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EPIDEMIC MODELS AND SOCIAL NETWORIS

HAKAN ANDERSSON.* Stockholm University

Abstract

This survey paper discusses a class of stochastic continuous time models for the spread
of an epidemic across a static or dynamic social network, Various simple graphs are
considered: Bernoulli random graphs, graphs with prescribed degrees, graphs with a
certain number of short loops, overlapping subgraphs representing the superposition of
independent networks, and dynamically changing graphs. For each of these, expressions

infectious individuals, are derjved, The modelling assumptions are meaningful for finite
populations, but the results obtained are only valid asymptotically as the population
size tends to infinity. The theoretical work is illustrated by computer simulations and
numerical calculations.
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1. Introduction

often lead to intractable mathematics. It remains extremely important, however, to continue
developing stochastic and deterministic epidemic models, along with the mathematical tools
to analyse them. In the future, we may gain enough knowledge to be able 1o predict with
Some accuracy the important characteristics of areal life epidemic. Needless to say, any such
knowledge would be invaluable from a public health point of view.

We present a survey of a class of theoretical epidemic mode!s in which the assumption
of homogeneous mixing is relaxed, while in all other respects the simplest possible setup is
chosen. Some new ideas and results are also discussed, in particular in Sections 4 and 6, We
first give a simple argument pointing out a serious drawback in the assumption of homogeneous
mixing. The stochastic epidemic model that has received the most attention is the so-called
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now inappropriate since the model has been greatly generalized over the years. This model
can be described as foliows. Consider a closed population consisting of n individuals. Initially
there are « infectious and 1 — a susceptible individuals. An individual remains infectious
for an exponential holding time with intensity 1, during which it makes contact with each
susceptible at the time points of a time homogeneous Poisson process with intensity B/#.
Such a contact results in the susceptible individual becoming infectious. An individual is
considered ‘removed’ once its infectious period has terminated, and is then immune to new
infections, playing no further part in the epidemic.

Many of the classical results for the standard epidemic process (branching approximations,
deterministic approximations, calculations of the basic reproduction number and of the prob-
ability of a large outbreak, etc.) require the population size 7 to be large. But the modelling
assumptions specify that in a large population, contacts between two given individuals occur
at a very low rate, thus implying in principle that the possibility of repeated contacts is not
taken into account. The assumption of homogeneous mixing is therefore not very realistic
when describing epidemic spread in large populations. Moreover, as we will see later (notably
in Section 3), even the slightest departure from homogeneous mixing may very well lead to
dramatic changes in the observable epidemiological quantities.

If we wish to allow repeated contacts between individuals, a possible solution is to pick a
graph describing the relations between individuals, and then let the disease spread along the
social network so obtained. In that way each individual will be assigned a small neighbourhood
of other individuals and can then contact each of its neighbours at a ‘normal’ rate. It is far from
obvious how to choose a suitable torm of the network. The graph should be complicated
enough to catch something of the often irregular contact pattern in a population of living
organisms, but at the same time simple enough to lend itself to mathematical analysis. In
this work a number of simple graphs are proposed: Bernoulli random graphs, graphs with
prescribed degrees, graphs with a certain number of short loops, overlapping subgraphs rep-
resenting the superposition of independent networks, and graphs that change dynamically with
time (Sections 3-7, respectively). The spread of disease is then modelled on each of these
structures. We are particularly interested in the basic reproduction number, the asymptotic
final size of the epidemic and the time dynamics of the asymptotic proportion of susceptible
and infectious individuals. No proofs are given; the reader will find these in the references.
The theory is illustrated by computer simulations and numerical calculations.

2. Preliminaries

We begin by setting up the modelling assumptions used in most of the work; in Section 7 it
will be necessary to make a slight modification of these assumptions. Definitions of the basic
reproduction number and the final epidemic size will also be given. Finally, we indicate how
some calculations may be simplified by studying the progress of the disease on a generation
basis rather than in real time.

2.1. Standard epidemic process on a fixed graph

Consider a closed population consisting of n individuals. Represent the neighbourhood
structure in the population with a labelled undirected graph §, so that the ith and the jth
vertices of the graph are connected by an edge if and only if individuals i and j are neighbours.
The graph will often be the result of some random experiment. We assume that the structure is
fixed during the course of the epidemic; this is a reasonable simplification when considering
short-term epidemics, since a typical social network is not expected to vary too much over a
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short time span. Then let G be the adjacency matrix of the graph ¢, so that G;; = 1if / and
j are connected and G;; = 0 otherwise. It follows that G is a symmetric binary n X n matrix
with zeros in the diagonal. Finally, the degree D; of the ith vertex is defined as the number of

vertices adjacent to this vertex, D; = Y iy Gij-

Let us next define the dynamics of tjhe:1 epidemic process. We pick ¢ initially infectious
individuals at random from the population. An infectious individual remains so for an expo-
nentially distributed time period of intensity 1. During this period it makes close contacts with
each of its neighbours according to the points of a Poisson process with intensity 8. If the
individual so contacted is still susceptible, then it will inmediately become infectious. After
the infectious period, the infectious individual recovers and is then immune. All infectious

periods and Poisson processes are assumed to be independent of each other.

2.2. Important epidemiological quantities

We are particularly interested in the behaviour of the process as the population size 1 tends
to infinity. Thus we are actually considering a sequence of epidemic processes indexed by 7.
We shall however be somewhat careless in our notation, suppressing this index throughout the
work. Let us first define the final size of the epidemic. Let X;(t) = 1 if the ith individual is
susceptible at time ¢, and X;(r) = 0 otherwise (1 < i < n). Likewise, ¥;(¢) = 1 if the ith
individual is infectious at time ¢, and ¥, (¢) = O otherwise. Then define

n n

X()=) Xi() and Y()= PRLG!
=1 =1

to be the total number of susceptibles and infectives, respectively, at time 7. Also, let T be the

random time when the epidemic terminates, i.e.

T =inf{t >0 : Y () =0}.

Then the number of individuals that escape the epidemic is given by X (T'). We define the final
size of the epidemic to be the random number 7 — X (T). Note that according to this definition,
the initially infectious individuals are included in the final size.

The basic reproduction number Ry has a long and interesting history, see for example [32],
[33] and [43]. This quantity is traditionally defined as the average number of secondary cases
generated by one infectious individual in a large completely susceptible population. However,
when studying multitype populations or populations where there are repeated contacts between
individuals, it soon becomes clear that this simple definition must be modified to provide
meaningful information about the progress of the disease (see [29]). Here, we shall simply
define Ry directly in terms of the epidemic behaviour that the basic reproduction number is
meant to reflect. '

Assume that the initial number of infectious individuals, a, is kept fixed rather than growing
with n. We say that a major epidemic (or a large outbreak) occurs if the final size is of the
same order of magnitude as the population itself. Otherwise, if the final size is o(n) only a
minor epidemic occurs. Now, Ry is defined as any non-negative function of the infection rate
p and some graph characteristics such thatif Ry <1 then the asymptotic probability of a major
epidemic is zero, while if Ry > 1 then there is, asymptotically, a strictly positive probability
of a large outbreak. With this definition, Ry is far from unique; if ¢ is any non-negative strictly
increasing function such that ¢(1) = 1, then ¢(Ro) is also a basic reproduction number.
Nevertheless, whenever a very natural candidate for Ry has been derived, we shall refer to it
as the basic reproduction number.
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Suppose now that the initial proportiona/n of infectious individuals converges to a number
a strictly between 0 and 1 as 7 tends to infinity. As above, denote ‘susceptibles’ and ‘infectives’
by the letters X and Y, respectively. Generally speaking we set 4; = 1 if the ith individual
is of type ‘A, and A; = O otherwise. Then define the scaled number of individuals, connected
pairs and connected triples with given type configurations in the following way:

1 n
a=- Aj,
n Z !
i=1
1 n
lab] = - _.Z‘ AiGi;B;,
i,j=1
n
[abcl =~ Y, AiGijB;GCx. (1
i, f k=1
i#k

For instance, [xy](¢) is the (scaled) number of neighbours i, j where i is susceptible and j is
infectious at time 7. If the total number of neighbours of a given individual is kept bounded,
then all sums above are O(n), which explains the scaling by n. Note that [ab] = [ba], and
that each pair in [aa] is counted twice. The variables counting the number of pairs and triples
of different types will turn out to be most useful in the model analysis to come. Finally, define
o to be the proportion of individuals that escape the epidemic, and denote by 7 the proportion
of individuals that have ever experienced the disease,

X and 7=1- ‘X(T). 2)

n n

g =

Since 0 < @ < 1, we expect from the law of large numbers that the quantities in Equations (1)
and (2) will all have well-defined deterministic limits as » tends to infinity.

2.3. Generation process

The study of the basic reproduction number as well as the final epidemic size is sometimes
greatly simplified by considering the epidemic process on a generation basis, see for example
Ludwig [60] and von Bahr and Martin-Lof [10]. Let 3(0) be the set of initially susceptible
individuals, and denote by %(0) the set of initial infectives,

XO) ={i : X;0)=1) and Y(O0) ={i: Y0 =1}

Then, for each & > 1, let the set X (k) consist of those in X (k — 1) who were not infected
by the members of Y(k — 1), and put Y(k) = X(k — 1) \ X (k). In this way a discrete time
process (X(f), Y)); t =0,1,2, ..., called the generation process, is obtained. We destroy
the time order of events by this construction, but note that the directed transmission links are

exactly the same in the generation process as in the original one. Hence observables that
depend only on the size of the epidemic and not on any real time behaviour may be calculated
by using the discrete time process. For instance, consider the basic reproduction number. If
the population is large and the initial number of infectives is kept constant then the process

YO r=0,1,2,..., counting the number of infectives, often follows some kind of branch-

ing behaviour. Classical branching process theory may then be invoked to find conditions for

possible explosion, i.e. to find Ry.
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3. Bernoulli random graphs

The so-called Bernoulli random graph model is probably the simplest non-trivial choice of
underlying network for our epidemic model. The theory of random graphs was introduced
by Erdds and Rényi [37] in the late 1950s and has been extensively studied ever since. In
particular, the class of Bernoulli random graphs has been very thoroughly explored, see for

example [25] and references therein. This graph model, often referred to simply as the §(n, p) -

model, is defined as follows. We are given a set of n labelled vertices. With probability
p, we connect a given pair of distinct vertices i and j by drawing an edge between them.
These connections are made independently of each other. It is clear that the degree D; of the
ith vertex, i.e. the number of vertices adjacent to this vertex, is binomially distributed with
parameters /1 — 1 and p, so that the average degree is given by (1 — 1)p. In order to keep the
size of the neighbourhood bounded we have to set p = A/n, for some A > 0. This implies
that D; will be approximately Poisson distributed with parameter A if n is large. Now, for
each outcome § belonging to §(n, p) we run the standard epidemic on §, as described in
Section 2. This model is described also in [69]. Related papers in random graph theory are
for example [72], [46] and [45]. See also the book on random mappings by Kolchin [52]. The
corresponding generation process is covered for example in [61] and [68]; see also [22], [23],
[40] and [15].

3.1. Basic reproduction number

First, let us calculate the basic reproduction number. Denote by p« the Poisson probability
of having k neighbours, k > 0. Consider the generation process of infectious individuals,
starting with one single infective. In the beginning of the time course, all contacted individuals
are susceptible with high probability since the population is assumed to be large. Hence the
generation process of infectives is well approximated by a branching process. The repro-
duction mean of this branching process will serve as our basic reproduction number since,
according to classical branching process theory (see for example [42]), the process has a
positive probability of exploding if and only if this mean exceeds 1. One should consider an
infective in the second generation; the initial infective may be atypical, since all its neighbours
are susceptible. An infective in the second generation will have k neighbours with a probability

proportional to kpi, and in this case generates on the average (k — 1)B/(B + 1) new cases.

Thus

B < kpk
Ro=———-1§(k—1)°———-oo ,
P

« pl\,

k=1

which can be rewritten as

B ( var(D) — E(D))
Ry = —— | E(D —_ ). 3
0= 331 (D) + ED) 3)
For this particular model, E(D) = var(D) = A, implying that
A
Ry = ——f-}—' 4

p+1
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3.2. Time dynamics

We now describe the time dynamics of the model. Assume that the proportion of initially
infectious individuals tends to a nontrivial limit a as 1 tends to infinity. The quantities intro-
duced in Equation (1) turn out 10 be of fundamental importance here. In [69] the following
system of differential equations, which is valid asymptotically as the population size tends to
infinity, is derived:

% = —plxyl,
%y? =Byl =Y
ﬂ%\! = —2pLxxyl;
A3) _ g )~ ) = 0D = 09
C—%ﬂ =28 (lyxy) + lxyD — 2[yyl. 5

We proceed to explain the fourth line; the other lines are then obtained by similar reasoning.
If the central individual j in a connected X XY -triple (i, J, k) is infected by the individual k,
we gain an XY -pair (i, J)- On the other hand, we may lose an XY -pair (j, k) in three ways:
The individual j in an Y XY -triple (i, j, k) is infected by the individual i; k infects j directly;
& becomes removed. The fourth line of (5) now follows readily.

The system (5) is not very useful as it stands, since no description of the time dynamics of
the variables [abc] is provided. Fortunately, the equations can be closed at the level of pairs by
the following device. Considera connected triple (i, j, k). Then, using the notation introduced
in Section 2,

P (AiB;Ci = 1) =p(A =11BjC = P (BiCk = 1).

If n is large then the probability that (i, j, k) is part of a short closed loop (e.g. a triangle) is
negligible, hence asymptotically,

P(A,‘:llBjCk:l):P(A,':l\Bj:I)

P (A,-B i = 1)
- ——
P(Bj=1)
This translates 10 the formula
bl[b
{abcl = [i—%i] foralla, b, c. (6)

Finally, we insert this relation into the system (5)to obtaina closed system in the five variables
x, y, [xx), [xy}and [yyl.

This System can be simplified considerably. Obviously, the equation for [y ylis superfluous.
Also the equation for [xx] can be crossed out, since by comparing the differential equations
for x2 and [xx] it follows that [xx] = Ax? at all imes. Finally, we define § = [¥ y]/x. This

quantity can be viewed as the infection pressure exerted on the population. It is easily verified

that
=2 X o Xy ) x—p )Y,
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giving the system of differential equations

dx .

Fr

dy .

dr—ﬁxy ¥

d3 A

ay _oBx -p—-DYy 7
i Opx —B—DY M

with initial condition x(0) = 1—a,y®= g and (0) = Ad.
Note that if A — and g — 01n such a way that their product A is kept constant, then in
tion § — Ay). Thus (7) collapses

the limit y = AY (by applying Gronwall’s inequality to the func
to the two-dimensional system

dx

5 = T

Y _ ®)
— = X — s

dt y—

x(@ =1- a, y(0 = a. We recognize in (8) the usual Kemlack—McKendrick model (the
deterministic version of the classical standard epidemic process), e€ Bailey [12].

3.3. Final size equation
Remember that the final size T is given by T = 1 — o, where 0 is the relative number
easily derived.

of individuals that escape the epidemic. An equation for this latter quantity 1s
Divide the third line of (7) by the first one and integrate to get

-’——ﬁ—gllog( X ):-k(l—x)—l—fu

1 —a

Putting § = 0 yields

o=(1—-aex \ i ¢ 0)} )
—(—aeXPy " 7 L1 .

P\" B+
Note that this transcendental equation is of the same form as the final size equation correspond-
ing to the Kermack—McKendrick model. The basic reproduction number Ro from (4) appears

in the formula (9) as it should.

3.4. Numerical results
Let us point out an interesting property of the present model. From (7) We observe that in
, > L

the limiting case a — Othe infection pressure yis increasing initially if and only if Rq
On the other hand, the same is 1107 true for the proportion of infectious individuals. Indeed,

dy R Bxy
= Bxy—Yy — - - l v,
dr Py ( y ) ‘
thus y is increasing initially if and only if A8 > 1 (in the limit 7 — 0). Hence there exists 2
region in the (B, 2)-parameter space. given by

2B
< and B> L
g+1
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FIGURE L Deceptive {nitial behaviour of the epidemiC.

where the epidemic first seems to take off but soon flattens out and declines. This phenomenon
is illustrated in Figure 1, where the functions y(f) (solid line) and () (dashed line) are plotted
against ! for the case A = 2, 8= 0.95and a = 0.1. To conclude, we Stress that it is the initial
pbehaviour of the infection pressure rather than the proportion of infectious individuals that
determines whether or not 2 large outbreak occurs.

4. Random graphs with prescribed degrees

In this section We€ study a more general class of networks. Consider the usual closed
population consisting of 7 individuals, and suppose that we have gained information about
how the neighbourhood size 18 distributed, but otherwise have no information on the network.
Then it is natural to first pick a sample of n numbers according to this distribution and then
choose 2 labelled graph having exactly these numbers as degrees. This graph will provide &
very crude model of the social network.

More formally, for each n define a yector (D1, -+ D,) of identically distributed random
variables t0 represent the degrees of the graph. We think of the variables D; as independent,
but this is of course not strictly true; for instance, the sum iy Di should always be an even
aumber. Also, assume that D; tends to 2 proper random variable D in distributionas 7 — 00.
Finally, among all labelled undirected graphs on 7l vertices with given degrees Di, pick one
uniformly at random and run the standard epidemic on this structure. Unless the distributionof
D has a very heavy tail, this random experiment will produce graphs with a high probability of
containing very few loops (se€ [8] for convenient technical conditions). This is the reason why
the deterministic approximation presented below works sO well. On the other hand, from the
point of view of applications, W€ would of course appreciate the presence of short loops such
as triangles (‘twO friends often have common friends’). In Section 3,2 method of incorporating
short loops 18 suggested. In [8) a simple stochastic discrete time epidemic process on the above
network is discussed; se€ also [7]. Diekmann et al. [28] also study the special case of a regular
graph, i.€., 2 graph where each vertex has the same degree. Among relevant papers from the

graph theoretic field are {211, [63] and [66].

4.1. Basic reproduction number

The derivation of the basic reproduction aumber given in Section 3 is still valid:

var(D) — E(D)>

B ( .
Ry = —""— E(D
0= g1 (D) +

0} 10
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4.2. Final size equation
idemic can be derived as follows. First,

The proportion & of individuals that escape the ep
c =(1—a) Zf\iu £ ks where & is the chance that an initially susceptible individual with
in total k neighbours stays susceptible throughout the epidemic. If we define ¢ 10 be the

probability that a neighbour of such an individual escapes the epidemic, then

b = i (—I’)K (k)sk‘e(l )
g+1 ¢ '

=0

where 1/(8 + 1) 1s the probability of not receiving the disease from a given infectious neigh-

bour. Thus
1+ Bs k
fe=\—7)
1+ P
and it follows that
_ 1+ Bs
c=0—a (———— , 11
(1-ay \1+-;3> (1

function of D. BY similar reasoning we derive an

equation for 5, the probability that a given neighbour escapes the epidemic. We have 5§ =
bility that our neighbour has in turn k neighbours,

(1 —a) S0 0 Ek s where Py is the proba
and £ denotes the probability that he or she stays susceptible given k neighbours in total. We

easily obtain
o0
pr = kpr / (Z k’pk).
k=0
g %( 1 ¢ (k— 1 k_.1_g(1 )g (1-\—}33 k-
= —_— S — = .
: B+ 1 ¢ ’ i+ g,

=0

where @ is the probability generating

implying that

o 1+ ,
s=(l—a)<p<1+ﬁ;>/w(1)- (12)

Tt is clear that the
12) defines a convex

Equations (11) and (12) together determine the escaping proportion 0.

solution is unique, since the right—hand side minus the left-hand side of (
function of s which is strictly positive at s = 0 and strictly negative at s = 1.
As a simple example, assume that the average neighbourhoo

uted with parameter A this is the case considere
Ro=MB/(B+ 1). The probability generating function is g

is readily seen thats =0 and then

- rB
a:(l—a)exp{—m(1~0)‘,

d size D is Poisson distrib-
d in the last section. Equation (4) yields
iven by ¢(z) = exp{—A(l — N} It
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in accordance with the results of the last section. Another natural example is t0 let D be
constant, D = L. This is the case treated in [28]. By (10), Ry = (k — HB/B + 1) since
var(D) = 0. To calculate the escaping proportion o We note that ¢(z) = Z, implying that

k k-1
U:(l—a)(ll—:ﬁ;) where s==(l—&)(%gﬁ£> .

These equations can be turned into & single equation for o, pbut unless k = 1 or k = 2 they
cannot be solved explicitly.

4.3. Simulations and numerical results

We now use simulations to investigate the validity of the formulas above. In order to
generate a labelled graph with n vertices and fixed degrees (Dy,.-- , Dy) we proceed as
follows:

o Form a list £ containing D copies of the ith vertex, 1<i<n
o Choose a random pairing of the elements of &£

e Repeat the above step as long as there exist pairs (i, i) orelse different pairs involving
the same two vertices jand j.

When this algorithm has been completed, for each pair (i, j) of the pairing we draw an edge
to connect the ith and the jth vertex. In this way a graph with the correct degrees is obtained.
Also, since any of these graphs can be obtained in exactly [1i=1 D;! ways, it follows that all
the graphs are equally probable as desired. Having generated such a graph, itis a simple task
to simulate the standard epidemic.

Some results for the final size T =1 — o0 are shown in Table 1. Using two different values
of the population size n (n = 1000 and n = 10000) we have estimated the average and the
standard deviation of the random final size Tsim- This should be compared with the value Tdet
obtained from (11)and (12). Here D, =4,D2 is binomially distributed with parameters 2 and
%_, translated to get the expected value 4,and D3 is binomial with parameters 8 and % Finally,
D4 has distribution given by p2 = P6 = %; pr =0 otherwise. In this way the degree variables
have the same average but increasing variance.

The discrete time epidemic model of [8] exhibits interesting behaviour. The model is
defined on exactly the same type of network as the one considered in this section, and it turns
out that for a highly infectious disease, 2 network with a constant number of neighbours yields
a larger final size than any irregular network with the same average neighbourhood size. On
the other hand, if the disease is less contagious, the regular network is not extreme in this
respect. Further examples related to this observation are presented in [9]. The phenomenon is
also present for our continuous time process. and is illustrated in Figure 2 where the final size
is plotted against p for two ditferent choices of the degree variable D (we put a = 0.1). The
solid line corresponds to p3 = Lpr=0 otherwise, and the dashed line is obtained by using
a network with p2 = P4 = 35 Pk = 0 otherwise.

5. Random graphs containing short loops

As mentioned in the last section, there are always several small groups with complete
mixing in a typical social network. It would therefore be interesting t0 find a natural way
of constructing random graphs that contain short loops. In [39] the class of so-called Markov
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TABLE 1t Final size of epidemic for various networks.
Tims * = 1000 Tsimy 1T 10000
D g Average g.d.  Averagf s.d. Tdet

Dy 01 0.142 0.016 0.142 00035 0.142
05 0519 0.051 0523 0016 0.524
10 0885 0.020 0.887 0.007 0.887

Dy, 0.1 0.144 0.015 0.143 0.005 0.143
0.5 0.531 0.049 0.536 0016 0537
10 0878 0.021 0.880  0.007 0.880

Dy 0.l 0.145 0.016 0.145 0005 0.145
05  0.565 0.044 0.569 0014 0.569
10 0855 0.019 0857 0006 0.856

Dy 01 0.146 0.017 0.145  0.006 0.147
05 059 0.038 0592 0012 0.593
0 0.019 0.823  0.006 0.824

1 0.823

FIGURE 2 Trade-off in the final size.

graphs is considered. In the simplest cas¢ 2 given undirected labelled graph g onn vertices
has probability
n—1
C exp ZS_;Z.,- +yT ¢,
j=1

where Zj is the number of vertices of degree jand T is the number of triangles in G. Positive
(negative) values of the parameters 5 indicate a tendency towards (against) many vertices
of degree J- The parameter ¥ similarly controls the number of triangles. At first sight this
seems to be 2 promis'mg construction, but it is flawed. Strauss [73) shows that the model is
degenerate in the sense that if y is strictly positive (however gmall) then, as the number of
vertices increases, the probab'ﬂity that an arbitrarily large fraction of the edges will coalesce
into a clique, i.e. a complete subset of the graph, tends to 1. Jonasson [47] tries 1O improve the
Markov graph model by letting ¥ depend on the number of vertices, but it turns out that the
resulting model is explosive. When 71 is large typical outcomes are either almost free from
triangles OF almost complete- These results together with simulations by Altmann [3] show
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that Markov graphs have undesirable asymptotic properties. The construction proposed below
produces graphs that are rather well-behaved, but to find even more natural alternative models
remains an open problem.

Following the construction of Section 4, for each n we et Dy, ..« »Dn be identically
distributed random variables, and for each sample (Dy,--- ,Dy) we define Py to be the
uniform measure on the labelled undirected graphs with n vertices and with exactly these
numbers as degrees. Then, for a given outcome g let @(§) be the ratio of the number of
triangles in § 1O the number of connected triples in . Finally, for given g > 0and ¢,
0<¢p <, we define the measure

P (§) = CPo(§)exp (—oni®(§) — ol} .

Note that P(? = Py, but by choosing larger 6 we increasingly reward outcomes having the
ratio of triangles t0 triples approximately equal 1o ¢. The reward function ®(§) is more in
line with the sociological interpretation than the function given simply by the total number of
triangles. The quantity ¢ should be interpreted as follows. If i is connected with both j and k,
then j and k will be connected with probability ¢. Inthe simulations to come We fix ¢, choose
a large value g and use the Metropolis—Hastings algorithm t0 generate an outcome according
to the measure Pg’ . Then the standard epidemic process is run on this graph in the usual way.
For the rest of this section we assume that the neighbourhood size D is asymptotically Poisson
distributed with parameter %. We have not yet succeeded in finding expressions for the basic
reproduction number of the model. However, in [69] a method 1s developed for finding a
system of ordinary differential equations approximat'mg the time development of the epidemic
process. See also [48], (49}, et al. (50] and [671. We proceed t0 describe this method. (This
pair approximation approach has also been used for lattice models DY, for example, (62}, 411,
[71] and [701)

5.1. Time dynamics

In order to find a way of approximating the time dynamics, W€ return to Equation (5)-
We should again close this system of equations at the level of pairs, but now the presence of
triangles in the network adds a complication. If a given connected triple @, j, k) is not part of
a triangle, then as before the event that i is of type A is assumed to be independent of the event
that k is of type C given that j is of type B. Thus

[abcl = La_b]’b[b’Cl foralla, b, c. (13)

On the other hand, if (i, j, k) does form a triangle then this relation has to be modified owing
to the presence of the edge between i and k. We write instead

ablib
[abcl = L ]b[ cl Tuc foralla,b, ¢, (14)
where Tue = [acl/ (rac) should be interpreted as 2 measure of the correlation between
individuals of type A and type C. For further details, see [69]. Finally, using (13) and (14) we
eert (ablibc] (ac]

a c ac

labcy=—F—"" ((1 —d)+ (i)——)
b rac

into the system (5)to obtain a closed system in the five variables x, ¥, [xx], [x yjand [y yl. The
initial conditionis given by X gO) = 1—a, y) = a, xx10) = A1 —a’)2, [xyl0) = ra(l—a)
and [yyl1(0) = A=, .
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3

FIGURE 3: Deterministic VS stochastic time dynamics.

TABLE 2: Deterministic final size T and sample mean of the stochastic final size 1 — X(T)/n
0.1 0.2

¢ 0.0
B det. sim. det. sim. det. sim.

05 0392 0.397 0372 0.333 0353 0298
10 0671 0.662 0648 0.591 0.621 0474
1.5 0778 0.775 0763 0725 0744 0.601
20 0.828 0.826 0817 0.796 0.804 0.675
2.5 0856 0.855 0847 0.816 0.837 0.744

5.2. Simulations and numerical results

The numerical solution to this deterministic system will now be compared with simulations
of the stochastic process. First, we have studied the time development of the relative size of
infectious individuals. The average number of neighbours is given by » = 3, the infection rate
is p = 1,the proportion of initial infectives is@ = 0.1 and the interconnectedness is given by
¢ = 0.25. The dashed line in Figure 3 gives 2 realization of the stochastic process Y (1)/n with
n = 1000 individuals and the solid line y(f) is obtained from the solution 10 the deterministic
equations.

Second, for different values of ¢ and p we have observed the deterministic approximation
1 of the relative final size together with a sample mean of the corresponding random quantity,
1= X(T)/n. Here A = 3, a=0.1,and in the simulations 7 has been set 0 1000. The results
are presemed in Table 2, where for each pair (8 ¢) the number on the left is the deterministic
value and the value on the rightis the estimate obtained from simulations. Thus the simulations
show that both the relative number of infectious individuals and the final size proportion are
overestimated by the deterministic systeml, and the discrepancy increases with - Nevertheless,
the pair approximation approach certainly provides 2 qualitat'wely correct picture.

6. Overlapping subgraphs

When modelling the spread of disease in a human population, it is very important t0 take
into account the formation of small social groups such as households, work groups and school
classes. When considered separately, these structures decompose the population into mutually
exclusive mixing groups, 0ot allowing any disease spread worth mentionng. However, if the
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structures are superimposed, a manifestly different situation arises. For instance, the epidemic

may very well spread from one household 10 another via a transmission channel in the work
group structure. The model of this section 18 motivated by such overlapping social networks;
it also allows the supelposition of a global structure representing the very irregular formation
of circles of acquaintance.

Let us describe the model (cf. (7. Let g0, g‘, L., 9 be subgraphs of the complete graph
on n vertices. We assume that these different graphs have been generated by independent
random mechanisms. Then form the union § in the obvious way. A given edge will belong 10
g if and only if it belongs to at least one of the graphs gr,0<p =T Denote by G* (G) the
adjacency matrix of ar (%) Finally, fix infection rates 6‘ , ﬁl, .., p,one for each structure,
and run an epidemic process on g. A given infectious individual i makes close contacts with
a given susceptible individual j at the ponts of a Poisson process with intensity _p=0 PGl
and the removal rate i8 equalto 1, as before. Since the graphs are assumed to be independent
and sparse, when n is large typically at most one of the indicators Gf i 0o<p=T, will be
non-zero.

We make further specific assumptions about the subgraphs gP, Assume that g0 is either
a Bernoulli graph (Section 3) or @ graph with prescribed degrees (Section 4). On the other
hand, each of the graphs al, ..., g’ is assumed 10 consist of disjoint complete subgraphs,
corresponding t0 small mixing groups- With these simplifications some analytical results are
possible, such as an expression for the basic reproduction pumber.

The special case where §" is a Bernoulli graph, the average neighbourhood size A tends 10
infinity and the infection raté p" tends to zero in such a way that ABY is kept constant, and
moreover I = 1,1s referred to as the household model. For the household model, [14] is the
main reference. For important contributions 10 the theory and practical applications, see €.8-
(18], (191, 20} and [44]. A related model is treated in the early paper by Bartoszyﬁski [16].
Work on outbreaks within households in the presence of community infection but without
considering the dynamics of the latter can be found in (591, (1} and [17]. See also [91. Finally,

in an unpublished manuscript Altmann [5] discusses the case where 9,“ is absent and r = 2.

6.1. Basic reproduction number

By using branching approximations in a heuristic Way, it is possible to derive the basic
reproduction number Ro. We make the following modification of the generation process.
When the disease enters a group, such as a household, it may take some generations before
the local epidemic in the group has terminated. Howeverl let us for simplicity pretend that
the initially infectious individual always generates all secondary cases itself, so that the local
epidemic is Over within a single generation. The basic reproduction number is not affected by
this assumption.

We say that an infectious individual is of ‘type’ P> 0<p=Th, if it has become infected via
an edge in §°- 1f the population is large, we may at the beginning approximate our generation
process of infectives in terms of a multitype branching process Y(@) = o), .- YP(D))s
t=0,1,2,..+» where Y () approximates the number of infectives of type P at generation
t. The process has a special behaviour at time f = 0 as opposed to > 1 (cf. Section 4), but
this initial behaviour is irrelevant for the calculation of Ro. We only need to find the mean
reproduction matrix A for the branching process Y, t = then the largest eigenvalue of A
will do as our basic reproduction number (cf. 42D

First we need some definitions. Define

var(D) — E(D)
E(D) |

"R(D) = E(D) +
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where D is the (asymptotic) degree variable associated with §. Put R(D) = 0if D = 0. Now
consider one of the structures gr 1 <p =T, Let [T} be the number of groups of size k in
g.°. Suppose that Hf /ntendstom ,f as n tends to infinity, where for mathematical convenience
we assume that yr,f — 0 for k large enough. Note that > fo; kfr,f = 1. Denote by mf the
average final size of a classical standard epidemic in a group of k individuals, where we start
by infecting one single individual and where the infection rate is p#. For the calculation of
mf , and indeed of the entire distribution of the final size, see {75) or [13]. The quantity

o0
mP = kafnf
k=1

gives the overall average of the final size. Thus, a randomly chosen individual will give rise to
a local epidemic of average size m?. Remember that the initial infective is included here, s0
that m? > 1 always, with equality if and only if all the groups are of size L.

An individual of type O has by definition been infected by a neighbour in 6" and will,
according to the discussion of Section 4, infect on the average p"R(D) new neighbours in g,
where p° = g°/(B°+1). These individuals will have type 0 by definition. The individual will
also infect on the average mP — 1 new group members in §° for each p = 1. Now consider
instead a type p infective, p = 1. It has been infected by a group member in §° and will thus
not generate any New cases along this particular structure (the local epidemic is over within a
single generation by assumption). On the other hand, for each p' # p, p' = 1,amean number
of m? — 1 group members in g"/ will become infected. Finally, on the average pPE(D)
neighbours in 90 will become infected by our type © infective, since all of these neighbours
are susceptible! This yields the following mean reproduction matrix:

p'R(D) m -1 m*—1
pOE(D) 0 m? =1
A=| gy m'-1 0

The largest eigenvalue of the matrix A, i.e. the largest real root £ of the equation g(§) = 0,
where g(§) = det(A — £1), has in general no simple explicit expression. However, we only
need conditions for £ to be below 1 or above 1 in order to construct an appropriate expression
for Rp (see the definition given in Section 2) and such conditions may easily be found in some
simple situations.

First, if - = O then g(§) = p"R(D)—&,s0 obviously Ry = £ = p'R(D) is the best choice
(cf. Equation (10)).

As our next example we take 1 = 1. In this case

g(6) = &2 — Ep"R(D) — PE(D)(my — 1)

i D = 0, then é — (. Otherwise we note that g is a convex function with g(0) <0 and
g'(0) < 0,s0 that & is strictly positive. Since £ < lifand only if g(1) > 0 (we have passed
the crossing point), a good candidate for the basic reproduction number is

Ro=1-g)=p" (R(D) +m' - 1)E(D)> . (15)
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Note that £ itself is more complicated, containing a square root. When g“ has Poisson degrees
(the RBernoulli graph model), we obtain Ry = m!E(D) in accordance with the result given in
[14].

Finally, assume that/ = 2. D = 0(cf. [5]). As explained at the beginning of this section we
may very well geta large outbreak even with a trivial structure go, as long as there are (at least)
two group structures interacting. We have in this case g(§) = —& (5;‘2 —(m' - D(m?* — 1)),
so that a natural choice is

Ry = (m' — Dm* - . (16)

6.2. Final size equation

An equation for the asymptotic final size of the household model can also be derived.
However, the notation becomes very cumbersomie, and we refer to [14] for the details.

7. Dynamic graphs

In this final section we consider a simple social network that changes dynamically with
time. When studying an epidemic over a large time period it is crucial to take into account the
possibility of formation and dissolution of social relations. For instance, the spread of venereal
diseases should preferably be modelled on a dynamic network of partnerships. The following
simple construction due to Altmann [2] is amenable to mathematical analysis and at the same
time reflects something of the behaviour expected of such a network.

As usual, we are given a set of n vertices. Suppose that two given non-adjacent vertices are
joined by an edge at rate pt/n, and adjacent vertices are disconnected at rate o~ . All these
pair processes are assumed to be independent. In this way a simple continuous time graph
process §(1), 1 = 0, is obtained. Assume that the process has reached equilibrium. Then the
degree D; of the ith vertex is binomially distributed with parameters 1— land p¥/ (pT+no7),
and thus converges in distribution to a Poisson variable with parameter A = pT/pTasn tends
to infinity. The standard epidemic process is defined on this structure in the obvious way; at
fime ¢ > 0 we simply follow the transition rules induced by the graph g(t). For possible
generalizations of this model, see [2]. Dynamic partnership models have also been discussed

in [30], [31D), [34] and [64]. See also [24].

7.1. Basic reproduction number

The basic reproduction number is easy to calculate. Consider a single infectious individual
in a totally susceptible population. The probability that this individual and a given susceptible
individual are partners at the beginning of the infectious period, or else become partners during
this time, is given by

ptim (- p*/n o pTn
pt/n+p” otintp-) Lptin

Given this event, infection will occur with probability B/(1+B+p7)- Note that the probability
of more than one partnership episode between these two individuals during the infectious
period may be neglected. Thus the expected number of new cases is given by 7 — 1 times
the product of these two probabilities. As 11 grOws, this quantity tends to

Ro = oL +p7) zkﬁ(Hp‘)
o~ (L+B+p7) T+ B+p

an
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Note that if the rates pt and o~ tend to zero while their ratio A is kept constant, the basic
reproduction number tends to the value given in the Bernoulli graph case, se¢ Equation (4).
This is to be expected since the network is then made increasingly static. Also, since the
expression in (17) decreases 10 the limit in (4) as the dissolution rate tends to zero, we learn
that less frequent change of partners will diminish the spread of disease.

7.2. Time dynamics

The asymptotic time dynamics of the epidemic process is derived rigorously in [4]. Assume
that the proportion of initial infectives tends to @, 0 < @ < 1. The resulting differential system
is as follows:

dx R

—_——= —0X »’

5 Bxy

dy .

T Bxy — Y,

G _ pas Dy +p" -y 18

i Bxy — B+ DY +pY—P Y (13)
with initial condition x(0) = 1—-a,y0) =a and $(0) = Ad. Using the results of Section 3, it
is easy to understand why this system is correct. If we put pt =p" =0,we obtain the system

(7). With dynamic partnerships the following happens. Each given disconnected pair initiate
new relations at rate pt/n, hence we se¢ that [x y] increases at rate prxy. Also, dissolution of
such edges occurs at rate 0 [xy], leading to Equation (18).

7.3. Final size equation

Following [4], an equation for the asymptotic final size of the epidemic, or the asymptotic
escaping proportion, is obtained next. Consider the system (18). Integrating the first gquation
yields

o0
U=(1—Ez)exp{—/3f ﬁ(r)dr}. (19)
0
Then, by summing the first two equations and integrating we get
oC
o= 1—/ y(t)dt. 20)
0
Finally, by writing the third equatjon as
dy dy - A
L=+ A1+ y—(+p+ )
" i (L4 p)y— A+ B+p )

and integrating we see that

o0 oo
0=)\(1+p’)f y(t)df~(1+ﬁ+ p')/ y(t)dr. 2D
0 0
Combining (19), (20) and (21), we finally find

M+ e7)

=(1—Ez)exp{— Y EYE

(1— a>} = (1 —q)e Foll=7), ’

ie. the classical final size equation. Not only does more frequent change of partners increase
the basic reproduction number, but the final size is similarly increased.
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8. Discussion

The prime message of our presentation of stochastic epidemic models on graphs and net-
works has been to highlight the importance of allowing repeated contacts between individuals
in models for the spread of disease. The concept of heterogeneous mixing as introduced in this
text has a fundamental influence on the basic modelling assumptions, whereas other effects
caused by multitype populations, general infectious periods, births and deaths, immigration
and emigration, age-dependence, partial or temporary immunity, change of behaviour, and so
on, may presumably be incorporated at later stages.

It is clear that the mathematical analysis is made considerably more difficult when the
networks contain short loops (an exception being the formation of small disjoint groups with
complete mixing as presented in Section 6); nevertheless it is crucial to find ways of attacking
these more realistic model structures. We are currently investigating possible ways of deriving
the basic reproduction number for a network with Poisson degrees and a certain number of
triangles; that is, the network considered in Section 5.

We have so far presented various ways to model social relations in a population, thus
ignoring the possibility of geographical spread of the disease. For the standard epidemic
model on the two-dimensional lattice, the spatial element completely determines the progress
of the epidemic. This model has been studied in {65], {551, [57] and [27]. For an excellent
introduction to the general theory of interacting particle systems, see Durrett [35]. The book by
Liggett [58] also provides a thorough treatment of the subject, and [36] gives a survey oriented
towards ecological applications.

In order to approach reality, social space and geographical space should be considered
simultaneously, but to find natural models remains an open problem. Interesting ideas, applic-
able mainly in a meta-population situation, are given by CIiff [26], who deforms geographical
space by a non-linear mapping in such a way that the usual distance metric is transformed
into an epidemiological metric (e.g. epidemic time-lags measured in some time unit). The
‘great circle model’ in [14], although highly idealized, also is of interest in this respect.
Hopefully models for epidemic spread on social networks with increasingly realistic properties
will continue to be investigated in future.

References

i1} Apopy, C. L, LONGINI [. M. AND HABER M. (1991). A generalized stochastic model for the analysis of
infectious disease final size data. Biometrics 47, 961-974.

(2] ALTMANN, M. (1995). Susceptible—lnfected-Removed epidemic models with dynamic partnerships. .J. Math.
Biol. 33, 661-675.

(3] ALTMANN, M. (1996). Network measures for epidemiology. In Models for Infectious Human Diseases: Their
Structure and Relation to Data, eds. V. Isham and G. Medley. Publications of the Newton Institute, Cambridge
University Press.

(4] ALTMANN, M. (1998). The deterministic limit of infectious disease models with dynamic partners. Math.
Biosci. 150, 153-175.

|5] ALTMANN, M. Epidemic models with overlapping mixing groups. Unpublished manuscript.

|6] ANDERSON, R. M. AND MAY, R. M. (1991). Infectious diseases of humans: Dynamics and control. Oxford
University Press.

7] ANDERSSON, H. (1997). Epidemics in a population with social structures. Math. Biosci. 140, 79-84.

18] ANDERSSON, H. (1998). Limit theorems for a random graph epidemic model. Ann. Appl. Prob. 8, 1331-1349.

9] ANDERSSON, H. AND BRITTON, T. (1998). Heterogeneity in epidemic models and its effect on the spread of
infection. J. Appl. Prob. 35,651-661.

{10] VON BAHR, B. AND MARTIN-LOF, A. (1980). Threshold limit theorems for some epidemic processes. Adv.
Appl. Prob. 12,319-349.
[11] BAILEY,N. T. J. (1953). The total size of a general stochastic epidemic. Biometrika 40, 177-185.




146

112
113}

1141
115}
{16
1N
(18]
119}
201
21

122}
123}

1241
125}
126}
127
1281
{29
130]
31
1321

133}

134

(351
(36

{371
1381

1391
1401

141}
142

{43}
144]

H. ANDERSSON

BAILEY, N. T. 1. (1975). The Mathematical Theory of Infectious Disedses. Griffin, London.
BaLL, F. (1986). A unified approach 10 the distribution of total size and total area under the trajectory of
infectives in epidemic models. Adv. Appl. Prob. 18,289-310.

BALL, F., MOLLISON,D. AND ScaLia-ToMBA,G. (1997). Epidemics with two levels of mixing. Ann. Appl.

Prob. 7, 46-89.
BARBOUR, A. D. AND MoLLISON, D. (1990). Epidemics and random graphs. In Stochastic processes in
epidemic theory. eds. J.P. Gabriel, C. Lefevre and P. Picard (Lecture Notes in Biomath. 86). Springef, Berlin,
pp. 86-89.

BARTOSZYNSKL R. (1972).Ona certain model of an epidemic. Applicationes Mathematicae 13, 139-151.
BECKER, N. G. (1989). Analysis of Infectious Disease Data. Chapman and Hall, London.

BECKER, N. G. AND DIETZ, K. (1995). The effect of the household distribution on transmission and control
of highly infectious diseases. Math. Biosci. 127,207-219.

BECKER, N. G. AND HaLL, R. (1996). Immunization levels for preventing epidemics in 2 community of
households made up of individuals of different types. Math. B josci. 132, 205-216.

BeCKER,N.G. AND STARCZAK,D. N. (1997). Optimal vaccination strategies fora community of households.
Math. Biosci. 139, 117-132.

BENDER, E. A. AND CaNFIELD, E. R. (1978). The asymptotic number of labetled graphs with given degree
scquences..f _Combinat. Theory (A) 24, 296-307.

BERG, S. (1981). On snowball sampling, random mappings and related problems. J. Appl. Prob. 18,283-290.
BERG, S. (1983). Random contact processes, snowball sampling and factorial series distributions. J. Appl.
Prob. 20, 31-46.

BLANCHARD, P., Bovrz, G. F. AND KRrOGER, T. (1990). Modelling AlDS-epidemics or any venereal disease
on random graphs. In Stochastic Processes in Epidemic Theory, eds. J. P. Gabriel, C. Lefévre and P. Picard
(Lecture Notes in Biomath. 86). Springer, Berlin, pp. 1041 17.

BOLLOBAS, B (1985). Random Graphs. Academic Press, New York.

CLIFF, A. (1995). lncomoratingspatial components into models of epidemic spread. In Epidemic models: Their
Structure and Relation t0 Data, ed. D. Mollison. Publications of the Newton Institute, Cambridge University
Press.

Cox,J. T. AND DURRETT, R. (1988). Limit theorems for the spread of epidemics and forest fires. Stoch. Proc.
Appl. 30, 171-191.

DIEKMANN, O., DE JonG, M. C. M. AND METZ, J. A. L. (1998). A deterministic epidemic model taking
account of repeated contacts between the same individuals.J. Appl. Prob. 35, 448-462.

DIEKMANN, O. HEESTERBEEK, J.A.P. AND METZ,J. AT (1990). On the definition and the computation
of the basic reproduction number R in models for infectious diseases in heterogeneous populations. 1. Math.
Biol. 28, 365-382.

DIETZ, K. (1988). On the transmission dynamics of HIV. Math. Biosci. 90, 397-414.
DiETZ, K. (1988). The dynamics of spread of HIV infection in the heterosexual population. In Statistical
analysis and mathematical modelling of AIDS, eds. J. C. Jager and E. J. Ruitenberg. Oxford University Press.
DIETZ, K. (1993). The estimation of the basic reproduction number for infectious diseases. Statist. Meth. Med.
Res. 2,23-41.
DIETZ, K. (1995). Some problems in the theory of infectious disease transmission and control. In Epidemic
models: Their Structure and Relation to Data,ed. D. Mollison. Publications of the Newton Institute, Cambridge
University Press.
DIETZ, K. AND HADELER, K. P. (1988). Epidemiological models for sexually transmitted diseases. J. Math.
Biol. 26, 1-25.
DURRETT, R. (1995). Ten lectures on particle systems. Lecture Notes in Math. 1608, 97-201.
DURRETT, R. AND LEVIN, S. A. (1994). Stochastic spatial models: A user’s guide to ecological applications.
Phil. Trans. R. Soc. London B 343, 329-350.
ERDOS, P. AND RENYL A. (1959).0n random graphs L. Publ. Math. Debrecen 6, 290-297.
ETHIER, S. N. AND Kurtz, T. G. (1986). Markov [)r()(‘es.ves,('Imruc'reri:urinn(uul convergence. Wiley, New
York.
FrANK, O. AND STRAUSS,D. (1986). Markov graphs..l, Amer. Stat. Assoc. 81, 832-842.
GERTSBAKH, 1. B. (1977). Epidemic process on a random graph: Some preliminary results. J. Appl. Prob. 14,
427-438.
HARADA, Y. AND IsawA, Y. (1994). Lattice population dynamics for plants with dispersing seeds and
vegetative propagation. Res. Popul. Ecol. 36, 237-249.
HaRrRIS, T. E. (1963). The Theory of Branching Processes. Dover, New York.
HEESTERBEEK, 7. AL P(1992). Ry, Ph.D. thesis, Centrum vool Wiskunde en Informatica, Amsterdam.
IsLam, M. N., O’SHAUGHNESSY. C. D. AND SMITH. B. (1996). A random oraph model for the final-size
distribution of household infections. Statistics in Medicine 15, §37-843.

Epidemic models al

1451 JAWORSKI, J.
Alg. 5, 73-94.
146) JAWORSKL J. ¢
1471 JONASSON, J.
48] KEELING, M.
University, Cov
1491 KEELING, M.
ecologies. In '
systems’, ed. P.
150} KEELING, M.
Proc.R. Soc. L
1511 KESTEN, H. (
1521 KOLCHIN, V. 1
{53] KURTZ, T. G.
differential pro
1541 Kurtz, T. G.
1551 KUULASMAA,
19, 745-758.
1561 KUULASMAA,
1212, 195-199
157 KUULASMAA.
1. Appl. Prob. p
1581 LIGGETT, T. M
1591 LONGING, 1.V
distributions o}
1601 LupwliG, D-(
{611 MARTIN-LOF.
limit theorems
1621 MaTsuDa, H.
Lotka—Volterre
1631 McKay,B.D
19A, 15-25.
{64 MODE, C.J.
Semi-Markov
165] MOLLISON, I
2%83-326.
1661 MoLLoY, M.
Sn'uc!.Alg.6,
1671 MORRIS, A.
University, C
1681 PICARD, P. /
Reed-Froste
169 RAND, D. !
Ecology2,e
1701 SATO, K. Al
Soc. Japun ¢
{711 SATO, K., !
populations
172} STEPANOV

{731 STRAUSS,

74] WATSON,
Prob. 11,

1751 P. WHITT
122.



ANDERSSON

the trajectory of
nixing. Ann. Appl.

astic processes in
). Springer, Berlin,

ae 13, 139-151

mission and control

in a community of
wnity of households.
ohs with given degree

. Prob. 18, 283-290.
distributions. J. Appl.

Hr any venereal disease
Lefevre and P. Picard
pidemic models: Their
, Cambridge University
forest fires. S toch. Proc.

epidemic model taking

jon and the computation
s poputations. J. Math.

ypulation. In Statistical
ford University Press.
ses. Statist. Meth. Med.

«d control. In Epidemic
5n Institute, Cambridge

Aitted diseases. 7. Math.

7-201.
ecological applications.

297.
nvergence. wiley, New

342.
sults. J. Appl. Prob. 14,

1 dispersing seeds and

fica, Amsterdam.
modet for the final-size

Epidemic models and social networks 147

1451
{46}
147}
(48

1491

1500
151
1521
1531

154
{551

1561
{57

1581
1591

{601
ionl

1621
163}
1641
1651
1661
{671
168}
{691
{701
174
172}

173}
1741

{75}

JAWORSKL, 1. AND MUTAFCHIEY, L. (1994). The largest component in 4 random mapping. Random Struct.
Alg. S, 73-94.
JAWORSKI, J. AND SMIT, 1. H. (1987 On a random digraph. Ann. Discrete Math. 33, 111-127.
JONASSON, 3. (1999). The random triangle model. J. Appl. Prob 36, 852867
KEELIN’G, M. 1. (1993). The ecology and evolution of spatial host—parasite systems. Ph.D. thesis, Warwick
University, Coventty, UK.
KEELING, M. J. AND RAND, DA (1996). Spmiui correlations and local fluctuations in host—parasire
ecologies. In Proceedings of the Isad¢ Newton Institufe Programme Erom finite 10 infinite dimensional
s_vstems’ Jed. P Glendinning. Kluwer, Dordrecht.

KEELING, M. J., RAND, D. A. AND MORRIS, A- 3. (1997). Correlation models for childhood epidemics.
proc. R. Soc. London B 264, 1149-1156.

KESTEN, H. (1982). Percolation Theory for Murlwnmticiuns.Birkhauser, Boston.

KOLCHIN, V. F. (1986). Random Muppings. Optimization Software, New York.

Kurtz, T. G. (197 Limit theorems for sequences of jump Markov processes approximating ordinary
differential Processes- J. Appl. Prob. 8, 344-356.

Kurtz, T. G. (1981). Appro,\'inmti(m of Population Processes. SIAM, Philadelphia, PA.

KUULASMAA, K. (1982). The spatial general epidemic and. locally dependent random graphs. J. Appl. Prob.
19,745-758.

KUULASMAA, K. (1986). On the reproduction rate of the spatial general epidemic. Lecture Notes in Math.
1212, 195-199.

KUULASMAA, K. AND ZACHARY, S, (1984).0n spatial general epidemics and bond percolation processes.
J.Appl. Prob. 21,91 1-914.

LicGeTT, T. M. (1985). Interacting purticle Systems. Springer, New York.

LONGING, 1. M. AND KoOPM AN, ). S. (1982). Household and community transmission parameters from final
distributions of infections in households. B jometrics 38, 115-126.

LUDWIG, D- (1974). Stochastic Population Theories (Lecture notes in Biomath. 3). Springer, Beslin.
MARTIN-LOF, A. (1986). Symmetric sampling procedures, general epidemiC processes and their threshold
limit theorems. J. Appl. prob.23, 265-282.

MATSUDA,H., oGiTA, N., SASAKL, A. AND SATO, K. (1992). Statistical mechanics of populution—Theiattice
Lotka—Volterra model. Prog. Theor: Phys. 88, 1035-1049.

McKay,B.D. (1985). Asymptotics for symmetric (-1 matrices with prescribed row sums. Ar'S Combinatoricd
19A, 15-25.

MopE, C. J. AnD DIETZ, K. (1994). On some formulas ina pannership model from the perspective of a
Semi-Markov process. J. Math. Biol. 32, 161-169.

MOLLISON, D. (197D Spatial contact models for ecological and epidemic spread. J. Roy. Statist. Soc. B39,
283-326.

MoLLOY, M. AND REED, B. (1995).A critical point for random graphs with a given degree sequence. Random
Struct. Alg. 6, 161-179.

MORRIS, A. 3. (1997, Representing spatial interactions in simple ecological models. Ph.D. thesis, Warwick
University, Coventry, UK.

PiCARD, P- AND LEFEVRE, C. (1990). A unified analysis of the final size and severity distribution in collective
Reed—Frost epidemic processes. Adv. Appl. Prob. 22, 269-294.

RAND, D. A (1997 Correlation equations and pair approximmions for spatial ecologies. In Theoretical
Ecology 2. ed J. McGlade. Blackwell Scientific Publishing, Oxford.

5aTH, K. AND KoNNO N. (1993). Successional dynamical models on the 2-dimensional lattice space. J- Phys.
Soc. Japan 64, 1866-1869.

SATO, K.\ MATSUDA, H. AND SASAKL, A. (1994). pathogen invasion and host extinction in lattice structured
popuiations.J. Math. Biol. 32, 251-268.

STEPANOY, V- E. (1970). On the probability of connectedness of a random graph. Theory Prob. Appl. 15,
55-67.

STRAUSS,D. (1986). Ona general class of models for interaction. SIAM Review 28, 513-527.

WATSON, R. K. (1980). A useful random time-scale transformation for the standard epidemic model. J. Appl.
Prob. 17, 324-332.

P. WHITTLE, P. (1955). The outcome of a stochastic epidemic——a note on Bailey’s papet: Biometrika 42, 116~
122




