua)/2) < 1, so that
the two integrals in the RHS of (3.25) are finite and so the proof is
complete. |

Remark 3.6. Under the additional assumption sup u,S[a, 1 —al]c
(0,1), 0<a<4, one would get that (3.4) holds for any ¢ <2.3. That is
because |G,(x, uy) — up(x)| < Kt'?(x A (1 — x)) for (¢, x) sufficiently close to
the corners of the domain {0, oc) x (0, ). Then one applies Lemma 3.2 to
F(1, xY=u(t, x) — uy(x) which verifies

t pl
Ft, ) = (G,(x, uo) = uo(x)) + | |G, 9) £G)(s, ») Wiy, d)

#[]6, o 9 flts, v) dy ds
0vo

The same arguments as in Lemma 3.4 show that [F(s, x)||,<
Kt((1 —o)/4)(x A (1 —x))*2% Coming back to (3.10) and taking advantage
in this majoration also yields (3.25) with ¢~ t+=)—tl -z ap4
(x A (1—x)) @2 0=22 |f ope takes a=1%, then p=1.
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A weaker assumption which permits to improve Theorem 3.1 is that
u, be Hoélder continuous at x =0 and at x=1. In that case, the theorem
holds with any ¢ > f3, and f§ depending on the Holder exponent for u,,
2<ff<23.

4. PRELIMINARY RESULTS

In this section, we assume that the set of “restricted assumption” (RA)
are in force.

Let {u(t, x); (+,x)eR, x [0, 1]} be a continuous and 2Z® B([0,17])
measurable solution of Eq. (1.1). We have the:

ProPOSITION 4.1. For any T>0 and p>?2, there exists a constant
K(T, p) (which depends also on || [ .., ligl ., llég/erl.., 10%g/er®| ., and
g "Il ..) such that for any measurable h: R, x[0,1]xR->R,,

o T

EJ Jol hit, x;u(t, x)) dx dt < K(T, p)(LTL' IR h(t, x: 2" d= do dr)llp.

0
Proof. We fix T>0 throughout the proof. Let f{1, x:z)=

S, x; z)/g(t, x5 z2).
Define

Z =exp (— JOT _[Ol F(u)(t, x) W(dt, dx) — 3 JOT J-Ol fz(u)(r, x)dx dt)

and a new measure P on (R, #) by dP = ZdP.

Since f is bounded, it follows from Girsanov’s theorem applied to
space-time white noise (see, e.g., Gyongy and Pardoux [6]) that P is a
probability measure under which

Widt, dx) = flu)(1, x) dt dx + W(dt, dx)

is a space-time white noise. Clearly, u solves the SPDE
1 t ol -
u(t, x)= | Gx uly)dy+ [ [ G, (x, v) gluts, ) Wids, dy)
0 0 -0

Hence, from Theorem 3.1, under P, u(t, x)(t>0,0<x<1) has a density
B, () which satisfies (3.4).
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Then, if r, ¥, g, ¢ >1,r "+r '=1,¢ '+q =1,

T 1
Ej j h(t, x; ult, x)) dx dt
0 Y0

= E(z - TJOI h(t, x; u(t, x)) dx dt)

o

s ) ) - T A1 1/r
<TV(EZ ")V (EJ j (e, x: u(t, x)) dx dt)
0“0
T Al 1/r
<C(T,r) (L L jﬁ (1, x;2) f, () dr dx dt)
T fl 1/q°
<C(T,r) (L fo JR . (2)7 dz dx dx)

X (L}T Lj J‘R h(t, x; z) dz dx dt)wq.

The result follows from (3.4) by choosing some ¢ with 2 <g < p (hence
g'<2)and r=p/q. |

Let {f,(t,x,z);t20,xe[0,1],zeR}, n=1,2,.. and {f(1, x;r},
r=0,xe [0, 1], re R} be measurable mappings which satisfy:

(A) f, is bounded, uniformly with respect to n.

(B) f,—fin LP((0, T}x(0,1)x(—R, R)) as n — o0, for some p>2
and any 7, R>0.

We assume moreover that

(C) for any neN, there exists a continuous and Z#® #([0, 1])
measurable solution u, to Eq(f,, g), and for every (1, x)e R x [0, 1],

u,(t, x)—u(t, x)as., as n-—w,
where u is an R-valued random field.

The aim of this section is to prove

THEOREM 4.2. Assume (A), (B), and (C), and moreover that for any
T>0

sup sup |u,(t, x)| < oC as.
H (t,x)e [0, 7T} x[0.1]

Then u solves Eq(f, q).
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We first establish:

LEMMA 4.3, Assume (A) and (C). Then u satisfies Proposition 4.1.

Proof. We sketch the argument, which is identical to that of
Proposition 3.2 in [4]. If 4 is continuous with respect to r, the result
follows by taking the limit in the results for u,, as n — oo. The general case
follows from the monotone class theorem. |

ProrosiTioN 4.4,  Assume (A), (B), (C). Then
T #1
E[ [ 1)t 0~ f@)t, ) dedi >0, as n- .
0 Y0
Proof. The proof is again very similar to that of Proposition 3.3 in [4].
Let 7> 0 be fixed throughout the proof. Define x: R — [0, 1] be a smooth

function such that x(r)=0 for |r| =1 and k(0)=1. Given ¢>0, let R>0
be such that

T pl
EJ j 11— ie(u(t, x)/R)| dx dt <e.
0 Y0
Since the set {f,},.c (where N=NuU{+ow}, f,=/f) is relatively

compact in L”((0, T)x (0, 1)x (— R, R)), there exists Ne N and bounded
smooth functions H,, ..., Hy from [0, T]1x [0, 1] x R into R such that

T ol sR lip
sup inf <j '[ f | £t x, r)— H, (¢, x, r)[”drdxdt) <e¢
ne I1<is N 0 Y0 Y-R

1) = B[ [ 10 )= f0)e )] dic e
<1y(n)+ () + Ty(n) + Ly,

where
L =E [ [ 1)1 )~ Hofu, )t ) d di
Lm=Y E[ [ 1Hu)0 5 Ht, x) dd
i=1 0 vo
T »l
By=E[ [ L), x) = (e, x)f dx

1 = [ [ 17,00 x) = f)s 0] dx

1
0



WHITE NOISE DRIVEN PARABOLIC 503

where i, = Arg min, || f, — H| ,. We now estimate successively each of the
above terms. For any 1 </ < N, by Proposition 4.1,

h(n)sEﬂ K(1,/R) | flu,)~ H, (u,)] dx dt
0 Yo
+EJ0T‘L] (1 —K(u,,/R)) |fn(un)_ Hl},(un)l dx dt

T 1 R p
<K(f [ [ i xn=-Ha x;f)l”drdxdt)
0 Y0 n

-R
T 1
+KEJ f I — k(u,/R)| dx d.
0 0
Hence
T sl
1imsup1,(n)<K<e+Ej j 11 — k(u/R)| dxdt)
n 0 Y0

< 2Ke,

and this holds for any ¢ > 0.

By continuity and boundedness of the H/s, I,(n) >0 as n— cc. By
arguments similar to those use for estimating [/,(rn), we deduce that
I(n) — 0, as n— 0. Finally, from Lemma 4.3,

Iin)= E.[le k(u/R) | f, (1)~ f(u)| dx dt
0 Y0
+Efor f(,l (1= Kk(u/R)) | folu) ~ f(u)] dx dt

T ol oR 1p
<Kk J j j Ity xs )= flt, x;r)\Pdrdxdt]) + Ke,
0 Y0 Y-R

hence /,(n) » « as n— oc, from (B). §
We can now proceed with the

Proof of Theorem 4.2. 1t suffices to take the limit in the identity (with
e CH[0, 1]) N Co([0, 1])):

1 1 1 )
L u,(t, x) p(x)dx = L uo{x) @(x)dx+ J;) L u,(s, x) @"(x) dx ds
+] ] 00 it x) dx ds

+ .(01 fol ¢(x) glu,)(s, x) Wids dx).
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We can take the limit in this identity as # — oo (for the term involving
Jfulu,), we use Proposition 4.4), yielding

fl u(t, x) (x)dx = _[l uo(x) @(x) dx + f] u(s, x) @"(x) dx ds
+j j @(x) f(u)(s, x) dx ds

1 sl
+ [ [ o) glits, x) wids, dx).
0v0
The result is proved. |
5. EXISTENCE AND UNIQUENESS UNDER
THE “‘RESTRICTIVE ASSUMPTIONS”

In this section, we assume again that the “restrictive assumptions” (RA)
are satisfied. In particular, f, g, and g ' are bounded.

THEOREM 5.1.  There exists a continuous and P ® #([0, 1]) measurable
solution of Eq(f, g).

Proof. The proof is very similar to that of Theorem 4.1 in [4]. Let
peCT(R; R,), with [, p(z) dz=1. For je N, define
Tieeiry=j | fitx2)plitr—2)) de
for n<k,

fn,k = /\ ];

and for ne N,

\1

Fe

Clearly, f,, is Lipschitz in r, uniformly with respect (¢, x),
Talt,xsr) L fift, x;r) as kT oo and f,(¢4, x; 7)1 f(¢, x;r) as nT o0, dr ae., for
each (1, x).
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We first note that for each n <k, Eg(f, ., g) has a unique solution u, ,.
From the comparison theorem for SPDEs (see, e.g., Theorem 2.1 in
Donati-Martin and Pardoux [2]), the sequence {u,,,k=nn+1,..} is
decreasing; hence

u, (1, x) L u,(t, x), Vit, x)eR, x[0,1], as.

Since moreover u, ,(t, x) is bounded above by the solution of E¢(X, g) and
below by the solution of Eg(— K, g) for some K > 0, all the assumptions of
Theorem 4.2 are in force. Hence u, solves Eq(f,). Now, since u, ; <u, .\ 4,
k=n+1,

w,(t, x) L u(t, x)

and from the same argument as above, u solves Eq(f, g). u is
PR B([0,1]) measurable by construction. Its continuity follows from
Walsh [11]. |}

THEOREM 5.2. Eq(f, g) has at most one continuous and 2 ® ([0, 1])
measurable solution.

Proof. Let u denote the solution constructed in Theorem 5.1, and v
another solution. Define ¢(t, x) := f(v)(1, x). @ is 2 ® $([0, 1]) measurable
and bounded. Note that v solves the two following SPDEs:

v o
() T=amto+g)W
v o
(**) E':&xz"'fn(v)\/(p'*'g(v)'w’

where ne N is fixed. For k > n, let v, denote the unique solution of

dv, &%

5 = o ) v e+ g W

with initial v,(0, x)}= uy(x), xe [0, 1], and Dirichlet boundary conditions.
Note that

r_’fn,k(t’ X, r) Vv (p(t’ x)

is uniformly Lipschitz, and also this coefficient is random, the usual theory
of existence and uniqueness as in Walsh [11] applies. Now, v is the unique
solution of Eq. (*), which is an equation with Lipschitz coefficients. Hence
from the comparison theorem (Theorem 2.1 in [2]),

Uk(ls x) P U(t9 )C),
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and the sequence {v.(#,x);k=1,2,..} is decreasing. It follows from
Theorem 4.2 (which again can be adapted to the present situation of
random coefficients) that

o(t, x) ;= lim v, (1, x)
k — o

solves Eq. (**). Moreover,
o(t, x) = v(¢, x).

But from Girsanov’s theorem, the law of the solution of () is unique.
Hence

v=vo.
Finally, again by the same comparison theorem,
velt, x) 2 1, 4 (1, X).
Hence
v(t, x) = u,(t, x), VneN,
and

v(t, x) =2 u(t, x).

But again uniqueness in law applies to Eq(f, g). Consequently, u=v. |

6. EXISTENCE AND UNIQUENESS IN THE GENERAL CASE
In this section, we assume that the set of assumptions (A) is satisfied.

THEOREM 6.1. There is one and only one continuous and P ® #([0, 1])
measurable solution of Eq(f,g).

Proof. Uniqueness. Let u and v be two solutions. For R> 0, let

te=Iinf{#; sup |u(t, x)| v |v(¢, x)| = R},

O0<xxt
fr(t, x;r)=f(t, x; (r A R) v (= R)),
grlt,x;r)=g(t, x; (r A R} v (—R)).



WHITE NOISE DRIVEN PARABOLIC 507

fr and gg satisfy the (RA) assumptions. But the restrictions of # and v to
[0, 721 x [0, 1] are restrictions of the unique solution to Egq(fs, gr)-
Hence, they coincide. The result follows, since Ttz — o0 as R — oc.

Existence. For any R>0, let fr and g, be as defined in the proof of
uniqueness, and u, denote the solution of Eq(fx, gg) Let

T =1nf{r = 0; sup jug(s, x)| = R}

X

and 7=1limg_ , Tz. Clearly, we can define a solution u of Eq(f, g) on
[0,7)x [0, 1] by

u(t, x)=uglt, x) on [0,1,]x[0,1], R>0.
It remains to show that 1 = + oo p.s. This follows from

sup E( sup IuR(s,x)|")<oo
R>0 (5.x)e[0.r]x [0, 1]}

for any 1 >0 and some k> 0.
This last estimate is proved exactly as in Theorem 5.2.5 of Gyodngy and
Pardoux {6]. |

We conclude this section with the proofs of two auxiliary results. We

begin with a comparison theorem.

THEOREM 6.2. Let two pairs of coefficients (f, g) and (F, g) satisfy the
set of assumptions (A). Suppose moreover that

S, x; r) < F(t, x; r) dt xdx x dr ae.

Let u (resp.v) denote the solution of Eq(f, g) (resp. of Eq(F, g)). Then
u(t, x)<o(t, x), V{1, x)e R, x [0, 1], as.

Proof. 1t suffices to prove the results on [0, 74] x [0, 1], where

tr=Inf{s; sup lu(s, x)| v |o(t, x)| = R};

X

hence it suffices to prove the result in case the coefficients satisfy the set of
restricted assumptions (RA). » and v are approximated by the double
sequences u,,, and v, , as in Theorem 5.1. But u, , <v, . follows from the
comparison theorem in Donati-Martin and Pardoux [2]. |
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We finally want to show that the solution u depends continuously on the
data (ug, /. £).

THEOREM 6.3.  Let (uy,. f,, &) denote a sequence of initial conditions
and coefficients which satisfy:

(1) wgn€ Co([0,1]), neN and ug,(x) — uy(x) uniformly with respect
to xe[0,1], as n - oo;

(i) for each neN, (f,, g,) satisfies the set of assumptions (A), and
moreover:

(a) the constants {C(T), T>0} in (Aii) do not depend on n,
(b) for each T, R>0Q,

sup sup |k, (1, x, r)| <o
neN (1,x.re(0,T]1x[0,1]x[-RR]

with f,,, g7, g, 0g,/0r, and &g, /or? in place of h,;
(c) asn— oo,
fot, x,r)— f{t, x, r)dt dx dr ae.

gt,x,r)— g(t, x,r) foreach reR, dtdxa.e.,

with (f, g) satisfying (A).
Then if u, denotes the unique solution of Eq (uq,, [, g,) and u the unique
solution of Eq(u,, f, g), for any T >0,

sup |un(t’ x)—u(f, x)l -0
(1,x)e[0,7T]x[0,1]

in probability, as n — 0.

Proof. The same arguments as those used to establish (28) in
Donati-Martin and Pardoux [2] lead to

sup E( sup lun(t, x)|7) < o0,
x (r,.x)e [0, T]x[0,1]

for each 7>0, p>=1. But from the local boundedness of f, and g,
uniformly in #, we deduce by the arguments in Lemma 6.1 of [2] that for
any T>0, K> 0, there exists a constant C(p, T, K) such that for all (z, x)
and (s, y)in [0, T]x [0, 1],

E(fu,(1, x) —u,(s, )7 sup lu,(2, x)| < K)

(r,x)e[0, T} % [0,1]

<C(p, T, K) |(x, 1) = (y, 8)| 74 ¢
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It now follows that the sequence (u,,u) is tight in C([0, T] x
[0, 17; R?), for all T>0. Now for each ne N, @, y € CH0, 1)~ Co([0, 17]),

(1), 9)+ (D), 9) = (o, 9+ ) + [ Llu(s), 0)

+(uls), ") + (fu(w,)(s), @)
+(SQ)(s), )] ds + M™%(1),

where {M™*¥(1), 120} is a martingale with the increasing process
r el
ey (1)= || Lea(wa)is. x) @(x)+ g0, ) Y (x) T d d.

Combining classical arguments with those in the proof of Proposition 4.4,
on can show that for any weakly converging subsequence (u,,, u) — (&, u),
the limit (u, u) solves a similar martingale problem; hence there exists a
space-time white noise W (possibly defined on some enlarged probability
space) such that

%f(t, x)=§;§ (1, X)+ f(@)(1, x) + g(F)(1, x) W(t, x)
au 6211 A

= (1, %) = 53 (1, %)+ S(w){1, ¥) + g(u)(1, x) W1, x)
i 0x

(0, x)=u(0, x) =uy(x), xe [0, 17];
a(t, 0)=u(t, 1)=u(t,0)=u(1,1)=0,t=20.

Therefore from the uniqueness part of Theorem 6.1, i =u as.
Consequently, for each 7> 0,

E( sup |, (2, x)—u(t, x)} A 1)—>0,

(e[, TIx[0.1]

as n— o0,

Remark 6.4. In the case where g, = g for each n, one can prove that

sup lu,(t, x)— u(t, x)] - 0as.,
(,x)e [0, T]x [0,1]
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as n— oc. The proof of as. convergence exploits again heavily the
comparison theorem, in exactly the same way as it is done in Gyongy and
Pardoux [5].

1

10.

I
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