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We establish an averaging result for a backward SDE, which implies an averaging result for a
system of parabolic semilinear PDEs. The method of proof uses the Meyer-Zheng convergence,
and an extended uniqueness result for BSDEs for identifying the limit,
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INTRODUCTION

A new type of stochastic differential equations, called backward stochastic
differential equations, has been introduced by Pardoux, Peng [8]. Soon after,
it was noticed that these equations provide probabilistic formulas for
solutions of certain semilinear partial differential equations, see [9].

It was then tempting to exploit this new tool for proving results
concerning semilinear PDEs, similarly as the Feynman-Kac formula has
been used for proving results on linear PDEs of second order. This program
hus already been successfully followed by Pradeilles [10], [11], who proves
new asymptotic results concerning reaction-diffusion equations.
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256 E. PARDOUX AND A. YU. VERETENNIKOV

In this paper, we combine BSDEs with the theory of diffusion
approximation, as exposed e.g. in Papanicolaou, Stroock, Varadhan [7]
and in Ethier, Kurtz [3], in order to prove averaging type of results for
systems of semilinear parabolic partial differential equations, similar to
some of the results in Bensoussan [1], Bensoussan, Lions, Papanicolaou [2].

The weak convergence of the solution of the BSDE is proved in the
sense of the topology of Meyer, Zheng (6], which appears to be ideally suited
for our purpose. Note that we have been able to treat only BSDEs where the
coefficient in front of the Brownian motion does not enter the nonlinear
term. In terms of the associated semilinear PDE, this means that the
nonlinear term is a function of the solution, not of its gradient. We believe
that BSDEs is a powerful tool for proving various types of asymptotic
results for semilinear PDES, along the lines e.g. of the results presented in
Freidlin [4]. For this programm, one needs to be able to take weak limits in
BSDEs. One of the aims of the present paper is to develop a methodology
for taking such limits. '

The paper is organized as follows. The problem is stated in section 1.
The main results are stated in section 2. Section 3 is devoted to the proof of
an auxiliary theorem, while the main result, the convergence of the solution
of the BSDE, is proved in section 4. Finally the corollaries, in particular the
convergence of the PDE, are proved in section 5.

1 STATEMENT OF THE PROBLEM

We now consider the SDE system, defined on some probability space
(97 fl ‘P)

dX® = e (X 15, X2V de + G(X 1#, X2)dt, X 3° = %),
dX7° = e H(X 2¥)dt + e K(X¥%)aW,, X =3, (1)

where X1 € RY, X2¢ ¢ R, F,G, H, K are measurable functions with values
in B, RY and R x R correspondently, W, ¢ > 0 is an {-dimensional Wiener
process. .

We assume that the coefficients F, G, H and K are periodic (of period
one in each direction) functions of the variable x;, so that the process { X2}
can be considered as taking values in the ¢-dimensional torus T°%.

We assume moreover that H, K are bounded and KK* > af > 0, so that
the process {X ,25} possesses a unique invariant probability measure i on T¢
(uniqueness will follow from assumption (4.1.5)).
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The basic assumption concerning {X,*} is that
(A.1.1) fF(xl,xg)p(dxg) =0, Vx R
We can then solve the following Poisson equation for each 1 < i < d,
x; € R%
(LaJi(x1,))(x2) = —Filx, %2), x2 € T,

where L, denotes the infinitesimal generator of the diffusion process {x%ey
in case € = 1 (see its explicit expression below).
We assume in addition that

(A.1.2) Fe C*(R!x RYRY), Fand V,F being bounded,
(A-13) 1G(x1,x2) = Glx1,x2)| < Ky — x}], Vi, x| < n,x € R

(A.1.4) csup (L4 o) 7Gx, x2)| < oo
(x1,x2)E e
(A.1.5) Keo(rh

It will be shown in section 3 that under the above assumptions X<
. converges in distribution to X! which is a d-dimensional diffusion process
with the generator

d

Z: Zag()q)a 3 U'f';b:a(xl)a

iy f=1

where
az(x) =/ [Filx1, x2)J;(x1, x2) + Fi(x1, x2)Ji(1, x2) p(dxn),
Bix) = fT e wutda) + [ (Pl x0), Vo xa)te)

In other words, there exists a d-dimensional Brownian motion {B;,t > 0}
such that

' t
¥ =+ [ Bxdas+ [ otxyas, (2)
0 0

where &(x|) = [a(x1)]'/*. Moreover, it will follow from the results of section
3 that equation (2) has a unique non-exploding strong solution.
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We consider the k-dimensional BSDE
| T T
vi=s)s [ sl xin vy [T zaw, )
t t

which has a unique F tW -adapted R x R**%.valued solution, provided we
add the restriction that

T
E/ 1252t < oo
0

Denote M¢ = [ Z:dW,,

The problem under consideration is the averaging of the process Y.
One immediate application is the averaging for the following system of
parabolic semi-linear PDEs.

Let £, denote the infinitesimal generator of the diffusion process
{Xbe X35 e

d
Lo=eLy+ Y [ Fi(x) + Gi(x)] %{_,
=1 4

where

1 . & £ 8
Ly = EUZ:l(KK (XZ))ijM‘i‘ ;Hf(xz)ﬁ,

x=(xi,%),, xi={(xi,...,x1)" X =(x,..., %)
The system of PDESs to be averaged reads

%_ur(ﬁx) = Laf(t,x) +f(x,u(t,x)), 0<¢r< T, x € RH¢ (4)

w(0,x) =g(x1),x € Rd""g',

where the solution #° maps [0, 7] x R™¢ into R*, and L denotes the
k-dimensional vector whose i-th component equals £.u5,0 < i<k,

We now formulate our assumptions on f and g. For some real number
K,p €N, and « a continuous increasing function from R, into itself, such

that «{0) =0,
(A.1.6) (a) The functions f and g are continuous; f is a periodic function (of

period one in each direction) of the variable X2,

(b) |f(X1,XZ,y)-f(XI,x2,y’)l S- KIy—y'|,Vx1 € Rd,xz € Reiy:
y' e RY;
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(©) |/ (31, %2, ) —F (x 7, %2, )| S alloey — D1+ [¥]), Vxr, % € R,
x2eRiye RF;
@) |g(x0)} + 1 /(x1,%2,0)] < K(1 + |x1]7), Vo € R, xz € RE.

2 STATEMENT OF THE RESULTS

Denote

T = [ oo ).

Let {(¥,,Z,},0<t< T} be the unique FEB.adapted RF x R**“-valued
process which solves the BSDE

T T
¥, =g(Xh) + f F(X!, ¥y)ds - f Z.dB,, (5)

together with the condition
T
E/ |Z,[*dt < oo,
0

and u : [0, T'] x R? — R¥ be the viscosity solution of the system of parabolic
semi-linear PDEs

%(r, x) = Cu(t,x) + flx,u(t,x)),0< 1 < T,x € R4
u(0, x) = g(x),x € R’ (6)

Before stating our results, let us precise a notion of convergence which will
be used repeatedly below.

DEFINITION 1 Let {{U?,neN,U,),0 <t < T} denote k-dimensional
measurable processes. We say that “U"=U in the sense of Meyer-Zheng”
whenever U" converges to U in distribution in M([0, T], R¥), the space of
(equivalence classes of) Borel measurable functions topologized by
convergence in measure.

The notation U"=>U without any additional mention will be used to
mean that the processes are continuous, and the sequence converges in

distribution in C([0, T'], R¥) equipped with the usual sup-norm topology.

THEOREM | Assume that the conditions (A.1.1)—(A.1.6) are in force. Then
Ye==Y in the sense of Mever-Zheng, as € — 0,
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COROLLARY 1 Under the assumptions of theorem 1, Y3— Yy, as € —0.

COROLLARY 2 Under the same assumptions, w(t,x1,x3)— u(t,x1),
Vit x1,x2)€f0, T]xR¥ x R? as £ —0.

3 CONVERGENCE OF X7¢ AS ¢ — 0

The aim of this section is to establish the following result:

THEOREM 2 Under the assumptions {A.1.1), (A.1.2), (A.1.3}, (A.1.4),
assuming moreover the boundedness of H and K and the nondegeneracy of K
(ie., KK*(x3)> ol >0 ¥x; € TY),

Ye=xl eo0,

where X! is the unique strong solution of the SDE (2).

Proof Convergence and identification of the limit follow from theorem
12.2.4 in Ethier, Kuitz [3]. We now prove that the SDE (2) has a unique
non-exploding strong solution. As already noted, the T¢-valued homo-
geneous Markov process {X 3’5} possesses 4 unique invariant measure p, and
from the fact that L, is anticompact (i.e. the inverse of a compact operator)
and (A.1.1), the Poisson equation

(Ladi(x1,))(x%2) = —Fi(x1,%2), % €T*

has a unique solution in Z*(T¥, i), foreach 1 < i < d, x; € R®. Moreover, it
follows from Corollary 6.5.3 in Revuz [12] that J; is bounded since F; is
bounded, from (A.1.2). Indeed, to use Corollary 6.5.3 from [12] it suffices to
verify the inequality

f:;l«):Ez fow exp( —/O‘rh(zs)ds) < oo (7

for any h:T%!— R, which is bounded, continuous and such that
p(z : h(z) #0) >0, where Z; =X2¢ with e=1. Since 4 is continuous,
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there exists 0 < v < | such that mes(z € T¢: A(z) > v) > 0 (here “mes”
stands for Lebesgue’s measure). One has for £ > 1,

Ezexp( - /0 ! h(Z:)dS) < Ezexp( - OH h(Zs)dS)

- sup EZ'exp( - ufol Ih(Z;) > v)ds).

ZeTt

Notice that
2

( [0 lI(h(Zs) 2 v)ds) < /0 lI(h(zs) > v)ds.
So, _

1
exp( - u/o Kh(Z,) > V)ds)
’ 1 1
<l-v f I(Z;) > v)ds+ (+*/2) fo Ih(Z,) > v)ds)

0
<1-{v—1r*/2) f l I(h{(Z,) = v)ds.
\]

It follows from the Harnack inequality for nondegenerate diffusions (see the
results in Krylov and Safonov [15]) that

zeTt

1

inf E’_/ IWZ)2vyds>p3>0
0

Hence

Ez:exp(— v[l Ih(Z;) > u)ds) <1-Bv-v}2<1-pv/2
0 -

By induction one gets
r .
sup E; [exp(— f h(Z,.)ds)] < (1= g2,
z 0

[f] denoting the integer part of ¢, from which (7) follows.

Now, because the mapping Fi(x1,) — Ji(x1, -} is linear and continuous
in I2(T% ) and x; — Fi{x,") is twice differentiable, one gets that
x1 — Ji{x1,-) is twice differentiable, and in particular V, J(xi,-), which is
the solution of

(L2vx1'](x1= ))(xZ) = —VxlFl (XL,xz),JCZ = T£1

is bounded.
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From this and (A.1.3), (A.1.4), &; is locally Lipschitz and grows at most
linearly at infinity, for each 1 < i < d. Moreover, dy is bounded and of class
CZ. Hence from theorem 5.2.3 in [13), o = [a]'/? is Lipschitz continuous.
The proof is complete.

4 PROOF OF THEOREM 1
a A Priory Estimates

LEMMA | There exists C such that for every 0< e <1,

T
E[ 1700 e < ¢
0
Proof One has

T T
Y+ E / \Z5 s = Elg(X19) + 2E f (Y ALXM X2 ¥o)ds,
{ i
We claim that there exists a constant ¢ such that Ve > 0,
T
ElgX\)P <, Efo (X1, X2, 0) e < c.

Indeed, from the assumption (A.1.6.d), it suffices to prove the
LEMMA 2 For any p € N\ {0},

sup sup E(]X,lﬂz‘”) < co.

O<e<1 01T

Proof Define ®:R?— R, by &(x;) = |x;[¥, and ¥: R x R’ — R by
U (xi,x;) = 2p|x1|2(p_1)(x1,J(xl,xg)). We note that

Ly @ (xy, x2) + (V@(xl),F(xl,xg)) =0. {(8)
Since J is bounded, there exists o > 0 such that
a®(x} < @(x;) +e¥{x1, %), Y(x,x) eRIxREO<e< ],

Hence, if we define

Us = B(X)F) + (X4, X2¢),
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the result will follow from

sup sup EUS < oo.
0<eg1 05T

But it follows from equation (1), Ité’s formula and (8) that

iEUf = E(VO(X'#) + eV, T(X}F, X2%), G(X}F, XoF))

dt :
+ (Vg WX, X0%), F(X#, X))
c(l + E®(X}*))

<
< d(1+EU3),

where we have used (A.1.2), (A.1.4), and the fact that foreach 1 <r <g,
there exists a constant k such that |x|” < k(1 + |x|?) for the first inequality,
and the last inequality above for the second one. The result now follows
from Gronwall’s lemma.

We now return to the proof of lemma 1.We have that

. T
ElYif < K(l + Ef EYf|2ds),
t
and so

E|Y¢" < Kexp(KT)

~ The lemma now follows from the above estimates and the assumption
(A.1.6.b).
Note that the argument in this proof together with Burkholder’s
inequality yields

T
sup E(Osup |Yf|2+/ |Z§|2ds) < 00
0

0<e<] <1<T

b Meyer-Zheng Method

Let us estimate that “conditional variation” of {¥f{}. Denote f]=
flxlex2e ve) and take any partition 0 = o < 3 <+ < # = T. One has

o[

<E /0 " reas.

S EE(YE, - YiF) = E
7 i
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Hence the conditional variation of Y*
V( YE) = Sup E Z lE if+| Yi!lﬂl)l

(where the sup is taken over all partitions of the interval [0, T']) is bounded
uniformly w.r.t . Consequently, from theorem 4 in Meyer-Zheng [6] and
lemma 5 below, we can pass to the lmit in the BSDE as € — 0, in the sense
of Meyer-Zheng (along some subsequence):

(Y, M%) 5 (V,H),
where

Y, —g(Xh) + [ FXL,F.)ds + Mo — 7,
13 .

and {M,,0 < r < T} is a martingale. Moreover, we have that (again along a
subsequence)

(x'=, YE) ()(l Y).

¢ Identification of the Limit

We need to show that ¥, = ¥, M, = — [} Z,dB,. The convergence of X '<
tells us that vy € Cg"([F&d),O < s <t < T, and any function ®; of X1, ¥¢,
0 < r < 5 which is bounded and continuous in the Meyer-Zheng topology,

3
{2007 [pt}) — o) - [ Zo(a] } 0, e—0,
duc to [3], page 477 and lemma 5 below. Hence
t
£{0,00.7) () — (2} - [ Tt } 0.

and W o(X 1) — p(xd) —fo Etp@" Ydr is a .FX Ymartmgale for any
pE Cm(Rd) and there exists a 7% Y-Brownian motion {B;} s.t.

dx! = b(X}dt +5(X | )dB,.
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For a fixed filtration F, = F X' ¥iwe have:
(Y, Z) is the F5-adapted solution (hence it is also F;-adapted) of the BSDE
T T
v,= s+ [ 70, Yods - [ zas,
!
. !
E/ |Z,|*dt < oo,
0
(¥, M) is F,-adapted, M is a square-integrable F,-martingale, and

T
Y, = g(Xh) + f FX\ Fo)ds + M1 — M., Esup [T ) < oo.
i I3

It remains to prove the uniqueness result: ¥, = Y, If we define M, 2
- fo! Z.dB,, we deduce from It6’s formula that

¥, - Y+ M-M|, - [M-M],= 2fT(n — Yo f(X;, Ys)
F (X, )N+ 2 / "\Y, ~ T, aM, — diT,).

Taking expectation and using Gronwall’s lemma one obtains the uniqueness
result.

" d Three Lemmas

Now it remains to formulate and prove several lemmas from which we have
exploited lemma $ essentially.

LEMMA 3 For any § >0 there exist Ny and x', ..., x¥ € C({0,T];RY) s.1.

k=1 0<e<T

N .
P(ﬂ{ sup |X1 —x¥ > 6}) <8, Vex0.

Proof The result follows from the tightness of the sequences {X 151 and the
separability of C({0, 7']; R

LEMMA 4 For any § > 0 there exist Na andy',...,y™ € D({0, TR s.t.

Ny
P(n{)\(() <t T|YE—y5 > 8) > a}) <6, Ve>0,
k=1

where X denotes Lebesgue’s measure.
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Proof For each e >0, let

K

A hKr & - g

R = sup |Yi, NMMES ( Iy T N?/.rﬁ.(i—l)/h)'
K

0<<T i=

where Nf/";,,(m)/h is the number of upcrossings of [i/h,{i+1)/k] and
N ?};n,(i—l) s the number of downcrossings of [(i — 1)/k,i/h] by ¥5F —the rth
component of ¥Y¢—on [0, T].

We choose /i € N, i > 3/6,and K € N s.t. P(R. > K/h) < §/2¥e > 0.

For each n € N we let y',...,»™" denote the sequence of all step
functions from [0, T] into R¢ which are constant on each [j/n, (j+1)/n[,j
=0,1,...,{Ty], and whose components take all possible values
¢/n,—Kn/h <1< Kn/h,l € N.

Note that, provided n > A,

) '
(A0 < < T —pf7| > 6) > 8} € {Re > K/h}U {N®ET > 3n/h}.
k=1

Indeed, to each {¥$"(w)} such that R.(w) < K/h, and each 1 <r <1, we

can associate one number k, 1 <k < N(n) such that |Y§’;(w)—yj§;;|

<1/h0< j< [T, Let t€[j/n (j+1)/n] be such that |¥7(w) — e
> 82 3/h. Then |Y{"(w)— Y}, (w)|>2/h, which gives at least one
contribution to the number N®%7. Thus, if R(w)< K/h and
MO <t < T Y (w) — ¥l > 6) > § for each k,1< k< N(n), one gets
NUET > n§ > 3n/h.

Finally, it follows from the tightness of the sequence {¥*},., that we
can choose n large enough such that P(N®Kr > 3n/h) < (20)7'6,¥e > 0,1 <

r < I see [6]. The lemma is proved.

LEMMA 5 Foranyt<T
T -_
Fo= [k, X05, 1) X, Yolds = 0
‘

in probability, as € — 0 (in fact the convergence holds in LYQ)).

Proof Let h(x,x2,¥) éf(x.,xg,y) — f(x1,¥). From lemmas 3 and 4, to
each § > 0 we associate Ny, x!,...,x™ Na, ' ..., ¥ such that P(4) <4,
where A; = ﬁf;l{sl.lp,p\’}‘E — x| > 6} and P(A4y) <6, where 4y = e,
(M5 Y= 4] > 8) > 6). |
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We have
Nl N;
A7 = J{sup|X7* - x| < 8} = U 8%,
k=1 k=1

and we can rewrite

where BY C B4k, and the B}’s are disjoint.
Following the proof of lemma 4, if N = N(n), to each w belonging to
{R. < K/h}, we associate one (measurable) k(w),1 < < k(w) € N3, such that

Supy| ¥ 3,() = ¥} < Vijm.
Let

B ={M5|Y5 — y¥| > 8) < 6} N {k(w) = £} N {R, < K/h}.
“Then the B’s are disjoint, and A5 N {R. < K/h} = \UP2, BS. We have that

N N

Fe < 1L Fe 4 LayFe + YrorimFe +ZZIW
k=1 f=

By, Fe < [|Fell gy [P(AV)] “’2 < eV
ENLg,Fel < {IFel ey [P(42)] ' < V.
BVl goimFel < || Fell iy [PURe > K/MD]'? < V6,

On B B we write
T
— [ a3, 1) — ko 3, YDl
/ [h s!XZE Ya _ ( XZE’ys)]dS-}'/ h ,ys)dS
_ Flk g pkE L FIRE

We get

E|le skl—EIZI—*F"‘KM() fT(1+|Y§I)dSSca(5)=

2.k,8 _
Elglgﬂ%ﬂ lszKEé;lmg / |75 - ilds




268 E. PARDOUX AND A. YU. VERETENNIKOV
T
< 2KZE(135 / ¥e - ygtds)
I} t
<Ky [orp(et)+ 5 ;=i )|
4

<oksr+ o BT +Ez£j(||yf-umlgg)}]

1 B /
{1<s< T ¥ —ph[> 6}

< 2K6(T+E1|YF||°O FES (Yol + 1/n>135)
£
< 4KS(T+ B ¥) < cb.

" Finally, ergodicity implies that for each &,/ F }k"' —0in L'(f2) ase — 0.
Hence,

tim sup E\F.] < ¢(3V6 + o(8) + 6),¥6 > 0,

=0

and the result follows.

5 PROOF OF THE COROLLARIES
Proof of corollary 1 Note that since Y4 is deterministic,
T
5= Efste) + [ sox, o)
Tt follows from the results proved above that
T
A
& &gy + [ et xis v
converges in law, as £ — 0, towards
T -_—
s+ [ 7 v

and moreover from some arguments in lemma 1 we have that E(|EE|2) <e.
Hence by uniform integrability lim ..o E(&) = E(lim,_o &), i.e.

Y5— Yo =E[g(X;) +£Tf(x}, Y,)dt].

Proof of corollary 2 For each x= (x1,x2) € RAE, et (X5 = (X%,
X2*£Y s > 0} denote the solution of the SDE (1) starting from the initial
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condition (X ™%, X2™) = (x1,x2). Let ¢ be an arbitrary positive real
number. We denote by {¥ ™0 <s < ¢} the solution of the BSDE (3)
where (X%, X2#) is replaced by (X', X2*#), and T by ¢. In other words,
{Yi*,0 <5 < t} solves the BSDE

t H
Ve = (X 1) 4 f Fi0 S Caidd gal Y f ZdW,,0< s < 1.
5

5

We have that the function * : Ry x R** — R* defined by
(tx) & YI (1,%) € Ry x RO

is the unique viscosity solution of the systems of PDEs (4), see [9], [10].

Similarly, for each x € RY, let X Jf!",s = 0} denote the solution of the
SDE associated to the limiting process X !, with initial condition X (1).); = X,
and for each ¢ positive, let {Y5*;0 < s < 1} be the solution of the BSDE (5)
with X! replaced by X'*, and T by 1. In other words, {¥'*;0 <5<t}
solves the BSDE .

t ¢
YiX = g(X,l’x) + / f(Xl'x, Y i\dr ——] ZdB, 0<s<¢t
5

5

We have that the function u : R, x R? — R* defined by
u(t,x) 2 Y, (t,x) € Ry x RY

‘is the unique viscosity solution of the systems of PDEs (6).
Hence corollary 2 follows easily from corollary 1.
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