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Abstract

We study the bijection between binary Galton–Watson trees in continuous time and their
exploration process, both in the subcritical and in the supercritical cases. We then take
the limit over renormalized quantities, as the size of the population tends to ∞. We thus
deduce Delmas’ generalization of the second Ray–Knight theorem.
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1. Introduction

There are various forms of bijection between an exploration (or height) process and a random
binary tree. This paper starts with a description of such a bijection, and a new rather simple
proof that a certain law on the exploration paths is in bijection with the law of a continuous-time
binary Galton–Watson random tree. The result in the critical case was first established by Le
Gall [9], and in the subcritical case by Pitman and Winkel [10]; see also [6] and [8], where the
exploration processes are jump processes, while ours are continuous. For similar results in the
case where the approximating process is in discrete time and the tree is not necessarily binary,
see [4]. We also consider the supercritical case, which is new. Inspired by the work of Delmas
[3], we note that in the supercritical case, the random tree killed at time a > 0 is in bijection with
the exploration process reflected below a. Moreover, one can define a unique local time process,
which describes the local times of all the reflected exploration processes, and has the same law
as the supercritical Galton–Watson process. We then renormalize our Galton–Watson tree and
height process, and take the weak limit, thus providing a new proof of Delmas’ extension [3] of
the second Ray–Knight theorem. The classical version of this theorem establishes the identity
in law between the local time of reflected Brownian motion considered when the local time
at 0 reaches x, at all levels, and a Feller critical branching diffusion. The same result holds
in the subcritical and supercritical cases, with Brownian motion being replaced by Brownian
motion with drift (in the supercritical case, reflection below an arbitrary level, as above, is
needed). The exploration process in fact describes the genealogical tree (in the sense of [1]) of
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the population, whose total mass follows a Feller stochastic differential equation (SDE). Our
proof by approximation makes this interpretation completely transparent.

The paper is organized as follows. Section 2 is devoted to the description of the bijection
between height curves and binary trees. In Section 3 we present the relation between the laws of
height processes and Galton–Watson trees, and the ‘discrete Ray–Knight theorem’. In Section 4
we present the results of convergence of both the population process and the height process,
in the limit of large populations. Finally, in Section 5 we deduce the generalized Ray–Knight
theorem from our convergences and the results at the discrete level.

2. Preliminaries

Fix p > 0. Consider a continuous, piecewise-linear function H from a subinterval of R+
into R+, which possesses the following properties: its slope is either p or −p; it starts at time
t = 0 from 0 with the slope p; whenever H(t) = 0, H ′−(t) = −p and H ′+(t) = p; H is
stopped at the time Tm of its mth return to 0, which is supposed to be finite. We will denote
by Hp,m the collection of all such functions. We will write Hp instead of Hp,1. We add the
restriction that between two consecutive visits to 0 any function from Hp,m has all its local
minima at distinct heights.

We denote by T the set of finite rooted binary trees which are defined as follows. An ancestor
is born at time 0. Until she eventually dies, she gives birth to an arbitrary number of offspring,
but only one at a time. The same happens to each of her offspring, the offspring of her offspring,
etc., until eventually the population dies out. We denote by Tm the set of forests which are the
union of m elements of T .

There is a well-known bijection between binary trees and exploration processes. Under the
curve representing an element H ∈ Hp, we can draw a tree as follows. The height hlfmax of
the leftmost local maximum of H is the lifetime of the ancestor and the height hlowmin of the
lowest nonzero local minimum is the time of the birth of the first offspring of the ancestor. If
there is no such local minimum, the ancestor dies before giving birth to any offspring. We draw
a horizontal line at level hlowmin. H has two excursions above hlowmin. The right excursion is
used to represent the fate of the first offspring and her progeny. The left excursion is used to
represent the fate of the ancestor and of the rest of her progeny, excluding the first offspring and
her progeny. If there is no other local minimum ofH to the left or to the right of the first explored
one, then there is no further birth: we draw a vertical line up to the unique local maximum,
whose height is a death time. Continuing until there is no further local minimum/maximum to
explore, this procedure defines a bijection �p from Hp into T (see Figure 1). Repeating the
same construction m times, we extend �p to a bijection between Hp,m and Tm. Note that the
horizontal distances between the vertical branches in the tree representation of the exploration
process are arbitrary. See Figure 1(a).

We now define probability measures on Hp, T and Hp,m, Tm. We first describe the
subcritical case (by a slight abuse of terminology, subcritical in the present paper always means
either subcritical or critical). Let 0 < µ ≤ λ be two parameters. We define a stochastic
process whose trajectories belong to Hp as follows. Let {Uk, k ≥ 1} and {Vk, k ≥ 1} be two
mutually independent sequences of independent and identically distributed (i.i.d.) exponential
random variables with means 1/λ and 1/µ, respectively. Let Zk = Uk − Vk, k ≥ 1. We
denote by Pλ,µ the law of the random element of Hp, which is such that the height of the
first local maximum is U1 and that of the first local minimum is (Z1)

+. If (Z1)
+ = 0, the

process is stopped. Otherwise, the height of the second local maximum is Z1 + U2 and the
height of the second local minimum is (Z1 + Z2)

+, etc. Because µ ≤ λ, the process returns



212 M. BA ET AL.

hlfmax

hlowmin

U2 + (Z1)+

U1

(Z1)+

(Z1 + Z1)+

(a)

(b)

Figure 1: (a) Bijection between H2 and T . (b) A trajectory of an exploration process.

to 0 almost surely (a.s.) in finite time. The random trajectory which we have constructed is an
excursion above 0 (see Figure 1(b)). We similarly define a law on Hp,m as the concatenation
ofm i.i.d. such excursions, and denote it by Pλ,µ. The random element defined above is called
an exploration process or height process. We associate the continuous-time Galton–Watson
tree (which is a random element of T ) with the same pair of parameters (λ, µ) as follows.
The lifetime of each individual is exponential with expectation 1/λ, and during her lifetime,
independently of it, each individual gives birth to offspring according to a Poisson process with
rate µ. The behaviors of the various individuals are i.i.d. We denote by Qλ,µ the law on Tm of
a forest of m i.i.d. random trees whose law is as just described.

In the supercritical case, i.e. λ > µ, the exploration process defined above does not come
back to 0 a.s. To overcome this difficulty, we add reflection below an arbitrary level a > 0, and
we consider the height process Ha = {Ha

t , t ≥ 0} reflected at level a defined as above, with
the addition of the rule that whenever the process reaches level a, it stops and starts immediately
going down with slope −p for an exponential duration of time with expectation 1/µ. Again,
the process stops when first going back to 0. The reflected process Ha comes back to 0 a.s.
Indeed, let Aan denote the event ‘Ha does not reach 0 during its n first descents’. Clearly, we
have, since the levels of local maxima are bounded by a, P(An) ≤ (1 − exp(−µa))n, which
goes to 0 as n → ∞. Hence, the result. For each a ∈ (0,+∞), and any pair (λ, µ) of positive
numbers, denote by Pλ,µ,a the law of the process Ha . Define Qλ,µ,a to be the law of a binary
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Galton–Watson tree with birth rate µ and death rate λ, killed at time t = a (i.e. all individuals
alive at time a− are killed at time a). The law Pλ,µ,+∞ makes perfect sense in the case µ ≤ λ;
Qλ,µ,+∞ is always well defined.

3. Correspondence of laws

The aim of this section is to prove that, for any λ,µ > 0 and a ∈ (0,+∞) (including
the case a = +∞ when µ ≤ λ), Pλ,µ,a �−1

p = Qλ,µ,a . Let us state some basic results for
homogeneous Poisson processes, which will be useful in the sequel.

3.1. Preliminary results

Let T = (Tk)k≥0 be a Poisson point process on R+ with intensityµ. This means that T0 = 0
and (Tk+1 −Tk, k ≥ 0) are i.i.d. exponential random variables with mean 1/µ. Let (Nt , t ≥ 0)
be the counting process associated with T , that is, for all t ≥ 0,

Nt = sup{k ≥ 0, Tk ≤ t}.

The following result is well known and elementary.

Lemma 3.1. Let M be a nonnegative random variable independent of T , and define

RM = sup
k≥0

{Tk; Tk ≤ M}.

Then M − RM
d= V ∧M , where V and M are independent, and V has an exponential distri-

bution with mean 1/µ.
Moreover, on the event {RM > s}, the conditional law of NR−

M
− Ns given RM is Poisson

with parameter µ(RM − s).

Lemma 3.2. Let T = (Tk)k≥0 be a Poisson point process on R+ with intensity µ, and let M
be a positive random variable which is independent of T . Consider the integer-valued random
variableK such that TK = RM and a second Poisson point process T ′ = (T ′

k)k≥0 with intensity
µ, which is jointly independent of the first and of M . Then T̄ = (T̄k)k≥0, defined by

T̄k =
{
Tk if k < K,

TK + T ′
k−K+1 if k ≥ K,

is a Poisson point process on R+ with intensity µ, which is independent of RM .

Proof. Let (Nt , t ≥ 0), (N̄t , t ≥ 0), and (N ′
t , t ≥ 0) be the counting processes associated

to T , T̄ , and T ′.
It suffices to prove that, for any n ≥ 1, 0 < t1 < · · · < tn, and k1, . . . , kn ∈ N

∗,

ξt = P(N̄t1 = k1, . . . , N̄tn = kn | RM) = e−µtn
n∏
i=1

(µ(ti − ti−1))
ki−ki−1

(ki − ki−1)! .

Since there is no harm in adding tis, we need only carry out the computation on the event that
there exists 2 ≤ i ≤ n such that ti−1 < RM < ti , in which case a standard argument easily
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yields the claimed result, thanks to Lemma 3.1. Indeed, we have

ξt = P(Nt1 = k1, . . . , Nti−1 = ki−1, NR−
M

+N ′
ti−t = ki, . . . , NR−

M
+N ′

tn−t = kn)

= P(Nt1 = k1, . . . , Nti−1 −Nti−2 = ki−1 − ki−2, NR−
M

−Nti−1 +N ′
ti−RM = ki − ki−1,

N ′
ti+1−RM −N ′

ti−RM = ki+1 − ki, . . . , N
′
tn−RM −N ′

tn−1−RM = kn − kn−1)

= e−µtn
n∏
i=1

(µ(ti − ti−1))
ki−ki−1

(ki − ki−1)! .

3.2. Basic theorem

We are now in a position to prove the next theorem, which states a one-to-one correspondence
between the tree associated with the exploration process Ha defined in Section 2, and a
continuous-time binary Galton–Watson tree with death rate λ and birth rate µ, killed at time a.

Theorem 3.1. For any λ,µ > 0 and a ∈ (0,+∞) (including the case a = +∞ when µ ≤ λ),

Qλ,µ,a = Pλ,µ,a �
−1
p .

Proof. The individuals making up the population represented by the tree whose law is Qλ,µ,a
are labeled � = 1, 2, . . . , with individual 1 corresponding to the ancestor of the whole family.
The subsequent individuals will be identified below. We will show that this tree is ‘explored’by a
process whose law is precisely Pλ,µ,a . We introduce the family (T �k , k ≥ 0, � ≥ 1) of mutually
independent Poisson processes with intensity µ. For any � ≥ 1, the process T �k gives the birth
times of the offspring of individual �. We define U� to be the lifetime of individual �.

Step 1. We start from the initial time t = 0 and climb up to levelM1 of heightU1 ∧a, whereU1
follows an exponential law with mean 1/λ. We go down fromM1 until we find the most
recent point of the Poisson process (T 1

k ), which gives the birth times of the offspring of
individual 1. So, from Lemma 3.1, we have descended by V1 ∧M1, where V1 follows
an exponential law with mean 1/µ, and is independent of M1. We hence reach the level
m1 = M1 − V1 ∧M1. If m1 = 0, we stop; otherwise, we proceed to step 2.

Step 2. We assign the label 2 to the last offspring of individual 1, born at timem1. Let us define
(T̄ 2
k ) by

T̄ 2
k =

{
T 1
k if k < K1,

T 1
K1

+ T 2
k−K1+1 otherwise,

where K1 is such that T 1
K1

= m1.
Thanks to Lemma 3.2, (T̄ 2

k ) is a Poisson process with intensity µ on R+, which is
independent of m1 and in fact also of (U1, V1).

Starting from m1, the exploration process climbs up to level M2 = (m1 + U2) ∧ a,
where U2 is an exponential random variable with mean 1/λ, independent of (U1, V1).
Starting from levelM2, we go down a heightM2 ∧ V2, where V2 follows an exponential
law with mean 1/µ and is independent of (U2, U1, V1), to find the most recent point of
the Poisson process (T̄ 2

k ). At this moment we are at the level m2 = M2 − V2 ∧M2. If
m2 = 0, we stop. Otherwise, we assign the label 3 to the individual born at timem2, and
repeat step 2 until we reach 0. See Figure 2.
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Figure 2: Two equivalent ways of representing a binary tree.

Since either we have a reflection at level a or µ ≤ λ, 0 is reached a.s. after a finite number
of iterations. It is clear that the random variables Mi and mi fully determine the law Qλ,µ,a of
the binary tree killed at time t = a, and they both have the same joint distribution as the levels
of the successive local minima and maxima of the process Ha under Pλ,µ,a .

3.3. A discrete Ray–Knight theorem

For any a, µ, λ > 0, we consider the exploration process {Ha
t , t ≥ 0} defined in Section 2

which is reflected in the interval [0, a] and stopped at the first moment it reaches 0 for the mth
time. To this process, we can associate a forest of m binary trees with birth rate µ and death
rate λ, killed at time t = a, which all start with a single individual at the initial time t = 0.
Consider the branching process in continuous time (Za,mt , t ≥ 0), which describes the number
of offspring alive at time t of the m ancestors born at time 0, whose progeny is killed at time
t = a. Every individual in this population, independently of the others, lives for an exponential
time with parameter λ and gives birth to offspring according to a Poisson process of intensityµ.
We now choose the slopes of the piecewise-linear processHa to be ±2 (i.e. p = 2). We define
the local time accumulated by Ha at level t up to time s as

Las (t) = lim
ε↓0

1

ε

∫ s

0
1{t≤Ha

r <t+ε} dr.

Here Las (t) denotes the number of pairs of branches of Ha which cross the level t between
times 0 and s. Note that a local minimum at level t counts for two crossings, while a local
maximum at level t counts for no crossings. We have the following ‘occupation time formula’:
for any integrable function g,∫ s

0
g(Ha

r ) dr =
∫ ∞

0
g(r)Las (r) dr.

Let
τam = inf{s > 0 : Las (0) ≥ m}. (3.1)

Here Laτm(t) denotes the number of descendants of m ancestors at time 0, which are alive at
time t . Then we have the following result.
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Lemma 3.3. For all λ,µ > 0 and a ∈ (0,+∞) (including the case a = +∞ when µ ≤ λ),

{Laτam(t), t ≥ 0, m ≥ 1} ≡ {Za,mt , t ≥ 0, m ≥ 1} a.s.

We now want to establish a similar statement without the arbitrary parameter a. This is
problematic only in the supercritical case. For any 0 < a < b, we define the application �a,b

which maps continuous trajectories with values in [0, b] into trajectories with values in [0, a]
as follows. If u ∈ C(R+, [0, b]),

ρu(s) =
∫ s

0
1{u(s)≤a} dr, �a,b(u)(s) = u(ρ−1

u (s)).

Lemma 3.4. It holds that

�a,b(Hb)
d= Ha.

Proof. It is in fact sufficient to show that the conditional law of the level of the first local
minimum of Hb after crossing the level a downwards, given the past of Hb, is the same as the
conditional law of the level of the first local minimum of Ha after a reflection at level a, given
the past ofHa . This identity follows readily from the ‘lack of memory’ of the exponential law.

Lemma 3.4 says that reflecting under a, or chopping out the pieces of the trajectory above
level a, yields the same result (at least in law).

We now consider the p = 2 case. To each λ,µ > 0 and m ≥ 1, we associate the process
{Zmt , t ≥ 0}, which describes the evolution of the number of descendants ofm ancestors, with
birth rate µ and death rate λ. For each a > 0 (including the case a = +∞ when µ ≤ λ), let
(Ha

s , s ≥ 0) denote the exploration process of the genealogical tree of this population killed
at time a, let La denote its local time, and let τam be as defined in (3.1). It follows readily from
Lemma 3.4 that, for any 0 < a < b,

(Lb
τbm
(t), 0 ≤ t < a, m ≥ 1)

d= (Laτam
(t), 0 ≤ t < a, m ≥ 1). (3.2)

The compatibility relation (3.2) implies the existence of a projective limit {Lm(t), t ≥ 0,
m ≥ 1} with values in R+, which is such that, for each a > 0,

{Lm(t), 0 ≤ t < a, m ≥ 1} d= {Laτam(t), 0 ≤ t < a, m ≥ 1}. (3.3)

We have the following ‘discrete Ray–Knight theorem’.

Proposition 3.1. It holds that

{Lm(t), t ≥ 0, m ≥ 1} d= {Zmt , t ≥ 0, m ≥ 1}.

Proof. It suffices to show that, for any a ≥ 0,

{Lm(t), 0 ≤ t < a, m ≥ 1} d= {Zmt , 0 ≤ t < a, m ≥ 1}.

This result follows from (3.3) and Lemma 3.3.
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3.4. Renormalization

Let x > 0 be arbitrary, and let N ≥ 1 be an integer which eventually goes to ∞. Let
(Z

[Nx]
t )t≥0 denote the branching process which describes the number of descendants at time

t of [Nx] ancestors in the population with birth rate µN = σ 2N/2 + α and death rate λN =
σ 2N/2 + β, where α, β ≥ 0. We set

X
N,x
t = Z

[Nx]
t

N
.

In particular, we have XN,x0 = [Nx]/N → x when N → +∞. Let Ha,N be the exploration

process associated to {Z[Nx]
t , 0 ≤ t < a}, defined in the same way as previously, but with

slopes ±2N and λ, µ replaced by λN , µN . We also define La,Ns (t), the local time accumulated
by Ha,N at level t up to time s, as

La,Ns (t) = 4

σ 2 lim
ε↓0

1

ε

∫ s

0
1{t≤Ha,N

r <t+ε} dr. (3.4)

The motivation of the factor 4/σ 2 will be clear after we have taken the limit as N → ∞.
L
a,N
s (t) equals 4/Nσ 2 times the number of pairs of t-crossings ofHa,N between times 0 and s.

Let

τa,Nx = inf

{
s > 0 : La,Ns (0) ≥ 4

σ 2

[Nx]
N

}
. (3.5)

We define, for all N ≥ 1, the projective limit {LN
x (t), t ≥ 0, x > 0}, which is such that, for

each a > 0,

{LN
x (t), 0 ≤ t < a, x > 0} d= {La,N

τ
a,N
x

(t), 0 ≤ t < a, x > 0}.

Proposition 3.1 translates as follows.

Lemma 3.5. We have the identity in law

{LN
x (t), t ≥ 0, x > 0} d=

{
4

σ 2X
N,x
t , t ≥ 0, x > 0

}
.

4. Weak convergence

4.1. Weak convergence of XN,x

The following result describes the limit of the sequence of processes {XN,x, N ≥ 1}; see,
e.g. [7].

Proposition 4.1. We have XN,x ⇒ Xx as N → ∞ for the topology of locally uniform con-
vergence, where Xx is the unique solution of the following Feller SDE:

Xxt = x + (α − β)

∫ t

0
Xxr dr + σ

∫ t

0

√
Xxr dBr, t ≥ 0.
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4.2. Tightness criteria in D([0, +∞))

Let us present a sufficient condition for tightness which will be useful below. Consider a
sequence {Xnt , t ≥ 0}n≥1 of one-dimensional semimartingales, which is such that, for each
n ≥ 1,

Xnt = Xn0 +
∫ t

0
ϕns ds +Mn

t , 0 ≤ t ≤ T ,

〈Mn〉t =
∫ t

0
ψns ds, t ≥ 0,

where, for each n ≥ 1, Mn· is a locally square-integrable martingale, and ϕn and ψn are
progressively measurable processes with values in R and R+, respectively. Since our martin-
gales {Mn

t , t ≥ 0} will be discontinuous, we need to consider their trajectories as elements
of D([0,+∞)), the space of right-continuous functions with left limits at every point, from
[0,+∞) into R, which we equip with the Skorokhod topology; see [2]. The following statement
can be deduced from Theorems 13.4 and 16.10 of [2].

Proposition 4.2. A sufficient condition for the sequence {Xnt , t ≥ 0}n≥1 to be tight in
D([0,∞)) is that both the sequence of random variables {Xn0 , n ≥ 1} is tight and, for some
c > 0,

sup
n≥1, s>0

(|ϕns | + ψns ) ≤ c.

If, moreover, for any T > 0, as n → ∞,

sup
0≤t≤T

|Mn
t −Mn

t−| → 0 in probability,

then any limit X of a weakly converging subsequence of the original sequence {Xn}n≥1 is a.s.
continuous.

4.3. Tightness of Ha,N

Consider now the exploration process {Ha,N
s , s ≥ 0} of the forest of trees representing the

population {Z[Nx]
t , 0 ≤ t < a}. Let {V a,Ns , s ≥ 0} be the {−1, 1}-valued process which is

such that, s-almost everywhere, dHa,N
s /ds = 2NV a,Ns . The (R+ × {−1, 1})-valued process

{(Ha,N
s , V

a,N
s ), s ≥ 0} is a Markov process, which solves the SDE

dHa,N
s

ds
= 2NV a,Ns , H

a,N
0 = 0, V

a,N
0 = 1,

dV a,Ns = 21{V a,N
s− =−1}dP

+
s − 21{V a,N

s− =1}dP
−
s + Nσ 2

2
dLa,Ns (0)− Nσ 2

2
dLa,Ns (a−),

(4.1)

where {P+
s , s ≥ 0} and {P−

s , s ≥ 0} are two mutually independent Poisson processes, with
respective intensities

σ 2N2 + 2αN and σ 2N2 + 2βN,

and La,Ns (0) and La,Ns (a−) respectively denote the number of visits to 0 and a by the process
Ha,N up to time s, multiplied by 4/Nσ 2 (see (3.4)). These two terms in the expression of V a,N

stand for the reflection of Ha,N above 0 and below a. Note that our definition of La,N makes
the mapping t → L

a,N
s (t) right continuous for each s > 0. Hence, La,Ns (t) = 0 for t ≥ a,

while La,Ns (a−) = limn→∞ L
a,N
s (a − 1/n) > 0 if Ha,N has reached the level a by time s.
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We now write a submartingale problem satisfied by the process {(Ha,N
s , V

a,N
s ), s ≥ 0}.

We are not interested in writing it for arbitrary functions of the two variables (h, v), but rather
for specific functions, which will be convenient for taking the limit as N → ∞. Note that
the process {V a,Ns , s ≥ 0} oscillates faster and faster as N grows, and that in the limit some
averaging takes place. We thus implement the so-called ‘perturbed test function method’ used
in stochastic averaging; see e.g. [5]. For f ∈ C2(R), let

f N(h, v) = f (h)+ v

Nσ 2 f
′(h),

ANf N(h, v) = 2

σ 2 f
′′(h)+ 1{v=−1}

4α

σ 2 f
′(h)− 1{v=+1}

4β

σ 2 f
′(h).

If f ′(0) ≥ 0 and f ′(a) ≤ 0, then

M
f,N,a
s := f N(Ha,N

s , V Ns )− f N(0, 1)−
∫ s

0
ANfN(HN

r , V
N
r ) dr (4.2)

is a local submartingale. If we choose successively f (h) = h and f (h) = h2, we deduce from
(4.1) that there exist two local martingales {M1,a,N

s , s ≥ 0} and {M2,a,N
s , s ≥ 0} such that

Ha,N
s + V

a,N
s

Nσ 2 = 1

Nσ 2 + 4α

σ 2

∫ s

0
1{V a,Nr =−1}dr − 4β

σ 2

∫ s

0
1{V a,Nr =+1}dr

+ 1
2 [La,Ns (0)− L

a,N

0+ (0)] − 1
2L

a,N
s (a−)+M1,a,N

s

and

(Ha,N
s )2 + 2

Nσ 2H
a,N
s V a,Ns = 4

σ 2 s + 8α

σ 2

∫ s

0
1{V a,Nr =−1}H

a,N
r dr

− 8β

σ 2

∫ s

0
1{V a,Nr =+1}H

a,N
r dr − aLa,Ns (a−)+M2,a,N

s .

It follows from the above computations that

〈M1,a,N 〉s = 4

σ 2 s + 8α

Nσ 4

∫ s

0
1{V a,Nr =−1}dr + 8β

Nσ 4

∫ s

0
1{V a,Nr =1}dr, (4.3)

and from (4.3) that {M1,a,N
s , s ≥ 0} is in fact a martingale. One difficulty which we want to

eradicate is the additional complication of checking the tightness introduced by the local time
terms in the expression forHa,N

s +V a,Ns /Nσ 2. To this end, we consider a new pair of processes
(Ga,N ,Wa,N), which is (R × {−1, 1})-valued and satisfies

Ga,Ns = 2N
∫ s

0
Wa,N
r dr,

Wa,N
s = 1 +

∑
i∈Z

{
2

∫ s

0
1{ai≤Ga,Nr ≤(i+1)a}(−1)i1{Wa,N

r− =−(−1)i } dP+
r

− 2
∫ s

0
1{ai≤Ga,Nr ≤(i+1)a}(−1)i1{Wa,N

r− =(−1)i } dP−
r

}
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with the same P+ and P− as above. We claim that

Ha,N = lim
k→∞ϕk(G

a,N) a.s.,

V a,N =
∑
i∈Z

(−1)i1{ai≤Ga,N≤(i+1)a}Wa,N ,

where
ϕk = ψk ◦ · · · ◦ ψ1,

and, for every j , the mapping ψj from R into R is defined by

ψj (x) =
{

|x| if j is odd,

a − |x − a| if j is even.

Indeed, since Ga,Ns is locally bounded, to each r > 0 we can associate a random index k such
that 0 ≤ ψk(G

a,N
s ) ≤ a for 0 ≤ s ≤ r , which implies that φk+j (Ga,Ns ) = φk(G

a,N
s ) for

0 ≤ s ≤ r and j ≥ 1. Note that ψ1 and ψ2 reflect the Ga,N trajectory above 0 and below
a, respectively. These operations are repeated until the thus obtained trajectory stays in [0, a].
We leave it to the reader to verify that it then coincides with Ha,N . Tightness of {Ga,N } will
imply that of {Ha,N }, since, for all s, t ,

|Ha,N
s −H

a,N
t | ≤ |Ga,Ns −G

a,N
t |.

We have

Ga,Ns + W
a,N
s

Nσ 2 = 1

Nσ 2 + 4α

σ 2

∑
i∈Z

∫ s

0
1{ai≤Ga,Nr ≤(i+1)a}(−1)i1{Wa,N

r− =−(−1)i } dr

− 4β

σ 2

∑
i∈Z

∫ s

0
1{ai≤Ga,Nr ≤(i+1)a}(−1)i1{Wa,N

r− =(−1)i } dr + M̃1,N,a
s (4.4)

and

〈M̃1,N,a〉s = 4

σ 2 s + 8α

Nσ 4

∑
i∈Z

∫ s

0
1{ai≤Ga,Nr ≤(i+1)a}1{Wa,N

r− =−(−1)i } dr

+ 8β

Nσ 4

∑
i∈Z

∫ s

0
1{ai≤Ga,Nr ≤(i+1)a}1{Wa,N

r− =(−1)i } dr. (4.5)

From (4.4), (4.5), and Proposition 4.2, tightness of the left-hand side of (4.4) follows. Since,
moreover, N−1W

a,N
s → 0 a.s. uniformly with respect to s, the sequence {Ga,N , N ≥ 1} is

tight in D([0,+∞)). Because Ga,N is a.s. continuous for each N ≥ 1, Lemma 4.1 below
follows from a well-known property of Skorokhod’s topology.

Lemma 4.1. For any a > 0, the sequence {Ha,N
s , s ≥ 0}N≥1 is tight in C([0,∞)).

Remark 4.1. In the subcritical case (α ≤ β), we can choose a = +∞, which simplifies the
above construction. We obtain HN from GN by reflection above 0 (HN ≡ |GN |), and GN is
defined by

GNs = 2N
∫ s

0
WN
r dr,

WN
s = 1 + 2

∫ s

0
sgn(GNr )1{WN

r−=−sgn(GNr )} dP+
r − 2

∫ s

0
sgn(GNr )1{WN

r−=sgn(GNr )} dP−
r .
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4.4. Weak convergence of Ha,N

Let us state our convergence result.

Theorem 4.1. For any a > 0 (including the case a = +∞ when α ≤ β), Ha,N ⇒ Ha in
C([0,∞)) as N → ∞, where {Ha

s , s ≥ 0} is the process

2(α − β)

σ 2 s + 2

σ
Bs

reflected in [0, a]. In other words, Ha is the unique weak solution of the reflected SDE

Ha
s = 2(α − β)

σ 2 s + 2

σ
Bs + 1

2
Ls(0)− 1

2
Ls(a

−).

The statement that {Ha
s , s ≥ 0} is the process (2(α − β)s/σ 2 + 2Bs/σ, s ≥ 0) reflected in

[0, a] amounts to saying (see [11]) that, for any f ∈ C2(R) with f ′(0) ≥ 0 and f ′(a) ≤ 0,

M
f
s := f (Ha

s )− f (Ha
0 )− 2

σ 2

∫ s

0
[f ′′(Ha

r )− (α − β)f ′(Ha
r )] dr

is a submartingale. It remains to establish this property by taking the weak limit in (4.2). This
will follow readily from the next result.

Lemma 4.2. For any sequence (UN, N ≥ 1) ⊂ C([0,+∞)) which is such that UN ⇒ U as
N → ∞, and all s > 0,∫ s

0
1{V a,Nr =1}U

N
r dr ⇒ 1

2

∫ s

0
Ur dr,

∫ s

0
1{V a,Nr =−1}U

N
r dr ⇒ 1

2

∫ s

0
Ur dr.

Proof. It is an easy exercise to check that the mapping

� : C([0,+∞))× C↑([0,+∞)) → C([0,+∞))

defined by

�(x, y)(t) =
∫ t

0
x(s) dy(s),

where C↑([0,+∞)) denotes the set of increasing continuous functions from [0,∞) into R and
the three spaces are equipped with the topology of locally uniform convergence, is continuous.
Consequently, it suffices to prove that, locally uniformly in s > 0,∫ s

0
1{V a,Nr =1} dr → s

2

in probability as N → ∞. In fact, since both the sequence of processes and the limit are
continuous and monotone, it follows from the second Dini theorem that it suffices to prove the
following result.

Lemma 4.3. For any s > 0, ∫ s

0
1{V a,Nr =1} dr → s

2

in probability as N → ∞.
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Proof. We have (the second line follows from (4.1))∫ s

0
1{V a,Nr =1} dr +

∫ s

0
1{V a,Nr =−1} dr = s,∫ s

0
1{V a,Nr =1} dr −

∫ s

0
1{V a,Nr =−1} dr = (2N)−1Ha,N

s .

From Lemma 4.1, it readily follows that (2N)−1H
a,N
s → 0 in probability as n → ∞. We

conclude by adding the two above identities.

Corollary 4.1. For each a > 0 (including the case a = +∞ when α ≤ β),

(Ha,N ,M1,N,a, La,N· (0), La,N· (a−)) ⇒
(
Ha,

2

σ
B,La· (0), La· (a−)

)
,

whereB is as above, andLa· (0) andLa· (a−) respectively denote the local time of the continuous
semimartingale Ha at level 0 and at level a−.

Proof. Concerning the tightness, we only need to take care of the third and fourth terms
in the quadruple. Consider the function f N(h, v) associated to some f ∈ C2(R) such that
f ′(0) = 1 and f ′(a) = 0. We deduce, from (4.1),

La,Ns (0) = 2f (Ha,N
s )+ 2

V
a,N
s

Nσ 2 f
′(Ha,N

s )− 2f (0)− 2

Nσ 2 f
′(0)− 4

σ 2

∫ s

0
f ′′(Ha,N

r ) dr

− 8

σ 2

∫ s

0
f ′(Ha,N

r )(α1{VNr =−1} − β1{VNr =1}) dr − 2Mf,N
s − 2M̃f,N

s , (4.6)

where Mf,N and M̃f,N are martingales such that

〈Mf,N 〉s = 4

σ 2

∫ s

0
[f ′(Ha,N

r )]2 dr, 〈M̃f,N 〉s ≤ c(f )

N
s.

Tightness of the local time terms follows from this formula (and a similar expression for
L
a,N
s (a−)). Then (Ha,N ,M1,N,a, La,N· (0), La,N· (a−))N≥1 is tight in

C([0,∞))× [D([0,∞))]3

Moreover, any weak limit ofM1,N,a along a subsequence equals 2B/σ , since 〈M1,N,a〉s →
4s/σ 2 and the jumps ofM1,N,a are equal in amplitude to 2/Nσ 2. It then follows by taking the
limit in (4.6) (and in a similar formula for La,Ns (a−)) that any weak limit of (Ha,N ,M1,N,a,

1/2Ls(0), La,N· (a−)) along a converging subsequence takes the form (Ha, 2B/σ, 1/2Ls(0),
1/2Ls(a−)). Finally, from Theorem 5.7 of [11], the limit is unique; hence, the whole sequence
converges.

5. Generalized Ray–Knight theorem

In this section we give an new proof of Delmas’ generalization of the second Ray–Knight
theorem. Define L·(0) to be the local time of H at level 0, and in the subcritical case (α ≤ β)

τx = inf

{
s > 0, Ls(0) >

σ 2

4
x

}
.
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In the supercritical case, of course the construction is more complex. It follows from Lemma 3.4
and Corollary 4.1 (see also Lemma 2.1 of [3]) that, for any 0 < a < b,

�a,b(Hb)
d= Ha, (5.1)

where Ha and Hb are Brownian motion multiplied by 2/σ , with drift 2(α− β)s/σ 2, reflected
in the intervals [0, a] and [0, b], respectively; see Theorem 4.1. Now define, for each a, x > 0,

τax = inf

{
s > 0, Las (0) >

4

σ 2 x

}
.

It follows from (5.1) that, as in the discrete case, for all 0 < a < b,

{Lb
τbx
(t), 0 ≤ t < a, x > 0} d= {Laτax (t), 0 ≤ t < a, x > 0}.

Consequently, we can define the projective limit, which is a process {Lx(t), t ≥ 0, x > 0}
such that, for each a > 0,

{Lx(t), 0 ≤ t < a, x > 0} d= {Laτax (t), 0 ≤ t < a, x > 0}.
We have the following result (see Theorem 3.1 of [3]).

Theorem 5.1. (Generalized Ray–Knight theorem.) We have

{Lx(t), t ≥ 0, x > 0} d=
{

4

σ 2X
x
t , t ≥ 0, x > 0

}
,

where Xx , the Feller branching diffusion process, is the solution to the SDE

Xxt = x + (α − β)

∫ t

0
Xxr dr + σ

∫ t

0

√
Xxr dBr, t ≥ 0.

Proof. Since both sides have stationary independent increments in x, it suffices to show that,
for any x > 0,

{Lx(t), t ≥ 0} d=
{

4

σ 2X
x
t , t ≥ 0

}
.

Fix an arbitrary a > 0. By applying the ‘occupation time formula’ to Ha,N , and Lemma 3.5,
we have, for any g ∈ C(R+) with support in [0, a],

4

σ 2

∫ τ
a,N
x

0
g(Ha,N

r ) dr =
∫ ∞

0
g(t)L

a,N

τ
a,N
x

(t) dt
d= 4

σ 2

∫ ∞

0
g(t)X

N,x
t dt. (5.2)

We clearly deduce from Proposition 4.1 that∫ ∞

0
g(t)X

N,x
t dt ⇒

∫ ∞

0
g(t)Xxt dt. (5.3)

Let us admit for a moment that, as N → ∞,

∫ τ
a,N
x

0
g(Ha,N

r ) dr ⇒
∫ τax

0
g(Ha

r ) dr. (5.4)
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From the occupation time formula for the continuous semimartingale (Ha
s , s ≥ 0), we have

4

σ 2

∫ τax

0
g(Ha

r ) dr =
∫ ∞

0
g(t)Laτax

(t) dt. (5.5)

We deduce from (5.2), (5.3), (5.4), and (5.5) that, for any g ∈ C(R+) with compact support
in [0, a],

4

σ 2

∫ ∞

0
g(t)Xxt dt

d=
∫ ∞

0
g(t)Lx(t) dt.

In fact, this same argument can be slightly generalized, proving that, for any n and any
g1, . . . , gn with compact support, we have the following equality in distribution:(

4

σ 2

∫ ∞

0
g1(t)X

x
t dt, . . . ,

4

σ 2

∫ ∞

0
gn(t)X

x
t dt

)
d=

(∫ ∞

0
g1(t)Lx(t) dt, . . . ,

∫ ∞

0
gn(t)Lx(t) dt

)
.

Since both the processes (Xxt , t ≥ 0) and (Lx(t), t ≥ 0) are a.s. continuous, the theorem is
proved.

It remains to prove (5.4), which is clearly a consequence of the following result (recall the
definition of τNx given in (3.5)).

Proposition 5.1. It holds that

(Ha,N , τ a,Nx ) ⇒ (Ha, τ ax ).

Proof. For the sake of simplifying the notation, we suppress the superscript a. Let us define
the function φ from R+ × C↑([0,+∞)) into R+ by

φ(x, y) = inf

{
s > 0 : y(s) > 4

σ 2 x

}
.

For any fixed x, the function φ(x, ·) is continuous in the neighborhood of a function y which
is strictly increasing at the time when it first reaches the value 4x/σ 2. Define

τ ′N
x := φ(x, LN· (0)).

We note that, for any x > 0, s �→ Ls(0) is a.s. strictly increasing at time τx , which is a stopping
time. This follows from the strong Markov property, the fact that Hτx = 0, and Lε(0) > 0
for all ε > 0. Consequently, τx is a.s. a continuous function of the trajectory L·(0), and, from
Corollary 4.1,

(HN, τ ′N
x ) ⇒ (H, τx).

It remains to prove that τ ′N
x − τNs → 0 in probability. For any y < x and large enough N ,

0 ≤ τ ′N
x − τNx ≤ τ ′N

x − τ ′N
y .

Clearly, τ ′N
x − τ ′N

y ⇒ τx − τy ; hence, for any ε > 0,

0 ≤ lim sup
N

P(τ ′N
x − τNx ≥ ε) ≤ lim sup

N

P(τ ′N
x − τ ′N

y ≥ ε) ≤ P(τx − τy ≥ ε).

The result follows, since τy → τx− as y → x, y < x, and τx− = τx a.s.
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