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SURVIVAL OF A SINGLE MUTANT IN ONE DIMENSION

By Enrique D. Andjel‡ , Judith Miller∗,§ and Etienne Pardoux†,‡

Université de Provence‡ and Georgetown University§

We study a one dimensional two-type contact process and give nec-
essary and sufficient conditions on the initial configuration for both types
to survive forever. These results are proved under the assumption that the
rates of propagation (and death) of the two types are equal.

1. Introduction. The aim of this paper is to study the probability that the
progeny of a single mutant in an infinite population of residents will survive. We
consider this problem in the framework of the one dimensional two–type contact
process.

We will prove that if the mutant has no selective advantage nor disadvantage,
compared with the individuals of the resident population, then, provided we are in
the supercritical case (which means that a single individual’s progeny may survive
for ever), a single mutant with an empty half–line in front of him, and all sites
behind him occupied by resident individuals, has a progeny which survives forever
with positive probability, while any finite number of mutants, with infinitely many
residents on both sides, have a progeny which goes extinct a. s. Note that we define
the progeny at time t of a given ancestor at time 0 as the set of individuals alive
at time t, who are the descendants of that ancestor at time 0.

Let us now explain what we mean by the contact process. Note that this process
is often presented in the language of infection. We shall rather consider it here as
a model of the spread of a population. Consider first the usual one–type contact
process with birth parameter λ > 0. This process {ξt, t ≥ 0} is a {0, 1}Z–valued
Markov process, hence ξt is a random mapping which to each x ∈ Z associates
ξt(x) ∈ {0, 1}. The statement ξt(x) = 1 means that the site x is occupied at time t,
while ξt(x) = 0 means that site x is empty at time t. The process evolves as follows.
Let x be such that ξ0(x) = 1. We wait a random exponential time with parameter
1 + 2λ. At that time, with probability 1/(1 + 2λ), the individual at site x dies;
with probability λ/(1 + 2λ), the individual, while continuing its own life at site x,
gives birth to another individual; the newborn occupies site x+1 if it is empty, and
dies instataneously otherwise; and with probability λ/(1 + 2λ), it gives birth to a
newborn who occupies site x − 1 if it is empty, and dies instataneously otherwise.
Then the same operation repeats itself until site x becomes empty, independently of
what happened so far. The same happens at any occupied site, and the exponential
clocks at various sites are mutually independent. We will use the same notation ξt
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to denote the random element of {0, 1}Z defined above, and the random subset of
Z consisting of all sites x ∈ Z where ξt(x) = 1.

The two–type contact process {ηt, t ≥ 0} is a {0, 1, 2}Z–valued Markov process
which starts from an initial condition (A,B), where A and B are two nonintersecting
subsets of Z, A denoting the set of sites which are occupied by type 1 individuals
and B the set of sites which are occupied by type 2 individuals at time t = 0. In
other words,

η0(x) =


0, if x 6∈ A ∪B;
1, if x ∈ A;
2, if x ∈ B.

The two–type contact process with equal birth rates λ evolves exactly like the one–
type process, with each individual possibly giving birth to individuals of the same
type. We shall consider in section 4 the case where the birth rate of the mutants (i.
e. type 2 individuals) differs from that of the residents (i. e. type 1 individuals).

The (one-type) contact process has been extensively studied and plays a central
role in the theory of interacting particle systems (see (Liggett95), (Liggett99) and
references therein) but there are very few papers on the two-type contact process
(see (Cox,Schinazi) and (Neuhauser)).

Let us now present a useful construction of the contact process, called the graph-
ical representation, which is valid in both the one–type and the two–type cases (at
least in the case of equal birth rates). The important feature of this construction
is that processes corresponding to different initial conditions are coupled through
it. Indeed, {ξt, t ≥ 0} (resp. {ηt, t ≥ 0}) is a fixed function of both the initial
condition, and the set of Poisson point processes, which code all the randomness,
which we now introduce.

Consider a collection {P xt , P
x,+
t , P x,−t , t ≥ 0; x ∈ Z} of mutually independent

Poisson point processes, such that the P x’s have intensity 1 while both the P x,+’s
and the P x,−’s have intensity λ, all defined on a probability space (Ω,F ,P). On the
set Z × [0,∞) we place a δ on the point (x, t) whenever t belongs to the Poisson
process P x. On that set we also place an arrow from (x, t) to (x+ 1, t) whenever t
belongs to the Poisson process P x,+ and an arrow from (x, t) to (x− 1, t) whenever
t belongs to the Poisson process P x,−.

The process {ξAt , : t ≥ 0} is defined as follows. An open path in Z × [0,+∞)
is a connected oriented path which moves along the time lines in the increasing
t direction without passing through a δ symbol, and along birth arrows, in the
direction of the arrow. Now

{y; ξAt (y) = 1} = {y ∈ Z; ∃x ∈ A with an open path from (x, 0) to (y, t)}.

To construct the two–type contact process, we call line of descendance an open
path starting from an occupied site at time 0, and such that any arrow belonging
to this path points to an unoccupied site. Note that unlike open paths, lines of
descendance depend on the initial configuration of the process. For A, B two disjoint
subsets of Z, we define {ηA,Bt , t ≥ 0} as the {0, 1, 2}Z–valued process whose value
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at time t is given by

{y; ηA,Bt (y) = 1} = {y ∈ Z; ∃x ∈ A and a line of descendance from (x, 0) to (y, t)}

{y; ηA,Bt (y) = 2} = {y ∈ Z; ∃x ∈ B and a line of descendance from (x, 0) to (y, t)}

Let {ξAt , t ≥ 0} denote the one–type contact process starting from the configu-
ration whose set of occupied sites is A. We will write ξxt for ξ{x}t . We shall use the
notation

ρ = P(ξ0t 6= ∅, ∀t > 0) = lim
s→∞

P(ξ0s 6= ∅). (1.1)

It follows from well–known results on the contact process, see e. g. Liggett (Liggett95),
that there exists λc <∞ such that ρ > 0 whenever λ > λc.

Given a finite subset B ⊂ Z, write B+ = {x ∈ Z, x > y, ∀y ∈ B} and B− =
{x ∈ Z, x < y, ∀y ∈ B}.

The aim of this paper is to prove

Theorem 1.1. Suppose that λ > λc and 0 < |B| <∞. Then

P
(
{x, ηA,Bt (x) = 2} 6= ∅,∀t > 0

)
> 0

if and only if at least one of the two sets A ∩B+ and A ∩B− is finite.

From the results needed to prove Theorem 1.1 we can also deduce:

Theorem 1.2. Suppose that λ > λc, 0 < |A| <∞ and 0 < |B| <∞. Then

P
(
{x, ηA,Bt (x) = 1} 6= ∅ and {x, ηA,Bt (x) = 2} 6= ∅,∀t > 0

)
> 0.

We conjecture that Theorem 1.2 holds for the two-type contact process on Zd
for all d ≥ 1. In (Neuhauser) it is proved that for d ≤ 2 and all initial configurations
limt→∞ P(ηt(x) = 1, ηt(y) = 2) = 0 for all x, y, while for d ≥ 3 the process admits
invariant measures µ such that for all x 6= y, µ({η : η(x) = 1, η(y) = 2}) > 0.
Although this last result may be seen as evidence favoring our conjecture (when
d ≥ 3) it does not imply it nor is it implied by it.

The paper is organized as follows. In section 2, we recall and prove several results
on the one–type contact process which are needed in further sections. In section
3, we study the case of a single or a finite number of mutants confronted with an
infinite number of residents, in the case of equal birth rates. Theorems 1.1 and 1.2
are proved in subsections 3.3 and 3.4 respectively. Finally, in section 4, we conclude
with some remarks on the case of unequal birth rates (i. e. when one of the two
species has a selective advantage). We formulate one result and two conjectures.

In all of this paper, we assume that λ > λc.
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2. Some results on the one–type contact process. Let Z− be the set of
integers smaller than or equal to 0 and let Z+ be the set of integers greater than
or equal to 0.

Let rt = sup
{
x : ξZ−

t (x) = 1
}

and let `t = inf
{
x : ξZ+

t (x) = 1
}

.

It is known that since λ > λc, there exits v = v(λ) > 0 such that

lim
t→∞

rt
t

= − lim
t→∞

`t
t

= v a.s. and in L1(Ω,F ,P).

For a proof of these results the reader is referred to Theorems VI.2.19 and VI.2.24
in (Liggett95).

Let Rt = sups≤t rs.

Lemma 2.1. P(rt ≥ a) ≥ ρ
2P(Rt ≥ a), ∀t, a.

Proof: Let τa = inf {s : rs ≥ a}. Then

P(rt ≥ a|Rt ≥ a) = P(rt ≥ a|τa ≤ t).

By the strong Markov property this is bounded below by

inf
s≥0

P(ξ0s ∩ [0,∞) 6= ∅),

which by symmetry is at least

inf
s≥0

1
2

P(ξ0s 6= ∅) =
ρ

2
.

�

Lemma 2.2. limt→∞
Rt

t = v a.s. and in L1.

Proof: The a. s. convergence follows from the a.s convergence of rt

t and the fact
that v > 0. For the L1 convergence note first that since Rt

t ≥
rt

t and rt

t converges
to v in L1, it suffices to show that

lim
t→∞

E
[
Rt
t
− v
]+

= 0.

To do so fix ε > 0 and let c = 2
ρ . Then write

lim
t→∞

∞∑
n=1

P
(
Rt
t
− v ≥ εn

)
≤ lim
t→∞

c

∞∑
n=1

P
(rt
t
− v ≥ εn

)
≤ lim
t→∞

c

ε
E
[rt
t
− v
]+

= 0,
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where we have used Lemma 2.1 for the first inequality, and the L1 convergence of
rt/t for the equality. Hence

lim sup
t→∞

E
[
Rt
t
− v
]+
≤ lim sup

t→∞
ε

∞∑
n=0

P
(
Rt
t
− v ≥ εn

)
≤ ε.

Since ε is arbitrary the lemma is proved. �

Although the following lemma is well known, we did not find it in previous
publications and we include it here for the sake of completness.

Lemma 2.3. Suppose λ > λc , let

r′t = sup{x ∈ Z : x ∈ ξ0t and there is an infinite open path starting from (x, t)}

and let τ0 = inf{s : ξ0s = ∅} Then

P
(

lim
t

r′t
t

= v(λ)|τ0 =∞
)

= 1.

Proof: Let 0 < ε < v . Then write:

P
(
|ξ0n ∩ [(v(λ)− 2ε)n, (v(λ)− ε)n]| ≤ ερn

2
, |τ0 =∞

)
≤ P

(
|ξ0n ∩ [(v(λ)− 2ε)n, (v(λ)− ε)n]| ≤ ερn

2
, [(v(λ)− 2ε)n, (v(λ)− ε)n] ⊂ [`n, rn]|τ0 =∞

)
+ P

(
`n > (v(λ)− 2ε)n|τ0 =∞)

)
+ P

(
rn < (v(λ)− ε)n|τ0 =∞)

)
≤ P

(
|ξZ
n ∩ [(v(λ)− 2ε)n, (v(λ)− ε)n]| ≤ ερn

2
, |τ0 =∞

)
+ P

(
`n > (v(λ)− 2ε)n|τ0 =∞)

)
+ P

(
rn < (v(λ)− ε)n|τ0 =∞)

)
,

where the last inequality is due to the fact that ξ0n(x) = ξZ
n(x) for any x ∈ [`n, rn].

We now show that the sum on n of each of the three terms of the right hand
side above converges: For the first of these terms, the convegence is a consequece
of the fact that for any n the distribution of ξZ

n is stochastically above the upper
invariant measure of the contact process and of Theorem 1 of (Durrett,Schonmann)
.For the third term the convergence follows from Corollary 3.22 in Chapter VI of
(Liggett95). For the second term it follows by that same corollary applied to `n and
our choice of ε. We have thus proved that∑

n

P
(
|ξ0n ∩ [(v(λ)− 2ε)n, (v(λ)− ε)n]| ≤ ερn

2
, |τ0 =∞

)
<∞.

This, the Markov property and Theorem 3.29 in Chapter VI of (Liggett95) imply
that ∑

n

P(r′n < (v(λ)− 2ε)n|τ0 =∞) <∞.
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Since ε is arbitrary and r′n ≤ rn we get: P(limn
r′n
n = v(λ)|τ0 = ∞) = 1 and the

lemma follows from the fact that sup0≤s≤t≤1 r
′
n+t − r′n+s is bounded above by a

Poisson r.v. of parameter λ. �

It now follows:

Corollary 2.4. Suppose λ > λc and let A be an infinite subset of Z+. Then
for any v′ < v, there exists an infinite open path starting from A× {0}, which lies
on the right of the line {(v′t, t), t ≥ 0}.

Proof: There exists a strictly increasing sequence {xk, k ≥ 1} ⊂ A such that
there is an infinite open path starting from each xk. Now for each n ≥ 0 and some
R ∈ N define

r′t,n = sup{x ∈ Z : x ∈ ξnt and there is an infinite open path starting from (x, t)}
and An = {r′t,n > v′t−R+ n, ∀t ≥ 0}

It follows from the last Lemma that for R large enough, P(An) = P(A0) > 0. From
now on such an R is fixed. From the ergodic theorem,

1
n

n−1∑
j=0

1Aj
→ P(A0) > 0,

hence a. s. infinitely many An occur. So almost surely, one An with n ≥ R occurs.
Now choose k large enough such that xk ≥ n. Clearly there exists an infinite open
path starting from (xk, 0) which lies on the right of the line {(v′t, t), t ≥ 0}. �

Corollary 2.5. The critical values of λ for the contact processes on N and Z
are equal.

Let µ+ denote the upper invariant measure for the contact process on N. This is
defined as follows. Denote by {χt, t ≥ 0} the one–type contact process on N. This
process takes its values in {0, 1}N. In accordance with the above conventions, for
A ⊂ N, we write χAt for the contact process on N starting with the initial condition
χA0 (x) = 1 iff x ∈ A. Then µ+ is the weak limit, as t→∞, of the law of χN

t .
For η ∈ {0, 1}N, let Y (η) = inf {x > 0 : η(x) = 1}.

Lemma 2.6. a) There exist constants K, c > 0 such that µ+(Y > n) ≤ Ke−cn

for all n ≥ 0.
b) α := Eµ+(Y ) <∞.

For the proof of this result, we will need the following
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Lemma 2.7. Denoting again rt = sup{x, ξZ−
t (x) = 1}, we have

µ+(Y > n) = P(inf
t>0

rt ≤ −n).

Proof: We first exploit the well–known self–duality of the contact process. Since
there is a one to one correspondance between the open paths from some (y, 0),
y ∈ N, to some (x, t), x ∈ (0, n] and the open paths from some (x, 0), x ∈ (0, n] to
some (y, t), y ∈ N obtained by reversing the directions of the arrows,

P(∃x ∈ (0, n] : χN
t (x) = 1) = P(∃x ∈ (0, n] : χxt 6= ∅).

Letting t→∞ in the above identity yields

µ+(Y ≤ n) = P(∃x ∈ (0, n], χxt 6= ∅, ∀t > 0).

The last right hand side is the probability that there is an infinite open path starting
from some (x, 0), x ∈ (0, n], which visits only points located at the right of the
vertical line {1} × R+. This has the same probability as the event that there is
in (−n,∞) × R+ an infinite open path starting in (−n, 0] × {0}, i. e. it equals
P(inft>0 rt > −n). The result follows. �

Proof of Lemma 2.6
Part b) follows from part a) and in view of Lemma 2.7, to prove part a) it suffices

to show that for the contact process on Z there exist constants K, c > 0 such that

P(inf
t>0

rt ≤ −n) ≤ Ke−cn ∀ n ≥ 1.

It follows from Corollary VI.3.22 in (Liggett95) that for some K1, c > 0 we have:

P
(
rt ≤

v

2
t
)
≤ K1e

−ct ∀ t ≥ 1. (2.1)

From now on let [t] be the integer part of t. From (2.1) we get:

P
(

inf
n≥[t], n∈N

rn ≤
v

2
t

)
≤ P

 ⋃
n≥[t], n∈N

{
rn ≤

v

2
n
}

≤
∑
n≥[t]

P
(
rn ≤

v

2
n
)

≤ K2e
−ct,

for some K2 > 0. Next define τn = inf{n < s ≤ n+1, rs ≤ v
2 t} (with the convention

that τn = n+ 1 on the set {infn<s≤n+1 rs >
v
2 t}). Now note that{

inf
n<s≤n+1

rs ≤
v

2
t

}
∩ {rn+1 − rτn

≤ 0} ⊂
{
rn+1 ≤

v

2
t
}
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and that

P
(
rn+1 − rτn

≤ 0
∣∣∣∣ inf
n<s≤n+1

rs ≤
v

2
t

)
≥ P(X = 0),

where a X is Poisson r.v. of parameter λ. Hence,

P
(

inf
n<s≤n+1

rs ≤
v

2
t

)
≤ [P(X = 0)]−1P

(
rn+1 ≤

v

2
t
)

= eλP
(
rn+1 ≤

v

2
t
)
.

Therefore, using (2.1) we get

P
(

inf
s≥t

rs ≤
v

2
t

)
≤
∑
n≥[t]

P
(

inf
n<s≤n+1

rs ≤
v

2
t

)
≤ eλ

∑
n≥[t]

P
(
rn+1 ≤

v

2
t
)

≤ K3e
−ct,

for some constant K3. We have shown in particular that

P
(

inf
s≥t

rs ≤ 0
)
≤ Ke−ct. (2.2)

Fix β > 0 such that 2λβ < 1 + vβ. Now, write

P
(

inf
t≥0

rt ≤ −n
)
≤ P

(
inf

0≤t≤βn
rt ≤ −n

)
+ P

(
inf
t≥βn

rt ≤ 0
)
.

It follows from (2.2) that the second term of the right hand side decays exponentially
in n. Hence, the lemma will be proved if we show that the first term also decays
exponentially in n. To do so, let σ = inf{t : rt ≤ −n} and let Yn be a Poisson random
variable of parameter 2λβn. It now follows from the Strong Markov property applied
at the stopping time σ that:

P(r2βn ≤ vβn) ≥ P(σ ≤ βn)P(Yn ≤ (1 + vβ)n).

Since, given our choice of β, limn→∞ P(Yn ≤ (1 + vβ)n) = 1 and by (2.1),
P(r2βn ≤ vβn) decays exponentially in n, the same happens to
P(σ ≤ βn) = P(inf0≤t≤βn rt ≤ −n). �

Let T−1 be the operator on the set of probability measures on {0, 1}N defined
by

T−1(ν) (η(x1) = γ1, ..., η(xn) = γn) = ν (η(x1 + 1) = γ1, ..., η(xn + 1) = γn) ,

for any n ≥ 1, γ1, . . . , γn ∈ {0, 1}.
The natural partial order on {0, 1}N induces a partial order on the set of prob-

ability measures on {0, 1}N which we denote by ≤. Recalling that µ+ is the upper
invariant measure for the contact process on N, we have
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Lemma 2.8. T−1(µ+) ≥ µ+.

Proof: Consider the contact process {χt, t ≥ 0} this time on N∪{0}, starting again
from χ0 ≡ 1. Let now {χt, t ≥ 0} denote the same process, with the same initial
condition and the same realization of the graphical representation, except that we
delete all arrows between states 0 and 1. The restriction to N of the asymptotic
(as t → ∞) law of χt coincides with µ+, while the same law associated with χt
coincides with T−1(µ+).The result follows from the fact that for all t > 0, x ≥ 1,
P(χt(x) ≥ χt(x)) = 1. �

Our next proposition is taken from (vdBerg,Haggstrom,Kahn) (See Theorem 2
in that reference). Although there the result is stated and proved for the contact
process on Z, their proof also holds for the contact process on N.

Proposition 2.9. Let {ξt(x), x ∈ N, t ≥ 0} denote the one–type contact
process starting at time t = 0 from a deterministic configuration.Then, for each
t > 0, conditioned on the event {ξt(x) = 1}, the collections of random variables
{1− ξt(y), 0 < y < x} and {ξt(y), y > x} are positively associated.

Lemma 2.10. Let f be a continuous increasing real valued function on {0, 1}N
which depends only upon coordinates which are greater than or equal to x + 1 (for
some x ∈ N). Then∫

fdµ+(·|η(1) = 0, . . . , η(x− 1) = 0, η(x) = 1) ≥
∫
fdµ+.

Proof: Consider the contact process {χt, t ≥ 0} on N, starting from χ0 ≡ 1. We
deduce from Proposition 2.9:

E(f(χt) | χt(1) = 0, . . . , χt(x− 1) = 0, χt(x) = 1) ≥ E(f(χt) | χt(x) = 1).

It then follows from Lemma 2.11 below that

E(f(χt) | χt(1) = 0, . . . , χt(x− 1) = 0, χt(x) = 1) ≥ E(f(χt)).

It remains to let t→∞. �

Lemma 2.11. Let {χt, t ≥ 0} denote the contact process on N, starting from
any deterministic initial condition. For any t > 0, the law of χt has positive corre-
lations.

Proof: For the contact process on [1, · · · , n], the result follows from Theorem 2.14
on page 80 of Liggett (Liggett95). Our result then follows by letting n→∞. �
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Note that Lemma 2.11 applies as well to the contact process {ξt, t ≥ 0} on Z.
Let Sx,y = {ξxt 6= ∅, ∀t > 0; ξyt 6= ∅, ∀t > 0}. Recall that both processes

{ξxt , t ≥ 0} and {ξyt , t ≥ 0} are constructed with the same set of Poisson processes
{P xt , P

x,+
t , P x,−t , x ∈ Z} as explained above. Note that on the event Sx,y the process

starting from {x} survives but this does not mean that if we start from {x, y} the
progeny of (say) x lives forever. We now show that (recall the definition of ρ in
(1.1))

Lemma 2.12. For all x, y ∈ Z

P(Sx,y) ≥ ρ2.

Proof: Denoting by µ the upper invariant measure of the contact process {ξt, t ≥
0} on Z, i. e. µ is the limit as t→∞ of the law of ξZ

t , we have by the same duality
argument already used in the proof of Lemma 2.7 the identities

P(ξxt 6= ∅,∀t > 0) = µ(η(x) = 1),
P(ξyt 6= ∅,∀t > 0) = µ(η(y) = 1),

P(Sx,y) = µ(η(x) = 1, η(y) = 1).

Letting t → ∞ in the result of Lemma 2.11 applied to the contact process on Z
implies that µ has positive correlations. Hence

µ(η(x) = 1, η(y) = 1) ≥ µ(η(x) = 1)× µ(η(y) = 1).

The result follows from this inequality and the three above identities. �

We now fix some λ > λc and let v = v(λ). We pick

0 < ε <
v

2
∧ ρ

2

4
.

From now on t0 will be a large enough multiple of 2
v so that the following holds :

P (B(t0, ε)) ≥ 1− ε, (2.3)

where

B(t0, ε) =
{
v − ε ≤ rt0

t0
≤ v + ε, v − ε ≤ −`t0

t0
≤ v + ε

}
.

Let us define new processes. For any z ∈ Z, we write

rzt = sup {x : ξzt (x) = 1} − z,
`zt = inf {x : ξzt (x) = 1} − z,
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where as usual the sup (resp. the inf) over an empty set is −∞ (resp. +∞).
Now we define the event

C(t0, ε) =
{
v − ε ≤

r0t0
t0
≤ v + ε, v − ε ≤ −

`0t0
t0
≤ v + ε

}
⋂{

v − ε ≤
rvt0t0

t0
≤ v + ε, v − ε ≤ −

`vt0t0

t0
≤ v + ε

}
,

and prove:

Lemma 2.13. Let ε be as above. Then, for any large enough t0, we have:

P (C(t0, ε)) ≥ ρ2 − 2ε.

Proof: First note that on the event {ξ0t 6= ∅,∀t > 0} we have: r0t = rt and `0t = `t
and a similar result holds for rvt0 and `vt0 . Hence the result follows from translation
invariance, Lemma 2.12 and (2.3). �

From now on, t0 will be a large enough multiple of 2
v such that both the inequality

(2.3) and the conclusion of Lemma 2.13 hold.

3. The two–type contact process with equal birth rates. Let ηt denote
the contact process with two types. For A,B ⊂ Z with A ∩ B = ∅, {ηA,Bt , t ≥ 0}
now denotes the contact process where at time zero A is the set of sites occupied
by individuals of type 1, and B is the set of sites occupied by individuals of type
2. The dynamics is the same as before, using the same construction with the same
collection of Poisson processes, except that now an individual of type α ∈ {1, 2}
located at site z gives birth at time t to an individual of the same type at site z+ 1
(resp. at site z− 1), if t is a point of the Poisson process P x,+ (resp. P x,−) and the
site z + 1 (resp. z − 1) is not occupied at time t.

3.1. A single mutant in front of an infinite number of residents may survive.
In this subsection, we consider the process {ηA,Bt , t ≥ 0} only in the case where
A < B, meaning that all points in A are located on the left of each point of B. In
other words, the initial configurations belong to the set:

L := {η : η(x) = 1, η(y) = 2 ⇒ x < y}.

Given the nearest neighbor character of our process, whenever it starts in L, it
remains in L with probability 1.

For a configuration η ∈ L, we define

br(η) = sup {x : η(x) = 1} and
b`(η) = inf {x : η(x) = 2} .

We now have the following consequence of Lemma 2.13 (here PA,B denotes the law
of {ηA,Bt , t ≥ 0}) :
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Corollary 3.1. For t0 large enough, we have

P(−∞,0],{vt0}
({

br(ηt0) ≤ vt0
2

}
∩ C(t0, ε)

)
≥ ρ2

2
− ε.

Proof:
By Lemma 2.13 and symmetry arguments we have:

P{0}{vt0}
({

br(ηt0) ≤ vt0
2

}
∩ C(t0, ε)

)
≥ ρ2

2
− ε

On C(t0, ε) there is an open path from (0, 0) to some point in [−(v + ε)t0,−(v −
ε)t0] × {t0}. Any open path starting from (vt0, 0) remains strictly to the right
of the previous path, since otherwise there would be an open path from (vt0, 0) to
[−(v+ε)t0,−(v−ε)t0]×{t0}, which cannot occur on the event C(t0, ε). Consequently
for the initial configuration {0}{vt0} the first of these paths is always occupied by a
type 1 particle. Therefore, adding to the initial configuration extra 1-type particles
to the left of the origin does not alter the process to the right of that open path.
Hence

P(−∞,0],{vt0}
({

br(ηt0) ≤ vt0
2

}
∩ C(t0, ε)

)
= P{0}{vt0}

({
br(ηt0) ≤ vt0

2

}
∩ C(t0, ε)

)
≥ ρ2

2
− ε.

�

To show that a similar result holds for the two type contact process on (−∞, 3
2vt0],

we start with another lemma concerning the two type contact process on Z:

Lemma 3.2. As t0 →∞,

P{0}{vt0}
({

br(ηt0) ≤ vt0
2

}
∩ C(t0, ε)

)
−

P{0}{vt0}
({
∃ x ∈

(
vt0
2
,

3vt0
4

]
; ηt0(x) = 2

}
∩
{
br(ηt0) ≤ vt0

2

}
∩ C(t0, ε)

)
converges to 0.

Proof: It suffices to show that

P{0}{vt0}
({
∀ x ∈

(
vt0
2
,

3vt0
4

]
; ηt0(x) 6= 2

}
∩
{
br(ηt0) ≤ vt0

2

}
∩ C(t0, ε)

)
,
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converges to 0 as t0 goes to infinity. But on the event {br(ηt0) ≤ vt0
2 } there are no

1’s at time t0 on the interval [ vt02 + 1, 3vt0
4 ], hence we only need to prove that for

the one type contact process

P{vt0}
({
∀ x ∈

(
vt0
2
,

3vt0
4

]
; ηt0(x) = 0

}
∩ C(t0, ε)

)
converges to 0 as t0 goes to infinity. But on the event C(t0, ε) the set of occupied
points in the interval

(
vt0
2 ,

3vt0
4

]
is the same whether the initial condition of the

process is Z or {vt0} . Since starting from Z we have more occupied points than
under the upper invariant measure the result follows from the fact that under the
upper invariant measure the probability of having an empty interval of length n
tends to 0 as n tends to infinity. �

From now on we shall use {aζt, t ≥ 0} to denote the two–type contact process
on (−∞, a]. Now we can prove:

Corollary 3.3. Provided t0 is large enough, we have

P(−∞,0],{vt0}
({

br( 3vt0
2
ζt0) ≤ vt0

2

}
∩
{
∃x :

vt0
2

< x <
3vt0

2
, 3vt0

2
ζt0(x) = 2

})
≥ ρ2

2
−2ε.

Proof: In this proof we will consider the two type contact process on both Z and
(−∞, 3

2vt0]. These two processes are constructed on the same probability space
with the same Poisson processes. For the second of these pocesses {P xt ; x > 3

2vt0},
{P x,−t ; x > 3

2vt0]} and {P x,+t ; x ≥ 3
2vt0} play no role. These processes ηt and

3vt0
2
ζt are assumed to start both from the configuration

(
(−∞, 0],

{
vt0
2

})
.

On the set {
∃x ∈

(
vt0
2
,

3vt0
4

]
; ηt0(x) = 2

}
,

there is an open path from (vt0, 0) to ( vt02 ,
3vt0

4 ] × {t0}. We now show that the
probability that this path ever reaches the vertical line {x = 3vt0

2 } between time
0 and time t0 converges to 0 as t0 goes to infinity. Indeed, if that happened, there
would be either an open path from (vt0, 0) to { 3

2vt0} × [0, 3
8 t0] or an open path

from { 3
2vt0} × [ 38 t0, t0] to [ 12vt0,

3
4vt0] × {t0}. The existence of the first of these

paths has a probability which converges to 0 as t0 goes to infinity by Lemma 2.2.
By reversing the arrows and using symmetry and again Lemma 2.2, we see that the
same happens to the second path.

Hence, if we define

G =
{
∃ an open path from (vt0, 0) to

(
vt0
2
,

3vt0
4

]
× {t0}

}
∩
{
6 ∃ an open path from (vt0, 0) to

(
vt0
2
,

3vt0
4

]
× {t0} which touches the line x =

3vt0
2

}
,
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we deduce from Lemma 3.2 that

P{0}{vt0}
(
C(t0, ε) ∩

{
br(ηt0) ≤ vt0

2

})
−P{0}{vt0}

(
G ∩ C(t0, ε) ∩

{
br(ηt0) ≤ vt0

2

})
converges to 0 as t0 goes to infinity . The result follows from Corollary 3.1 and the
following claim: starting both ηt and 3vt0

2
ζt from ({0}{vt0}) we have:

G ∩ C(t0, ε) ∩ {br(ηt0) ≤ vt0
2
}

⊂
{
br( 3vt0

2
ζt0) ≤ vt0

2

}
∩
{
∃ vt0

2
< x <

3vt0
2
, 3vt0

2
ζt0(x) = 2

}
.

To justify this claim note first that on the event G there exists a rightmost open
path from (vt0, 0) to

(
vt0
2 ,

3vt0
4

]
, which remains to the left of the line x = 3vt0

2 . Now
on the event G, the processes ηt and 3vt0

2
ζt must coincide up to time t0 on any point

to the left of or on that open path. �

We now introduce the following partial order on {0, 1, 2}Z :
η1 � η2 whenever both

{x : η1(x) = 2} ⊂ {x : η2(x) = 2} and {x : η2(x) = 1} ⊂ {x : η1(x) = 1} . (3.1)

Intuitively � means “more 1’s” and “fewer 2’s”.
This partial order extends to probability measures on the set of configurations:

µ1 � µ2 means that there exists a probability measure ν on ({0, 1, 2}Z)2 with
marginals µ1 and µ2 such that ν({(η, ζ) : η � ζ}) = 1. The same notation will be
used below for measures on {0, 1, 2}A, for some A ⊂ Z. We now state the

Definition 3.4. Let η1, η2 be two random configurations, µ1 and µ2 their
respective probability distributions. We shall say that η1 � η2 a. s. whenever (3.1)
holds a. s., and that η1 � η2 in distribution whenever µ1 � µ2.

Remark 3.5. The reader might think that a more natural definition of the
inequality in distribution would be to say that µ1 � µ2 whenever µ1(f) ≥ µ2(f)
for all f : {0, 1, 2}Z → R which are increasing in the sense that η1 � η2 implies
f(η1) ≥ f(η2). Theorem II.2.4 in (Liggett95) says that for the standard partial
order on {0, 1}Z the two definitions are equivalent. It is clear that this theorem can
be extended to our partial order, but we shall not need this result here.

Note that η1 � η2 implies br(η1) ≥ br(η2) and that if γ � ζ, the coupling
between the contact processes starting form different initial conditions deduced
from the graphical representation produces the property

P(ηγt � η
ζ
t ∀t ≥ 0) = 1. (3.2)
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In the sequel for any probability measure µ on {0, 1, 2}Z and any i ∈ N, T i(µ) will
denote the measure µ translated by i. That is the measure such that for all n ∈ N,
all x1 < x2 < · · · < xn and all possible values of a1, . . . , an we have:

T i(µ)({η : η(x1) = a1, . . . , η(xn) = an}) =

µ({η : η(x1 − i) = a1, . . . , η(xn − i) = an}) (∗).

Moreover, if µ is a measure on A[n,∞) where A is any non-empty subset of {0, 1, 2},
then T i(µ) will be the measure on A[n+i,∞) satisfying (*).

As before µ+ denotes the upper invariant mesure for the contact process on N
and µ+

2 will be the measure obtained from µ+ by means of the map: F : {0, 1}N →
{0, 2}N given by F (η)(x) = 2η(x). With a slight abuse of notation the measures µ+

and µ+
2 will also be seen as measures on {0, 1, 2}N and a similar abuse of notation

will be applied to the translates of these measures.

We start the process {ηt, t ≥ 0} from the initial distribution µ determined by

• (i) The projection of µ on {0, 1, 2}(−∞,vt0] is the point mass on the configu-
ration

η(x) =


1, if x ≤ 0,
0, if 0 < x < vt0,

2, if x = vt0,

• (ii) the projection of µ on {0, 1, 2}[vt0+1,∞) is T vt0(µ+
2 ).

In the sequel η0 will denote a random initial configuration distributed according to
µ. In other words, we assume that η0 = η0.

We now proceed as follows. We partition the probability space into a countable
number of events: H,J0, J1, . . . and let the process run on a time interval of length
t0. Then we show that the distribution of ηt0 conditioned on any event of the parti-
tion is � than a convex combination of translations of µ̄. Hence the unconditioned
distribution of ηt0 is also � such a convex combination. Then we replace ηt0 by a
random configuration η1 whose distribution is this convex combination and let the
process run on another time interval of length t0 and so on.

For each n ∈ { 3vt0
2 } ∪ {2vt0, 2vt0 + 1, . . .} we define two new processes: nζs on

{0, 1, 2}(−∞,n] and nξs on {0, 2}[n+1,∞). These evolve like the process ηt and are con-
structed with the same Poisson processes P x,−t , P x,+t and P xt . For the first of these
processes the Poisson processes {P xt : x > n}, {P x,+t : x ≥ n} and {P x,−t : x > n}
play no role. A similar statement holds for the second process. The initial distribu-
tion of these processes are the projections of µ on {0, 1, 2}(−∞,n] and {0, 1, 2}[n+1,∞)

respectively. Since we only consider cases where n ≥ 3vt0
2 , the second of these pro-

jections concentrates on {0, 2}[n+1,∞).
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Our partition of the probability space is given by :

H =
{
br( 3vt0

2
ζt0) ≤ vt0

2
, ∃ vt0

2
< x <

3vt0
2

: 3vt0
2
ζt0(x) = 2

}
,

Jm = {Qt0 = vt0 +m} ∩Hc for m = 0, 1, . . . ,

where Qt0 = max{Rt0 , vt0} (recall that Rt = sups≤t rs).
Since the initial distribution considered here is � than the initial distribution of

Corollary 3.3, we have

P(H) ≥ ρ2

2
− 2ε > 0. (3.3)

Note that on H

1. The set {x : ηt0(x) = 1} is contained in (−∞, vt02 ] (indeed since {x, 3vt0
2
ζt0(x) =

2} 6= ∅, {x, ηt0(x) = 1} = {x, 3vt0
2
ζt0(x) = 1}).

2. The set {x : ηt0(x) = 2} contains {x : 3vt0
2
ξt0(x) = 2}.

We also claim that conditioned on H, the distribution of 3vt0
2
ξt0 is ≥ T

3vt0
2 µ+

2 (this
follows from Lemma 2.8 and the fact that the process 3vt0

2
ξt is independent of H).

Therefore, the distribution of ηt0 conditioned on H is � ν where ν is determined
by:

1. The projection of ν on {0, 1, 2}(−∞,
3vt0

2 ] is the point mass on the configuration

η(x) =

{
1, if x ≤ vt0

2 ,

0, if vt0
2 < x ≤ 3vt0

2

and
2. the projection of ν on {0, 1, 2}[

3vt0
2 +1,∞) is T

3vt0
2 (µ+

2 ).

It follows from Lemma 2.10 (applied to µ+
2 instead of µ+) that if Y is a N–valued

random variable such that

P(Y = n) = µ+
2 ({η : η(x) = 0, x = 1, . . . , n− 1, η(n) = 2}),

then

ν �
∞∑
n=1

P(Y = n)T
vt0
2 +nµ.

Hence the distribution of ηt0 given H is �
∑∞
n=1 P(Y = n)T

vt0
2 +nµ.

A similar argument shows that the conditional distribution of ηt0 given Jm is �

∞∑
n=1

P(Y = n)T vt0+n+mµ ,

where Y is distributed as above.
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It follows from the above arguments that ηt0 � µ1 in distribution, where

µ1 := P(H)
∞∑
n=1

P(Y = n)T
vt0
2 +nµ+

∞∑
m=0

P(Jm)
∞∑
n=1

P(Y = n)T vt0+m+nµ (3.4)

We can now state:

Proposition 3.6. If t0 is large enough, there exists a positive integer valued
random variable Z(t0) such that

a) µ1 =
∑∞
n=1 P(Z(t0) = n)T

vt0
2 +nµ.

b) Z(t0) has an exponentially decaying tail.
c) w := E(Z(t0)

t0
) < v.

Proof:
Part a) follows from (3.4) and part b) follows from part a) of Lemma 2.6 and the

fact that Rt0 is bounded by a Poisson random variable of parameter λt0. To prove
part c) write

E(Z(t0)) =
∞∑
n=1

P(H)P(Y = n)
(
vt0
2

+ n

)

+
∞∑
m=0

∞∑
n=1

P(Hc, Qt0 = vt0 +m)P(Y = n)(vt0 + n+m)

≤ P(H)
[
vt0
2

+ E(Y )
]

+ P(Hc)E(Y )

+
∞∑
m=0

P(Hc, Qt0 = vt0 +m)(vt0 +m)

= P(H)
vt0
2

+ E(Y ) + E(Qt0)− E(Qt0 ;H)

≤ P(H)
vt0
2

+ E(Y ) + E(Qt0)− P(H)vt0

= E(Qt0) + E(Y )− P(H)
vt0
2
.

Hence it follows from Lemma 2.2 that

lim sup
t0→∞

E(Z(t0)
t0

≤ v
(

1− P(H)
2

)
,

and the result follows from (3.3). �

We can now prove:

Proposition 3.7. Let µ be the initial distribution of the process. Then

lim sup
t→∞

br(ηt)
t

< v a.s.
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Proof: Choose t0 large enough, such that the conclusion of Proposition 3.6 holds
true. It follows from that same Proposition, the Markov property and (3.2) that for
all k ∈ N the distribution of ηkt0 is �

∑
n P(U1 + · · ·+ Uk = n)Tnµ where the Ui’s

are i.i.d. random variables distributed as Z(t0). It then follows that

P
(
br(ηkt0)
kt0

≥ z
)
≤ P

(
U1 + · · ·+ Uk

kt0
≥ z
)

for any real z. Using part c) of Proposition 3.6 and standard large deviation esti-
mates we get that for for any z > E(Z(t0))

t0
we have:∑

k

P
(
br(ηkt0)
kt0

≥ z
)
<∞.

Hence, by the Borel-Cantelli lemma we get:

lim sup
k

br(ηkt0)
kt0

≤ w a.s.

where w is as in Proposition 3.6. Hence the result holds along the sequence kt0.
Finally the gaps are easy to control since for any initial configuration, the process
br(ηt) makes jumps to the right which are bounded above by a Poisson process of
parameter λ. �

It follows readily from this result that

Corollary 3.8.

γ := PZ−,{1}(the type 2 population survives for ever) > 0.

Proof: First suppose that the initial distribution of the process is µ and call η0 the
initial random configuration. It then follows from the above Corollary and Corollary
2.4 that for some x > 0 there is an infinite open path starting at (x, 0) such that
for any (y, t) in this path we have ηt(y) = 2. This conclusion remains true if we
suppress all the initial ”2’s” to the right of x. The corollary then follows from the
Markov property and (3.2). �

3.2. A finite number of mutants do not survive in between a double infinity of
residents. The aim of this subsection is to prove

Theorem 3.9. Consider the two type contact process {ηA,Bt , t ≥ 0}, where
|B| < ∞, and the set A contains an infinite number of points located both to the
left and to the right of B,

Then a. s. there exists t <∞ such that

{x; ηA,Bs (x) = 2} = ∅, ∀s ≥ t.
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Let us first prove the following weaker statement. We shall then verify that the
Theorem follows from it.

Proposition 3.10. For any n,m ∈ N let An,m = {x ∈ Z : x ≤ −m or x ≥ n}
and B = {0}, then a. s. there exists t <∞ such that

{x; ηAn,m,B
s (x) = 2} = ∅, ∀s ≥ t.

Proof: By the Markov property and (3.2) it suffices to prove the result for n =
m = 1. Indeed starting from that configuration, for any n, m > 1, with positive
probability we find ourselves at time one with the same unique type 2 individual
located at x = 0, sites −m+ 1, . . . ,−1 empty, sites 1, . . . , n− 1 empty, and some of
the other sites occupied by type 1 individuals.

Let αt denote the number of descendants at time t of the unique initial type 2
individual (hence αt denotes also the number of type 2 individuals at time t). On
the event that the lineage of the unique type 2 individual survives for ever we have
αt →∞ as t→∞ a. s. Hence if that event has positive probability, E(αt)→∞ as
t→∞. Consequently for any δ > 0,

Tδ = inf{t > 0, E(αt) ≥ 1 + δ} <∞.

Denote by r′t(x) the supremum of the set of sites occupied by the descendants of the
individual (x, 0). Clearly, whatever the initial configuration is E[r′t(x)− x] ≤ E[rt],
where as above

rt = sup
{
x : ξZ−

t (x) = 1
}
.

From the result recalled at the beginning of section 2, there exists T ′ such that

E
[rt
t

]
≤ v + 1, ∀t ≥ T ′.

Recall that in our initial configuration all sites are occupied (who occupies each
site is irrelevant to contradict the fact that Tδ <∞, which we now do).

For n odd, let Zt(n) be the number of sites which at time t are in a line of
descendance starting at time 0 in the interval [−(n− 1)/2, . . . , (n− 1)/2]. Now by
stationarity whenever t ≥ Tδ,

E(Zt(n)) ≥ n(1 + δ).

On the other hand, if t ≥ T ′, by symmetry,

E(Zt(n)) ≤ n+ 2t(v + 1).

Choosing n > 2t(v + 1)/δ, the last two inequalities yield a contradiction. �

In order to deduce Theorem 3.9 from Proposition 3.10, we shall need the following
Lemma where, as above, the ηt’s for various initial conditions are defined with the
same unique graphical representation.
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Lemma 3.11. Let (xn)n≥0 be a strictly increasing sequence of strictly positive
integers and let (ym)m≥0 be a strictly decreasing sequence of strictly negative inte-
gers. Then,

P(∃ n : ∀ t > 0,∃ x : η{xn},{xn−1,xn−2,... }
t (x) = 1) = 1,

and
P(∃ m : ∀ t > 0,∃ x : η{ym},{ym+1,ym+2,... }

t (x) = 1) = 1.

Proof: Define for n, m ≥ 0 the events

Cn = {∀ t > 0,∃ x : η{xn},{xn−1,xn−2,... }
t (x) = 1},

Dm = {∀ t > 0,∃ x : η{ym},{ym+1,ym+2,... }
t (x) = 1}.

From Corollary 3.8, symmetry and translation invariance,

P(Cn) = P(Dm) = γ ∀n,m ≥ 0.

On the set {(x, t) : x ∈ Z, t ≥ 0} the Poisson processes used in the construction are
n-fold mixing with respect to translations on Z for any n ∈ N. Since xn+1 ≥ xn+1,
this implies that for all k ≥ 1

lim
N→∞

P
(
∩kj=0C

c
Nj

)
= (1− γ)k.

Consequently
P (∩n≥0C

c
n) ≤ (1− γ)k

for all k ≥ 1. This shows that

P (∪n≥0Cn) = 1.

The result for the Dm’s is proved similarly. �

Proof of Theorem 3.9 By the Markov property, it suffices to consider the case
where A = {yn : n ∈ N} ∪ {xn : n ∈ N}, B = {0} and the sequences (xn) and (yn)
are as in the previous lemma.

For all n,m ≥ 1, we define

En,m =
{
∀t > 0, ∃x : η{xn},{xn−1,xn−2,... }

t (x) = 1
}⋂

{
∀t > 0, ∃x : η{ym},{ym+1,ym+2,... }

t (x) = 1
}
.

From the last Lemma we know that P(∪n,mEn,m) = 1. Hence, it suffices to show
that for all n,m ∈ N, we have:

P(∀ t > 0 ∃x : η
A,{0}
t (x) = 2, En,m) = 0.

But on the event En,m the evolution of ”2”’s is not altered by adding ”1”’s to the
left of ym or to the right of xn. Therefore the result follows from Proposition 3.10.
�
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3.3. Proof of Theorem 1.1. The only if part follows from Theorem 3.9. Let us
prove the if part. We consider the case where |A ∩ B+| < ∞. The other case is
treated similarly.

Recall the definition of the set of configurations

L = {η; s. t. η(x) = 2, and η(y) = 1 imply y < x}.

We let
T = inf{t ≥ 0, ηt ∈ L}.

Clearly |A ∩B+| <∞ implies that

PA,B(T <∞) > 0.

Hence from the strong Markov property it remains to show that whenever A∩B+ =
∅,

PA,B(the type 2 population survives for ever) > 0.

This last statement follows from translation invariance, (3.2) and Corollary 3.8.

3.4. Proof of Theorem 1.2. By the Markov property and symmetry it suffices
to show that the theorem holds for some A and B. To prove this, let (xn)n≥0 and
(ym)m≥0 be as in the statement of Lemma 3.11 and let Cn and Dm be as in the
proof of that lemma. It follows from that same lemma that there exist n and m
such that P(Cn ∩Dm) > 0. This implies that

P{ym}{xn}(∀ t > 0 ∃ x, y : ηt(x) = 1, ηt(y) = 2) > 0.

Hence, the theorem holds when A = {xn} and B = {ym}.

3.5. Corollary for the one–type contact process . The following is an immediate
consequence of the above results.

Corollary 3.12. Let {ξAt , t ≥ 0} denote the one–type contact process starting
from the configuration ξ0 and let A = {x, ξ0(x) = 1}. It follows from our results
that

1. if A contains both a sequence which converges to +∞ and a sequence which
converges to −∞, then no individual has a progeny which survives for ever;

2. if |A| = +∞ but supA <∞, then exactly one individual has a progeny which
survives for ever.

Proof: The first statement is a consequence of Theorem 3.9. For the second state-
ment first note that it follows from (3.2) and Corollary 3.8 that for any initial
condition having a rightmost individual, the probability that this individual has
a progeny which survives forever is bounded below by γ > 0. We then define an
increasing sequence of stopping times: τ1 is the smallest time at which the progeny
of the rightmost initial individual dies out, τ2 is the smallest time at which the
progeny of the rightmost individual at time τ1 dies out and so on. It then follows
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from a repeated application of the Strong Markov Property that P(τn <∞) ≤ γn.
Hence, with probability 1 for some k, τk = ∞ which implies that at least one in-
dividual has a progeny wchich survives forever. Suppose now that two individuals,
say x < y, have a progeny which survives for ever with positive probability. Adding
infinitely many individuals at time t = 0 on the right of y cannot possibly modify
the fate of the progeny of x. This would mean that the progeny of x would survive
for ever with positive probability, in the presence of infinitely many individuals at
time t = 0 on both of its sides. This contradicts Theorem 3.9.

4. Remarks about the case of unequal birth rates. Assume that the
type 1 individuals have the birth rate µ, and type 2 individuals have the birth rate
λ.

It is not hard to deduce from our argument that for µ > λc there exists ε > 0
such that the conclusion of 1.1 remains true if µ−ε < λ < µ. However, we conjecture
that this is not the case for all values of λ in the interval (λc, µ). Consider now the
right contact process, where each individual gives birth to offsprings on its right
at rate λ, and does not give birth to any offspring on its left. Let now λcc denote
the critical value of the parameter λ, such that whenever λ > λcc, the one–type
right contact process starting from {0} has a positive probability of survival. Going
back to our two–types contact process, whenever λ > λcc, whatever the value of µ
may be, the progeny of a single type 2 individual with a finite number of type 1
individuals on its right at time 0, has a positive probability of survival.

In the other direction, we conjecture that if the rates favor type 2 individuals
(i.e. λ > µ > λc) then a unique type 2 individual has a positive probability of
having descendants at all times even when all remaining sites are occupied at time
0 by type 1 individuals.
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