A WEAK CONVERGENCE THEOREM FOR PARTICLE MOTION IN A STOCHASTIC FIELD

YVES ELSKENS AND ÉTIENNE PARDOUX

1. Introduction

Consider the two-dimensional diffusion process indexed by $n \geq 1$, solution of the SDE

$$
\left\{\begin{array}{l}
\frac{d U_{t}^{n}}{d t}=n V_{t}^{n}, U_{0}=u \tag{1.1}\\
d V_{t}^{n}=\sin \left(U_{t}^{n}\right) d W_{t}, V_{0}=v
\end{array}\right.
$$

where $(u, v) \notin\{(k \pi, 0), k \in \mathbb{Z}\}$. The aim of this note is to prove the Theorem 1.1. As $n \rightarrow \infty$,

$$
V^{n} \Rightarrow v+\frac{1}{\sqrt{2}} \times B
$$

where $\left\{B_{t}, t \geq 0\right\}$ is a standard one-dimensional Brownian motion, and the convergence is in the sense of convergence in law in $C\left(\mathbb{R}_{+}, \mathbb{R}\right)$.

2. A change of time scale

Note that for any $n \geq 1$, the law of $\left\{\left(U_{t}^{n}, V_{t}^{n}\right), t \geq 0\right\}$, the solution of (1.1), is characterized by the statement

$$
\left\{\begin{array}{l}
\frac{d U_{t}^{n}}{d t}=n V_{t}^{n}, U_{0}=u \\
V^{n} \text { is a martingale, } \frac{d<V^{n}>_{t}}{d t}=\sin ^{2}\left(U_{t}^{n}\right), V_{0}^{n}=v
\end{array}\right.
$$

Now define

$$
X_{t}=U_{n^{-2 / 3} t}^{n}, \quad Y_{t}=n^{1 / 3} V_{n^{-2 / 3} t}^{n} .
$$

We first note that $X_{0}=u, Y_{0}=n^{1 / 3} v, Y$ is a martingale, and

$$
\left\{\begin{array}{c}
\frac{d X_{t}}{d t}=n^{-2 / 3} \frac{d U^{n}}{d t}\left(n^{-2 / 3} t\right)=n^{1 / 3} V_{n^{-2 / 3} t}^{n}=Y_{t} \\
<Y>_{t}=n^{2 / 3}<V^{n}>_{n^{-2 / 3}}, \frac{d<Y>_{t}}{d t}=\sin ^{2}\left(X_{t}\right) .
\end{array}\right.
$$

If we use a well-known martingale representation theorem, we can pretend that there exists a standard Brownian motion $\left\{B_{t}, t \geq 0\right\}$ such that

$$
\left\{\begin{align*}
\frac{d X_{t}}{d t} & =Y_{t}, X_{0}=u \tag{2.1}\\
d Y_{t} & =\sin \left(X_{t}\right) d B_{t}, Y_{0}=n^{1 / 3} v
\end{align*}\right.
$$

Note that the process $\left\{\left(X_{t}, Y_{t}\right), t \geq 0\right\}$ still depends upon n, but only through the value of Y_{0}.

On the other hand, $V_{t}^{n}=n^{-1 / 3} Y_{n^{2 / 3}}$. Hence

$$
V_{t}^{n}=v+n^{-1 / 3} \int_{0}^{n^{2 / 3} t} \sin \left(X_{s}\right) d B_{s}
$$

in other words V^{n} is a martingale such that $V_{0}^{n}=y$ and

$$
<V^{n}>_{t}=n^{-2 / 3} \int_{0}^{n^{2 / 3} t} \sin ^{2}\left(X_{s}^{n}\right) d s
$$

Here we recall the fact that the process X depends upon n (through the initial condition of Y), unless $v=0$. Consequently

$$
\begin{equation*}
\lim _{n \rightarrow \infty}<V^{n}>_{t}=t \times \lim _{n \rightarrow \infty} \frac{1}{n^{2 / 3} t} \int_{0}^{n^{2 / 3} t} \sin ^{2}\left(X_{s}^{n}\right) d s \tag{2.2}
\end{equation*}
$$

3. Qualitative properties of the solution of (2.1)

We now consider the two-dimensional diffusion process

$$
\left\{\begin{array}{l}
\frac{d X_{t}}{d t}=Y_{t}, \quad X_{0}=x \tag{3.1}\\
d Y_{t}=\sin \left(X_{t}\right) d W_{t}, Y_{0}=y
\end{array}\right.
$$

with values in the state-space $E=[0,2 \pi) \times \mathbb{R} \backslash\{(0,0),(\pi, 0)\}$, where 2π is identified with 0 . We first prove that the process $\left\{\left(X_{t}, Y_{t}\right), t \geq 0\right\}$ is a conservative E-valued diffusion. Indeed,

Proposition 3.1. Whenever the initial condition (x, y) belongs to E,

$$
\inf \left\{t>0,\left(X_{t}, Y_{t}\right) \in\{(0,0),(\pi, 0)\}\right\}=+\infty \quad \text { a. } s .
$$

Proof: We define the stopping time

$$
\tau=\inf \left\{t,\left(X_{t}, Y_{t}\right)=(0,0)\right\}
$$

Let $R_{t}=X_{t}^{2}+Y_{t}^{2}, Z_{t}=\log R_{t}, t \geq 0$. A priori, Z_{t} takes its values in $[-\infty,+\infty)$. Itô calculus on the interval $[0, \tau)$ yields

$$
\begin{aligned}
d X_{t}^{2}= & 2 X_{t} Y_{t} d t, \\
d Y_{t}^{2}= & 2 \sin \left(X_{t}\right) Y_{t} d W_{t}+\sin ^{2}\left(X_{t}\right) d t, \\
d Z_{t}= & \frac{d R_{t}}{R_{t}}-\frac{d<R>_{t}}{2 R_{t}^{2}} \\
= & \frac{2 Y_{t} X_{t}+\sin ^{2}\left(X_{t}\right)}{R_{t}} d t-2 \frac{\sin ^{2}\left(X_{t}\right) Y_{t}^{2}}{R_{t}^{2}} d t \\
& +2 \frac{Y_{t} \sin \left(X_{t}\right)}{R_{t}} d W_{t} .
\end{aligned}
$$

Now clearly $|\sin (x)| \leq|x|, \sin ^{2}(x) \leq x^{2}$, and it follows from the above and standard inequalities that on the time interval $[0, \tau)$,

$$
Z_{t} \geq Z_{0}-2 t+\int_{0}^{t} \varphi_{s} d W_{s}
$$

where $\left|\varphi_{s}\right| \leq 1$. Hence the process $\left\{Z_{t}, t \geq 0\right\}$ is bounded from below on any finite time interval, which implies that $\tau=+\infty$ a. s., since $\tau=\inf \left\{t, Z_{t}=-\infty\right\}$. A similar argument shows that $\tau^{\prime}=+\infty$ a. s., where

$$
\tau^{\prime}=\inf \left\{t,\left(X_{t}, Y_{t}\right) \in\{(0,0),(\pi, 0)\}\right\} .
$$

We next prove the (here and below \mathcal{B}_{E} stands for the σ-algebra of Borel subsets of E)

Proposition 3.2. The collection of transition probabilities

$$
\left\{p((x, y) ; t, A):=\mathbb{P}\left(\left(X_{t}, Y_{t}\right) \in A\right),(x, y) \in E, t>0, A \in \mathcal{B}_{E}\right\}
$$

has a smooth density $p\left((x, y) ; t,\left(x^{\prime}, y^{\prime}\right)\right)$ with respect to Lebesgue's measure $d x^{\prime} d y^{\prime}$ on E.

Proof: Consider the Lie algebra of vector fields on E generated by $X_{1}=\sin (x) \frac{\partial}{\partial y}, X_{2}=\left[X_{0}, X_{1}\right]$ and $X_{3}=\left[\left[X_{0}, X_{1}\right], X_{0}\right]$, where $X_{0}=$ $y \frac{\partial}{\partial x}$. This Lie algebra has rank 2 at each point of E. The result is now a standard consequence of the well-known Malliavin calculus, see e. g. Nualart [4].

Proposition 3.3. The E-valued diffusion process $\left\{\left(X_{t}, Y_{t}\right), t \geq 0\right\}$ is topologically irreducible, in the sense that for all $(x, y) \in E, t>0$, $A \in \mathcal{B}_{E}$ with non empty interior,

$$
\mathbb{P}_{x, y}\left(\left(X_{t}, Y_{t}\right) \in A\right)>0
$$

Proof: From Stroock-Varadhan's support theorem, see e. g. IkedaWatanabe [2], the support of the law of $\left(X_{t}, Y_{t}\right)$ starting from $\left(X_{0}, Y_{0}\right)=$ (x, y) is the closure of the set of points which the following controlled ode can reach at time t by varying the control function $\{u(s), 0 \leq s \leq$ $t\}$:

$$
\left\{\begin{array}{l}
\frac{d x}{d s}(s)=y(s), \quad x(0)=x \tag{3.2}\\
\frac{d y}{d s}(s)=\sin (x(s)) u(s), \quad y(0)=y
\end{array}\right.
$$

It is not hard to show that the set of accessible points at time $t>0$ by the solution of (3.2) is dense in E. The result now follows from the fact that the transition probability is absolutely continuous with respect to Lebesgue's measure, see Proposition 3.2.

We next prove the

Lemma 3.4.

$$
\mathbb{P}\left(\left|Y_{t}\right| \rightarrow \infty, \text { as } t \rightarrow \infty\right)=0 .
$$

Proof: The Lemma follows readily from the fact that

$$
Y_{t}=W\left(\int_{0}^{t} \sin ^{2}\left(X_{s}\right) d s\right)
$$

where $\{W(t), t \geq 0\}$ is a scalar Brownian motion.

Hence the topologically irreducible E-valued Feller process $\left\{\left(X_{t}, Y_{t}\right)\right.$, $t \geq 0\}$ is recurrent. Its unique (up to a multiplicative constant) invariant measure is the Lebesgue measure on E, in particular the process is null-recurrent. It then follows from (ii) in Theorem 20.21 from Kallenberg [3]

Lemma 3.5. For all $M>0$, as $t \rightarrow \infty$,

$$
\frac{1}{t} \int_{0}^{t} \mathbf{1}_{\left\{\left|Y_{s}\right| \leq M\right\}} d s \rightarrow 0 \quad \text { a.s. }
$$

4. A path decomposition of the process $\left.\left\{X_{t}, Y_{t}\right), t \geq 0\right\}$

We first define two sequences of stopping times. Let $T_{0}=0$ and

$$
\begin{aligned}
\text { for } \ell \text { odd, } & T_{\ell}=\inf \left\{t>T_{\ell-1},\left|Y_{t}\right| \geq M+1\right\}, \\
\text { for } \ell \text { even, } & T_{\ell}=\inf \left\{t>T_{\ell-1},\left|Y_{t}\right| \leq M\right\} .
\end{aligned}
$$

Let now $\tau_{0}=T_{1}$. We next define recursively $\left\{\tau_{k}, k \geq 1\right\}$ as follows. Given τ_{k-1}, we first define

$$
L_{k}=\sup \left\{\ell \geq 0, \tau_{k-1} \geq T_{2 \ell+1}\right\}
$$

Now let

$$
\eta_{k}= \begin{cases}\tau_{k-1}, & \text { if } \tau_{k-1}<T_{2 L_{k}+2} \\ T_{2 L_{k}+3}, & \text { if } \tau_{k-1} \geq T_{2 L_{k}+2}\end{cases}
$$

We now define

$$
\tau_{k}=\inf \left\{t>\eta_{k},\left|X_{t}-X_{\eta_{k}}\right|=2 \pi\right\} \wedge \inf \left\{t>\eta_{k},\left|Y_{t}-Y_{\eta_{k}}\right|>1\right\} .
$$

It follows from the above definitions that

$$
\int_{0}^{t} \mathbf{1}_{\left\{\left|Y_{s}\right| \geq M+1\right\}} \sin ^{2}\left(X_{s}\right) d s \leq \sum_{k=1}^{\infty} \int_{\eta_{k} \wedge t}^{\tau_{k} \wedge t} \sin ^{2}\left(X_{s}\right) d s \leq \int_{0}^{t} \sin ^{2}\left(X_{s}\right) d s
$$

Define

$$
\begin{aligned}
K^{0} & =\left\{k \geq 1,\left|Y_{\tau_{k}}-Y_{\eta_{k}}\right|<1\right\}, \\
K^{1} & =\left\{k \geq 1,\left|Y_{\tau_{k}}-Y_{\eta_{k}}\right|=1\right\}, \\
K_{t} & =\left\{k \geq 1, \eta_{k}<t\right\}, \\
K_{t}^{0} & =K^{0} \cap K_{t}, \\
K_{t}^{1} & =K^{1} \cap K_{t} .
\end{aligned}
$$

We first prove the

Lemma 4.1.

$$
\frac{1}{t} \sum_{k \in K_{t}^{1}}\left(\tau_{k}-\eta_{k}\right) \rightarrow 0
$$

in $L^{1}(\Omega)$ as $M \rightarrow \infty$, uniformly in $t>0$.
Proof: We shall use repeatedly the fact that since $\left|Y_{\eta_{k}}\right| \geq M>2$, $\left|Y_{\eta_{k}}\right|-1 \geq\left|Y_{\eta_{k}}\right| / 2$. We have that (see the Appendix below), since $\tau_{k}-\eta_{k} \leq 4 \pi /\left|Y_{\eta_{k}}\right|$,

$$
\begin{aligned}
\mathbb{P}\left(k \in K^{1} \mid \mathcal{F}_{\eta_{k}}\right) & \leq \mathbb{P}\left(\sup _{\eta_{k} \leq t \leq \tau_{k}}\left|Y_{t}-Y_{\eta_{k}}\right| \geq 1 \mid \mathcal{F}_{\eta_{k}}\right) \\
& \leq 2 \exp \left(-\left|Y_{\eta_{k}}\right| / 8 \pi\right) .
\end{aligned}
$$

Consequently, using again the inequality $\tau_{k}-\eta_{k} \leq 4 \pi /\left|Y_{\eta_{k}}\right|$, we deduce that

$$
\begin{aligned}
\mathbb{E}\left[\left(\tau_{k}-\eta_{k}\right) \mathbf{1}_{\left\{k \in K^{1}\right\}} \mid \mathcal{F}_{\eta_{k}}\right] & \leq \frac{8 \pi}{\left|Y_{\eta_{k}}\right|} \exp \left(-\left|Y_{\eta_{k}}\right| / 8 \pi\right) \\
& \leq \frac{8 \pi}{\left|Y_{\eta_{k}}\right|} \exp (-M / 8 \pi)
\end{aligned}
$$

On the other hand, whenever $k \in K^{0}$,

$$
\tau_{k}-\eta_{k} \geq 2 \pi /\left(\left|Y_{\eta_{k}}\right|+1\right) \geq \pi /\left|Y_{\eta_{k}}\right|
$$

Now, provided $t \geq 4 \pi / M$,

$$
\begin{aligned}
2 t & \geq t+\frac{4 \pi}{M} \\
& \geq \mathbb{E}\left[\sum_{k \in K_{t}^{0}}\left(\tau_{k}-\eta_{k}\right)\right] \\
& \geq \pi \mathbb{E}\left[\sum_{k \in K_{t}} \mathbf{1}_{\left\{k \in K^{0}\right\}} \frac{1}{\left|Y_{\eta_{k}}\right|}\right] \\
& \geq \frac{\pi}{2} \mathbb{E}\left[\sum_{k \in K_{t}} \frac{1}{\left|Y_{\eta_{k}}\right|}\right]
\end{aligned}
$$

since

$$
\begin{aligned}
\mathbb{P}\left(k \in K^{0} \mid \mathcal{F}_{\eta_{k}}\right) & =1-\mathbb{P}\left(k \in K^{1} \mid \mathcal{F}_{\eta_{k}}\right) \\
& \geq 1-2 \exp (-M / 8 \pi) \\
& \geq 1 / 2
\end{aligned}
$$

provided M is large enough. Finally

$$
\begin{aligned}
\frac{1}{t} \mathbb{E}\left[\sum_{k \in K_{t}^{1}}\left(\tau_{k}-\eta_{k}\right)\right] & \leq 32 \exp (-M / 8 \pi) \frac{\mathbb{E}\left[\sum_{k \in K_{t}}\left|Y_{\eta_{k}}\right|^{-1}\right]}{\mathbb{E}\left[\sum_{k \in K_{t}}\left|Y_{\eta_{k}}\right|^{-1}\right]} \\
& =32 \exp (-M / 8 \pi) \\
& \rightarrow 0
\end{aligned}
$$

as $M \rightarrow \infty$, uniformly in t.

Now, for any $k \in K^{0}$,

$$
\begin{aligned}
\int_{\eta_{k}}^{\tau_{k}} \sin ^{2}\left(X_{s}\right) d s= & \frac{\tau_{k}-\eta_{k}}{2 \pi} \int_{0}^{2 \pi} \sin ^{2}(x) d x \\
& +\int_{\eta_{k}}^{\tau_{k}} \sin ^{2}\left(X_{s}\right)\left[1-\frac{Y_{s}\left(\tau_{k}-\eta_{k}\right)}{2 \pi}\right] d s
\end{aligned}
$$

and we have

$$
\begin{aligned}
\left|\int_{\eta_{k}}^{\tau_{k}} \sin ^{2}\left(X_{s}\right)\left[1-\frac{Y_{s}\left(\tau_{k}-\eta_{k}\right)}{2 \pi}\right] d s\right| & =\left|\int_{\eta_{k}}^{\tau_{k}} \int_{\eta_{k}}^{\tau_{k}} \sin ^{2}\left(X_{s}\right) \frac{Y_{r}-Y_{s}}{2 \pi} d r d s\right| \\
& \leq \frac{1}{2 \pi} \int_{\eta_{k}}^{\tau_{k}} \int_{\eta_{k}}^{\tau_{k}}\left|Y_{r}-Y_{s}\right| d r d s
\end{aligned}
$$

Finally we have the
Lemma 4.2. Uniformly in $t>0$,

$$
\frac{\sum_{k \in K_{t}^{0}} \int_{\eta_{k}}^{\tau_{k}} \int_{\eta_{k}}^{\tau_{k}}\left|Y_{r}-Y_{s}\right| d r d s}{\sum_{k \in K_{t}^{0}}\left(\tau_{k}-\eta_{k}\right)} \rightarrow 0
$$

a. s., as $M \rightarrow \infty$.

Proof: Since $\left|Y_{t}-Y_{\eta_{k}}\right| \leq 1$ for $\eta_{k} \leq t \leq \tau_{k}$,

$$
\begin{aligned}
\frac{\sum_{k \in K_{t}^{0}} \int_{\eta_{k}}^{\tau_{k}} \int_{\eta_{k}}^{\tau_{k}}\left|Y_{r}-Y_{s}\right| d r d s}{\sum_{k \in K_{t}^{0}}\left(\tau_{k}-\eta_{k}\right)} & \leq 2 \sup _{k \in K_{t}^{0}}\left(\tau_{k}-\eta_{k}\right) \\
& \leq 8 \pi / M \\
& \rightarrow 0
\end{aligned}
$$

as $M \rightarrow \infty$, uniformly in t.

We are now in a position to prove the following ergodic type theorem, from which Theorem 1.1 will follow :

Proposition 4.3. As $t \rightarrow \infty$,

$$
\frac{1}{t} \int_{0}^{t} \sin ^{2}\left(X_{s}\right) d s \rightarrow \frac{1}{2}
$$

in probability.
Proof: We first note that

$$
[0, t]=B_{t}^{0} \cup B_{t}^{1} \cup C_{t},
$$

where

$$
\begin{aligned}
B_{t}^{0} & =[0, t] \cap\left(\cup_{k \in K_{t}^{0}}\left[\eta_{k}, \tau_{k}\right]\right), \\
B_{t}^{1} & =[0, t] \cap\left(\cup_{k \in K_{t}^{1}}\left[\eta_{k}, \tau_{k}\right]\right), \\
C_{t} & =[0, t] \backslash\left(B_{t}^{0} \cup B_{t}^{1}\right) .
\end{aligned}
$$

We have

$$
\begin{aligned}
\frac{1}{t} \int_{0}^{t} \sin ^{2}\left(X_{s}\right) d s= & \frac{1}{t} \int_{0}^{t} \mathbf{1}_{B_{t}^{0}}(s) \sin ^{2}\left(X_{s}\right) d s+\frac{1}{t} \int_{0}^{t} \mathbf{1}_{B_{t}^{1}}(s) \sin ^{2}\left(X_{s}\right) d s \\
& +\frac{1}{t} \int_{0}^{t} \mathbf{1}_{C_{t}}(s) \sin ^{2}\left(X_{s}\right) d s
\end{aligned}
$$

Now $C_{t} \subset\left\{s \in[0, t],\left|Y_{s}\right| \leq M+1\right\}$, so for each fixed $M>0$, it follows from Lemma 3.5 that the last term can be made arbitrarily small, by choosing t large enough. The second term goes to zero as $M \rightarrow \infty$, uniformly in t, from Lemma 4.1. Finally the first term equals the searched limit, plus an error term which goes to 0 as $M \rightarrow \infty$, uniformly in t, see Lemma 4.2 and the following fact, which follows from the combination of Lemma 4.1 and Lemma 3.5 :

$$
\frac{1}{t} \sum_{k \in K_{t}^{0}}\left(\tau_{k}-\eta_{k}\right) \rightarrow 1
$$

in probability, as $n \rightarrow \infty$.

We can finally proceed with the
Proof of Theorem 1.1 All we have to show is that (see (2.2))

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2 / 3} t} \int_{0}^{n^{2 / 3} t} \sin ^{2}\left(X_{s}^{n}\right) d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin ^{2}(x) d x=\frac{1}{2}
$$

in probability. In the case $v=0$, the process $\left\{\left(X_{t}^{n}, Y_{t}^{n}\right)\right\}$ does not depend upon n, and the result follows precisely from Proposition 4.3. Now suppose that $v \neq 0$. In that case, the result can be reformulated equivalently as follows. For some $x \in \mathbb{R}, y \neq 0$, each $t>0$, define the process $\left\{\left(X_{s}^{t}, Y_{s}^{t}\right), 0 \leq s \leq t\right\}$ as the solution of the SDE

$$
\left\{\begin{aligned}
\frac{d X_{s}^{t}}{d s} & =Y_{s}^{t}, X_{0}^{t}=x \\
d Y_{s}^{t} & =\sin \left(X_{s}^{t}\right) d W_{s}, Y_{0}^{t}=\sqrt{t} y
\end{aligned}\right.
$$

We need to show that

$$
\frac{1}{t} \int_{0}^{t} \sin ^{2}\left(X_{s}^{t}\right) d s \rightarrow \frac{1}{2 \pi} \int_{0}^{2 \pi} \sin ^{2}(x) d x
$$

in probability, as $t \rightarrow \infty$. Note that in time t, the process Y^{t} starting from $\sqrt{ } t y$ can come back near the origin.

It is easily seen, by introducing the Markov time $\tau_{M}^{t}=\inf \{s>$ $\left.0,\left|Y_{s}^{t}\right| \leq M\right\}$ and exploiting the strong Markov property, that

$$
\frac{1}{t} \int_{0}^{t} \mathbf{1}_{\left\{\left|Y_{s}^{t}\right| \leq M\right\}} d s \rightarrow 0 \quad \text { a.s. }
$$

follows readily from Lemma 3.5. The rest of the argument leading to Proposition 4.3 is based upon limits as $M \rightarrow \infty$, uniformly with respect to t. It thus remains to check that the fact that Y_{0}^{t} now depends upon t does not spoil this uniformity, which is rather obvious.

5. Appendix

For the convenience of the reader, we prove the following
Proposition 5.1. Let η and τ be two stopping times such that $0 \leq \eta \leq$ $\tau \leq \eta+T$ and $M_{t}=\int_{0}^{t} \varphi_{s} d B_{s}$, where $\left\{B_{t}, t \geq 0\right\}$ is a standard Brownian motion and $\left\{\varphi_{t}, t \geq 0\right\}$ is progressively measurable and satisfies $\left|\varphi_{t}\right| \leq k$ a. s., for all $t \geq 0$. Then for all $c>0$,

$$
\mathbb{P}\left(\sup _{\eta \leq t \leq \tau}\left|M_{t}-M_{\eta}\right| \geq c\right) \leq 2 \exp \left(-\frac{c^{2}}{2 k^{2} T}\right) .
$$

Proof: From the optional stopping theorem, it suffices to treat the case $\eta=0, \tau=T$. We have

$$
\mathbb{P}\left(\sup _{0 \leq t \leq T}\left|M_{t}\right| \geq c\right)=\mathbb{P}\left(\sup _{0 \leq t \leq T} M_{t} \geq c\right)+\mathbb{P}\left(\inf _{0 \leq t \leq T} M_{t} \leq-c\right) .
$$

We estimate the first term on the right. The second one is bounded by the same quantity. Define for all $\lambda>0$

$$
\begin{aligned}
\mathcal{M}_{t}^{\lambda}= & \exp \left(\lambda M_{t}-\frac{\lambda^{2}}{2} \int_{0}^{t} \varphi_{s}^{2} d s\right) \\
\mathbb{P}\left(\sup _{0 \leq t \leq T} M_{t} \geq c\right) & \leq \mathbb{P}\left(\sup _{0 \leq t \leq T} \mathcal{M}_{t}^{\lambda} \geq \exp \left(\lambda c-\lambda^{2} k^{2} T / 2\right)\right) \\
& \leq \exp \left(\lambda^{2} k^{2} T / 2-\lambda c\right)
\end{aligned}
$$

from Doob's inequality, since $\left\{\mathcal{M}_{t}^{\lambda}, t \geq 0\right\}$ is a martingale with mean one. Optimizing the value of λ, we deduce that

$$
\mathbb{P}\left(\sup _{0 \leq t \leq T} M_{t} \geq c\right) \leq \exp \left(-\frac{c^{2}}{2 k^{2} T}\right),
$$

from which the result follows.

References

[1] Richard Durrett, Stochastic calculus, CRC Press, 1996.
[2] Nobuyuki Ikeda, Shinzo Watanabe, Stochastic differential equations and diffusion processes, North-Holland, 1989.
[3] Olav Kallenberg, Foundations of modern probability, 2nd ed., Springer 2002.
[4] David Nualart, Malliavin calculus and applications, 2nd edition, SpringerVerlag, 2006.

