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Abstract
We study a stochastic differential equation driven by a Poisson point pro-

cess, which models continuous changes in a population’s environment, as
well as the stochastic fixation of beneficial mutations that might compen-
sate for this change. The fixation probability increases as the phenotypic
lag between the population and the optimum grows larger, and successful
mutations are assumed to fix instantaneously (leading to an adaptive jump).
Our main result is that the process is transient (i.e., continued adaptation
is impossible) if the rate of environmental change v exceeds a parameter m,
which can be interpreted as the rate of adaptation in case every beneficial
mutation gets fixed with probability 1. If v < m, the process is positive
recurrent, while in the limiting case m = v, null recurrence or transience
depends upon additional technical conditions. We show how our results can
be extended to the case of a time varying rate of environmental change.

1 Introduction

We study the large time behaviour of the solution of a scalar stochastic differential
equation of the type

Xt = X0 − v(t) +
∫

[0,t]×R×[0,1]
αϕ(Xs− , α, ξ)M(ds, dα, dξ),

whereM is Poisson Point Process on R+×R×[0, 1] with mean measure ds ν(dα) dξ
and ϕ(x, α, ξ) = 1{ξ≤g(x,α)}. The goal of our work is to understand how a popu-
lation can adapt to a deterioration of its fitness, due for instance to continuous
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change in the climatic conditions, thanks to mutations which improve its adapta-
tion to the new environment. ds ν(dα) represents the rate of appearance of new
mutations, while g(x, α) is the probability that a mutation α, which is proposed
while the population’s fitness is given by x, gets fixed. We give a specific form to
that probability. The important property, which is reasonable to assume in our
case, is that whenever x→ ±∞, g(x, α)→ 1 for each α such that xα < 0.

We start with the simple case v(t) = vt, with v > 0. With the notation m =∫∞
0 αν(dα), i.e. m is the mean movement to the right per time unit produced by
the positive mutations if all of them get fixed, which almost happens when x < 0
is very large in absolute value, our first result says that the Markov process Xt is
positive recurrent if m > v, transient if m < v, with a speed of escape to infinity
equal to v −m. The most interesting case is the limit situation m = v. We show
that, depending upon the speed at which m(x) =

∫∞
0 αg(x, α)ν(dα) converges to

m as x→ −∞, the process can be either null recurrent or else transient with zero
speed in case m = v.

We then generalize our results to the case where v(t) is a more general (and even
possibly random) function of time.

Note that Kersting (1986) has studied similar questions in discrete time. Similar
resuts for a SDE driven by Brownian motion with coefficients which do not depend
upon the time variable would be easy to obtain. Here we use stochastic calculus
and several ad hoc Lyapounov functions. Note that the Itô formula for processes
with jumps leads to less explicit computations than in the Brownian case. To
circumvent this difficulty, for the treatment of the delicate casem = v, we establish
a stochastic inequality for C2 functions whose second derivative is either increasing
or decreasing, see Lemma 3 in subsection 4.3 below.

The paper is organized as follows. We define our model in detail in section 2, refer-
ing to models already studied in the biological literature. We establish existence
and uniqueness of a solution to our equation in section 3 (the result is not imme-
diate since we do not assume that the measure ν is finite). Section 4 is devoted to
the large time behaviour of Xt when v(t) = vt, successively with m < v, m > v,
and m = v. Finally section 5 is devoted to the large time behaviour of Xt when
v(t) takes a general form, but v = limt→∞ t

−1 ∫ t
0 v(s)ds exists.

2 The Model

Our starting point is the model by Kopp and Hermisson (2009) of a population
of constant size N that is subject to Gaussian stabilizing selection, with a moving
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optimum that increases linearly at rate v. That is, at time t, the phenotypic lag
between an individual with trait value z and the optimum equals x = z − vt, and
the corresponding fitness is

W(x) = exp
(
−σx2

)
, (1)

where σ determines the strength of selection. For the adaptive-walk approxima-
tion, the population is assumed to be monomorphic at all times (i.e., its state
is completely characterized by x). Mutations arise at rate Θ/2 = Nµ (where µ
is the per-capita mutation rate and Θ = 2Nµ is a standard population-genetic
parameter), and their phenotypic effects α are drawn from a distribution p(α).
We neglect the possibility of fixation of deleterious mutations. Yet even beneficial
mutations have a significant probability of being lost due to the effects of genetic
drift. A mutation with effect α that arises in a population with phenotypic lag x
has a probability of fixation

g(x, α) =

1− exp(−2s(x, α)) if s(x, α) > 0,
0 otherwise

(2)

where
s(x, α) = W(x+ α)

W(x) − 1 ≈ −σ[|α|(2|x| − |α|)]+ × 1{xα<0} (3)

is the selection coefficient. Formula (2) is a good approximation of the fixation
probability derived under a diffusion approximation (Malécot 1952; Kimura 1962),
which is valid when the population size N is large enough. Note that Kopp and
Hermisson (2009) used the even simpler approximation g(x, α) ≈ 2s(x, α) (Haldane
1927; for more exact approximations for the fixation probability in changing en-
vironments, see Uecker and Hermisson 2011; Peischl and Kirkpatrick 2012). Once
a mutation gets fixed, it is assumed to do so instantaneously, and the phenotypic
lag x of the population is updated accordingly. Three example realizations of the
resulting adaptive walk are illustrated in Figure 1.

We now turn to a rigorous mathematical description of the above process. We
introduce a stochastic equation driven by a Poisson point process that describes
the evolution of the population, and we study whether the process is transient
(leading to certain extinction of the population) or recurrent (at least potentially
allowing survival). The key parameters are the maximal mean rate of adaptation,
m, and the speed of the optimum, v. We prove that the process is transient when
m < v and recurrent when m > v. We then perform an in-depth analysis of the
limiting case m = v, showing that transience or recurrence in this case depend
on additional conditions. Next, we generalize the results to a model with variable
speed of the optimum (i.e., v becomes a random function of t).
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Figure 1: Three example realizations of an adaptive walk, showing the evolution
of the lag Xt between the population phenotype z and a linearly moving
optimum vt, for three different values of v. In (A) and (B) the process
is recurrent, whereas in (C), it is transient. Results were generated by
drawing random mutations from a standard normal distribution (ν(α) ∼
N (0, 1)) at times drawn from an exponential distribution with intensity
Θ/2 = 0.5 and accepting them (leading to an adaptive step) according
to the fixation probability given by equation (2) with σ = 0.1.
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The evolution of the phenotypic lag of the population can be described by the
following equation

Xt = X0 − vt+
∫

[0,t]×R×[0,1]
αϕ(Xs− , α, ξ)M(ds, dα, dξ). (4)

Here, M is a Poisson point process (PPP) over R+ × R× [0, 1] with intensity

π(ds, dα, dξ) = ds ν(dα) dξ.

ν(dα) is a σ-finite measure describing the distribution of new mutations up to a
multiplicative constant, which satisfies∫

R
|α| ∧ 1ν(dα) <∞, (5)

and
ϕ(x, α, ξ) = 1{ξ≤g(x,α)},

where the fixation probability g(x, α) (see formula (2)) of a mutation of size α that
hits the population when the lag is x can be expressed as

g(x, α) =
(
1− exp

(
−2σ[|α|(2|x| − |α|)+]

))
× 1(xα<0).

The points of this PPP (Ti, Ai,Ξi) are such that the (Ti, Ai) form a PPP over
R+ × R of the proposed mutations with intensity dsν(dα), and the Ξi are i.i.d.
U [0, 1], globally independent of the PPP of the (Ti, Ai). Ti’s are the times when
mutations are proposed and Ai’s are the effect sizes of those mutations. The Ξi are
auxiliary variables determining fixation: a mutation gets instantaneously fixed if
Ξi ≤ g(XTi , Ai), and is lost otherwise. Note that, in the model considered in Kopp
and Hermisson (2009),

ν(dα) = Θ
2 p(α)dα, (6)

whereas here, we do not impose that ν has a density, nor that it is a finite measure.
Also, the exact form of the function g is not important for us. Our argument will
rely only upon the fact that for all α > 0, g(x, α) ↑ 1 as x→ −∞ while g(x, α) = 0
if xα > 0.
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3 Existence and uniqueness

Define for all x

m(x) =
∫

R
αg(x, α)ν(dα),

m =
∫

R+
αν(dα), (7)

ψ(x) = m(x)− v, (8)

V (x) =
∫

R
α2g(x, α)ν(dα),

V =
∫

R+
α2ν(dα). (9)

m(x) is the mean speed towards zero induced by the fixation of random mutations
while Xt = x < 0. V (x) is related to the second moment of the distribution
of these mutations. m and V are the limits of m(x) and V (x), respectively, in
the case that all mutations with α > 0 go to fixation (as we will show later,
this is the case if x → −∞). Note that our assumptions do not exclude cases
where m =∞ and/or V =∞, unless stated otherwise. However, since g(x, ·) has
compact support, for each x, m(x) < ∞ and V (x) < ∞. The cases m = ∞ and
V =∞ correspond to a heavy tailed ν. It would be quite acceptable on biological
grounds to assume that m <∞ and/or V <∞. However, we refrain from adding
unnecessary assumptions. We rewrite the SDE (4) as follows

Xt = X0 +
∫ t

0
ψ(Xs)ds+Mt (10)

where the martingale

Mt =
∫ t

0

∫
R+

∫ 1

0
αϕ(Xs− , α, ξ)M̄(ds, dα, dξ), (11)

with M̄(ds, dα, ξ) being the compensated Poisson measureM(ds, dα, dξ)−π(ds, dα, dξ).

Proposition 1. Equation (10) has a unique solution.

Proof. If ν is a finite measure, then M has a.s. finitely many points in [0, t] × R
for any t > 0. In that case, the unique solution is constructed explicitly by adding
the successive jumps. In the general case, we choose an arbitrary compact set
K = [−k, k] (with k > 0). There are finitely many jumps (ti, αi) ofM with αi /∈ K.
It suffices to prove existence and uniqueness between two such consecutive jumps.
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In other words , it suffices to prove existence and uniqueness under the assumption
ν(Kc) = 0, and hence from (5), we deduce that

∫
(|α|+ α2) ν(dα) <∞, which we

assume from now on. Define for each t > 0

Γt(U) = x− vt+
∫

[0,t]×R×[0,1]
αϕ(Us− , α, ξ)M(ds, dα, dξ). (12)

A solution of equation (10) is a fixed point of the mapping Γ. Hence it suffices to
prove that Γ admits a unique fixed point. For λ > 0,

Ee−λt |Γt(U)− Γt(V )| =− λE
∫ t

0
e−λs |Γs(U)− Γs(V )| ds+ E

∫ t

0
|α|e−λtd |Γs(U)− Γs(V )|

≤ − λE
∫ t

0
e−λs |Γs(U)− Γs(V )| ds

+ E
∫

[0,t]×R×[0,1]
|α|e−λt |ϕ(Us− , α, ξ)− ϕ(Vs− , α, ξ)|M(ds, dα, dξ).

The above inequality follows readily from the fact that, for all 0 < s < t,

|Γt(U)− Γt(V )| − |Γs(U)− Γs(V )|

≤
∫

(s,t)×R×[0,1]
|α| × |ϕ(Ur− , α, ξ)− ϕ(Vr− , α, ξ)|M(dr, dα, dξ).

Thus,

λE
∫ t

0
e−λs |Γs(U)− Γs(V )| ds ≤ E

∫
|α|e−λt |g(Us− , α)− g(Vs− , α)| dsν(dα). (*)

For 0 < u < v we have that∫
R
|α(g(u, α)− g(v, α))|ν(dα) =

∫
R−
|α
(
e−2σ|α|(2|v|−|α|)+ − e−2σ|α|(2|u|−|α|)+) |ν(dα)

=
∫ 0

−2u
|α
(
e−2σ|α|(2|v|−|α|) − e−2σ|α|(2|u|−|α|)

)
|ν(dα)

+
∫ −2u

−2v
|α|

∣∣∣e−2σ|α|(2|v|−|α|)) − 1
∣∣∣ ν(dα)

≤ 4σ
(∫ 0

−2u
α2ν(dα)

)
× |u− v|

+ 2σ
∫ −2u

−2v
α2(2v + α)ν(dα)

≤ 4σ
(∫

R
α2ν(dα)

)
× |u− v|.

A similar estimate can easily be obtained for v < u < 0. For u < 0 < v , we have
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that∫
R
|α(g(u, α)− g(v, α))|ν(dα) ≤

∫
R−
|αg(v, α)|ν(dα) +

∫
R+

|αg(u, α)|ν(dα)

≤ 2σ
∫

R−
α2(2v + α)+ν(dα) + 2σ

∫
R+

α2(−2u− α)+ν(dα)

≤ 4σ
∫

R−
α2|v|ν(dα) + 4σ

∫
R+

α2|u|ν(dα)

≤ 4σ
(∫

R
α2ν(dα)

)
× |u− v|.

Let T be arbitrary. Define for all λ > 0 the norm on the Banach space L1(Ω ×
[0, T ]),

‖Z‖T,λ = E
∫ T

0
e−λt|Zt|dt.

We choose λ0 > c = 4σ
∫
R α

2ν(dα). We deduce from (*) that

E‖Γ(U)− Γ(V )‖T,λ0 ≤
c

λ0
E‖U − V ‖T,λ0 .

Since c/λ0 < 1, Γ has a unique fixed point such that Γt(U) = Ut for all 0 ≤ t ≤ T .
Since T is arbitrary, the result is proved.

4 Classification of the large-time behaviour

Proposition 2. If X0 > 0, then Xt becomes negative after a finite time a.s.

Proof. Let T0 = inf(t > 0, Xt < 0). Since g(x, α) = 0 for xα > 0,

Xt∧T−0
= X0 − v(t ∧ T0) +

∫ t∧T−0

0

∫
R

∫ 1

0
αϕ(Xs− , α, ξ)M(ds, dα, dξ)

≤ X0 − v(t ∧ T0),

hence
t ∧ T0 ≤

X0 −Xt∧T−0
v

<
X0

v
.

Let t tend to ∞.
T0 ≤

X0

v
<∞
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Whether the process Xt is positive recurrent, nul recurrent or transient depends
only upon its behavior while Xt < 0. Hence, we only need to consider in detail
the case when Xt is negative, in which case only positive mutations (α > 0) have
a positive probability of fixation. Thus the fixation probability becomes

g(x, α) = (1− exp (−2σα(2|x| − α))) 1[0,2|x|].

Proposition 3. The functions x 7−→ m(x) and x 7−→ V (x) are of class C1,
strictly decreasing on R− and

m(x) −−−−→
x→−∞

m,

V (x) −−−−→
x→−∞

V.
(13)

Proof. We prove this result for the function x 7−→ m(x). A similar argument
applies to V (x). Let

h : R− × R+ → R+

(x, α) 7→ h(x, α) = αg(x, α).

• ∀α ∈ R+, x 7→ h(x, α) is differentiable.

• ∀x ∈ R−, the functions α 7→ h(x, α) and α 7→ ∂h
∂x

(x, α) are piecewise contin-
uous and integrable over R+ since they have compact support.

• For each fixed α > 0, if xn ∈ R− such that xn → x, and y = inf
n≥1

xn,∣∣∣∣∣∂h∂x(xn, α)
∣∣∣∣∣ ≤ 4σα21[0,2|y|+1](α) ∈ L1(ν).

Thus, for all x ∈ R−
dm(x)
dx

= −
∫

R
4σα2 exp(−2σα(2|x| − α))1[0,2|x|](α)ν(dα) < 0.

As a consequence, x 7−→ m(x) is a decreasing function. Moreover

h(x, α) ∈ L1(ν),
For each fixed α > 0, 0 ≤ h(x, α) ↑ α, as x→ −∞.

By the monotone convergence theorem, we have that

m(x) =
∫

R
h(x, α)ν(dα) −−−−→

x→−∞
m.
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To determine the large-time behavior of the process, we now consider successively,
the three cases v > m, v < m and v = m.

4.1 The case v > m

In particular, here m =
∫∞

0 αν(dα) is finite. Let

Nt =
∫

[0,t]×R×[0,1]
αϕ(Xs− , α, ξ)M(ds, dα, dξ)

be the sum of all the jumps on the time interval [0, t]. We have that

Nt = N (+)
t +N (−)

t ≤ N (−)
t ,

where
N (+)
t = 1{Xs−>0}dNs
N (−)
t = 1{Xs−<0}dNs

Let m(−)(x) = 1{x<0}m(x), hence

M(−)
t = N (−)

t −
∫ t

0
m(−)(Xs)ds.

Thus,
Xt ≤ X0 +

∫ t

0
(m−(Xs)− v)ds+M(−)

t

Lemma 1. If m <∞, then

lim
t→∞

M(−)
t

t
= 0. (14)

Proof. M(−)
t is a square-integrable martingale, such that EM(−)

t = 0. Define M0

as the Poisson random measure for new mutations i.e. a Poisson point process on
R+ × R with intensity dsν(dα). For all i ∈ N∗ and n ∈ N∗, define

ξi =
∫ i

i−1

∫ ∞
0

∫ 1

0
αϕ(Xs− , α, ξ)M(ds, dα, dξ),

ωi =
∫ i

i−1
m−(Xs)ds,

ηi =
∫ i

i−1

∫ ∞
0

αM0(ds, dα),

Yi = ξi − ωi,

Mn =
n∑
i=1

Yi,
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Note that for all i ∈ N∗, 0 ≤ ξi ≤ ηi and 0 ≤ ωi ≤ m. We first establish

Lemma 2.
If

∑n
i=1 Yi
n

−→
n

0, then M−
t

t
−−−→
t→∞

0.

Proof.
M−

t

t
=
M−
btc

btc
× btc

t
+ M̃

−
t

t
,

where

M̃−
t

t
=1
t

(∫ t

btc

∫ ∫
αϕ(Xs− , α, ξ)M(ds, dα, dξ)−

∫ t

btc
m−(Xs)ds

)

≤ 1
t

(∫ dte
btc

∫ ∫
αϕ(Xs− , α, ξ)M(ds, dα, dξ) +

∫ dte
btc

m−(Xs)ds
)

= 1
t

(
ξdte + ωdte

)
= dte

t
× 1
dte

(
Ydte + 2ωdte

)
−−−→
t→∞

0,

since for all n > 0,

Yn+1

n+ 1 =
∑n+1
i=1 Yi
n+ 1 −

∑n
i=1 Yi
n

× n

n+ 1 −−−→n→∞
0

and
0 ≤ |ωn|

n
≤ m

n
,

hence
ωn
n
−−−→
n→∞

0.

Back to the proof of Lemma 1. We now define

Ai = {ηi > i},
Ỹi = Yi1{ηi≤i}.

Since the (ηi, i ∈ N∗) are i.i.d, integrable and

P(ηi > i) =
∑
i≥1

P(η1 > i) ≤ Eη1 <∞,
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it follows from Borel Cantelli’s Lemma that P(lim supAi) = 0. Hence, a.s. there
exists N(α) such that for all n > N(α), we have Ỹn = Yn. But since E(Ỹn)→ E(Y1)
due to the dominated convergence theorem, it is sufficient to prove that

∑n
i=1

(
Ỹi − E(Ỹi)

)
n

−→
n

0.

Due to corollary 3.22 in Breiman (1968)1, it is again sufficient to prove that

∞∑
i=1

E(Ỹi
2)

i2
<∞.

Indeed, we have that
∞∑
i=1

E(Ỹi
2)

i2
< 2m.

The underlying calculation can be found in the proof of theorem 3.30 in Breiman
(1968).

Remark 1. In the case m <∞ and Xt → −∞, we have that

1
t
M(+)

t → 0,

since eventuallyXt becomes negative. Furthermore, if we assume that
∫ 0
−∞ αν(dα) >

−∞ then the previous Lemma implies that

Mt

t
→ 0,

whether Xt → −∞ or not. But we refrain from adding any supplementary as-
sumption on ν.

Proposition 4. In the case v > m, Xt → −∞ with speed v−m in the sense that

Xt

t
a.s.−−→ m− v as t→∞.

Proof.

Xt

t
= X0

t
− v + 1

t

∫ t

0
m(Xs)ds+ Mt

t
≤ X0

t
− v +m+ Mt

t
.

1In the proof of this theorem, we replace Kolmogorov’s inegality by Doob’s inegality for mar-
tingales, and the result holds in our case.
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Hence
lim sup
t→∞

Xt

t
≤ −v +m. (15)

On the other hand, it follows from (13) that

∀ε > 0 ∃Kε > 0 such that x ≤ −Kε ⇒ m(x) > m− ε, (16)

and since Xt −−−→
t→∞

−∞ by (15), we have

∀ε > 0 ∃tε > 0 such that ∀s ≥ tε ⇒ Xs ≤ −Kε. (17)

Statements (16) and (17) combined give

∀ε > 0 ∃tε such that ∀s ≥ tε ⇒ m(Xs) > m− ε.

Then, ∀ε > 0 and t > tε

Xt

t
≥ Xtε

t
+ 1
t

∫ t

tε
(m(Xs)− v)ds+ Mt −Mtε

t

≥ Xtε

t
+ (m− ε− v)× t− tε

t
+ Mt −Mtε

t
.

Hence,
lim inf
t→∞

Xt

t
≥ −v +m

We conclude that Xt → −∞ with speed v −m.

4.2 The case v < m

The assumption is satisfied, in particular, when m =∞.

Proposition 5. In the case v < m, Xt is positive recurrent.

Proof. Since x 7−→ m(x) is continuous, strictly decreasing from R− to R+ and
m(0) = 0 < v < m, ∃ N > 0 such that m(−N) = v. We choose an arbitrary
K > N , so that for all x < −K

ψ(x) > m(−K)− v > 0.

Assume that X0 < −K, and define the stopping time

TK = inf{t > 0, Xt ≥ −K}
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We have

Xt∧TK = X0 +
∫ t∧TK

0
ψ(Xs)ds+

∫
[0,t∧TK ]×R+×[0,1]

αϕ(Xs− , α, ξ)M̄(ds, dα, dξ)

> X0 + (m(−K)− v)(t ∧ TK) +Mt∧TK .

Thus,
0 > E(Xt∧TK ) > X0 + (m(−K)− v)E(t ∧ TK).

Now let t tend to ∞. It follows by monotone convergence that

E(TK) < −X0

m(−K)− v <∞. (18)

Given any fixed T > 0, let p denote the lower bound of the probability that,
starting from any given point x ∈ [−K, 0) at time t0, X hits [0,+∞) before time
T . Clearly p > 0. We now define a geometric random variable β with success
probability p. Let us restart our process X at time t0 = TK from x0 ∈ [−K, 0). If
X hits zero before time T , then β = 1. If not, we look at the position XT of X at
time T . Two cases are possible:

• If XT < −K, we wait until X goes back above −K. Since XT ≥ −(K+vT ),
the time α2 needed to do so satisfies

E(α2) ≤ K + vT

m(−K)− v .

This calculation is similar to (18).

• If XT ≥ −K, we start afresh from there, since the probability to reach zero
in less than T is greater than or equal to p.

So either at time T or at time T + α2, we start again from a level which is above
−K. If [0,+∞) is reached during the next time interval of length T , then β = 2.
If not, we repeat the procedure. A.s. one of the mutually independent trials is
successful. We have that

T0 < TK +
β∑
i=1

(T + αi) ,

where the random variables (αi)i are i.i.d, globally independent of β. Hence

ET0 < ETK + 1
p

(
T + K + vT

m(−K)− v )
)
,

and the process is positive recurrent.
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4.3 The case v = m

We first state a lemma that we will apply several times in this section.

Lemma 3. Let Xt be a FV càdlàg process.

1. If Φ ∈ C1, then

Φ(Xt) = Φ(X0)+
∫ t

0
Φ′(Xs−)dXs+

∑
s≤t,∆Xs 6=0

Φ(Xs−+∆Xs)−Φ(Xs−)−Φ′(Xs−)∆Xs,

where ∆Xs = Xs −Xs−, ∀s.

2. Moreover, if Φ ∈ C2 such that Φ′′ is an increasing function and ∆Xs ≥ 0
for all s, then

Φ(Xt)− Φ(X0)−
∫ t

0
Φ′(Xs−)dXs ≥

1
2

∑
s≤t,∆Xs 6=0

Φ′′(Xs)(∆Xs)2.

If Φ ∈ C2 such that Φ′′ is a decreasing function and ∆Xs ≥ 0 for all s, then

Φ(Xt)− Φ(X0)−
∫ t

0
Φ′(Xs−)dXs ≤

1
2

∑
s≤t,∆Xs 6=0

Φ′′(Xs−)(∆Xs)2.

In particular, choosing Φ(x) = x2, we deduce that

X2
t = X2

0 + 2
∫ t

0
Xs−dXs +

∑
s≤t

(∆Xs)2 . (19)

Proof. The first part of this lemma is a well known result (see Protter 2005). We
will only prove part 2 of the lemma. If Φ ∈ C2 then it follows from Taylor’s
formula that there exists a random function β taking its values in [0, 1] such that
for all s

Φ(Xs)− Φ(Xs−)− Φ′(Xs−)∆Xs = 1
2Φ′′(Xs− + βs∆Xs) (∆Xs)2 .

If Φ′′ is an increasing function and y ≥ 0 then

Φ′′(x) ≤ Φ′′(x+ βsy) ≤ Φ′′(x+ y).

If Φ′′ is a decreasing function and y ≥ 0 then

Φ′′(x+ y) ≤ Φ′′(x+ βsy) ≤ Φ′′(x).

14



Note that V ≤ ∞ and at this stage we do not assume that V is finite. In the
case m = v, the asymptotic behavior of the process Xt depends on the asymptotic
behavior of the mean net rate of adaptation ψ(x) defined in (8) as x→ −∞.

Proposition 6. We assume that m = v. If moreover

lim sup
x→−∞

|xψ(x)| < V

2 , (20)

then the process Xt is null recurrent.

We first establish

Lemma 4. Under the condition m <∞, we have that

lim
x→−∞

V (x)
|x|

= 0.

Proof. Consider, for x < x0 < 0,

V (x)
|x|
≤ 1
|x|

∫ 2|x|

0
α2ν(dα)

= 1
|x|

∫ 2|x0|

0
α2ν(dα) + 1

|x|

∫ 2|x|

2|x0|
α2ν(dα)

≤ 1
|x|

∫ 2|x0|

0
α2ν(dα) + 2

∫ ∞
2|x0|

αν(dα),

hence
lim sup
x→−∞

V (x)
|x|
≤ 2

∫ ∞
2|x0|

αν(dα),

and our condition implies that the last right hand side tends to 0, as x0 → −∞.
The results follows.

We can now return to the

Proof of Proposition 6. First note that, sincem = v implies ψ(x) ≤ 0 for all x ≤ 0,
condition (20) is equivalent to

lim inf
x→−∞

|x|ψ(x) > −V2 .

To prove recurrence under condition (20), we recall that

Xt = X0 +
∫ t

0
ψ(Xs)ds+Mt. (21)
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We will apply Lemma 3 with f(x) = log |x|, with x < 0. Here f ′′ is decreasing.
Hence as long as Xt remains negative,

log |Xt| ≤ log |X0|+
∫ t

0

ψ(Xs)
Xs

ds+
∫ t

0

1
Xs−

dMs −
1
2
∑
s≤t

(∆Xs)2

X2
s−

≤ log |X0|+
∫ t

0

ψ(Xs)
Xs

ds+
∫ t

0

1
Xs−

dMs

− 1
2

∫ t

0

∫
R+

∫ 1

0

α2ϕ(Xs− , α, ξ)
X2
s−

M̄(ds, dα, dξ)− 1
2

∫ t

0

V (Xs)
X2
s

ds

= log |X0|+
∫ t

0

(
ψ(Xs)
Xs

− V (Xs)
2X2

s

)
ds+ M̂t,

where M̂ is a martingale. For all a < b < 0, define the stopping time

Sa,b = inf(t > 0, Xt ≤ a or Xt ≥ b).

It follows from our assumption that there exists L > 0 such that

inf
x≤−L

(
|x|ψ(x) + V (x)

2

)
> 0. (22)

For any N > L, from Doob’s optional sampling theorem, if −N < X0 < L,

E log |Xt∧S−N,−L| ≤ log |X0|+ E
∫ t∧S−N,−L

0

(
ψ(Xs)
Xs

− V (Xs)
2X2

s

)
ds.

Letting t tend to ∞,
E log |XS−N,−L| ≤ log |X0|.

Define the stopping times

T ↑−L = inf(t > 0, Xt ≥ −L),
T ↓−N = inf(t > 0, Xt ≤ −N).

It follows from the previous estimate that

logN × P(T ↓−N < T ↑−L) < log |X0|.

We deduce that P(T ↓−N < T ↑−L)→ 0 as N tend to∞. We conclude that the process
returns a.s. an infinite number of times above −L, hence also above 0 by a classical
argument (see the proof of Proposition 5). Therefore, the process X is recurrent.

Let now X0 < −(L+ 1). For all N > L, multiplying (21) by −1, we have

|Xt∧S−N,−L| = |X0| −
∫ t∧S−N,−L

0
ψ(Xs)ds−

∫ t∧S−N,−L

0
dMs,
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By Doob’s theorem and letting t tend to ∞, since again ψ(x) ≤ 0 for x ≤ 0

E|XS−N,−L| = |X0| − E
∫ S−N,−L

0
ψ(Xs)ds ≥ |X0|, hence

LP(T ↑−L < T ↓−N) +NP(T ↓−N < T ↑−L) ≥ |X0|.

We have
lim inf
N→∞

NP(T ↓−N < T ↑−L) ≥ |X0| − L > 0. (23)

It follows from Lemma 3 that

X2
t = X2

0 −
∫ t

0
2|Xs|ψ(Xs)ds+

∫ t

0
2Xs−dMs +

∑
s≤t

(∆Xs)2.

On the other hand,
∑
s≤t

(∆Xs)2 =
∫ t

0

∫
R+

∫ 1

0
α2ϕ(Xs− , α, ξ)M̄(ds, dα, dξ)

+
∫ t

0

∫
R+
α2g(Xs− , α)ν(dα)ds.

Thus, from (22) and the monotonicity of V (x)

X2
t∧S−N,−L ≤ X2

0 +
∫ t∧S−N,−L

0
2V (−N)ds+ M̃t∧S−N,−L ,

where M̃·∧S−N,−L is a martingale. Letting t tend to ∞, we have for all ε > 0

EX2
S−N,−L

≤ X2
0 + 2V (−N)ES−N,−L, hence

ES−N,−L ≥
L2P(T ↑−L < T ↓−N) +N2P(T ↓−N < T ↑−L)−X2

0
2V (−N) .

It follows by monotone convergence that

E(T ↑−L) = lim
N→∞

ES−N,−L ≥ lim inf
N→∞

{
NP(T ↓−N < T ↑−L)× N

2V (−N) −
X2

0
2V (−N)

}
.

Combining this with Lemma 4 and (23), we deduce that ET ↑−L = ∞ and the
process is null recurrent.
Remark 2. Condition (20) is rather weak. It is satisfied as soon as both the measure
ν and V are finite. We give the proof below. It is also satisfied for some measures
that don’t have a second moment such as

ν(dα) ≈ dα

α2+δ1{α≥1},
1
2 < δ ≤ 1.
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Proposition 7. If ν is a finite measure and V <∞ then (20) is satisfied.

Proof. Let for all x,

D(x) = |xψ(x)| − V (x)
2 = |x|

∫ ∞
2|x|

αν(dα)−
∫ 2|x|

0

α2

2 ν(dα)

+
∫ 2|x|

0

(
|x|α + α2

)
e−2σα(2|x|−α)ν(dα).

It follows by dominated convergence that∫ ∞
0

α2e−2σα(2|x|−α)1[0,2|x|]ν(dα) −−−−→
x→−∞

0,

since ,

α2e−2σα(2|x|−α)1[0,2|x|]
a.s.−−−−→

x→−∞
0 for all α > 0,

and α2e−2σα(2|x|−α)1[0,2|x|] ≤ α2 ∈ L1(ν).

On the other hand,∫ 2|x|

0
|x|αe−2σα(2|x|−α)ν(dα) =

∫ |x|
0
|x|αe−2σα(2|x|−α)ν(dα)+

∫ 2|x|

|x|
|x|αe−2σα(2|x|−α)ν(dα).

Note that if 0 ≤ α ≤ |x| then 2|x| − α ≥ |x|, thus

e−2σα(2|x|−α) ≤ e−2σα|x|.

In addition the function

fσ : R+ → R+
z → fσ(z) = ze−σz

has a maximum for z = 1
σ
. It follows that∫ |x|

0
|x|αe−2σα(2|x|−α)ν(dα) ≤ 2

σe

∫ ∞
0

e−σ|x|αν(dα) −−−−→
x→−∞

0,

again by dominated convergence. The second term also goes to 0 when x→ −∞.
In fact, ∫ 2|x|

|x|
|x|αe−2σα(2|x|−α)ν(dα) ≤

∫ ∞
0

α2e−2σα(2|x|−α)ν(dα),

and by the same argument as before the result follows since

α2e−2σα(2|x|−α)1[|x|,2|x|]
a.s.−−−−→

x→−∞
0 for all α > 0,

and α2e−2σα(2|x|−α)1[|x|,2|x|] ≤ α2 ∈ L1(ν).
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Furthermore, it follows from the fact that V is finite that

|x|
∫ ∞

2|x|
αν(dα) ≤

∫ ∞
2|x|

α2

2 ν(dα) −−−−→
x→−∞

0.

Hence,
lim sup
x→−∞

D(x) = −V2 < 0.

We now consider the case m = v and lim inf
x→−∞

|xψ(x)| > V
2 , which implies in partic-

ular that V <∞.

Proposition 8. Assume that m = v and

lim inf
x→−∞

|xψ(x)| > V

2 . (24)

If, moreover, there exist 0 < p0 < 1 and 0 < β0 < 1 such that for all 0 < β < β0

|x|p0+2
∫ ∞
−βx

α2g(x, α)ν(dα) −−−−→
x→−∞

0, (25)

then Xt is transient, that is, Xt → −∞, and moreover Xt
t
→ 0.

Remark 3. The conditions of Proposition 8 are satisfied in the case where both ν
is infinite and its tail is thin enough. For example, if

ν(dα) =
( 1
α1+δ1|α|<1 + g(α)1|α|>1

)
dα,

where g(α) ≤ C|α|−(5+δ′), |α| > 1 for some δ, δ′ > 0. Condition (24) follows
from the fact that V < ∞ while |xψ(x)| → ∞ as |x| → ∞, since, cf. proof of
Proposition 7,

|x|
∫ 1

0
αe−2σα(2|x|−α)ν(dα) ≥ |x|

∫ 1

0
α−δe−4σα|x|dα

= |x|δ
∫ |x|

0
e−4σz dz

zδ
.

Condition (25) is easy to check.
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Proof. First note that condition (24) is equivalent to

lim sup
x→−∞

|x|ψ(x) < −V2 .

Hence there exist K > 0 and 0 < p ≤ p0 such that

sup
x≤−K

(
|x|ψ(x) + (2p+ 1)V (x)

2

)
< 0. (26)

Let f be the C2(R)-function such that f(−1) = 1, f ′(−1) = p, and

f ′′(x) = p(p+ 1)
|x|p+2 1{x≤−1} + p(p+ 1)1{x≥−1},

with p being a real number in (0, 1) for which (26) holds. Then it follows from
Lemma 3 applied to f , since f ′′ is an increasing function,

f(Xt) ≤ f(X0)+
∫ t

0
ψ(Xs)f ′(Xs)ds+ 1

2

∫ t

0

∫ ∞
0

f ′′(Xs+α)α2g(Xs, α)ν(dα)ds+Nt,

where the martingale N is defined by

Nt = 1
2

∫ t

0

∫ ∞
0

∫ 1

0

[
f ′(Xs−) + f ′′(Xs− + α)α2

]
ϕ(Xs− , α, ξ)M̄(ds, dα, dξ).

Let us admit for the moment:

Lemma 5. If (25) holds, then

lim
x→−∞

|x|p+2
∫ ∞

0
f ′′(x+ α)α2g(x, α)ν(dα) = p(p+ 1)V.

This implies that

lim
x→−∞

|x|p+2
∫ ∞

0
f ′′(x+ α)α2g(x, α)ν(dα) < lim

x→−∞
p(2p+ 1)V (x).

Hence, there exists N ≥ K such that for all x ≤ −N ,∫ ∞
0

f ′′(x+ α)α2g(x, α)ν(dα) < p(2p+ 1) V (x)
|x|p+2 .

Thus, for all k > 0 satisfying −kN < X0 < −N ,

f(Xt∧S−kN,−N ) ≤ f(X0) +
∫ t∧S−kN,−N

0

p

|Xs|p+1

[
ψ(Xs) + (2p+ 1)V (Xs)

2|Xs|

]
ds

+Nt∧S−kN,−N .
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Now if k ≥ 3, letting X0 = −2N , it follows from (26) that

E(f(Xt∧S−kN,−N )) ≤ 1
(2N)p .

Thus, if we let t tend to ∞,

1
Np

P(S−kN,−N = T ↑−N)) ≤ E
1

|XS−kN,−N |p
≤ 1

(2N)p .

Now letting k tend to ∞,
P(T ↑−N <∞) ≤ 1

2p .

Thus, the process is transient, which means

Xt −−−→
t→∞

−∞.

And since m = v <∞, it follows from Lemma 1 that Mt

t
→ 0, hence

Xt

t
−−−→
t→∞

0.

Proof of Lemma 4. For any 0 < β < β0 < 1, if x < −(1− β)−1,

|x|p+2
∫ ∞

0
f ′′(x+ α)g(x, α)α2ν(dα) = |x|p+2

∫ −βx
0

f ′′(x+ α)α2g(x, α)ν(dα)

+ |x|p+2
∫ ∞
−βx

f ′′(x+ α)α2g(x, α)ν(dα)

≤
∫ −βx

0

p(p+ 1)
(1− β)p+2α

2g(x, α)ν(dα)

+ |x|p+2p(p+ 1)
∫ ∞
−βx

α2g(x, α)ν(dα).

On the other hand,

|x|p+2
∫ ∞

0
f ′′(x+ α)α2g(x, α)ν(dα) ≥ p(p+ 1)

∫ −βx
0

|x|p+2

|x+ α|p+2α
2g(x, α)ν(dα)

> p(p+ 1)
∫ −βx

0
α2g(x, α)ν(dα).
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Letting x→ −∞ in the two above inequalities, we deduce from (25), which holds
with p0 replaced by p ≤ p0,

p(p+ 1)V ≤ lim inf
x→−∞

|x|p+2
∫ ∞

0
f ′′(x+ α)α2g(x, α)ν(dα)

≤ lim sup
x→−∞

|x|p+2
∫ ∞

0
f ′′(x+ α)α2g(x, α)ν(dα)

≤ p(p+ 1)
(1− β)p+2V.

Thus, letting β → 0, it follows that

|x|p+2
∫ ∞

0
f ′′(x+ α)α2g(x, α)ν(dα) −−−−→

x→−∞
p(p+ 1)V.

Remark 4. We have not been able to precise the large time behavior of the process
Xt when the measure ν is of the type

ν(dα) ≈ dα

α2+δ1{α≥1}, 0 < δ ≤ 1
2 ,

which still satisfies m < ∞. In this case, V = ∞, |xψ(x)| → ∞ as |x| → ∞,
and (25) also fails.

5 Generalization to the case of a time-variable speed

In the following, we treat the case where the speed of environmental change is a
random function of time

v(t) =
∫ t

0
v1(s)ds+Rt (27)

where v1 is a random function such that
1
t

∫ t

0
v1(s)ds −−−→

t→∞
v̄,

and R is a stochastic process. The stochastic equation describing the evolution of
phenotypic lag becomes

Xt = X0 − v(t) +
∫ t

0
m(Xs)ds+Mt. (28)

As above, we study three cases:
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5.1 The case v̄ > m

Here we assume that R satisfies the condition
Rt

t
−−−→
t→∞

0.

This condition is verified by a Brownian motion for example. It is easy to see that
results (13) and (14) hold in the new context of equation (28). Following the steps
of the proof in section 1, we can see that Xt → −∞ with speed v̄ −m.

5.2 The case v̄ < m

Define T as the set of bounded stopping times. Now we assume that there exists
0 < c < ∞ such that ERT ≤ c for all T ∈ T . This condition is verified for
example by a process sum of a martingale and a bounded process. In this case, we
will prove that the process Xt is positive recurrent. We can see from (13) and (27)
that there exist M,N > 0 such that for y < −M and t > N ,

m(x)− 1
t

∫ t

0
v1(s)ds > m− v̄

2 .

We remind that
T ↑−M = inf{t > 0, Xt ≥ −M}.

For the purpose of notation and without loss of generality, we denote T ↑−M by T .
Assume that X0 < −M . It follows that for all t > N ,

E
∫ t∧T

0
[m(Xs)− v1(s)] ds < −X0 + ERt∧T ,

since Xs < 0 for s < T . We have

E
∫ t∧T

0
[m(Xs)− v1(s)] ds = E1T≥N

∫ t∧T

0
[m(Xs)− v1(s)] ds

+ E1T<N
∫ t∧T

0
[m(Xs)− v1(s)] ds

< −X0 + ERt∧T ,

and hence,

m− v̄
2 E (1T≥N(t ∧ T )) ≤ −X0 + ERt∧T − E1T<N

∫ t∧T

0
[m(Xs)− v1(s)] ds

≤ −X0 + ERt∧T +
∫ N

0
v+

1 (s)ds.
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Now let t tend to ∞, yielding

E(1T≥NT ) < 2
m− v̄

(
−X0 +

∫ N

0
v+

1 (s)ds+ c

)
<∞.

Thus, E(T ) < N + E(1T≥NT ) < ∞. From here, it is not hard to prove that
EXT ↑0

<∞. Thus, Xt is positive recurrent.

5.3 The case v̄ = m

Here we assume that Rt ≡ 0. Even in this case stronger assumptions need to be
made. Define

vsup = sup
s
v1(s),

vinf = inf
s
v1(s),

ψsup(x) = m(x)− vsup,

ψinf(x) = m(x)− vinf ,

We define two sets of assumptions:

Assumptions A

• vsup <∞,

• lim inf
x→−∞

|x|ψsup(x) > −V
2 .

Assumptions B

• vinf <∞,

• lim sup
x→−∞

|x|ψinf(x) < −V
2 .

Under the set of assumptions A, we can prove that the process is recurrent. We
have, however, not been able to prove null recurrence in the case of non-constant
v.

Ideas of Proof. Apply Lemma 3 to the process in equation (28) with f(x) = log |x|,
with x < 0. Here f ′′ is decreasing. Hence, as long as Xt remains negative,

log |Xt| ≤ log |X0|+
∫ t

0

(
ψsup(Xs)
Xs

− V (Xs)
2X2

s

)
ds+

∫ t

0

vsup − v1(s)
Xs

ds+M′
t

< log |X0|+
∫ t

0

(
ψsup(Xs)
Xs

− V (Xs)
2X2

s

)
ds+M′

t,
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whereM′ is a martingale. Then we continue the proof as for the case of constant
speed.

Under the set of assumptions B and hypothesis (25), we can prove that

Xt −−−→
t→∞

−∞ and Xt

t
−−−→
t→∞

0.

Ideas of Proof. We take the same function f we constructed in the case of constant
speed. We have f ′ > 0, and

f(Xt) ≤ f(X0) +
∫ t

0
ψinf(Xs)f ′(Xs)ds+

∫ t

0
(vinf − v1(s))f ′(Xs)ds

+ 1
2

∫ t

0

∫ ∞
0

f ′′(Xs + α)α2g(Xs, α)ν(dα)ds+N ′t

≤ f(X0) +
∫ t

0
ψinf(Xs)f ′(Xs)ds+ 1

2

∫ t

0

∫ ∞
0

f ′′(Xs + α)α2g(Xs, α)ν(dα)ds+N ′t,

where N ′ is a martingale. Then we continue the proof as for the case of constant
speed.
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