Multi-type Branching Processes: from bacteria to cancer

- drug resistance in bacteria
- drug resistance in cancer
- multidrug therapy

Bacterial growth

branching process: Galton and Watson, 1873

Bacterial growth: simplest model

backward Kolmogorov for $P_j^{(i)}(t) = P(Z_t = j | Z_0 = i)$

$$P_j^{(1)}(t+\tau) = \alpha \tau P_j^{(2)}(t) + (1-\alpha \tau) P_j^{(1)}(t)$$

$$\dot{P}_{j}^{(1)} = \alpha P_{j}^{(2)} - \alpha P_{j}^{(1)}$$

in terms of generating function $F^{(i)}(s,t) = E(s^{Z_t}|Z_0 = i) = F^{(1)}(s,t)^i$

$$\partial_t F = \alpha F^2 - \alpha F \qquad F(s,0) = s$$

$$F = \frac{s}{s + (1 - s)e^{\alpha t}}$$

$$P_j(t) = e^{-\alpha t} (1 - e^{-\alpha t})^{j-1}$$

simpler than a symmetric random walk

for $t \to \infty$

$$Z_t \sim X e^{\alpha t}$$

Bacterial growth with mutations

Luria, Delbruck '43: random mutations, NP'69 Lea, Coulson '49: random mutant growth Bartlett '55: full random

at Cold Spring Harbor Laboratory

Bacterial growth with mutations

$$\underbrace{1-u}_{0} \xrightarrow{1-u}_{0} \underbrace{0}_{0} \underbrace{-u}_{0} \xrightarrow{1}_{0} \underbrace{0}_{0} \underbrace{-1}_{0} \xrightarrow{1}_{0} \underbrace{0}_{0} \underbrace{1}_{0} \underbrace{-1}_{0} \underbrace{0}_{0} \underbrace{1}_{0} \underbrace{1}_{0} \underbrace{0}_{0} \underbrace{1}_{0} \underbrace{$$

$$F_A(x, y, t) = E(x^{A_t} y^{B_t} | A_0 = 1, B_0 = 0)$$

$$\partial_t F_A = (1-u)F_A^2 + uF_A F_B - F_A$$
$$\partial_t F_B = F_B^2 - F_B$$

$$F_A(x, y, t = 0) = x, \quad F_B(x, y, t = 0) = y$$

use solution for
$$F_B$$

 $\partial_t F_A = (1-u)F_A^2 + F_A \left[u \frac{y}{y+(1-y)e^t} - 1 \right]$

$$F_A = \frac{xe^{-t} \left[1 - y + ye^{-t}\right]^{-u}}{1 + \frac{x}{y} \left[\left(1 - y + ye^{-t}\right)^{1 - u} - 1\right]}$$

animal cell maintenance

Clayton '07

1 - 2rr

- progenitor cell
- post-mitotic cell

A, Krapivsky '10

extra mutation

Kendall '60, Iwasa '06, Durrett '08

single mutation

$$F_A(x, y, t) = E(x^{A_t} y^{B_t} | A_0 = 1, B_0 = 0)$$

$$\begin{aligned} \text{fitnesses: } \lambda_1 &= 1 - \beta_1 - \nu, \quad \lambda_2 = \alpha_2 - \beta_2 \\ \overbrace{\alpha_1 = 1}^{A} \qquad \overbrace{\beta_1}^{A} \qquad \partial_t F_A &= F_A^2 + \beta_1 + \nu F_B - (1 + \beta_1 + \nu) F_A \\ \partial_t F_B &= \alpha_2 F_B^2 + \beta_2 - (\alpha_2 + \beta_2) F_B \end{aligned}$$

$$\overbrace{\mathbf{A} \rightarrow \mathbf{B}}_{\mathcal{V}} \qquad \text{use solution for } F_B \\ F_B &= 1 - \frac{\lambda_2}{\alpha_2(1 - z)}, \quad z = \left[1 - \frac{\lambda_2}{\alpha_2(1 - y)}\right] e^{-\lambda_2 t} \\ \text{to get a Riccati} \end{aligned}$$

$$\overbrace{\mathbf{A} \rightarrow \mathbf{B}}_{\mathcal{A} 2} \qquad \underbrace{\mathbf{B} \rightarrow \mathbf{A}}_{\mathcal{B} 2} \qquad \underbrace{\frac{dX}{dt}}_{\mathcal{A} t} = -X^2 + \lambda_1 X + \frac{\nu \lambda_2}{\alpha_2(1 - z)} \quad X \equiv 1 - F_A \end{aligned}$$

$$X &= \frac{d}{dt} \log Z \qquad \text{turns it into Sturm-Liouville} \qquad \frac{d^2 Z}{dt^2} = \lambda_1 \frac{dZ}{dt} + \frac{\nu \lambda_2}{\alpha_2(1 - z)} Z \\ t \rightarrow \infty, z \rightarrow 0 \text{ (for } \lambda_2 > 0) \qquad Z \propto e^{-\omega t}, \quad \omega^2 + \lambda_1 \omega - \frac{\nu \lambda_2}{\alpha_2} = 0 \\ Z(t) &= z^{\omega/\lambda_2} \Phi(z) \qquad z(1 - z) \Phi'' + \left(1 + \frac{2\omega + \lambda_1}{\lambda_2}\right)(1 - z) \Phi' = \frac{\nu}{\alpha_2 \lambda_2} \Phi \\ \Phi(z) &= F\left(\frac{a, b}{c}; z\right) + Cz^{1-c} F\left(\frac{-b, -a}{2 - c}; z\right) \end{aligned}$$

large time limit of number of mutants: e.g.: bi-critical case

#mutants in a fixed size cancer (from half stochastic description) Iwasa, Nowak, Michor `06, Komarova `07, Durrett, Moseley `10, Kessler, Levin '14 Keller, TA '14

#mutants in a fixed size cancer

one clone
$$\psi(z) = Ez^Y = \frac{\nu}{m} \int_0^t f(s)g_{t-s}(z)ds$$

$$G(z) = Ez^B = EE(z^B|K) = E\psi^K = \sum_{k \ge 0} \frac{(\psi(z)m)^k}{k!} e^{-m} = e^{m(\psi(z)-1)}$$

$$\Lambda_B(z) = \log G_B(z) = \frac{N\mu}{\gamma} \left[\frac{1}{N} F \begin{pmatrix} 1, \gamma \\ 1+\gamma \end{pmatrix} + F \begin{pmatrix} 1, \gamma \\ 1+\gamma \end{pmatrix} - F \begin{pmatrix} 1, \gamma \\ 1+\gamma \end{pmatrix} \right]$$
$$\xi = \frac{q-z}{1-z} \qquad q = \frac{\beta}{\alpha} \qquad \gamma = \frac{\delta}{\lambda}$$

number of mutants B for large tumors

$$\operatorname{Var}(B) = \frac{N\mu}{(1-q)^2} \cdot \begin{cases} 2(N-1) - (1+q)\log N & \gamma = 1\\ (1+q)(N^{-1/2} - 1) + \log N & \gamma = 2\\ \frac{2}{2-\gamma}N^{2/\gamma - 1} + \frac{1+q}{\gamma - 1}N^{1/\gamma - 1} + \frac{q(2-\gamma) + \gamma}{(2-\gamma)(1-\gamma)} & \gamma \notin \{1, 2\}. \end{cases}$$

different limits

Keller, TA '14

mean and variance

neutral mutations, no death $(\gamma = 1, q = 0)$

$$G(z) = (1-z)^{ heta(1-z)/z}$$
 from $F\left(egin{smallmatrix} 1,1\2;z
ight) = -rac{\log(1-z)}{z}$

which leads to recursion

$$p_0 = e^{-\theta}$$
 $\frac{np_n}{\theta} = \frac{p_0}{n+1} + \frac{p_1}{n} + \dots \frac{p_{n-1}}{2}$

similar recursion for most general case too

fighting drug resistance with combination therapies

non-homogeneous Poisson process, small u large M limit:

M: detection size u: mutations rate s=1-d/b: survival probability (': with drugs) n: number of mutation causing resistance to drugs (1,2,12)

$$P_{1}^{\uparrow} = \exp(-Mun_{12})$$

$$P_{2}^{\uparrow} = \exp\left[Mu^{2}\frac{s'-s}{ss'}\left(n_{1}(n_{2}+n_{12})\log\left(\frac{1}{sM}+u(n_{2}+n_{12})\frac{s'-s}{ss'}\right)\right) + n_{2}(n_{1}+n_{12})\log\left(\frac{1}{sM}+u(n_{1}+n_{12})\frac{s'-s}{ss'}\right)\right)\right]$$

$$P_{1}^{\downarrow} = \exp\left(-Mun_{12}\frac{s}{s'}\right).$$

$$P_{2}^{\downarrow} = \exp\left(-Mu(2n_{1}n_{2}+n_{12}(n_{1}+n_{2}))\frac{s}{s'^{2}}\right).$$

Bozic et al '13

fighting drug resistance with combination therapies

- sequentially applying drugs is certain failure
- failure if one mutation confer double resistance

Bozic et al '13

eLIFE probability of treatment failure

			Total		Dual	Dual
	Primary	Number of	tumor burden		therapy:	therapy:
Patient	tumor type	metastases	(number of cells)	Monotherapy	n ₁₂ = 1	$n_{12} = 0$
N1	Pancreas	18	2.6×10^{11}	1	1	0.283
N2	Colon	25	2.3×10^{11}	1	1	0.26
N3	Melanoma	26	1.7 × 10 ¹¹	1	1	0.203
N4	Melanoma	30	1.4×10^{11}	1	1	0.172
N5	Colon	21	1.0 × 10 ¹¹	1	1	0.128
N6	Melanoma	8	9.8 × 10 ¹⁰	1	1	0.12
N7	Colon	25	9.1 × 10 ¹⁰	1	1	0.112
N8	Pancreas	8	7.4×10^{10}	1	1	0.092
N9	Pancreas	23	6.4×10^{10}	1	1	0.08
N10	Pancreas	5	5.5×10^{10}	1	1	0.069
N11	Colon	14	5.4×10^{10}	1	1	0.068
N12	Rectal	23	4.8×10^{10}	1	1	0.061
N13	Melanoma	9	4.1×10^{10}	1	1	0.052
N14	Pancreas	13	4.1×10^{10}	1	1	0.051
N15	Pancreas	8	3.3 × 10 ¹⁰	1	1	0.042
N16	Melanoma	7	2.2 × 10 ¹⁰	1	1	0.028
N17	Melanoma	10	2.1 × 10 ¹⁰	1	1	0.027
N18	Colon	4	2.0×10^{10}	1	1	0.026
N19	Melanoma	9	1.8 × 10 ¹⁰	1	1	0.023
N20	Colon	3	1.6 × 10 ⁹	1	0.881	0.002
N21	Melanoma	21	1.3 × 10 ⁹	1	0.828	0.002
N22	Pancreas	1	8.5 × 10 ⁸	1	0.677	0.001

For monotherapy, we assume that 50 point mutations (n = 50) can in principle confer resistance to the drug. With dual therapy, we assume that 50 point mutations can in principle confer resistance to each drug individually ($n_1 = n_2 = 50$). Two scenarios are modeled: in the first, there is one mutation that can in principle confer resistance to both drugs (i.e., cross-resistance, $n_{12} = 1$). In the other case, there are no possible mutations that can confer resistance to both drugs ($n_{12} = 0$). Parameter values: birth rate, b = 0.14, death rate, d = 0.13, death rate for sensitive cells during treatment, d' = 0.17, point mutation rate $u = 10^{-9}$.

Bozic et al '13

spatial models

Yashida et al '10

model assumptions:

- surface grows at rate fitness (I, v)
- mutations at surface at rate one

A, Krapivsky, Nowak et al '13

shape of one mutant clone

yeast colonies on a plate, Korolev '12 also: Bradley '89, Hallatschek, Nelson '10

$$r\theta'(r) = \beta$$

$$\theta(r) = \beta \log \frac{r}{r_0}$$

 $r(\theta) = r_0 e^{\theta/\beta}$

logarithmic spiral, Descartes, Jacob Bernoulli, 1638

mutants at rate one

fraction of non-mutants in r-ball

$$a_r = \frac{1 - e^{-b(\beta)r^3}}{b(\beta)r^3}$$

 $b(\beta) = \frac{2\pi}{3} \frac{\beta^2}{\beta^2 + 9} \left(1 + e^{-3\pi/\beta}\right)$

final non-mutant volume

$$\lim_{t \to \infty} \frac{4\pi}{3} t^3 W_{\leq t} = \frac{4\pi}{3b(\beta)}$$

A, Krapivsky, Nowak et al '13

summary

- beauty and usefulness of branching processes
- finite time experiments motivate exact results
- spatial models with successive mutations

thanks

with P. Krapivsky (Boston), P. Keller (Edinburgh), M. Nowak, I Bozic, B Allen, ... (Harvard)