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Abstract. We consider a discrete model of population dynamics with interaction between individuals, where the birth and death
rates are nonlinear functions of the population size. We obtain the large population limit of a renormalization of our model as the
solution of the SDE

Zx
t = x +

∫ t

0
f
(
Zx

s

)
ds + 2

∫ t

0

∫ Zx
s

0
W(ds,du),

where W(ds,du) is a time space white noise on [0,∞)2.
We give a Ray–Knight representation of this diffusion in terms of the local times of a reflected Brownian motion H with a drift

that depends upon the local time accumulated by H at its current level, through the function f ′/2.

Résumé. Nous considérons un modèle d’évolution d’une population avec intercation entre les individus, où les taux de naissance
et de mort sont fonction de la taille de la population. Nous obtenons la limite en grande population après renormalisation, qui est
solution de l’EDS

Zx
t = x +

∫ t

0
f
(
Zx

s

)
ds + 2

∫ t

0

∫ Zx
s

0
W(ds,du),

où W(ds,du) est un bruit blanc sur [0,∞)2.
Nous donnons une représentation de cette diffusion à la Ray–Knight, en fonction des temps locaux d’un mouvement brownien

réfléchi H avec une dérive qui dépend du temps local accumulé par H à son niveau courant, à travers la fonction f ′/2.

MSC: Primary 60J80; 60F17; secondary 92D25
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Introduction

Consider a population evolving in continuous-time with m ancestors at time t = 0, in which each individual, indepen-
dently of the others, gives birth to children at a constant rate μ (in our model each birth event means the birth of a
single individual), and dies after an exponential time with parameter λ. For each individual we superimpose additional
birth and death rates due to interactions with others at a certain rate which depends upon the size of the total popu-
lation. For instance, we might decide that each individual dies because of competition at a rate equal to γ times the
number of presently alive individuals in the population, which amounts to add a global death rate equal to γ (Xm

t )2, if
Xm

t denotes the total number of alive individuals at time t .
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If we consider this population with m = [Nx] ancestors at time t = 0, weigh each individual with the factor 1/N ,
and choose μN = 2N + θ , λN = 2N and γN = γ /N , then it is shown in Le, Pardoux and Wakolbinger [7] (in the
above particular case of a quadratic competition term) that the “total population mass process” converges weakly to
the solution of the Feller SDE with logistic drift

dZx
t = [

θZx
t − γ

(
Zx

t

)2]dt + 2
√

Zx
t dWt, Zx

0 = x. (0.1)

The diffusion Zx is called Feller diffusion with logistic growth and models the evolution of the size of a large popu-
lation with competition. In this model θ represents the supercritical branching parameter while γ is the rate at which
each individual is killed by any member of her generation. This model has been studied in Lambert [5], who shows in
particular that its extinction time is finite almost surely.

We generalize the logistic model by replacing the quadratic function θz−γ z2 by a more general nonlinear function
f of the population size. We then obtain in the continuous setting a diffusion which is the solution of the SDE

Zx
t = x +

∫ t

0
f
(
Zx

s

)
ds + 2

∫ t

0

∫ Zx
s

0
W(ds,du), (0.2)

where the function f satisfies the following hypothesis.

Hypothesis A. f ∈ C(R+;R), f (0) = 0 and there exists β ≥ 0 such that

f (x + y) − f (x) ≤ βy, x, y ≥ 0.

Note that the Hypothesis A implies that for all x ≥ 0,

f (x) ≤ βx.

It follows from Theorem 2.1 in [3] that equation (0.2) has a unique strong solution. Indeed, if we let f1(x) = βx and
f2(x) = βx − f (x), we have the decomposition f = f1 − f2 with f1 Lipschitz continuous and f2 continuous and
nondecreasing. Hence the assumptions of the quoted theorem are satisfied, as a consequence of Hypothesis A. We
note that since f (0) = 0 (see Remark 1.1 below for discussion of this assumption), the unique solution starting from
the initial condition x = 0 is Z0

t ≡ 0. Consequently, from the comparison Theorem 2.2 in [3], we deduce that Zx
t ≥ 0

for all x > 0, t ≥ 0.
An equivalent way to write (0.2) is the following.

Zx
t = x +

∫ t

0
f
(
Zx

s

)
ds + 2

∫ t

0

√
Zx

s dWx
s , (0.3)

where Wx is a standard Brownian motion. However, if we use the formulation (0.3), the joint evolution of the vari-
ous population sizes {Zx

t , t ≥ 0} corresponding to different initial population sizes x has a complicated description,
whereas the formulation (0.2) due to Dawson and Li [3] with one unique space–time white noise W , describes exactly
the joint evolution of {Zx

t , t ≥ 0, x ≥ 0} which we have in mind. We call this diffusion the generalized Feller diffusion.
In order to motivate this continuous model, we first define a discrete model. For defining jointly the discrete model
for all initial population sizes, we need as in [9] to impose a nonsymmetric competition rule between the individuals,
which we will describe in Section 1 below. We do a suitable renormalization of the parameters of the discrete model in
order to obtain in Section 2 a large population limit of our model which is a generalized Feller diffusion. In Section 3
we establish a Ray–Knight representation for such a generalized Feller diffusion. We now state this representation,
which is the main result of this paper. For that sake, let us first introduce some notions. We shall say that the process
{Zx

t , t ≥ 0} is (sub)critical if this process goes extinct in finite time a.s. This notation is meant as a generalization of
the two distinct cases of critical and subcritical branching processes. A necessary and sufficient condition on f will
be given at the end of Section 1 for Zx to be (sub)critical for all x > 0. Let us now assume that f is of class C1,
and introduce the “contour process” of the forest of genealogical trees of the population described by the process Zx

t ,
which is the solution of the SDE

Hs = Bs + 1

2

∫ s

0
f ′(Lr(Hr)

)
dr + 1

2
Ls(0),
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where for any s, t ≥ 0, Ls(t) is the local time accumulated by the process H at level t up to time s. Note that the
last term in the above SDE means that the solution is reflected above 0. The intuition behind the drift term will be
given below. Note for the moment that when f ′ > 0, the interaction with the other individuals in the population favors
longer trees, while when f ′ < 0, the interaction is of the type of a competition, which tends to reduce the size of the
trees. We moreover define the inverse of the local time of H at level 0:

Sx := inf
{
s > 0,Ls(0) > x

}
, x > 0.

Theorem 0.1. Suppose that f is of class C1 and satisfies Hypothesis A, and is such that the population process is
(sub)critical. Then the two random fields {LSx (t), t ≥ 0, x ≥ 0} and {Zx

t , t ≥ 0, x ≥ 0} have the same law.

1. Discrete model with a general interaction

In this section we set up a discrete mass continuous-time approximation of the generalized Feller diffusion. We
consider a discrete model of population dynamics with interaction, in which each individual, independently of the
others, gives birth naturally at rate λ and dies naturally at rate μ. Moreover, we suppose that each individual gives
birth and dies because of interaction with others at rates which depend upon the current population size. Moreover,
we exclude multiple births at any given time and we define the interaction rule through a function f which satisfies
Hypothesis A.

In order to define our model jointly for all initial sizes, we need to introduce a nonsymmetric description of the
effect of the interaction as in [7], but here we allow the interaction to be favorable to the individuals.

1.1. The model

We consider a continuous-time Z+-valued population process {Xm
t , t ≥ 0}, which starts at time zero from m ancestors

who are arranged from left to right, and evolves in continuous-time. The left/right order is passed on to their offsprings:
the daughters are placed on the right of their mothers and if at a time t the individual i is located at the left of individual
j , then all the daughters of i after time t will be placed on the left of all the daughters of j . Those rules apply inside
each genealogical tree, and distinct branches of the trees never cross. Since we have excluded multiple births at any
given time, this means that the forest of genealogical trees of the population is a plane forest of trees, where the
ancestor of the population X1

t is placed on the far left, the ancestor of X2
t − X1

t immediately on his right, etc. . . This
defines in a non-ambiguous way an order from left to right within the population alive at each time t . See Figure 1.
We decree that each individual feels the interaction with the others placed on her left but not with those on her
right. Precisely, at any time t , the individual i has an interaction death rate equal to (f (Li (t) + 1) − f (Li (t)))

−
or an interaction birth rate equal to (f (Li (t) + 1) − f (Li (t)))

+, where Li (t) denotes the number of individuals
alive at time t who are located on the left of i in the above planar picture. This means that the individual i is under
attack by the others located at her left if f (Li (t) + 1) − f (Li (t)) < 0 while the interaction improves her fertility if
f (Li (t) + 1) − f (Li (t)) > 0. Of course, conditionally upon Li (·), the ocurence of a “competition death event” or
an “interaction birth event” for individual i is independent of the other birth/death events and of what happens to the
other individuals. In order to simplify our formulas, we suppose moreover that the first individual in the left/right
order has a birth rate equal to λ + f +(1) and a death rate equal to μ + f −(1).

The resulting total interaction death and birth rates endured by the population Xm
t at time t is then

Xm
t∑

k=1

[(
f (k) − f (k − 1)

)+ − (
f (k) − f (k − 1)

)−] =
Xm

t∑
k=1

(
f (k) − f (k − 1)

) = f
(
Xm

t

)
.

As a result, {Xm
t , t ≥ 0} is a discrete-mass Z+-valued Markov process, which evolves as follows. Xm

0 = m. If
Xm

t = 0, then Xm
s = 0 for all s ≥ t . While at state k ≥ 1, the process

Xm
t jumps to

{
k + 1, at rate λk +∑k

�=1(f (�) − f (� − 1))+;

k − 1, at rate μk +∑k
k=1(f (�) − f (� − 1))−.
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Fig. 1. Plane forest with five ancestors.

1.2. Coupling over ancestral population size

The above description specifies the joint evolution of all {Xm
t , t ≥ 0}m≥1, or in other words of the two-parameter

process {Xm
t , t ≥ 0,m ≥ 1}. In the case of a linear function f , for each fixed t > 0, {Xm

t ,m ≥ 1} is an independent
increments process. In the case of a nonlinear function f , we believe that for t fixed {Xm

t ,m ≥ 1} is not a Markov
chain. That is to say, the conditional law of Xn+1

t given Xn
t differs from its conditional law given (X1

t ,X
2
t , . . . ,X

n
t ).

The intuitive reason for that is that the additional information carried by (X1
t ,X

2
t , . . . ,X

n−1
t ) gives us a clue as to the

fertility or the level of competition that the progeny of the (n+1)st ancestor had to beneficit or to suffer from, between
time 0 and time t .

However, {Xm· ,m ≥ 1} is a Markov chain with values in the space D([0,∞);Z+) of càdlàg functions from [0,∞)

into Z+, which starts from 0 at m = 0. Consequently, in order to describe the law of the whole process, that is of the
two-parameter process {Xm

t , t ≥ 0,m ≥ 1}, it suffices to describe the conditional law of Xn· , given {Xn−1· }. We now
describe that conditional law for arbitrary 1 ≤ m < n. Let V

m,n
t := Xn

t − Xm
t , t ≥ 0. Conditionally upon {X�· , � ≤ m},

and given that Xm
t = x(t), t ≥ 0, {V m,n

t , t ≥ 0} is a Z+-valued time inhomogeneous Markov process starting from
V

m,n
0 = n − m, whose time-dependent infinitesimal generator {Qk,�(t), k, � ∈ Z+} is such that its off-diagonal terms

are given by

Q0,�(t) = 0, ∀� ≥ 1, and for any k ≥ 1,

Qk,k+1(t) = μk +
k∑

�=1

(
f
(
x(t) + �

)− f
(
x(t) + � − 1

))+
,

Qk,k−1(t) = λk +
k∑

�=1

(
f
(
x(t) + �

)− f
(
x(t) + � − 1

))−
,

Qk,�(t) = 0, ∀� /∈ {k − 1, k, k + 1}.

The reader can easily be convinced that this description of the conditional law of {Xn
t − Xm

t , t ≥ 0}, given Xm· is
prescribed by what we have said above, and that {Xm· ,m ≥ 1} is indeed a Markov chain.
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Fig. 2. A forest with two trees and its contour process.

Remark 1.1. Note that if the function f is increasing on [0, a], a > 0 and decreasing on [a,∞), the interaction
improves the rate of fertility in a population whose size is smaller than a but for large size the interaction amounts to
competition within the population. This is reasonable because when the population is large, the limitation of resources
implies competition within the population. A positive interaction (for moderate population sizes) may be explained by
the fact that an increase in the population size allows a more efficient organization of the society, with specalization
among its members, thus resulting in better food production, health care, etc. . . We are mainly interested in the model
with interaction defined with functions f such that limx→∞ f (x) = −∞. Note also that we could have generalized
our model to the case f (0) ≥ 0. f (0) > 0 would mean an immigration flux. The reader can easily check that results
in Section 2 would still be valid in this case. However in Proposition 1.3 and in Section 3 below, assumption f (0) = 0
is crucial, since we need the population to become extinct in finite time a.s.

1.3. The associated contour process in the discrete model

The just described reproduction dynamics give rise to a forest Fm of m trees of descent, drawn into the plane as
sketched in Figure 2. Note also that, with the above described construction, the (Fm,m ≥ 1) are coupled: the forest
Fm+1 has the same law as the forest Fm to which we add a new tree generated by an ancestor placed at the (m + 1)st
position. If the function f tends to −∞ and m is large enough, the trees further to the right of the forest Fm have a
tendency to stay smaller because of the competition: they are “under attack” from the trees to their left. From Fm we
read off a continuous and piecewise linear R+-valued path Hm = (Hm

s ) (called the contour process of Fm) which is
described as follows.

Starting from 0 at the initial time s = 0, the process Hm rises at speed p until it hits the top of the first ancestor
branch (this is the leaf marked with D in Figure 2). There it turns and goes downwards, now at speed −p, until
arriving at the next branch point (which is B in Figure 2). From there it goes upwards into the (yet unexplored) next
branch, and proceeds in a similar fashion until being back at height 0, which means that the exploration of the leftmost
tree is completed. Then explore the next tree, and so on. See Figure 2.

We define the local time Lm
s (t) accumulated by the process Hm at level t up to time s by:

Lm
s (t) = lim

ε→0

1

ε

∫ s

0
1t≤Hm

r <t+ε dr.

The process Hm is piecewise linear, continuous with derivative ±p: at any time s ≥ 0, the rate of appearance of
minima (giving rise to new branches) is equal to

pμ +
[
f

(⌊
p

2
Lm

s

(
Hm

s

)⌋+ 1

)
− f

(⌊
p

2
Lm

s

(
Hm

s

)⌋)]+
, (1.1)

and the rate of appearance of maxima (describing deaths of branches) is equal to

pλ +
[
f

(⌊
p

2
Lm

s

(
Hm

s

)⌋+ 1

)
− f

(⌊
p

2
Lm

s

(
Hm

s

)⌋)]−
. (1.2)
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Fig. 3. Discrete Ray–Knight representation.

Let Sm be the time needed in order to explore the forest Fm. We have

Sm = inf

{
s > 0; p

2
Lm

s (0) ≥ m

}
.

Under the assumption that Sm < ∞ a.s. for all m ≥ 1, we have the following discrete Ray–Knight representation (see
Figure 3).

(
Xm

t , t ≥ 0,m ≥ 1
) ≡

(
p

2
Lm

Sm(t), t ≥ 0,m ≥ 1

)
.

Remark 1.2. We note that the process {Hm
s , s ≥ 0} is not a Markov process. Its evolution after time s does not depend

only upon the present value Hm
s , but also upon its past before s, through the local times accumulated up to time s.

1.4. Renormalized discrete model

Now we proceed to a renormalization of this model. For x ∈ R+ and N ∈N, we choose m = 
Nx�, μ = 2N , λ = 2N ,
we multiply f by N and divide by N the argument of the function f . We affect to each individual in the population
a mass equal to 1/N . Then the total mass process ZN,x , which starts from 
Nx�

N
at time t = 0, is a Markov process

whose evolution can be described as follows.

ZN,x jumps from
k

N
to

{
k+1
N

at rate 2Nk + N
∑k

i=1(f ( i
N

) − f ( i−1
N

))+,

k−1
N

at rate 2Nk + N
∑k

i=1(f ( i
N

) − f ( i−1
N

))−.

Clearly there exist two mutually independent standard Poisson processes P1 and P2 such that

Z
N,x
t = 
Nx�

N
+ 1

N
P1

(∫ t

0

(
2N2ZN,x

r + N

NZ
N,x
r∑

i=1

(
f

(
i

N

)
− f

(
i − 1

N

))+)
dr

)

− 1

N
P2

(∫ t

0

(
2N2ZN,x

r + N

NZ
N,x
r∑

i=1

(
f

(
i

N

)
− f

(
i − 1

N

))−)
dr

)
.

Consequently there exists a local martingale MN,x such that

Z
N,x
t = 
Nx�

N
+

∫ t

0
f
(
ZN,x

r

)
dr + M

N,x
t . (1.3)
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Since MN,x is a purely discontinuous local martingale, its quadratic variation [MN,x] is given by the sum of the
squares of its jumps, i.e.

[
MN,x

]
t
= 1

N2

[
P1

(∫ t

0

(
2N2ZN,x

r + N

NZ
N,x
r∑

i=1

(
f

(
i

N

)
− f

(
i − 1

N

))+)
dr

)

+ P2

(∫ t

0

(
2N2ZN,x

r + N

NZ
N,x
r∑

i=1

(
f

(
i

N

)
− f

(
i − 1

N

))−)
dr

)]
. (1.4)

We deduce from (1.4) that the predictable quadratic variation 〈MN,x〉 of MN,x is given by

〈
MN,x

〉
t
=

∫ t

0

{
4ZN,x

r + 1

N
‖f ‖

N,0,Z
N,x
r

}
dr, (1.5)

where for any z = k
N

, z′ = k′
N

, k ∈ Z+ such that k ≤ k′,

‖f ‖N,z,z′ =
k′∑

i=k+1

∣∣∣∣f
(

i

N

)
− f

(
i − 1

N

)∣∣∣∣.
Now we precise the law of the pair (ZN,x,ZN,y), for any 0 < x < y. Consider the pair of process (ZN,x,V N,x,y),
which starts from (


Nx�
N

,

Ny�−
Nx�

N
) at time t = 0, and whose dynamic is described by:

(
ZN,x,V N,x,y

)
jumps from

(
i

N
,

j

N

)
to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( i+1
N

,
j
N

) at rate 2Ni +∑i
k=1(f ( k

N
) − f (k−1

N
))+,

( i−1
N

,
j
N

) at rate 2Ni +∑i
k=1(f ( k

N
) − f (k−1

N
))−,

( i
N

,
j+1
N

) at rate 2Nj +∑j

k=1(f ( i+k
N

) − f ( i+k−1
N

))+,

( i
N

,
j−1
N

) at rate 2Nj +∑j

k=1(f ( i+k
N

) − f ( i+k−1
N

))−.

The process V N,x,y can be expressed as follows.

V
N,x,y
t = 
Ny� − 
Nx�

N
+ 1

N
P 1

(
N

∫ t

0

NV
N,x,y
s∑

k=1

(
f

(
ZN,x

s + k

N

)
− f

(
ZN,x

s + k − 1

N

))+
ds

)

− 1

N
P 2

(
N

∫ t

0

NV
N,x,y
s∑

k=1

(
f

(
ZN,x

s + k

N

)
− f

(
ZN,x

s + k − 1

N

))−
ds

)

+ 1

N
P 3

(
2N2

∫ t

0
V

N,x,y
s ds

)
− 1

N
P 4

(
2N2

∫ t

0
V

N,x,y
s ds

)
, (1.6)

where P 1, P 2, P 3 and P 4 are mutually independent standard Poisson processes which are all independent of
{ZN,x′

. , x′ ≤ x}. Consequently

V
N,x,y
t = 
Ny� − 
Nx�

N
+

∫ t

0

[
f
(
ZN,x

r + V
N,x,y
r

)− f
(
ZN,x

r

)]
dr + M

N,x,y
t , (1.7)

where MN,x,y is a local martingale whose predictable quadratic variation 〈MN,x,y〉 is given by

〈
MN,x,y

〉
t
=

∫ t

0

{
4V

N,x,y
r + 1

N
‖f ‖

N,Z
N,x
r ,V N,x,y+Z

N,x
r

}
dr. (1.8)
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Since ZN,x and V N,x,y never jump at the same time,[
MN,x,MN,x,y

] = 0, hence
〈
MN,x,MN,x,y

〉 = 0, (1.9)

which implies that the martingales MN,x and MN,x,y are orthogonal.
Consequently, ZN,x + V N,x,y solves the SDE

Z
N,x
t + V

N,x,y
t = 
Ny�

N
+

∫ t

0
f
(
ZN,x

r + V
N,x,y
r

)
dr + M̃

N,x,y
t ,

where M̃N,x,y is a local martingale with 〈M̃N,x,y〉 given by〈
M̃N,x,y

〉
t
= 〈

MN,x
〉
t
+ 〈

MN,x,y
〉
t
= 〈

MN,x+y
〉
t
, ∀t ≥ 0.

We then deduce that for any x, y ∈ R+ such x ≤ y,

ZN,x + V N,x,y (d)= ZN,y.

It follows from (1.6) that conditionally upon {ZN,x′
, x′ ≤ x}, MN,x,y is a local martingale.

1.5. Continuous model with a general interaction

Given a space–time white noise W(ds,du), consider an R+-valued two-parameter stochastic process {Zx
t , t ≥ 0,

x ≥ 0} which is such that for each fixed x > 0, {Zx
t , t ≥ 0} is a continuous process, solution of the SDE (0.2). Now fix

0 < x < y, and let {V x,y
t , t ≥ 0} denote the solution of the SDE

V
x,y
t = y − x +

∫ t

0

[
f
(
Zx

s + V
x,y
s

)− f
(
Zx

s

)]
ds + 2

∫ t

0

∫ Zx
s +V

x,y
s

Zx
s

W(ds,du). (1.10)

The process V x,y is again nonnegative almost surely, from Theorem 2.2 in [3]. We note that

∫ t

0

∫ Zx
s

0
W(ds,du) +

∫ t

0

∫ Zx
s +V

x,y
s

Zx
s

W(ds,du) =
∫ t

0

∫ Zx
s +V

x,y
s

0
W(ds,du) a.s.

This implies that Zy = Zx + V x,y a.s. It follows that, for each t ≥ 0, the process {Zx
t , x ≥ 0} is almost surely non

decreasing and for 0 ≤ x < y, the conditional law of Z
y· , given {Zx′

t , x′ ≤ x, t ≥ 0} and Zx
t = z(t), t ≥ 0, is the law of

the sum of z plus the solution of (1.10) with Zx
t replaced by z(t). When Zx· is replaced by a deterministic trajectory z,

the solution of (1.10) is independent of {Zx′
· , x′ < x}. Hence the process {Zx· , x ≥ 0} is a Markov process with values

in C([0,∞),R+), the space of continuous functions from [0,∞) into R+, starting from 0 at x = 0. When f is a
linear function, the increments of the mapping x → Zx

t are independent, for each t > 0.
For x ≥ 0, define T x

0 the extinction time of the process Zx by:

T x
0 = inf

{
t > 0;Zx

t = 0
}
.

For any x ≥ 0, we call the process Zx (sub)critical (this strange notation means either critical or subcritical) if it
becomes extinct almost surely in finite time i.e if T x

0 is finite almost surely. Hypothesis A implies that f (x)
x

is bounded
from above. Let us introduce the notation

Λ(f ) :=
∫ ∞

1
exp

(
−1

2

∫ u

1

f (r)

r
dr

)
du. (1.11)

Proposition 1.3. Suppose that f satisfies Hypothesis A. For any x ≥ 0, Zx is (sub)critical if and only if Λ(f ) = ∞.
In particular we have:
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(i) A sufficient condition for P(T x
0 < ∞) = 1 is: there exists z0 ≥ 1 such that f (z) ≤ 2, ∀z ≥ z0,

(ii) A sufficient condition for P(T x
0 = ∞) > 0 is: there exists z0 > 1 and δ > 0 such that f (z) ≥ 2 + δ, ∀ z ≥ z0.

Proof. The function

S(z) =
∫ z

1
exp

(
−1

2

∫ u

1

f (r)

r
dr

)
du

is a scale function of the diffusion Zx . Let us denote by T x
y the random time at which Zx hits y for the first time. We

have for any 0 ≤ a < x < b

P
(
T x

a < T x
b

) = S(b) − S(x)

S(b) − S(a)
, and P

(
T x

a < ∞) = lim
b→∞P

(
T x

a < T x
b

)
.

If the function S(z) tends to infinity as z goes to infinity, then P(T x
a < ∞) = 1. Otherwise 0 < P(T x

a < ∞) < 1. From
this we deduce that Zx goes extinct almost surely in finite time if and only if limz→∞ S(z) = ∞, i.e. if and only if
Λ(f ) = ∞. The rest of the proposition is immediate. �

2. Convergence as N → ∞
The aim of this section is to prove the convergence in law as N → ∞ of the two-parameter process {ZN,x

t , t ≥ 0, x ≥
0} defined in Section 1.4 towards the process {Zx

t , t ≥ 0, x ≥ 0} defined in Section 1.5. We need to make precise the
topology for which this convergence will hold. We note that the process Z

N,x
t (resp. Zx

t ) is a Markov process indexed
by x, with values in the space of càdlàg (resp. continuous) functions of t D([0,∞);R+) (resp. C([0,∞);R+)). So it
will be natural to consider a topology of functions of x, with values in functions of t .

For each fixed x, the process t → Z
N,x
t is càdlàg, constant between its jumps, with jumps of size ±N−1, while

the limit process t → Zx
t is continuous. On the other hand, both Z

N,x
t and Zx

t are discontinuous as functions of x.
The mapping x → Zx· has countably many jumps on any compact interval, but the mapping x → {Zx

t , t ≥ ε}, where
ε > 0 is arbitrary, has finitely many jumps on any compact interval, and it is constant between its jumps. This fact
is well-known in the case where f is linear. The general case follows via a coupling argument, see [10]. Recall that
D([0,∞);R+) equipped with the distance d0∞ defined by (16.4) in [2] is separable and complete, see Theorem 16.3
in [2]. We have the following statement.

Theorem 2.1. Suppose that the Hypothesis A is satisfied. Then as N → ∞,{
Z

N,x
t , t ≥ 0, x ≥ 0

} ⇒ {
Zx

t , t ≥ 0, x ≥ 0
}

in D([0,∞);D([0,∞);R+)), equipped with the Skohorod topology of the space of càdlàg functions of x, with values
in the Polish space D([0,∞);R+) equipped with the metric d0∞.

To prove the theorem, we first show that for fixed x ≥ 0 the sequence {ZN,x,N ≥ 0} is tight in D([0,∞);R+).

2.1. Tightness of ZN,x

To this end, we first establish a few lemmas.

Lemma 2.2. For all T > 0, x ≥ 0, there exist a constant C0 > 0 such that for all N ≥ 1,

sup
0≤t≤T

E
(
Z

N,x
t

) ≤ C0.

Moreover, for all t ≥ 0, N ≥ 1,

E

(
−
∫ t

0
f
(
ZN,x

r

)
dr

)
≤ x.
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Proof. Let (τn, n ≥ 0) be a sequence of stopping times such that τn tends to infinity as n goes to infinity and for any
n, (M

N,x
t∧τn

, t ≥ 0) is a martingale and Z
N,x
t∧τn

≤ n. Taking the expectation on both sides of equation (1.3) at time t ∧ τn,
we obtain

E
(
Z

N,x
t∧τn

) = 
Nx�
N

+E

(∫ t∧τn

0
f
(
ZN,x

r

)
dr

)
. (2.1)

It follows from the Hypothesis A on f that

E
(
Z

N,x
t∧τn

) ≤ 
Nx�
N

+ β

∫ t

0
E
(
Z

N,x
r∧τn

)
dr.

From Gronwall and Fatou Lemmas, we deduce that there exists a constant C0 > 0 which depends only upon x and T

such that

sup
N≥1

sup
0≤t≤T

E
(
Z

N,x
t

) ≤ C0.

From (2.1), we deduce that

−E

(∫ t∧τn

0
f
(
ZN,x

r

)
dr

)
≤ 
Nx�

N
.

Since −f (Z
N,x
r ) ≥ −βZ

N,x
r , the second statement follows using Fatou’s Lemma and the first statement. �

We now have the following lemma.

Lemma 2.3. For all T > 0, x ≥ 0, there exists a constant C1 > 0 such that

sup
N≥1

E
(〈
MN,x

〉
T

) ≤ C1.

Proof. For any N ≥ 1 and k, k′ ∈ Z+ such that k ≤ k′, we set z = k
N

and z′ = k′
N

. By definition,

‖f ‖N,z,z′ =
k′∑

i=k+1

{(
f

(
i

N

)
− f

(
i − 1

N

))+
+

(
f

(
i

N

)
− f

(
i − 1

N

))−}

=
k′∑

i=k+1

{
2

(
f

(
i

N

)
− f

(
i − 1

N

))+
−

(
f

(
i

N

)
− f

(
i − 1

N

))}
.

Consequently we obtain from Hypothesis A on f that

‖f ‖N,z,z′ ≤ 2β(z′ − z) + f (z) − f (z′). (2.2)

We deduce from (2.2), (1.5) and Lemma 2.2 that

E
(〈
MN,x

〉
T

) ≤
∫ T

0

{(
4 + 2β

N

)
E
(
ZN,x

r

)− 1

N
E
(
f
(
ZN,x

r

))}
dr

≤
(

4 + 2β

N

)
C0T + x

N
.

Hence the lemma. �
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It follows from this that MN,x is in fact a square integrable martingale. We also have

Lemma 2.4. For all T > 0, x ≥ 0, there exist two constants C2,C3 > 0 such that:

sup
N≥1

sup
0≤t≤T

E
[(

Z
N,x
t

)2] ≤ C2,

sup
N≥1

sup
0≤t≤T

E

(
−
∫ t

0
ZN,x

r f
(
ZN,x

r

)
dr

)
≤ C3.

Proof. We deduce from (1.3) and Itô’s formula that

(
Z

N,x
t

)2 =
(
Nx�

N

)2

+ 2
∫ t

0
ZN,x

r f
(
ZN,x

r

)
dr + 〈

MN,x
〉
t
+ M

N,x,(2)
t , (2.3)

where MN,x,(2) is a local martingale. Let (σn,n ≥ 1) be a sequence of stopping times such that limn→∞ σn = +∞
a.s. and for each n ≥ 1, (M

N,x,(2)
t∧σn

, t ≥ 0) is a martingale. Taking the expectation on the both sides of (2.3) at time
t ∧σn and using Hypothesis A, Lemma 2.3, the Gronwall and Fatou Lemmas we obtain that for all T > 0, there exists
a constant C2 > 0 such that:

sup
N≥1

sup
0≤t≤T

E
(
Z

N,x
t

)2 dr ≤ C2.

We also have that

2E

(
−
∫ t∧σn

0
ZN,x

r f
(
ZN,x

r

)
dr

)
≤

(
Nx�
N

)2

+ C1.

From Hypothesis A, we have −Z
N,x
r f (Z

N,x
r ) ≥ −β(Z

N,x
r )2. The result now follows from Fatou’s Lemma. �

We want to check tightness of the sequence {ZN,x,N ≥ 0} using Aldous’s criterion. Let {τN ,N ≥ 1} be a sequence
of stopping times in [0, T ]. We deduce from Lemma 2.4

Proposition 2.5. For any T > 0 and η, ε > 0, there exists δ > 0 such that

sup
N≥1

sup
0≤θ≤δ

P

(∣∣∣∣
∫ (τN+θ)∧T

τN

f
(
ZN,x

r

)
dr

∣∣∣∣ ≥ η

)
≤ ε.

Proof. Let c be a non negative constant. Provided 0 ≤ θ ≤ δ, we have

∣∣∣∣
∫ (τN+θ)∧T

τN

f
(
ZN,x

r

)
dr

∣∣∣∣ ≤ sup
0≤r≤c

∣∣f (r)
∣∣δ +

∫ (τN+θ)∧T

τN

1{ZN,x
r >c}

∣∣f (
ZN,x

r

)∣∣dr.

But ∫ (τN+θ)∧T

τN

1{ZN,x
r >c}

∣∣f (
ZN,x

r

)∣∣dr ≤ c−1
∫ T

0
ZN,x

r

(
f +(ZN,x

r

)+ f −(ZN,x
r

))
dr

≤ c−1
∫ T

0

(
2ZN,x

r f +(ZN,x
r

)− ZN,x
r f

(
ZN,x

r

))
dr

≤ c−1
∫ T

0

(
2β

(
ZN,x

r

)2 − ZN,x
r f

(
ZN,x

r

))
dr.
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From this and Lemma 2.4, we deduce that ∀ N ≥ 1, again with θ ≤ δ,

sup
0≤θ≤δ

P

(∣∣∣∣
∫ (τN+θ)∧T

τN

f
(
ZN,x

r

)
dr

∣∣∣∣ ≥ η

)
≤ η−1

E

(∣∣∣∣
∫ (τN+θ)∧T

τN

f
(
ZN,x

r

)
dr

∣∣∣∣
)

≤ sup
0≤r≤c

|f (r)|δ
η

+ A

cη
,

with A = 2βC2T + C3. The result follows by choosing c = 2A/εη, and then δ = εη/2 sup0≤r≤c |f (z)|. �

From Proposition 2.5, the Lebesgue integral term in the right hand side of (1.3) satisfies Aldous’s condition [A],
see [1]. The same proposition, Lemma 2.2, (1.5) and (2.2) imply that 〈MN,x〉 satisfies the same condition, hence so
does MN,x , according to Rebolledo’s Theorem, see [4]. Since all jumps are of size 1

N
, tightness follows. We have

proved

Proposition 2.6. For any fixed x ≥ 0, the sequence of processes {ZN,x,N ≥ 1} is tight in D([0,∞);R+).

We deduce from Proposition 2.6 the following corollary.

Corollary 2.7. For any 0 ≤ x < y the sequence of processes {V N,x,y,N ≥ 1} is tight in D([0,∞);R+).

Proof. For any x fixed the process ZN,x has jumps equal to ± 1
N

which tends to zero as N → ∞. It follows from
that and equation (1.3) that any weak limit of a converging subsequence of ZN,x is continuous and is the unique
weak solution of equation (0.2). We deduce that for any x, y ≥ 0, the sequence {ZN,y − ZN,x,N ≥ 1} is tight since
{ZN,x,N ≥ 1} and{ZN,y,N ≥ 1} are tight and both have a continuous limit as N → ∞. �

2.2. Proof of Theorem 2.1

From Theorem 13.5 in [2], Theorem 2.1 follows from the two next propositions.

Proposition 2.8. For any n ∈N, 0 ≤ x1 < x2 < · · · < xn,(
ZN,x1,ZN,x2 , . . . ,ZN,xn

) ⇒ (
Zx1 ,Zx2 , . . . ,Zxn

)
as N → ∞, for the topology of locally uniform convergence in t .

Proof. We prove the statement in the case n = 2 only. The general statement can be proved in a very similar way. For
0 ≤ x1 < x2, we consider the process (ZN,x1 ,V N,x1,x2), using the notations from Section 1. The argument preceding
the statement of Proposition 2.6 implies that the sequences of martingales MN,x1 and MN,x1,x2 are tight. Hence
(ZN,x1 ,V N,x1,x2 ,MN,x1 ,MN,x1,x2) is tight. Thanks to (1.3), (1.5), (1.7), (1.8) and (1.9), any converging subsequence
of {ZN,x1 ,V N,x1,x2 ,MN,x1 ,MN,x1,x2 ,N ≥ 1} has a weak limit (Zx1 ,V x1,x2 ,Mx1 ,Mx1,x2) which satisfies

Z
x1
t = x1 +

∫ t

0
f
(
Zx1

s

)
ds + M

x1
t ,

V
x1,x2
t = x2 − x1 +

∫ t

0

[
f
(
Zx1

s + V x1,x2
s

)− f
(
Zx1

s

)]
ds + M

x1,x2
t ,

where the continuous martingales Mx1 and Mx1,x2 satisfy

〈
Mx

〉
t
= 4

∫ t

0
Zx1

s ds,
〈
Mx1,x2

〉
t
= 4

∫ t

0
V x1,x2

s ds,
〈
Mx1 ,Mx1,x2

〉
t
= 0.

This implies that the pair (Zx1 ,V x1,x2) is a weak solution of the system of SDEs (0.2) and (1.10), driven by the same
space–time white noise. The result follows from the uniqueness of the system, see again Theorem 2.1 in [3] and recall
from the Introduction that Hypothesis A implies that the hypotheses of that theorem are satisfied. �
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Proposition 2.9. There exists a constant C, which depends only upon θ and T , such that for any 0 ≤ x < y < z,
which are such that y − x ≤ 1, z − y ≤ 1,

E

[
sup

0≤t≤T

∣∣ZN,y
t − Z

N,x
t

∣∣2 × sup
0≤t≤T

∣∣ZN,z
t − Z

N,y
t

∣∣2] ≤ C|z − x|2.

We first prove the

Lemma 2.10. For any 0 ≤ x < y, we have

sup
0≤t≤T

E
(
Z

N,y
t − Z

N,x
t

) = sup
0≤t≤T

E
(
V

N,x,y
t

) ≤
(
Ny�

N
− 
Nx�

N

)
eβT .

Proof. Let (σn,n ≥ 0) be a sequence of stopping times such that limn→∞ σn = +∞ and for each n ≥ 1, (M
N,x,y
t∧σn

, t ≥
0) is a martingale. Taking the expectation on both sides of (1.7) at time t ∧ σn we obtain that

E
(
V

N,x,y
t∧σn

) ≤
(
Ny�

N
− 
Nx�

N

)
+ β

∫ t

0
E
(
V

N,x,y
r∧σn

)
dr. (2.4)

Using Gronwall’s and Fatou’s Lemmas, we obtain that

sup
0≤t≤T

E
(
V

N,x,y
t

) ≤
(
Ny�

N
− 
Nx�

N

)
eβT . �

Proof of Proposition 2.9. Using equation (1.7), a stopping time argument as above, Lemma 2.10 and Fatou’s Lemma,
where we take advantage of the inequality f (Z

N,x
r ) − f (Z

N,x
r + V

N,x,y
r ) ≥ −βV

N,x,y
r , we deduce that

E

(∫ t

0

[
f
(
ZN,x

r

)− f
(
ZN,x

r + V
N,x,y
r

)]
dr

)
≤ 
Ny�

N
− 
Nx�

N
. (2.5)

We now deduce from (1.8), Lemma 2.10, inequalities (2.5) and (2.2) that for each t > 0, there exists a constant
C(t) > 0 such that

E
(〈

MN,x,y
〉
t

) ≤ C(t)

(
Ny�
N

− 
Nx�
N

)
. (2.6)

This implies that MN,x,y is in fact a square integrable martingale. For any 0 ≤ x < y < z, we have Z
N,z
t − Z

N,y
t =

V
N,y,z
t and Z

N,y
t − Z

N,x
t = V

N,x,y
t for any t ≥ 0. On the other hand we deduce from (1.7) and Hypothesis A that

sup
0≤t≤T

(
V

N,x,y
t

)2 ≤ 3

(
Ny�
N

− 
Nx�
N

)2

+ 3β2T

∫ T

0
sup

0≤s≤r

(
V

N,x,y
s

)2 dr

+ 3 sup
0≤t≤T

(
M

N,x,y
t

)2

and

sup
0≤t≤T

(
V

N,y,z
t

)2 ≤ 3

(
Nz�
N

− 
Ny�
N

)2

+ 3β2T

∫ t

0
sup

0≤s≤r

(
V

N,y,z
s

)2 dr

+ 3 sup
0≤t≤T

(
M

N,y,z
t

)2
.
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Now let Gx,y := σ(Z
N,x
t ,Z

N,y
t , t ≥ 0) be the filtration generated by ZN,x and ZN,y . It is clear that for any t , V

N,x,y
t

is measurable with respect to Gx,y . We then have

E

[
sup

0≤t≤T

∣∣V N,x,y
t

∣∣2 × sup
0≤t≤T

∣∣V N,y,z
t

∣∣2] = E

[
sup

0≤t≤T

∣∣V N,x,y
t

∣∣2E( sup
0≤t≤T

∣∣V N,y,z
t

∣∣2∣∣Gx,y
)]

.

Conditionally upon ZN,x and ZN,y = u(·), V N,y,z solves the following SDE

V
N,y,z
t = 
Nz� − 
Ny�

N
+

∫ t

0

[
f
(
V

N,y,z
r + u(r)

)− f
(
u(r)

)]
dr + M

N,y,z
t ,

where MN,y,z is a martingale conditionally upon Gx,y , hence the arguments used in Lemma 2.10 lead to

sup
0≤t≤T

E
(
V

N,y,z
t |Gx,y

) ≤
(
Nz�

N
− 
Ny�

N

)
eβT ,

and those used to prove (2.5) yield

E

(∫ t

0
f
(
Z

N,y
r

)− f
(
Z

N,y
r + V

N,y,z
r

)
dr

∣∣Gx,y

)
≤ 
Nz�

N
− 
Ny�

N
.

From this we deduce (see the proof of (2.6)) that

E
(〈
MN,y,z

〉
t
|Gx,y

) ≤ C(t)

(
Nz�
N

− 
Ny�
N

)
.

From Doob’s inequality we have

E

(
sup

0≤t≤T

∣∣MN,y,z
t

∣∣2∣∣Gx,y
)

≤ 4E
(〈
MN,y,z

〉
T
|Gx,y

)

≤ C(T )

(
Nz�
N

− 
Ny�
N

)
.

Since 0 < z − y < 1, we deduce that

E

(
sup

0≤t≤T

∣∣V N,y,z
t

∣∣2∣∣Gx,y
)

≤ 3
(
1 + C(T )

)(
Nz�
N

− 
Ny�
N

)

+ 3β2T

∫ T

0
E

(
sup

0≤s≤r

(
V

N,y,z
s

)2∣∣Gx,y
)

dr.

From this and Gronwall’s Lemma we deduce that there exists a constant K1 > 0 such that

E

(
sup

0≤t≤T

∣∣V N,y,z
t

∣∣2∣∣Gx,y
)

≤ K1

(
Nz�
N

− 
Ny�
N

)
. (2.7)

Similary we have

E

[
sup

0≤t≤T

(
V

N,x,y
s

)2
]

≤ K1

(
Ny�
N

− 
Nx�
N

)
.

Since 0 ≤ y − x < z − x and 0 ≤ z − y < z − x, we deduce that

E

[
sup

0≤t≤T

∣∣V N,x,y
t

∣∣2 × sup
0≤t≤T

∣∣V N,y,z
t

∣∣2] ≤ K2
1

(
Nz�
N

− 
Nx�
N

)2

,

hence the result. �
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Proof of Theorem 2.1. We now show that for any T > 0,{
Z

N,x
t ,0 ≤ t ≤ T ,x ≥ 0

} ⇒ {
Zx

t ,0 ≤ t ≤ T ,x ≥ 0
}

in D([0,∞);D([0, T ],R+)). From Theorems 13.1 and 16.8 in [2], since from Proposition 2.8, for all n ≥ 1, 0 < x1 <

· · · < xn,(
ZN,x1· , . . . ,ZN,xn·

) ⇒ (
Zx1· , . . . ,Zxn·

)
in D([0, T ];Rn), it suffices to show that for all x̄ > 0, ε, η > 0, there exists N0 ≥ 1 and δ > 0 such that for all N ≥ N0,

P
(
wx̄,δ

(
ZN

) ≥ ε
) ≤ η, (2.8)

where for a function (x, t) → z(x, t)

wx̄,δ(z) = sup
0≤x1≤x≤x2≤x̄,x2−x1≤δ

inf
{∥∥z(x, ·) − z(x1, ·)

∥∥,∥∥z(x2, ·) − z(x, ·)∥∥},
with the notation ‖z(x, ·)‖ = sup0≤t≤T |z(x, t)|. But from the proof of Theorem 13.5 in [2], (2.8) for ZN follows from
Proposition 2.9. �

3. Ray–Knight representation of a general Feller diffusion

In this section we establish a Ray–Knight representation of Feller’s branching diffusion solution of (0.2), in terms of
the local time of a reflected Brownian motion H with a drift that depends upon the local time accumulated by H at
its current level, through the function f ′ where f is a function which is from now on assumed to satisfy the following
hypothesis.

Hypothesis B. f ∈ C1(R+;R+), f (0) = 0 and there exist a constant β > 0 such that

f ′(x) ≤ β, for all x ≥ 0.

Note that Hypothesis B follows from Hypothesis A if we assume that f is continuously differentiable.
Our proof relies upon the result in [9], which itself is inspired by previous work of Norris, Rogers and Williams

[8]. Our process H solves the SDE

Hs = Bs + 1

2

∫ s

0
f ′(Lr(Hr)

)
dr + 1

2
Ls(0).

One way to understand the form of the drift is to see (Hs) as the limit of the contour process HN of the forest of
random trees associated to ZN,x . The drift of the process HN appears in (1.1) + (1.2).

Since we want to identify the law of {Zx
t , t ≥ 0, x ≥ 0}, we will need to identify the law of {V x,y

t , t ≥ 0} for
all x, y > 0. This will force us to consider a more general SDE for the process H . Fix z ∈ C(R+;R+), the set of
continuous functions from R+ into R+ and consider the stochastic differential equation

Hs = Bs + 1

2

∫ s

0
f ′(z(Hr) + Lr(Hr)

)
dr + 1

2
Ls(0), (3.1)

where B is a standard Brownian motion, and for s, t ≥ 0 Ls(t) is the local time accumulated by the solution H at level
t up to time s. For x > 0 define

Sx = inf
{
r > 0: Ls(0) > x

}
and S = sup

x>0
Sx.

Going back one moment to the case z ≡ 0, recall from Theorem 0.1 that we want to identify the law of {Zx
t , t ≥

0, x ≥ 0} with that of {LSx (t), t ≥ 0, x ≥ 0}. For that sake, we need that Sx < ∞ a.s. for all x > 0. This is not obvious
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from the form of the SDE for H , since in particular we do not impose any condition on the sign of f ′. Once we have
the Ray–Knight representation, it will be a consequence of the (sub)criticality of Zx . Hence we shall first prove the
Ray–Knight representation for H reflected in the interval [0,K], K > 0 arbitrary.

This motivates the study of the SDE

HK
s = Bs + 1

2

∫ s

0
f ′(z(HK

r

)+ LK
r

(
HK

r

))
dr − 1

2
LK

s

(
K−)+ 1

2
LK

s (0). (3.2)

Note that the reason for evaluating the local time at K− instead of K is the fact that we assume as usual that the
local time is right-continuous as a function of the level, so that in particular L

K,z
s (K) = 0. This explains the disymetry

between the notations at 0 and at K . We define

SK
x = inf

{
s > 0,LK

s (0) > x
}

and SK = sup
x>0

SK
x .

We also introduce the process Zx,z which is a solution, for fixed x > 0, of the SDE

Z
x,z
t = x +

∫ t

0

[
f
(
z(r) + Zx,z

r

)− f
(
z(r)

)]
dr + 2

∫ r

0

√
Z

x,z
r dWr. (3.3)

3.1. Equation (3.2) and a first Ray–Knight representation

We recall that f satisfies Hypothesis B, as in all of this section. We have

Proposition 3.1. For any K > 0, z ∈ C(R+;R+), equation (3.2) has a unique weak solution on the random interval
[0, SK), which is such for each x > 0, that the law of {LK,z

SK
x

(t),0 ≤ t < K} coincides with that of {Zx,z
t ,0 ≤ t < K},

where Zx,z is the solution of (3.3).

Proof. 1. Weak existence and uniqueness of (3.2). Consider the Brownian motion HK reflected in the interval [0,K]
defined on (Ω,F ,P)

HK
s = Bs + 1

2
LK

s (0) − 1

2
LK

s

(
K−).

Let

MK
s = 1

2

∫ s

0
f ′(z(HK

r

)+ LK
r

(
HK

r

))
dBr,

〈
MK

〉
s
= 1

4

∫ s

0

[
f ′]2(

z
(
HK

r

)+ LK
r

(
HK

r

))
dr,

GK
s = exp

(
MK

s − 1

2

〈
MK

〉
s

)
.

Let N = sup0≤t≤K z(t). For each n > N , we define the stopping time

Tn = inf
{
s > 0; sup

0≤t<K

LK
s (t) > n − N

}
,

so that on [0, Tn], z(t) + LK
s (t) ≤ n, for all 0 ≤ t ≤ K . We can define a probability measure P̃

K,z on
⋃

n FTn , such
that on each FTn , P̃K,z � P and

dP̃K,z|FTn

dP|FTn

= GK
Tn

.
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Consider the process

B̃K
s = Bs − 1

2

∫ s

0
f ′(z(HK

r

)+ LK
r

(
HK

r

))
dr.

From Girsanov’s Theorem, for each n > N , {B̃K
s ,0 ≤ s ≤ Tn} is a P̃

K,z Brownian motion. We have thus constructed
a solution of (3.2) on

⋃
n[0, Tn], which by the same argument is clearly unique. Assume for a moment

Lemma 3.2. For any x > 0, P(Tn < SK
x ) → 0, and P̃

K,z(Tn < SK
k ) → 0, as n → ∞.

Let now A ∈FSK
x

be arbitrary. Since A ∩ {SK
x ≤ Tn} ∈ FTn ∩FTn∧SK

x
,

P̃
K,z

(
A ∩ {

SK
x ≤ Tn

}) =
∫

A∩{SK
x ≤Tn}

GK
Tn∧SK

x
dP

=
∫

A∩{SK
x ≤Tn}

GSK
x

dP.

Taking the limit in this identity as n → ∞, we deduce with the help of Lemma 3.2

P̃
K,z(A) =

∫
A

GK
SK

x
dP.

Consequently P̃
K,z � P on FSK

x
, and

dP̃K,z|F
SK
x

dP|F
SK
x

= GK
SK

x
.

We have that B̃K is a P̃
K,z-Brownian motion on [0, SK

x ] for all x > 0, hence on [0, SK), and

HK
s = B̃K

s + 1

2

∫ s

0
f ′(z(HK

r

)+ LK
r

(
HK

r

))
dr − 1

2
LK

s

(
K−)+ 1

2
LK

s (0), 0 ≤ s < SK.

2. Step 1 of the proof of the Ray–Knight representation. For each n > N , let fn ∈ C1(R+;R) be such that

(i) fn(u) = f (u), for all 0 ≤ u ≤ n.
(ii) f ′

n is uniformly bounded.

Let HK,n and Zx,z,n denote respectively the solutions of

HK,n
s = Bs + 1

2

∫ s

0
f ′

n

(
z
(
HK,n

r

)+ LK,n
r

(
HK,n

r

))
dr − 1

2
LK,n

s

(
K−)+ 1

2
LK,n

s (0), (3.4)

and

Z
x,z,n
t = x +

∫ t

0

[
fn

(
z(r) + Zx,z,n

r

)− fn

(
z(r)

)]
dr + 2

∫ r

0

√
Z

x,z,n
r dWr. (3.5)

We can apply Proposition 4 from [9] (strictly speaking, this result is proved in case fn is a quadratic function, and
we detail in Section A.1 below the minor modifications which have to be done in our case), which says that for each
fixed z, K , x and n, the laws of {LK,n

S
K,n
x

(t),0 ≤ t < K} and {Zx,z,n
t ,0 ≤ t < K} coincide. But this means that the laws

of {LK
SK

x
(t),0 ≤ t < K} and {Zx,z

t ,0 ≤ t < K} coincide on the event {SK
x ≤ Tn}.
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3. Proof of Lemma 3.2. It is plain that {Tn < SK
x } = {sup0≤t≤K LK

SK
x
(t) > n − N}. From the second Ray–Knight

Theorem (see e.g. Theorem XI.2.3 in [11]) under the probability P, the process {LK
SK

x
(t),0 ≤ t < K} solves the Feller

SDE Yt = x + 2
∫ t

0

√
Yr dWr , 0 ≤ t < K . But it is clear that

P

(
sup

0≤t≤K

Yt > n − N
)

→ 0, as n → ∞,

hence the first result. Now from the last statement of the previous step of the proof,

P̃
K,z

(
sup

0≤t≤K

LK
SK

x
(t) > n − N

)
= P

(
sup

0≤t≤K

Z
x,z
t > n − N

)
→ 0, as n → ∞,

hence the second result.
4. Step 2 of the proof of the Ray–Knight representation. Let A denote a Borel subset of C([0,K];R+). Combining

the last two steps of the proof, we deduce

P̃
K,z

(
LK

SK
x

∈ A
) = lim

n→∞ P̃
K,z

(
LK

SK
x

∈ A ∩ {
SK

x ≤ Tn

})
= lim

n→∞ P̃
K,z

(
Zx,z ∈ A ∩ {

SK
x ≤ Tn

})
= P̃

K,z
(
Zx,z ∈ A

)
. �

3.2. Ray–Knight Theorem in the (sub)critical case

We first prove the following proposition (recall the definition (1.11) of Λ(f )).

Proposition 3.3. Suppose that f satisfies Hypothesis B and Λ(f ) = ∞, and that z ∈ C(R+;R+) has compact sup-
port. Then equation (3.1) admits a unique weak solution on [0, S), and Sx < ∞ a.s. for all x > 0.

Proof. For x > 0 and K > 0, let

ΩK,x =
{

sup
s∈[0,SK ′

x ]
HK ′

s ≤ K,∀K ′ > K
}
.

For any x ≥ 0 and z ∈ C(R+;R+) with compact support, since we are in the (sub)critical case, there exists Tx,z < ∞
a.s. such that Z

x,z
t = 0, ∀ t ≥ Tx,z. We note here that the compact support property of z clearly implies that Λ(f ) = ∞

is a sufficient condition for Zx,z to be (sub)critical. We deduce from this and Proposition 3.1 that for any x > 0,

P̃
K,z

((
ΩK,x

)c) = P(Tx,z > K) → 0,

as K → ∞. We now define Hs , Sx and S as follows. For ω /∈ ⋂
x>0

⋃
K ΩK,x , we let Hs(ω) ≡ 0, Sx(ω) = S(ω) =

+∞. For ω ∈ ⋂
x>0

⋃
K ΩK,x , and each x > 0, we choose an arbitrary K(ω,x) > 0 such that ω ∈ ΩK(ω,x),x and

define unambiguously Hs(ω) = H
K(ω,x)
s (ω), for any 0 ≤ s ≤ Sx(ω) = S

K(ω,x)
x (ω). This being done for all x > 0, we

define S(ω) = limx→∞ Sx(ω), and Hs is defined for all 0 ≤ s < S. We now define P̃
z :

⋃
x>0 FSx → [0,1] as follows.

For any x > 0, A ∈ FSx ,

P̃
z(A) = lim

K→∞ P̃
K,z

(
A ∩ ΩK,x

)
.

We note that P̃z((
⋃

K>0 ΩK,x)c) = 0 and if A ⊂ ΩK,x , then P̃
z(A) = P̃

K,z(A). This defines a unique additive func-
tional on

⋃
x>0 FSx , which is a probability measure on each FSx . Indeed, finite additivity is plain, and whenever

An ↓∅, An ∈ FSx for all n,

P̃
z(An) ≤ P̃

K,z
(
An ∩ ΩK,z

)+ P(Tx,z > K).
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and the second term of the right-hand side can be made arbitrarily small by a proper choice of K , while for fixed
K > 0, the first term tends to 0 as n → ∞, hence as well as P̃z(An). Note also that Sx < ∞ P̃

z a.s., as a consequence
of (sub)criticality.

Now under P̃z, the process

B̃z
s = Hs − 1

2

∫ s

0
f ′(z(r) + Lr(Hr)

)
dr − 1

2
Ls(0)

is a standard Brownian motion on the random interval [0, S). This proves that (3.1) has a weak solution, whose
uniqueness follows from the uniqueness result in Proposition 3.1. �

From now on, z is always assumed to have compact support. We will next show that one can extend P̃
z as a

probability measure on FSK = σ(
⋃

x FSK
x

). Let us first establish

Proposition 3.4. On the set {S < ∞}, Hs → 0 P̃
z a.s., as s ↑ S.

Proof. Let S0 = 0, and for each n ≥ 1, Sn is defined as above. We claim that 0 ≤ Hs ≤ Xs for 0 ≤ s < S, where for
any n ≥ 0, Sn ≤ s < Sn+1,

Xs := β

2
(s − Sn) + B̃z

s − B̃z
Sn

+ 1

2

[
LX

s (0) − LX
Sn

(0)
]
.

Since HSn = 0 and f ′ ≤ β , this fact follows from Proposition A.1 below used on each interval [Sn,Sn+1). It remains
to show that on the event {S = limn Sn < ∞}, Xs → 0, as s ↑ S.

Let Ys := θs/2 + B̃z
s . It is plain that for Sn ≤ s < Sn+1,

0 ≤ Xs = Ys − YSn − inf
Sn≤r≤s

(Yr − YSn)

≤ 2 sup
Sn≤r<Sn+1

|Yr − YSn |.

Consequently

sup
Sn≤s<S

|Xs | ≤ 2 sup
Sn≤r<s<S

|Ys − Yr |,

and the right hand side of the last inequality tends to 0 a.s. as n → ∞ on the event {S < ∞}, from the continuity
of Y . �

Without loss of generality, we may and do assume from now on that the measure P̃
z has been constructed on the

space Ω = C([0,+∞)), equipped with its Borel field, and the usual filtration. We can now prove

Proposition 3.5. There exists a probability measure P̃
z on FS = σ(

⋃
x>0 FSx ), which coincides with the probability

which we have constructed in Proposition 3.3 on each FSx .

Proof. In the case S = +∞ P̃
z a.s. i.e. P̃z(Sx < s) → 0 as x → 0, the result is a direct consequence of Theorem 1.3.5

from Stroock–Varadhan [12], with τn = Sn. The general case can be treated following the proof of Theorem 1.1.9 from
[12], thanks to Proposition 3.4, which implies that condition (1.1.9) from [12] is satisfied in this case. A complete proof
is given in Section A.2 below. �

In particular, in the case P̃
z(S < +∞) = 1, the SDE (3.2) has a unique weak solution on the closed interval [0, S].

The reader may be interested by the following result from [6].

Proposition 3.6. Assume that g(x) = f (x)/x satisfies Hypothesis A on [1,+∞), and that f (x) �= 0 on [K,+∞) for
some K > 0. Then
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1. if
∫ ∞
K

x
|f (x)| dx = ∞, S = ∞ P̃

z a.s.;

2. if
∫ ∞
K

x
|f (x)| dx < ∞, S < ∞ P̃

z a.s.

For z ≡ 0, we write P̃ for P̃0. Let us reformulate our main result, Theorem 0.1, which we will now prove.

Theorem 3.7. Suppose that f satisfies Hypothesis B and Λ(f ) = ∞. Then the law of the random field {LSx (t), t ≥
0, x ≥ 0} under the probability P̃ is the same as the law of {Zx

t , t ≥ 0, x ≥ 0}.
We first establish the following proposition.

Proposition 3.8. Assume that the two assumptions of Theorem 3.7 hold. Then for any x and z ∈ C(R+;R+) with
compact support fixed, the law of {LSx (t), t ≥ 0} under P̃z coincides with the law of {Zx,z

t , t ≥ 0}.

Proof. It follows from Proposition 3.1 that for any K > 0, z ∈ C(R+;R+) with compact support, under P̃
K,z,

(LK
SK

x
(t),0 ≤ t < K) has the same law as (Z

x,z
t ,0 ≤ t < K). A consequence of this is that for any 0 < K < K ′,

{
LK

SK
x
(t),0 ≤ t < K

} (d)= {
LK ′

SK ′
x

(t),0 ≤ t < K
}
. (3.6)

It now follows that for any K , under P̃z, (LSx (t),0 ≤ t < K) has the same law as (LK
SK

x
(t),0 ≤ t < K) under P̃K,z,x .

We then obtain that for any K > 0

(
LSx (t),0 ≤ t < K

) (d)= (
Z

x,z
t ,0 ≤ t < K

)
.

Our result follows by letting K → ∞. �

In particular, for x fixed, the law of {LSx (t), t ≥ 0} under P̃ is the same as the law of {Zx
t , t ≥ 0}. From this follows

the following remarkable identity

Corollary 3.9. If f satisfies Hypothesis B and Λ(f ) = ∞, then Sx is the total mass of the process {Zx
t , t ≥ 0}, in the

sense that

Sx and
∫ ∞

0
Zx

t dt have the same law.

Proof. Let g(h) = 1, for any h > 0. By the occupation times formula, we have

Sx =
∫ Sx

0
g(Hr)dr

=
∫ ∞

0
LSx (t)dt

(d)=
∫ ∞

0
Zx

r dr.

Clearly the upper limit in the last integral can be replaced by the extinction time of the process Zx . �

Proof of Theorem 3.7. Recall that (Zx
. , x ≥ 0) is a Markov process with values in the space of continuous paths from

R+ into R+ with compact support. From Proposition 3.8 with z ≡ 0, its marginal laws coincide with those of LSx (·).
We now check that (LSx (·), x ≥ 0) is a Markov process. This follows readily from the fact that for any 0 ≤ x < y,
conditionnaly upon (LSx′ (·), x′ ≤ x) and given LSx (·) = z(·), on [0, Sy] the process Hx

s := HSx+s solves the SDE

Hx
s = B̄s + 1

2

∫ s

0

(
f ′(z(Hx

r

)+ Lz
r

(
Hx

r

)))
dr + 1

2
Lz

s(0),
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where B̄ is a Brownian motion independent of (LSx′ (t), x′ ≤ x,0 ≤ t ≤ Sx) and Lz denotes the local time of Hx ,
which is also the additional local time accumulated by H after time Sx . To complete the proof of the theorem it now
suffices to prove that for any x, y ≥ 0 the conditional law of (LSx+y (t), t ≥ 0) given (LSx (t), t ≥ 0) is the same as the

conditional law of (Z
x+y
t , t ≥) given (Zx

t , t ≥ 0). Conditioned upon LSx (·) = z(·), LSx+y (·) − LSx (·) is the collection
of local times accumulated by Hx up to time Sy , and it has the same law as Lz

Sy
(·) while conditionally upon Zx = z(·),

Zx+y − Zx has the same law as Zy,z. The identity of those two laws has been established in Proposition 3.8. �

Appendix

A.1. Adaptation of the proof of Proposition 4 from [9]

Let us first explain the few results preceding that Proposition 4, which are necessary for its proof. It is claimed in [9]
that for any θ, γ ≥ 0, K > 0, the following reflected SDE has a unique weak solution

HK
s = Bs + θ

2
s − γ

∫ s

0

[
z
(
HK

r

)+ LK
r

(
HK

r

)]
dr + 1

2
LK

s (0) − 1

2
LK

s

(
K−).

The result is proved via Girsanov’s Theorem. We note that the same result for our equation (3.4) is simpler to establish,
since the drift there is bounded. Next [9] proceeds with proving Lemma 4, which translated in our context says that
the expectation of S

K,n
x is finite. The proof exploits the fact that the drift in the above SDE is bounded from above by

the constant θ/2. The same proof works in our case, since the drift in (3.4) is bounded. Finally Proposition 4 from [9]
says, again translated into our notations, that the law of {LK,n

S
K,n
x

(t),0 ≤ t ≤ K} is that of the solution of (3.5), killed at

time K . The proof translates word to word to our situation. The only minor difference is the computation which uses
the generalized occupation times formula (from Exercise 1.15 in Chapter VI of [11]), namely formulas (23) and (24)
in [9], which in our case should be replaced by the unique identity

∫ S
K,n
x

0
1{HK,n

s ≤t}f
′
n

(
z
(
HK,n

s

)+ LK,n
s

(
HK,n

s

))
ds

=
∫ t

0

∫ S
K,n
x

0
f ′

n

(
z(u) + LK,n

s (u)
)

dLK,n
s (u)du

=
∫ t

0

[
fn

(
z(u) + L

K,n

S
K,n
x

(u)
)− fn

(
z(u)

)]
du.

This computation makes the connection with the SDE (3.5).

A.2. Proof of Proposition 3.5

In this proof, we shall write P̃ instead of P̃z. Our probability space Ω will be defined as follows

Ω = {
ω ∈ C

([0,+∞);R+
)
,ω(0) = 0 and whenever S < ∞,ω(t) = 0 for t ≥ S

}
.

Plainly S(ω) is defined as the limit as n → ∞ of Sn, where Sn is the first time when the local time of ω at level 0
exceeds the value n. Thanks to Proposition 3.4, P̃(Ω) = 1. Note that whenever we have a sequence {ωn,n ≥ 1} ⊂ Ω

which satisfies the property that for all n ≥ 1, ωn+1(t) = ωn(t), t ∈ [0, Sn], then there exists ω ∈ Ω which is such that
for all n ≥ 1, ω(t) = ωn(t), t ∈ [0, Sn]. This existence is clear on the event {S = +∞}, while on the event {S < ∞}, it
follows from the definition of Ω , by adding to the above requirements ω(t) = 0 for t ≥ S.

This means that condition (1.1.9) from [12] is satisfied. The proof which we shall now detail is a transcription to
our set-up of the proof of Theorem 1.1.9 from the same reference.
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In order to simplify slightly the notations, we shall write Gn = FSn . All we have to show is that whenever {An,n ≥
1} is a decreasing sequence of events which is such that An ∈ Gn for all n ≥ 1, if

⋂
n An = ∅, then P̃(An) → 0. For

proving that fact, we will assume that P̃(An) ≥ ε for all n ≥ 1, some ε > 0, and deduce that
⋂

n An �= ∅. In view of the
above remark, it suffices to construct a sequence {ωn,n ≥ 1} ⊂ Ω such that ωn ∈ An and ωn+1(t ∧ Sn) = ωn(t ∧ Sn)

for all t ≥ 0, n ≥ 1.
Let us introduce a notation. For all m,n ≥ 1 let πm,n(ω,dω′) denote a regular version of the conditional probability

P̃|Gn
(·|Gm). In other words, if n ≤ m,

πm,n
(
ω,dω′) = δω(·∧Sn)

(
dω′),

while if n > m,

πm,n
(
ω,dω′) = the law of {Hs,0 ≤ s ≤ Sn} s.t. Hs

{= ω(s) on [0, Sm],
solves (3.2) on [Sm,Sn].

Let us define for each n ≥ 1

F 1
n =

{
ω;π1,n(ω,An) ≥ ε

2

}
.

Clearly F 1
n+1 ⊂ F 1

n , F 1
1 = A1, and for n > 1,

ε ≤ P̃(An) =
∫

(F 1
n )c

π1,n(ω,An)P̃(dω) +
∫

F 1
n

π1,n(ω,An)P̃(dω)

≤ ε

2
+ P̃

(
F 1

n

)
.

Consequently P̃(F 1
n ) ≥ ε

2 for all n ≥ 1, hence also P̃(
⋂

n F 1
n ) ≥ ε

2 , and there exists ω1 such that π1,n(ω1,An) ≥ ε
2 , for

all n ≥ 1.
Suppose we have found ω1,ω2, . . . ,ωm such that ωk(t ∧Sk−1) = ωk−1(t ∧Sk−1) for 2 ≤ k ≤ m and πk,n(ωk,An) ≥

ε
2k , for 1 ≤ k ≤ m, n ≥ 1. Let now

Fm+1
n =

{
ω;πm+1,n(ω,An) ≥ ε

2m+1

}
∈ Gm+1.

Then Fm+1
n+1 ⊂ Fm+1

n and for n > m

ε

2m
≤ πm,n(ωm,An) ≤ ε

2m+1
+ πm,m+1(ωm,Fm+1

n

)
,

and consequently πm,m+1(ωm,Fm+1
n ) ≥ ε

2m+1 , and also πm,m+1(ωm,
⋂

n Fm+1
n ) ≥ ε

2m+1 . Hence there exists ωm+1

such that ωm+1(· ∧ Sm) = ωm(· ∧ Sm), and πm+1,n(ωm+1,An) ≥ ε

2m+1 for all n ≥ 1. Our sequence ωm satisfies in
particular the property πm,m(qm,Am) > 0, hence ωm ∈ Am for all m ≥ 1. The announced sequence has been con-
structed.

A.3. A comparison theorem for reflected SDEs

We do not claim that the following result is new, but we could not find a reference for it. Let b ∈ R, b2 :R+ → R be
measurable, with the properties that

b2(x) ≤ b, for all x ≥ 0.
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Suppose now that {X1
t ; t ≥ 0} and {X2

t ; t ≥ 0} are progressively mesurable solutions of the SDEs

X1
t = x1 + bt + Bt + K1

t , t ≥ 0,

X2
t = x2 +

∫ t

0
b2
(
X2

s

)
ds + Bt + K2

t , t ≥ 0,

X1
t ≥ 0, X2

t ≥ 0,

∫ t

0
X1

s dK1
s =

∫ t

0
X2

s dK2
s = 0, t ≥ 0,

where K1 and K2 are continuous and increasing and x1 ≥ x2. We then have

Proposition A.1. Under the above assumptions,

P
(
X1

t ≥ X2
t ,∀t ≥ 0

) = 1.

Proof. We note that

X2
t − X1

t = x2 − x1 +
∫ t

0

[
b2
(
X2

s

)− b
]

ds + K2
t − K1

t .

Since the mapping ϕ(x) = (x+)2 is of class C1, we deduce that.

∣∣(X2
t − X1

t

)+∣∣2 = 2
∫ t

0
1{X2

s ≥X1
s }
(
X2

s − X1
s

)(
b2
(
X2

s

)− b
)

ds

+ 2
∫ t

0
1{X2

s ≥X1
s }
(
X2

s − X1
s

)(
dK2

s − dK1
s

)
.

The first term on the right hand side is clearly non positive. The same is true for the second one, since
∫ t

0 X1
s dK1

s =∫ t

0 X2
s dK2

s = 0. Consequently

∣∣(X2
t − X1

t

)+∣∣2 ≤ 0,

for all t ≥ 0, hence the result. �
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