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Bacterial growth with mutations
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animal cell maintenance Clayton '07

clones migrating from hair follicles (Supplementary Fig. S5).
Moreover, none of the labelled clones can derive from bulge stem
cells because this region is not labelled (Supplementary Fig. S1 and
Supplementary results).

Before attempting to interpret the clone fate data, it is necessary to
assess the extent to which they are influenced by tissue growth or
apoptosis. First, the rate of increase in epidermal surface area due to
growth was low (estimated at less than 3.5% per month over the time
course of the experiment), whereas apoptosis was undetectable in
basal-layer cells (see Supplementary results and Supplementary Fig.
S6). Furthermore, the number of basal-layer cells per unit area and
the proportion of cycling cells (as assessed both by Ki67 and cdc6
immunostaining) showed no significant difference between 2-week
and one-year samples. Both techniques of assessing the proportion of
cycling cells gave similar results, as did flow cytometry: 226 3%
(mean6 s.d.) for Ki67; 246 4% for cdc6; and 226 1% for flow
cytometry (see Supplementary Fig. S7)19,20. Finally, there was no
significant difference between the proportion of cycling cells in the
labelled and unlabelled cell populations, either at 5 days or one year
post-induction (see Supplementary results and Supplementary Fig.
S2).We therefore conclude that basal-layer cells labelled at induction
are typical of the entire basal cell population, and that the observed
clonal evolution is representative of the adult system in a state of
homeostasis.

According to the stem/TA cell hypothesis, TA cells undergo a
limited number of cell divisions followed by differentiation21. To test
this prediction, we examined clones at 3 weeks, over 90%ofwhich are
lost by 12weeks post-induction. Significantly, clones comprising
three or more cells contained both basal and suprabasal cells, indi-
cative of asynchronous terminal differentiation (Fig. 3a). Further-
more, the immunostaining of clones consisting of two basal cells
reveals that a single cell division may generate either one cycling
and one non-cycling daughter, or two cycling daughters, or two

non-cycling daughters (Fig. 3b). This raises the question of whether
there is asymmetric cell division within the basal plane as described
in the Drosophila peripheral nervous system and zebrafish retinal
precursors22,23. Three-dimensional imaging of wholemount epi-
dermis revealed that only 3% of mitotic spindles lie perpendicular
to the basal layer, indicating that, in contrast to embryonic epidermis,
the vast majority of EPC divisions generate two basal-layer cells
(Supplementary Fig. S8; refs 24, 25). The observation of asymmetric
partitioning of numb protein (which marks asymmetric division
in neural and myogenic precursors) in clones consisting of two
basal cells suggests that planar-orientated asymmetric division also
occurs in the epidermis (Fig. 3c)26,27. EPC behaviour thus differs
substantially from that observed in committed precursors in other
systems28,29.

We next considered the behaviour of the long-lived clones that
persist for over 3months. Within the stem/TA cell hypothesis, the
epidermis is organized into epidermal proliferative units comprising
about ten basal cells supported by a single self-renewing stem cell11. If
individual stem cells retain their self-renewal capacity, the stem/TA
cell model predicts that the basal-layer clone-size distribution must
become time-independent and characteristic of a single epidermal
proliferative unit (see Supplementary theory21). Such behaviour is in
stark contrast to the progressive increase in average clone size
observed in the epidermis (Fig. 2).

Faced with this apparent contradiction, one could attempt to
revise the stem cell/TA cell model, but staying within the general
paradigm. This might include introducing the capacity for stem-cell
ageing and/or migration15. Alternatively, one could try to exploit the
range of experimental data to seek evidence for a new paradigm for
epidermal homeostasis. Intriguingly, such evidence is found in the
scaling properties of the observed clone-size distribution. Here we
argue that the clone fate data are compatible with a model in which
IFE is maintained by only one compartment of proliferating cells.
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Figure 2 | Clone fate data. a, Distribution of clone size (total cells per clone)
as a function of cell number, as measured at 2 days, 1, 2, 3, 4 and 6weeks
post-induction (error bars indicate s.e.m.). c, Distribution of basal cells per
clone as a function of basal cell number, as measured at 2 days, 1, 2, 3, 4 and
6weeks, 3, 6 and 12months post-induction (error bars indicate s.e.m.).
b, d, Distribution of clone size (total cells per clone) (b) and basal cells per
clone (d) as a function of time for different values of cell number (error bars
indicate s.e.m.). Here we have aggregated clone sizes in ranges increasing in

size in powers of two (see legend within figure). To eliminate possible
ambiguities due to labelling efficiency, single cell clones are eliminated from
the distribution in b and d, thereby removing the population of post-mitotic
cells labelled at induction. We focus on time points of 2weeks or more post-
induction when EYFP levels have stabilized. Continuous curves show the
behaviour of the proposed one-progenitor-cellmodelwith a cell division rate
of l5 1.1 per week and a symmetric division ratio of r5 0.08 (see main text
for details).
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A single type of progenitor cell maintains normal
epidermis
Elizabeth Clayton1, David P. Doupé1, Allon M. Klein2, Douglas J. Winton3, Benjamin D. Simons2 & Philip H. Jones1

According to the current model of adult epidermal homeostasis,
skin tissue ismaintained by two discrete populations of progenitor
cells: self-renewing stem cells; and their progeny, known as transit
amplifying cells, which differentiate after several rounds of cell
division1–3. By making use of inducible genetic labelling, we have
tracked the fate of a representative sample of progenitor cells in
mouse tail epidermis at single-cell resolution in vivo at time inter-
vals up to one year. Here we show that clone-size distributions are
consistent with a new model of homeostasis involving only one
type of progenitor cell. These cells are found to undergo both
symmetric and asymmetric division at rates that ensure epidermal
homeostasis. The results raise important questions about the
potential role of stem cells on tissue maintenance in vivo.

The mammalian epidermis is organized into hair follicles inter-
spersed with interfollicular epidermis (IFE), which consists of layers
of keratinocytes (Fig. 1a)4. In IFE, proliferating epidermal progenitor
cells (EPCs) are found in the basal cell layer. On commitment to
terminal differentiation, basal cells exit the cell cycle and subse-
quently migrate into the suprabasal cell layers. Progenitors capable
of generating both hair follicles and IFE lie in the hair-follicle bulge,
but these cells appear to play no part in maintaining normal inter-
follicular epidermis5–9. Label-retaining studies show that IFE con-
tains slowly cycling basal cells, which have been interpreted as stem
cells that support clonal units of transit amplifying (TA) and differ-
entiated cells10,11, according to the stem/TA cell hypothesis. However,
these studies are unable to reveal the dynamics of EPC behaviour
during epidermal homeostasis. Previous genetic labelling studies to
track the fate of proliferating cells have either required epidermal
injury or have yielded too few labelled clones to permit quantitative
analysis12–15.

To track EPC fate in normal epidermis we have used inducible
genetic marking to label a sample of cells and their progeny in adult
mice. Animals transgenic for the tamoxifen-regulated mutant of cre
recombinase (AhcreERT), expressed from the inducible CYP1A1 pro-
moter, were crossed onto the R26EYFP/EYFP reporter strain, in which a
conditional allele of enhanced yellow fluorescent protein (EYFP) is
targeted to the Rosa26 locus (Supplementary Fig. S1a; refs 16, 17). In
the resultant AhcreERT R26EYFP/wt heterozygotes, EYFP is expressed in
a dose-dependent manner following transient expression of cre
induced by a treatment with bNF and tamoxifen at 6–9weeks of
age (Supplementary Fig. S1). Cohorts of mice were culled for analysis
at intervals after a single injection of the inducing drugs. Cells expres-
sing EYFP and their labelled progeny were detected by confocal
microscopy of wholemount epidermis18. At 2 days post-induction,
only singly labelled cells were seen, at a frequency of 1 in 600 cells in
the basal layer, indicating that the clusters of cells encountered at later
time points are clones, each derived from a single progenitor cell
(Fig. 1b and data not shown). Analysis of subsequent cohorts of mice

demonstrated clones that remained cohesive and expanded progres-
sively in size (Fig. 1b, Supplementary Fig. S2). We scored clones that
contained one or more basal cells; the observed clone-size distri-
bution (that is, the total number of nucleated cells per clone) up to
6weeks post-labelling, and the basal-layer clone-size distribution up
to one year (see Methods) are shown in Fig. 2.

The density of labelled clones containing at least one basal-layer
cell in tail epidermis rose from 2 days to a peak at 2 weeks after
induction, as EYFP levels accumulated to detectable levels in all
labelled cells. Clone numbers then fell to 76 2% (mean6 s.d.) of
the peak value by 3months, and 36 2% at one year; similar results
were seen in back skin (data not shown). This decline was accom-
panied by the appearance of multi-cellular clones containing only
suprabasal cells, consistent with clonal loss through differentiation
(Supplementary Fig. S4). Analysis of the spatial distribution of IFE
clones indicates that labelled clones are not replaced by unlabelled

1MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge CB2 0XZ, UK. 2Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK.
3Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
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Figure 1 | In vivo clonal labelling of epidermal progenitor cells.
a, Organization of the epidermis. Hair follicles contain stem cells located in
the bulge (b, green), with the potential to generate lower hair follicle (lf),
sebaceous gland (sg, orange) upper follicle (uf) and interfollicular epidermis
(IFE, beige). The schematic shows the organization of keratinocytes in the
IFE, as proposed by the stem/TA cell hypothesis. The basal layer comprises
stem cells (S, blue), transit amplifying cells (TA, dark green), and post-
mitotic basal cells (red), which migrate out of the basal layer as they
differentiate (arrows). b, Projected Z-stack confocal images of IFE
wholemounts from AhcreERT R26EYFP/wt mice viewed from the basal surface
at the times shown following induction. Yellow, EYFP; blue, DAPI nuclear
stain. Scale bar, 20mm.
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Mutations in cancer:
  cell death + non-neutral

Klein '07

Kendall '60, Iwasa '06, Durrett '08
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Fig. S1. Lesion size distributions in immunocompromised (Rag−/−) mice show the same behavior as in wild-type mice. (A–C) PMC size distributions in mouse
back skin following 11, 9, and 7 weeks of daily UVB radiation (data from ref. 1; analysis and legend as in Fig. 2). Data follow a power-law predicted for
exponential growth (red curve) before dropping off at large clone sizes (Fig. 2 legend). (D) Tests of the CP cell model for the datasets from A–C, showing the
first incomplete moment of the lesion size distributions (Fig. 3 legend). Curves show fits to an exponential decay predicted by the CP cell model (Fig. 3 legend).
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Fig. S2. Architecture of the interfollicular epidermis. Progenitor cells (red) are confined to the basal layer, where they divide before differentiating into
postmitotic cells (blue). These cells detach from the basement membrane (lower arrow) and migrate upward through the superbasal layers before being
sloughed off at the skin surface (upper arrow). p53 Mutant clones arise from UVB-induced mutations to basal layer progenitor cells (red arrow).
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#mutants in a fixed size cancer

LURIA-DELBRUCK MUTANT COUNTS WITH CELL DEATH 3

which appears in [DLM05] in a more general setting.
Since the generating function of Bt is of exponential form, we introduce the

following notation for arbitrary r.v. X

(8) ⇤X(z) = logE(zX) = logGX(z)

and refer to ⇤X(z) as the log-generating function (l.g.f.) of X.
Where do we use
l.g.f.??3. Generating function for exponential growth

Let us consider the special case of an exponentially growing wild-type population,
such that f(t) = e�t, for some � > 0. Hence mutants are produced at rate ⌫e�t.
Moreover, let us assume that mutant cells behave like a linear birth-death process
with birth rate ↵ and death rate �. We assume throughout supercritical growth,
i.e. the fitness � = ↵ � � > 0. The extinction probability of a mutant clone is
q = �/↵ = 1��/↵, and its generating function is also well known (see for example
[?]),

(9) gs(z) = 1� 1� q

1� ⇠e��s
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1� z
= 1� 1� q

1� z
.

The case of � = 0 and thus q = 0 is well studied and corresponds to the assumption
that cells only divide, but never die, i.e. the mutants follow a pure birth process.

We are interested in the distribution of the number of mutants at the time when
the number of A-cells reaches exactly N . Since the A-cells grow deterministically,
this happens at time ⌧ = log(N)/�. We use the shorthand notation B ⌘ B⌧ for
the number of mutants at time ⌧ . Therefore the mutant log-generating function
(7) becomes
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With the Pochhammer symbol (92) we can rewrite ⇤B(z) as a di↵erence of two
hypergeometric functions (93) Since
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We can now obtain the probabilities pk = P (B = k) by Taylor expanding G(z)
in z, or by using the Gauss inversion formula. Since this is computational intense,
we give a recursive formula for the probabilities instead:

⇠ =
q � z

1� z q =
�

↵
� =

�

�

B =
KX

i=1

Yi

from K clones

resista� = ↵� �

tim

#cel N

f(s) = e�t

m = EK =

Z t

0
⌫f(s)ds

one clone  (z) = EzY =
⌫

m

Z t

0
f(s)gt�s(z)ds

G(z) = EzB = EE(zB |K) = E K =
X

k�0

( (z)m)k

k!
e�m = em( (z)�1)



number of mutants B for large tumors

}advantageous mutants
(non self-averaging)

}
}

deleterious mutants

even more
deleterious mutants

4 PETER KELLER AND TIBOR ANTAL
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We relegate the proof of this recursion to Appendix A.
The mean and variance of the number of mutants can be calculated by taking

the usual approach of di↵erentiating the generating function or by using Dewanji’s
general expressions for mean and variance for the case of arbitrary growth function
f(t), see [DLM05]; this results into
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These expressions are a generalization of the ones given in Zheng [Zhe99] for theCite Iwasa some-
where here case of pure birth and without our fixed time (replace N = exp(�t) and � ⌘ �1,

� ⌘ �2 in [Zhe99, (52),(53)]).
We give an overview over the orders of the variance and expectation depending

on 1/� and N in figure 1.

Figure 1. Orders of E(B) and
p

Var(B) for large N .

apoptosis matters
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E(V ) Var(V )

� > 2 ✓
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(1�q)2
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1 < �  2 ✓
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0 < �  1 1 1
Table 1. Overview of mean and variance of V , depending on �.

where V is the limiting random variable, which we characterize via its log-generating
function.

If ✓ is held constant, the log-generating function (13) of B
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Obviously, the expression is identical to the second summand in (13), so we can
adapt the recursion (14) for the probabilities of V . The coe�cients are
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The expectation and variance of V can be derived as usual via derivatives of
the generating function. The computations are tedious, in particular because the
convergence behaviour of the hypergeometric function depends on �, but not very
interesting, so we give only the results in Table 1. Note that they are consistent
with the application of the N ! 1, µ ! 0 limit directly to the mean and variance
of B given in (17) and (18). Interestingly, the mean is finite only for � > 1 and the
variance only for � > 2.

We note that the LPSM-limit is indeed independent of the initial number N0 of
wild-type cells. This can be easily seen, when we choose f(t) = N0e�t. Then the
integral representation of the log-generating function (10) is justGN

0

B (z). This prop-
erty directly mimics the branching property of a fully stochastic two-type branching
process. Adapting the calculations from (11), the log-generating function
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Again, in the LPSM-limit only the first summand depends on N resp. N0 and
vanishes with N ! 0.
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For ℜ(c − a − b) > 0 Gauß’s hypergeometric Theorem states

F

(
a, b
c

; 1
)

=
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

=
(c − a − b)a

(c − a)a
=

(c − a − b)b

(c − b)b
=

(c − b)−a

(c)−a
, (C.9)

which is also called the Chu–Vandermonde Identity if a is a negative integer.
A useful identity
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when applied twice becomes
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Some inversion formulae (see [30])
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Occasionally we need the limit behavior for z ↗ 1. For general parameters the following
formulas hold: If c = a + b, then
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If ℜ(c − a − b) < 0, then
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Note that the Chu–Vandermonde identity is also the limit case for ℜ(c − a − b) > 0.
For a specific choice of the parameters the hypergeometric function can be expressed

in simpler terms
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For general z we can develop the hypergeometric function into
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Note that this formula is not valid for a ̸= 1.
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(� = 1, q = 0)
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which leads to recursion
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similar recursion for most general case too
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The probability, P, that dual therapy eradicates a lesion can be calculated as  
 

P = P1
ĹP1

ĻP2
ĹP2

Ļ.       (1)  
 
P1

Ĺ is the probability that no 1-step resistant lineage arises (and survives) prior to 
treatment. P1

Ļ is the probability that no 1-step resistant lineage arises (and survives) 
during treatment. P2

Ĺ is the probability that no 2-step resistant lineage arises (and 
survives) prior to treatment. P2

Ļ is the probability that no 2-step resistant lineage arises 
(and survives) during treatment. A 1-step resistant lineage is caused by a point mutation 
in one of the n12 sites that confer resistance to both drugs simultaneously. A 2-step 
resistant lineage has two point mutations; for example, the first one can be in one of the 
n1 sites leading to resistance to drug 1 and the second one can be in one of the n2 + n12 
sites providing resistance to drug 2. All four probabilities are calculated in the 
Supplementary Methods. The therapy is successful if there is no arising lineage in any of 
these four scenarios, and since these are independent events, we just have to multiply the 
corresponding probabilities. The probabilities that no 1-step resistant lineages arise 
before (P1

Ĺ) or during treatment (P1
Ļ) and survive are given by24 
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Excellent agreement between eq. (1) and simulation results is shown in Supplementary 
Fig. 3.  
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non-homogeneous Poisson process, small u large M limit: M: detection size
u: mutations rate
s=1-d/b: survival probability (': with drugs)
n: number of mutation causing resistance to drugs (1,2,12)
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outcome:
- sequentially applying drugs is certain failure
- failure if one mutation confer double resistance 
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Here s = 1 − d/b as above, and sಿ = 1 − dಿ /bಿ, where bಿ and dಿ are birth and death rates of cells 
sensitive to at least one drug during treatment (note that s’<0). The probabilities that no 2-step 
resistant lineages arise before ( ↑

2p ) or during ( ↓
2p ) treatment and survive can be calculated as:
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The proofs of these results are provided in Supplementary file 1, Section 5. Excellent agreement 
between equation (1) and simulation results is shown in Figure 3.

Although modeling of single neoplastic lesions is the norm in theoretical studies, most patients with 
advanced cancers have multiple lesions and curing a patient requires eradication of all lesions. 
Equation (1) can be used to evaluate which combination treatments will be successful in typical 
patients with multiple metastatic lesions.

To determine the total extent of disease in typical patients who enroll for clinical trials, we quantified 
all radiographically detectable metastases in 22 such patients: 7 with pancreatic ductal adenocarcinomas, 
11 with colorectal carcinomas, and 6 with melanomas—a different cohort than that depicted in Figure 1, 
in which only index lesions (those easiest to measure) were evaluated. The number of metastatic 
lesions in the 22 patients described in Table 1 ranged from 1 to 30, and their total tumor burden 
ranged from 9 × 108 to 3 × 1011 cells (see Supplementary file 2).

For each of these 22 patients, we used equation (1) to calculate the probability that monotherapy 
or dual therapy would eradicate all the patients’ lesions. We find that monotherapy will fail in all 
22 patients (Table 1 and Supplementary file 3), as expected from the simulations in Figure 2A–C and 

Figure 3. Probability of tumor eradication for two-drug combination therapy. A single mutation conferring cross-
resistance to both drugs (n12 = 1) can prohibit any hope for a successful dual therapy. Solid curves show analytical results for 
dual therapy and dashed curve shows analytical results for a typical monotherapy, both are calculated using equation (1). 
Markers (square, triangle, circle, diamond) indicate simulation results (averages of 106 runs). Parameter values: birth rate b 
= 0.14, death rate d = 0.13, death rate for sensitive cells during treatment d’ = 0.17, point mutation rate u = 10−9.
DOI: 10.7554/eLife.00747.006
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from clinical experience. If there is even one possible mutation that can in principle confer resistance 
to both drugs, then our model shows that dual therapy has also only a small chance of curing patients, 
even those with the smallest tumor burden. In our cohort of 22 patients, none are expected to be 
cured under these circumstances (Table 1). Only if there are no potential mutations that can confer 
cross-resistance will dual therapy be successful in eradicating all lesions. In the cohort described in 
Table 1, we calculate that eight patients (those with the smallest tumor burden) would have >95% 
probability of cure. Those with the largest tumor burden would still have a >20% probability of tumor 
recurrence. Additional simulations show that therapy with three agents will also not cure patients if 
there is even one mutation that can confer resistance to all three agents. Similar conclusions hold if we 
vary parameter values within a reasonable range (Supplementary file 3). We note that in patients 
whose tumors have high cell turnover (time between cell divisions of 1 day, corresponding to b = 1), 
even dual therapy with no cross-resistance mutations would be expected to fail in 37% of patients 
described in Table 1 (Supplementary file 3).

Graphical representations of the simulated responses of two patients with multiple metastatic 
lesions are shown in Figure 4. With monotherapy in patient N1 (Figure 4A), all lesions are predicted 

Table 1. Probability of treatment failure for combination therapy in patients

Patient
Primary  
tumor type

Number of 
metastases

Total  
tumor burden  
(number of cells)

Probability of treatment failure

Monotherapy

Dual  
therapy:  
n12 = 1

Dual  
therapy:  
n12 = 0

N1 Pancreas 18 2.6 × 1011 1 1 0.283

N2 Colon 25 2.3 × 1011 1 1 0.26

N3 Melanoma 26 1.7 × 1011 1 1 0.203

N4 Melanoma 30 1.4 × 1011 1 1 0.172

N5 Colon 21 1.0 × 1011 1 1 0.128

N6 Melanoma 8 9.8 × 1010 1 1 0.12

N7 Colon 25 9.1 × 1010 1 1 0.112

N8 Pancreas 8 7.4 × 1010 1 1 0.092

N9 Pancreas 23 6.4 × 1010 1 1 0.08

N10 Pancreas 5 5.5 × 1010 1 1 0.069

N11 Colon 14 5.4 × 1010 1 1 0.068

N12 Rectal 23 4.8 × 1010 1 1 0.061

N13 Melanoma 9 4.1 × 1010 1 1 0.052

N14 Pancreas 13 4.1 × 1010 1 1 0.051

N15 Pancreas 8 3.3 × 1010 1 1 0.042

N16 Melanoma 7 2.2 × 1010 1 1 0.028

N17 Melanoma 10 2.1 × 1010 1 1 0.027

N18 Colon 4 2.0 × 1010 1 1 0.026

N19 Melanoma 9 1.8 × 1010 1 1 0.023

N20 Colon 3 1.6 × 109 1 0.881 0.002

N21 Melanoma 21 1.3 × 109 1 0.828 0.002

N22 Pancreas 1 8.5 × 108 1 0.677 0.001

For monotherapy, we assume that 50 point mutations (n = 50) can in principle confer resistance to the drug. With 
dual therapy, we assume that 50 point mutations can in principle confer resistance to each drug individually  
(n1 = n2 = 50). Two scenarios are modeled: in the first, there is one mutation that can in principle confer resistance 
to both drugs (i.e., cross-resistance, n12 = 1). In the other case, there are no possible mutations that can confer 
resistance to both drugs (n12 = 0). Parameter values: birth rate, b = 0.14, death rate, d = 0.13, death rate for 
sensitive cells during treatment, dಿ = 0.17, point mutation rate u = 10−9.
Colon: colonic adenocarcinoma; Rectal: rectal adenocarcinoma; Pancreas: pancreatic ductal adenocarcinoma.
DOI: 10.7554/eLife.00747.007 Bozic et al '13



spatial models

model assumptions:
- surface grows at rate fitness (1, v)
- mutations at surface at rate one
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0

, the original tumor is a sphere of radius t around the origin.
The mutant at time t is separated from the original tumor by the boundary given by (2), and the

mutant’s outer limits are given by two segments. The middle part is a sphere around (1, 0) with radius
v(t� 1)

x(✓) = 1 + v(t� 1) cos ✓

y(✓) = v(t� 1) sin ✓
(4)
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for 0  ✓  � log t. Note that ✓ is only a parameter here, and not a polar coordinate. Rotating these
curves around the x axes we obtain the surfaces to the tumor clones.

The boundary on the surface of the tumor between the original tumor and the mutant are at an angle
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= � log t with the x axes from the origin. When this angle becomes ⇡, the original tumor is completely
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A two dimensional cut of a single mutant clone is depicted on Fig 1 for several time points, and on Fig 2
the final shape of the original tumor is shown after its capture by a single mutant. On Fig 3 the tumor
with a single mutant clone is depicted in three dimension, and on Fig. 4 a tumor with multiple mutant
clones is drawn for illustration.

Total volume of original tumor clone

Now we allow several mutations to arrive at the tumor, and we are interested in the total volume of the
mutant clones and original tumor clone. Since outside of the ball of radius t all tumor cells are mutants,
the question is the ratio of mutant clones inside the ball of radius t. That is also the probability that a
random point inside this ball is a mutant. There can be many mutant clones and they can touch each
other too. We assume, however, that no successive mutations arrive inside mutant clones, or at least that
those “second order” clones stay confined inside their originator mutant clone.

A time t, a random point at distance r from the origin (that is on the sphere of radius r), with r  t,
is non-mutant with probability

Wr = e

�b(�)r3 (8)

A, Krapivsky, Nowak et al '13

Fig. 1b, example in Supplementary Fig. 2b). These mutations were
present in one ormore of themetastases examined, including the index
metastasis, but not the parental clone.
Thesemutation types were used to classify the lesions that contained

them into parental clones (containing only founder mutations) and
subclones (containing both founder and progressor mutations). By
definition, there could be only one parental clone in a patient, although
there could be many different subclones. Parental clones tended to
containmore deleterious mutations (nonsense, splice site or frameshift
mutations) than subclones (12.6% of the mutations in the parental
clones versus 8.1% of the mutations in subclones, Supplementary
Table 2). The parental clones had already accumulated mutations in
all driver genes (KRAS, TP53 and SMAD4) previously shown to drive
pancreatic tumorigenesis6. Through combined analysis of high-density
single nucleotide polymorphism (SNP) chip data on the index lesion
(Supplementary Table 3) plus the sequencing data on all lesions
(Supplementary Table 2) we found that the vast majority of homo-
zygous mutations (51 mutations, representing 89% of all homozygous
mutations) in the index lesion were already present in the parental
clones.Homozygousmutations are characteristic of tumour suppressor
genes such asSMAD4 andCDKN2A and often occur in associationwith
chromosomal instability7. In sum, the parental clones harboured the
majority of deleterious genetic alterations and chromosomal instability,

upon which were superimposed an accumulation of progressor muta-
tions associated with clonal evolution and metastasis.
Evolutionary maps were constructed for each patient’s carcinoma

based on the patterns of somatic mutation and allelic losses and the
locations of individual metastatic deposits (Fig. 2 and Supplementary
Figs 3–8). These maps showed that, despite the presence of numerous
founder mutations within the parental clones, the cells giving rise to
themetastatic lesions had a large number of progressormutations. For
example, in Pa01 the parental clone contained 49 founder mutations,
yet a clonal expansion marked by the presence of mutations in six
additional genes was present in the lung and peritoneal metastases
(Supplementary Fig. 3). Moreover, 22 more mutations were found in
the liver metastasis. Note that all mutations in the metastatic lesions
were clonal, that is, present in the great majority if not all neoplastic
cells of the metastasis, as assessed by Sanger sequencing. Thus, these
mutations were present in the cell that clonally expanded to become
the metastasis. Similarly, large numbers of progressor mutations were
generally observed in the metastases from each of the seven cases
examined (Fig. 2 and Supplementary Figs 3–8).
To distinguish between the possibilities that clonal evolution

occurred inside the primary cancer versus within secondary sites, we
sectioned theprimary tumours fromtwopatients into numerous, three-
dimensionally organized pieces (Fig. 2a, b) and examined the DNA

ba

Superior

Inferior

Right Left

Slice 3

Slice 5

O

NL

M

P

Slice 2Slice 1

Slice 4

X

H

K

J

I

Necrosis Normal Parental

1 5432

Slice number

Pancreatic tail
5 mm

3 cm

Y
T

V

W
U

S Q

D F
E

G

B

C

R

A

S

I

R L

Parental clone

Pa08

C20orf26
FAT4

R

Q

P

C1RL
B3GALT1
LRRTM4
SESN2
SLC25A26

S

C13orf22
GPC2
GRM8
MLL2
NEB
PALMD
RAD9B
SYNE1

T

NP_001074311.1
LOC167127
RDH8

Y

Peritoneum

a

CCNB3
CNGB3
CTNND2
MRGX1
OVCH1

d

NCL
SLC2A3

c

DICER1
EHMT1

Primary
carcinoma

Metastases

HPCAL1
ITPR1
JPH4 
KAL1
KIAA0082
KIAA1957
KRAS
KRTAP11-1
LGR6 
MTR
NEO1
NOD3

AKAP12 
ATP2B3
BCL2A1
CCNYL3
CMYA5 
CNTNAP4 
DNAH8 
DOCK2 
EML1 
FLJ10324 
FLJ21986 
GABRA1

ODZ4
OR4A16
OR5J2
OR8H1
SH3GL3
SMAD4
TBX6
TMEM132B
TP53
TTN
TTN*

O
PNPLA1 V

W

U

X

Pa08

Lung
(index
lesion)

CGN
NLGN1

b

Liver Liver

e f

c

Figure 2 | Geographic mapping of metastatic clones within the primary
carcinoma and proposed clonal evolution of Pa08. a, Illustration of the
pancreatic specimen removed from Pa08 at rapid autopsy, and the planes of
sectioning of the specimen. b, Mapping of the parental clone and subclones
identified by comparative lesion sequencing within serial sections of the
infiltrating pancreatic carcinoma. Metastatic subclones giving rise to liver and
lung metastases are non-randomly located within slice 3, indicated by blue

circles. These clones are both geographically and genetically distinct from
clones giving rise to peritoneal metastases in this same patient, indicated in
green. c, Proposed clonal evolution based on the sequencing data. In thismodel,
after development of the parental clone, ongoing clonal evolution continues
within the primary carcinoma (yellow rectangle), and these subclones seed
metastases in distant sites. *Two mutations were found in the TTN gene.
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Figure 17. Fitness estimation from radial expansion sectors. The same as figure 16, but for a circular geometry. In (a), only the top half of a
circular colony is shown. The smaller red circle shows the inoculum, and the larger red circle marks the colony radius. The scale bar is 1 mm.

Figure 18. Fitness estimation from colony collisions. The wild-type
(yellow) colony meets the colony of the advantageous sterile mutant
(black). The red lines are the fits of colony boundaries by circles.
The relative fitness of the colonies can be measured from the radius
and center of the circle fitted to the interface between the colonies;
see equations (18) and (19). The scale bar is 1 mm.

and circular geometries, (iii–iv) sector shapes in linear and
circular geometries using equations (8) and (10), and (v) the
interface shape of colliding circular colonies using equations
(18) and (19). For consistency, we used the same time window
for all assays; see the supplementary information (section
S1) available at stacks.iop.org/PhysBio/9/026008/mmedia for
details. To provide a reference, we also measured the relative
growth rate during exponential phase in a well-mixed test tube,
either in separate or in mixed cultures.

The relative fitnesses s obtained from the different
fitness assays yield quite similar results, summarized in
table 1. Indeed, the measurements are not significantly
different from each other, except for the circular sector
result which differs significantly from both the liquid
culture competition and the colony collision assays (p <

0.05, see the supplementary section S6 available at
stacks.iop.org/PhysBio/9/026008/mmedia for details on the
statistical testing procedure). The deviation for circular sectors
could be caused by a systematic error in sector analysis.
However, a likely explanation of the disagreement between
different fitness estimates is some additional spatial structure
not accounted for in our theory. Indeed, yeast colonies do
not only expand on the surface of a Petri dish, but they also
thicken over time to a height of about 1 mm, which is neglected
in our two-dimensional theory. It is therefore possible that the

Table 1. Comparison of relative fitnesses measured by different
methods. Errors are standard deviations (not standard errors of the
mean). The number of replicates (N) is given in parentheses. Note
that the accuracy of different assays varies by about an order of
magnitude. The large standard deviations for linear expansions are,
at least partially, due to front undulations, which make sector
boundaries irregular and sector angles more variable. Sector and
collision measurement have smaller standard deviations compared
to direct velocity measurements. We attribute this distinction to the
fact that both strains experience exactly the same local environment
in the sector assay, but only approximately the same environment in
the velocity assay. In particular, some environmental
parameters–like the local dryness of the agar gel–are hard to control,
and even identically prepared Petri dishes inevitably have slight
differences in these parameters. Such variations affect velocity
measurements, where the two strains are grown on two different (but
identically prepared) Petri dishes, but do not affect sector
measurements, where the strains are grown on the same Petri dish,
and compete at the same point in space.

Assay Method Selective advantage, s

Linear expansion velocity ratios 0.10 ± 0.16 (N = 11)
sectors 0.20 ± 0.13 (N = 23)

Radial expansion velocity ratios 0.16 ± 0.08 (N = 19)
sectors 0.23 ± 0.04 (N = 24)
colony collisions 0.17 ± 0.02 (N = 9)

Liquid culture growth rate ratios 0.17 ± 0.03 (N = 3)
competitions 0.18 ± 0.02 (N = 3)

advantageous mutant grows on top of the wild-type, producing
an apparently larger sector and leading to an overestimate of
v1/v2.

Table 1 shows that the different fitness assays have
standard deviations that vary over an order of magnitude, and
therefore have very different accuracies. Expansion velocities
of isolated single-strain colonies are the most straightforward
measurement of fitness on a plate. However, they are less
accurate than the sector and colony collision assays, as
reflected by their high standard deviations in table 1 and
the fluctuations of the instantaneous velocity ratio in the
inset of figure 15. In sector and collision assays, the two
competing strains are in exactly the same environment, and
inevitable slight differences in the experimental conditions,
such as humidity of the agar, influence both strains equally.
This is not true for the isolated colonies of the expansion
velocity assays, which are therefore more variable. Even more
important, we found that relative fitnesses obtained from
experiments on different batches of plates were significantly
different when determined from expansion velocities, but
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One of the main virtues of the model is its simplicity; we can derive exact results describing the basic
behavior of the model. This simplicity is encouraging to pursue further extension of the model. It would
be interesting to study the e↵ect of random growth rates for each mutant clone, the dynamics of new
mutant clones arising within mutant clones, and the time it takes to accumulate several additional driver
mutations [7–9,25,29,39] in a spatial setting.

Materials and Methods

The tumor occupies a subset of the d-dimensional space T ⇢ Rd, and each point has a fitness f : T ! R+.
The tumor can only grow at the surface in the normal direction each point at rate f(·) (wherever the
surface is di↵erentiable). Hence to obtain the shape of the tumor an infinitesimally small time dt later,
draw a ball of radius f(·)dt around each point on the surface of the tumor, and the outer envelope of the
union of these balls becomes the new surface.

If a mutant of fitness v > 1 is initiated at a point on a locally flat surface of the original tumor of
fitness one, then dt times later the mutant occupies a sector of radius vdt and half angle � = arccos(1/v),
while the original tumor progressed a distance dt and it is around the mutant sector. The angle between
the surface of the original and the mutant is ⇡� �, and it stays constant during the evolution. After the
initiation the boundary of the mutant clone keeps moving at speed � =

p
v

2 � 1 on the surface of the
original tumor.

Shape of clones

The original tumor is initiated at the origin at time t = 0. Let us focus on the shape of a mutant clone
initiated at t = r

0

at the cartesian point (r
0

, 0) in d = 2 or (r
0

, 0, 0) in d = 3. Since the tangential speed
of the boundary of the mutant clone on the surface (that is at distance t) is a constant �, the shape of
the clone and the original tumor stay rotationally symmetric around the x axes. Hence it is su�cient to
describe the shape of the tumor in two dimensions, and for y � 0.

Let us use polar coordinates (r, ✓) for now. The growth mechanism of the clone is explained on Fig. 5.
A small time dt after initiation the mutant clone occupies a circular segment of radius vdt, and angle 2�
with � = arccos(1/v). This arc is at an angle ⇡�� with surface of the original clone, and this angle stays
constant during the evolution. The boundary between the mutant and the original clone keeps moving
at constant speed � =

p
v

2 � 1, as can be seen on Fig. 5. Hence the boundary of a mutant clone initiated
at (r

0

, 0) at time t = r

0

is described by the di↵erential equation

r✓

0(r) = �

with solution
✓(r) = � log

r

r

0

or equivalently
r(✓) = r

0

e

✓/� (12)

for 0  ✓  ✓

0

, where ✓

0

= � log t/r
0

, and we measure ✓ from the x axes. This is equivalent to (2) for
r

0

= 1.
The boundary between the original tumor and the mutant becomes a closed curve at time t

c

= r

0

e

⇡/� ,
after which time the original tumor ceases to grow. Its final volume is calculated later. For earlier times,
t < t

c

, the outer boundary of the original tumor is a sphere of radius t, for ✓
0

< ✓ < ⇡. These boundaries,
as well as the initial boundary of the original tumor (the unit circle r = 1) are shown on Fig. 1 as red
curves.

The boundary of the mutant clone contains the boundary with the original tumor given by (12) and
two other pieces corresponding to the outer boundary of the mutant. The first one is a circle (green curve

logarithmic spiral, Descartes, Jacob Bernoulli, 1638
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A random point in the tumor within a ball of radius r, with r  t, is non-mutant with probability

Wr =
1� e

�b(�)r3

b(�)r3
(9)

This is the fraction of non-mutant volume in the tumor within radius r. The total non-mutated tumor
volume tends to a constant for large times

lim
t!1

4⇡

3
t
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Time till first mutant clone

Let’s denote the number of mutant clones by Nt at time t. We can give an exact result for the probability
of no mutant clones at time t, which is also the probability that the arrival time T of the first mutant
clone is greater than t. Since the total rate of arrival of mutants till time t is just the volume of the
sphere

⇤t =
4⇡t3

3
(11)

hence
P (Nt = 0) = P (T > t) = e

�⇤t = e

�4⇡t3/3

that is the first mutant arrives according to the density function

fT (t) = 4⇡t2e�4⇡t3/3

Consequently, the first mutant arrives after a mean time with variance

ET =
�(1/3)

62/3⇡1/3
⇡ 0.55396, VarT =

6�(2/3)� �(1/3)2

64/3⇡2/3
⇡ 0.0405358

Since the original tumor grows at rate one, the first mutant clone appears also at distance T from the
origin. That is it appears on average at distance ET ⇡ 0.55396.

If we wait long enough, a mutant will appear with probability one. The probability that there are no
further mutations from the original tumor, so the original tumor has a final barnacle shape, is

9 + �

2

�

2

2

1 + e

3⇡/�

This probability is quite small for realistic relative speeds; it is around 0.36% for v = 1.5, and around
3.5% for v = 2, although it approaches one as v ! 1.

Number of di↵erent clones

If we allow subsequent mutations within mutant clones, and assume that all mutation rates are one, what
is the total number of clones Nt at time t? Since with mutations the shape of the tumor becomes very
irregular, it is hard to give an exact expression for larger values of Nt. But let us approximate the tumor
as a ball of radius t at time t, which is a not too bad approximation if all the fitnesses are su�ciently
similar. the total number of mutants in this approximation is Nt ⇠ Poisson(⇤t), that is

P (Nt = n) ⇡ ⇤n
t

n!
e

�⇤t
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summary

- beauty and usefulness of branching processes
- finite time experiments motivate exact results
- spatial models with successive mutations
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