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Abstract

We study a stochastic differential equation driven by a Poisson point process,

which models continuous change in a population’s environment, as well as

the stochastic fixation of beneficial mutations that might compensate for

this change. The fixation probability of a given mutation increases as the

phenotypic lag Xt between the population and the optimum grows larger, and

successful mutations are assumed to fix instantaneously (leading to an adaptive

jump). Our main result is that the process is transient (i.e., converges to −∞,

so that continued adaptation is impossible) if the rate of environmental change

v exceeds a parameter m, which can be interpreted as the rate of adaptation

in case every beneficial mutation gets fixed with probability 1. If v < m,

the process is Harris recurrent and possesses a unique invariant probability

measure, while in the limiting case m = v, Harris recurrence with an infinite

invariant mesure or transience depends upon additional technical conditions.

We show how our results can be extended to a class of time varying rates of

environmental change.
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1. Introduction

When faced with environmental change, biological populations can increase their fitness

by adaptive Darwinian evolution. While adaptation over short timescales often relies

on frequency shifts of pre-existing standing genetic variation, long-term adaptation

ultimately depends on the establishment and (frequently) fixation of new beneficial

mutations, i.e. the entire population is composed of the progeny of the original mutant,

which themselves arise in a stochastic manner (e.g. due to copying errors) independent

of the current “needs” of the population. Several distinct mathematical frameworks

have been developed to model adaptive evolution under various sets of simplifying

assumptions. One such framework focuses on cases where fixations events are rare and

clearly separated from one another, allowing adaptation to be modeled as a Markovian

jump process, which has been called “adaptive walk” see [6], [8] or “trait substitution

sequence” (TSS). For the links between TSS models and individual-based birth-death

models (primarily for asexual populations) see [5].

Many traits of organisms are thought to be under stabilizing selection, such that fitness

(i.e., the expected number of offspring of an individual with a certain trait value or

phenotype) is maximal for intermediate values and declines monotonically with the

distance to this optimum (a classical example is birth weight in humans, where infant

mortality is increased for both very low and very high weights). Environmental change

(e.g., climate change) can then be viewed as altering the value of the optimum, making

a previously well-adapted population suffer a reduction in mean fitness. This so-called

moving-optimum model has been widely used in the theoretical biology literature to in-

vestigate the effects of various kinds of environmental change (e.g., sudden, directional

or fluctuating) on phenomena such as population extinction risk [4], the maintenance

of genetic variation [3], or the fixation probability [17, 15], and fixation time [11, 17]

of beneficial mutations. Recently, Kopp and Hermisson [12] developed an adaptive-

walk approximation for a model with a linearly moving optimum and used it to study

the size-distribution of adaptive jumps by means of which the population phenotype

follows the optimum. This model is the starting point for the present paper. The

innovative idea here is to model the adaptive walk by means of a stochastic differential
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equation, allowing us to obtain results about the large-time behaviour of the solution,

which have a precise meaning in biological terms. Our SDE is of the form

Xt = X0 − Vt +

∫
[0,t]×R×[0,1]

αϕ(Xs−, α, ξ)M(ds, dα, dξ),

where M is an Ft–Poisson point process on R+ × R × [0, 1] with mean measure

ds ν(dα) dξ and ϕ(x, α, ξ) = 1{ξ≤g(x,α)}, and the process Vt is right continuous with

left limits at every point and Ft–progressively measurable, satisfying V0 = 0. X

describes the evolution of the phenotypic lag and takes value in R depending whether

the population lags above or below the optimal value 0. ds ν(dα) represents the rate

of appearance of new mutations of different size, while g(x, α) is the probability that a

mutation of size α, which is proposed while the population’s phenotypic lag is x, gets

fixed. We assume that g(x, α)→ 1 when x→ ±∞ provided that xα < 0.

We start with the simple case Vt = vt, with v > 0 a real number. With the notation

m =
∫∞

0
αν(dα) – in other words, m is the mean movement to the right per time

unit produced by the positive mutations if all of them get fixed – our first result says

that under some additional assumption, the Markov process Xt is Harris recurrent if

m > v, transient if m < v, with a speed of escape to infinity equal to v−m. The most

difficult case is the limit situation m = v. We show that, depending upon the speed at

which m(x) =
∫∞

0
αg(x, α)ν(dα) converges to m as x→ −∞, the process can be either

Harris recurrent or else transient with zero speed. We then generalize our results to

the case where Vt is a more general (and even possibly random) function of time.

Note that [9] has studied similar questions in discrete time. The same results for an

SDE driven by Brownian motion with coefficients that do not depend upon the time

variable would be easy to obtain. Here we use stochastic calculus and several ad hoc

Lyapounov functions. Note that the Itô formula for processes with jumps leads to less

explicit computations than in the Brownian case. To circumvent this difficulty, for

the treatment of the delicate case m = v, we establish a stochastic inequality for C2

functions whose second derivative is either increasing or decreasing, exploiting the fact

that all jumps have the same sign, see Lemma 4.3 below.

The paper is organized as follows. We define our model in detail in section 2, referring
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to models already studied in the biological literature. We establish existence and

uniqueness of a solution to our equation in section 3 (the result is not immediate, since

we do not assume that the measure ν is finite). Section 4 is devoted to the large time

behaviour of Xt when Vt = vt, successively with m < v, m > v, and m = v. Finally

section 5 is devoted to the large time behaviour of Xt when Vt takes a more general

form, but v = lim
t→∞

t−1Vt exists and is deterministic.

2. The model

Our starting point is the model by Kopp and Hermisson [12], of which we subsequently

relax several assumptions. Kopp and Hermisson modeled a population of constant

size N that is subject to Gaussian stabilizing selection with a moving optimum that

increases linearly at rate v. Therefore, an individual with phenotype z has a phenotypic

lag x = z − vt and fitness W(x) = e−σ
−2x2

, where σ−2 determines the strength of

selection. The population is assumed to be monomorphic at all times (i.e., its state is

completely characterized by x). Mutations appear at rate Θ/2 = Nµ (where µ is the

per-capita mutation rate and Θ = 2Nµ is a standard population-genetic parameter),

and their phenotypic effects α are drawn from a distribution with density p(α). In other

words, mutations arise according to a Poisson point process with intensity ds ν(dα),

where

ν(dα) =
Θ

2
p(α)dα. (1)

A mutation that appears while the lag is x has selection coefficient

s(x, α) =

(
W(x+ α)

W(x)
− 1

)
× 1{xα<0} ≈ σ−2[|α|(2|x| − |α|)]+ × 1{xα<0}, (2)

where the approximation is valid as long as σ−2[|α|(2|x| − |α|)]+ is small. Even

beneficial mutations have a considerable risk of being lost due to genetic drift (i.e.,

due to stochastic fluctuations while their frequency is low). The probability that a

mutation escapes drift loss and instead goes to fixation is

g(x, α) =

1− exp(−2s(x, α)) if s(x, α) > 0,

0 otherwise
(3)



SDE driven by a Poisson Point Process 5

This equation neglects the probability of fixation of deleterious mutations (with s < 0),

and otherwise is a good approximation for the fixation probability derived under a

diffusion approximation [13, 10], which is valid when the population size N is large

enough. Note that [12] used the even simpler approximation g(x, α) ≈ 2s(x, α) ([7];

for more exact approximations for the fixation probability in changing environments,

see [17, 15]). Once a mutation gets fixed, it is assumed to do so instantaneously, and

the phenotypic lag x of the population is updated accordingly.

In the present work, we relax these assumptions in three respects: First, we consider

a more general model of environmental change, such that, in the absence of evolution,

the lag increases due to a random function Vt. Second, we only assume that mutations

arise according to a Poisson point process with intensity ds ν(dα) (which subsumes the

mutation rate Θ/2), but we do not impose that ν has a density, nor that it is a finite

measure. This allows both for heavy-tailed mutational distributions, enabling very

large jumps, and for an accumulation of infinitely many small jumps. Note however

that some of our results will require additional assumptions about the tail of ν. Third,

we only make the following assumptions about the fixation probability: A mutation

with effect α that arises in a population with phenotypic lag x has a probability of

fixation g(x, α) that satisfies

1. 0 ≤ g(x, α) ≤ 1{αx<0} × 1{|α|≤2|x|},

2. For all α ∈ R, g(x, α) ↑ 1{αx<0}, as |x| → ∞,

3. There exists a compact set K ⊂ R and cK > 0 such that ν(Kc) <∞ and for all

x, y ∈ R ∫
K

|α| × |g(x, α)− g(y, α)|ν(dα) ≤ cK |x− y|. (4)

These items represent the basic mathematical assumptions, which will be assumed to

hold throughout this paper. Condition 1 assures that only the beneficial mutations can

be fixed, which is a reasonable slightly simplifying biological assumption. In reality,

there is a small probability that a slightly deleterious mutation gets fixed through

chance (i.e. genetic drift), but we neglect this possibility. Condition 2 means that

when the phenotypic lag goes to infinity, the probability of fixation of any beneficial
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mutation tends to 1. This is quite reasonable: when the fitness of a population is very

low, one may expect that any possible improvement will be taken by the population.

Condition 3 is imposed for mathematical convenience but is required only in the case

ν(R) =∞.

The evolution of the phenotypic lag of the population can then be described by the

following SDE already given in the introduction :

Xt = X0 − Vt +

∫
[0,t]×R×[0,1]

αϕ(Xs−, α, ξ)M(ds, dα, dξ). (5)

Here, M is a Poisson point process over R+ × R × [0, 1] with intensity ds ν(dα) dξ.

ν(dα) is a σ-finite measure on R which satisfies∫
R
|α| ∧ 1 ν(dα) <∞, (6)

and

ϕ(x, α, ξ) = 1{ξ≤g(x,α)},

where the fixation probability g(x, α) has been defined above. The points of the Poisson

point process M (Ti, Ai,Ξi) are such that the (Ti, Ai) form a Poisson point process

over R+ × R of the proposed mutations with intensity dsν(dα), and the Ξi are i.i.d.

U [0, 1], globally independent of the Poisson point process of the (Ti, Ai). Ti’s are the

times when mutations are proposed and Ai’s are the effect sizes of those mutations.

The Ξi are auxiliary variables determining fixation: a mutation gets instantaneously

fixed if Ξi ≤ g(XTi , Ai), and is lost otherwise.

Finally, we define for all x ∈ R

m(x) =

∫
R
αg(x, α)ν(dα),

m =

∫
R+

αν(dα), (7)

V (x) =

∫
R
α2g(x, α)ν(dα),

V =

∫
R+

α2ν(dα). (8)

m(x) is the mean speed towards zero induced by the fixation of random mutations

while Xt = x < 0. V (x) is related to the second moment of the distribution of these
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mutations. m and V are the limits of m(x) and V (x), respectively, as x → −∞ or

in other words, in the case that all mutations with α > 0 go to fixation. Note that

our assumptions do not exclude cases where m = ∞ and/or V = ∞, unless stated

otherwise. However, since g(x, ·) has compact support, for each x, m(x) < ∞ and

V (x) < ∞. The cases m = ∞ and V = ∞ correspond to a heavy tailed ν. It would

be quite acceptable on biological grounds to assume that m < ∞ and/or V < ∞.

However, we refrain from adding unnecessary assumptions.

In the case Vt = vt, Xt is a Markov process, whose generator L acts on a differentiable

function f as

Lf(x) = f ′(x)(m(x)− v) +

∫
R

(f(x+ α)− f(x)− f ′(x)α) g(x, α)ν(dα).

3. Existence and uniqueness

We rewrite the SDE (5) as follows

Xt = X0 − Vt +

∫ t

0

m(Xs)ds+Mt (9)

where the local martingaleMt is given as

Mt =

∫ t

0

∫
R

∫ 1

0

αϕ(Xs−, α, ξ)M̄(ds, dα, dξ), (10)

with M̄(ds, dα, ξ) being the compensated Poisson measure M(ds, dα, dξ)− dsν(dα)dξ.

Proposition 3.1. Equation (9) has a unique solution.

Proof. If ν is a finite measure, then M has a.s. finitely many points in [0, t]×R for

any t > 0. In that case, the unique solution is constructed explicitly by adding the

successive jumps. In the general case, we choose an arbitrary compact set K = [−k, k]

(with k > 0). Due to (6), there are finitely many jumps (ti, αi) of M with αi /∈ K.

It suffices to prove existence and uniqueness between two such consecutive jumps.

In other words, it suffices to prove existence and uniqueness under the assumption

ν(Kc) = 0 where K is chosen such that Condition 3 is satisfied, and hence from (6),
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we deduce that
∫ (
|α|+ α2

)
ν(dα) <∞, which we assume from now on. We shall also

assume that there exists C > 0 such that

|Vt| ≤ Ct, for all t ≥ 0. (11)

Indeed, if that is not the case, we let V nt = (Vt ∧ nt) ∨ (−nt), and define Tn = inf{t >

0, : |Vt| > nt}. Existence and uniqueness under the additional assumption (11) will

provide a unique solution Xn
t associated to V nt . We will have that Xm

t = Xn
t for

0 ≤ t ≤ Tn if m > n, and Tn ↑ ∞ as n→∞. This clearly implies existence of a unique

solution under our standing assumptions. Hence we assume for the rest of this proof

that (11) is satisfied.

Define for each t > 0

Γt(U) = x− Vt +

∫
[0,t]×K×[0,1]

αϕ(Us−, α, ξ)M(ds, dα, dξ). (12)

A solution of equation (9) is a fixed point of the mapping Γ a.s. . Hence it suffices to
prove that Γ admits a unique fixed point a.s. . For λ > 0,

e−λt
∣∣Γt(U)− Γt(U

′)
∣∣ =− λ

∫ t

0
e−λs

∣∣Γs(U)− Γs(U
′)
∣∣ ds+

∫ t

0
e−λsd

∣∣Γs(U)− Γs(U
′)
∣∣

≤− λ
∫ t

0
e−λs

∣∣Γs(U)− Γs(U
′)
∣∣ ds

+

∫
[0,t]×K×[0,1]

|α|e−λs
∣∣ϕ(Us−, α, ξ)− ϕ(U ′s−, α, ξ)

∣∣M(ds, dα, dξ).

The above inequality follows readily from the fact that, for all 0 < s < t,

|Γt(U)− Γt(U
′)| − |Γs(U)− Γs(U

′)|

≤
∫

(s,t)×K×[0,1]

|α| × |ϕ(Ur−, α, ξ)− ϕ(U ′r−, α, ξ)|M(dr, dα, dξ).

Thus,

λE
∫ t

0
e−λs

∣∣Γs(U)− Γs(U
′)
∣∣ ds ≤ E

∫ t

0

∫
K
|α|e−λs

∣∣g(Us, α)− g(U ′s, α)
∣∣ ν(dα)ds

≤ cKE
∫ t

0
e−λs|Us − U ′s|ds.

(13)

The last inequality is due to the assumption (4). Let T be arbitrary. Define for all

λ > 0 the norm on the Banach space L1(Ω× [0, T ]),

‖Z‖T,λ = E
∫ T

0

e−λt|Zt|dt.
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We choose λ0 > cK . We deduce from (13) that

E‖Γ(U)− Γ(U ′)‖T,λ0
≤ cK
λ0

E‖U − U ′‖T,λ0
.

Since cK/λ0 < 1, Γ has a unique fixed point such that Γt(U) = Ut a.s. for all 0 ≤ t ≤ T .

Since T is arbitrary, the result is proved. �

We now prove that g given by (3) and (2) satisfies the assumption (4).

Lemma 3.1. For any compact set K ⊂ R and for all u, v ∈ R,∫
K

|α(g(u, α)− g(v, α))|ν(dα) ≤ cK |u− v|,

where cK = 4σ−2
(∫
K
α2ν(dα)

)
.

Proof. For 0 < u < v we have that∫
K

|α(g(u, α)− g(v, α))|ν(dα) =

∫
R−

⋂
K

|α
(
e−2σ−2|α|(2|v|−|α|)+ − e−2σ−2|α|(2|u|−|α|)+

)
|ν(dα)

=

∫
[−2u,0]

⋂
K

|α
(
e−2σ−2|α|(2|v|−|α|) − e−2σ−2|α|(2|u|−|α|)

)
|ν(dα)

+

∫
[−2v,−2u]

⋂
K

|α|
∣∣∣e−2σ−2|α|(2|v|−|α|)) − 1

∣∣∣ ν(dα)

≤ 4σ−2

(∫
[−2u,0]

⋂
K

α2ν(dα)

)
× |u− v|

+ 2σ−2

∫
[−2v,−2u]

⋂
K

α2(2v + α)ν(dα)

≤ 4σ−2

(∫
K

α2ν(dα)

)
× |u− v|.

A similar estimate can easily be obtained for v < u < 0. For u < 0 < v , we have that∫
K
|α(g(u, α)− g(v, α))|ν(dα) =

∫
R−

⋂
K
|αg(v, α)|ν(dα) +

∫
R+

⋂
K
|αg(u, α)|ν(dα)

≤ 2σ−2

∫
R−

⋂
K
α2(2v + α)+ν(dα) + 2σ−2

∫
R+

⋂
K
α2(−2u− α)+ν(dα)

≤ 4σ−2

∫
R−

⋂
K
α2|v|ν(dα) + 4σ−2

∫
R+

⋂
K
α2|u|ν(dα)

≤ 4σ−2

(∫
K
α2ν(dα)

)
× |u− v|.

�
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We close this section by establishing an a priori estimate on our solution.

Proposition 3.2. For all T > 0, if sup
0≤t≤T

E[ |Vt| ] <∞, then

sup
0≤t≤T

E[ |Xt| ] <∞.

Proof. It is plain that

|Xt| ≤ |X0|+ |Vt|+
∫

[0,t]×R×[0,1]

|α|ϕ(Xs−, α, ξ)M(ds, dα, dξ).

Furthermore, exploiting the fact that g(x, α) ≤ 1|α|≤2|x|,

E
∫

[0,t]×R×[0,1]

|α|ϕ(Xs−, α, ξ)M(ds, dα, dξ) = E
∫

[0,t]×R
|α|g(Xs, α)ν(dα)ds

≤ E
∫ t

0

∫ 2|Xs|

−2|Xs|
|α|ν(dα)ds

≤ t
∫ 1

−1

|α|ν(dα) + E
∫ t

0

∫
1≤|α|≤2|Xs|

|α|ν(dα)

≤ t
∫ 1

−1

|α|ν(dα) + 2ν([−1, 1]c)E
∫ t

0

|Xs|ds.

Finally

E[|Xt|] ≤ |X0|+ E[|Vt|] +

[∫ 1

−1

|α|ν(dα)

]
t+ 2ν([−1, 1]c)

∫ t

0

E[|Xs|]ds,

and the result follows from Gronwall’s Lemma. �

It is now easy to deduce from the previous proof the

Corollary 3.1. If sup
0≤t≤T

E [|Vt]] < ∞ for all T > 0, then the process Mt defined by

(10) is a martingale.

4. Classification of the large-time behaviour in the case Vt = vt

We now consider the case Vt = vt, v > 0.

Proposition 4.1. If X0 > 0, then Xt becomes negative after a finite time a.s.
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Proof. Let T− = inf(t > 0, Xt < 0). We have that

0 ≤ X(t∧T−)− ≤ X0 − v(t ∧ T−).

Hence

t ∧ T− ≤
X0 −X(t∧T−)−

v
<
X0

v
, and T− ≤

X0

v
<∞.

�

Proposition 4.2. The functions x 7−→ m(x) and x 7−→ V (x) are continuous and

decreasing on R− and

m(x) −−−−−→
x→−∞

m,

V (x) −−−−−→
x→−∞

V.
(14)

Proof. We prove this result for the function x 7−→ m(x). A similar argument applies

to V (x). Let

h : R− × R+ → R+

(x, α) 7→ h(x, α) = αg(x, α).

We have that h(x, ·) ∈ L1(ν), and x 7→ h(x, α) is decreasing. For each fixed α > 0,

0 ≤ h(x, α) ↑ α, as x→ −∞. By the monotone convergence theorem, it follows that

m(x) =

∫
R
h(x, α)ν(dα) −−−−−→

x→−∞
m.

Continuity is proved similarly. �

To determine the large-time behavior of the process, we now consider successively, the

three cases v > m, v < m and v = m.

4.1. The case v > m

In particular, here m =
∫∞

0
αν(dα) is finite. Let

Nt =

∫
[0,t]×R×[0,1]

αϕ(Xs−, α, ξ)M(ds, dα, dξ)
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be the sum of all the jumps on the time interval [0, t]. We have that

Nt = N (+)
t +N (−)

t ≤ N (−)
t ,

where

N (+)
t = 1{Xs−>0}dNs

N (−)
t = 1{Xs−<0}dNs

Let m(−)(x) = 1{x<0}m(x), hence

M(−)
t = N (−)

t −
∫ t

0

m(−)(Xs)ds.

Thus,

Xt ≤ X0 +

∫ t

0

(m(−)(Xs)− v)ds+M(−)
t

Lemma 4.1. If m <∞, then

M(−)
t

t
−−−→
t→∞

0 a.s. (15)

Proof. M(−)
t is a square-integrable martingale, such that EM(−)

t = 0. For all i ∈ N∗

and n ∈ N∗, define

ξi =

∫ i

i−1

∫ ∞
0

∫ 1

0

αϕ(Xs−, α, ξ)M(ds, dα, dξ),

ωi =

∫ i

i−1

m(−)(Xs)ds,

ηi =

∫ i

i−1

∫ ∞
0

∫ 1

0

αM(ds, dα, dξ),

Yi = ξi − ωi,

M(−)
n =

n∑
i=1

Yi,

Note that for all i ∈ N∗, 0 ≤ ξi ≤ ηi and 0 ≤ ωi ≤ m. We first establish

Lemma 4.2. The event {∑n
i=1 Yi
n

→ 0 as n→∞
}
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entails the event {
M(−)

t

t
→ 0 as t→∞

}
.

Proof.

M(−)
t

t
=
M(−)
btc

btc
× btc

t
+
M̃(−)

t

t
,

where

M̃(−)
t

t
=

1

t

(∫ t

btc

∫ ∫
αϕ(Xs−, α, ξ)M(ds, dα, dξ)−

∫ t

btc
m(−)(Xs)ds

)

≤ 1

t

(∫ dte
btc

∫ ∫
αϕ(Xs−, α, ξ)M(ds, dα, dξ) +

∫ dte
btc

m(−)(Xs)ds

)

=
1

t

(
ξdte + ωdte

)
=
dte
t
× 1

dte
(
Ydte + 2ωdte

)
−−−→
t→∞

0,

since for all n > 0,

Yn+1

n+ 1
=

∑n+1
i=1 Yi
n+ 1

−
∑n
i=1 Yi
n

× n

n+ 1
−−−−→
n→∞

0

and

0 ≤ ωn
n
≤ m

n
,

hence
ωn
n
−−−−→
n→∞

0.

�

Back to the proof of Lemma 4.1. We now define

Ai = {ηi > i},

Ỹi = Yi1{ηi≤i}.

Since the (ηi, i ∈ N∗) are i.i.d, integrable and∑
i≥1

P(ηi > i) =
∑
i≥1

P(η1 > i) ≤ Eη1 <∞,

it follows from Borel Cantelli’s Lemma that P(lim supAi) = 0. Hence, a.s. there exists

N(α) such that for all n > N(α), we have Ỹn = Yn. But since E(Ỹn)→ E(Y1) = 0 due

to the dominated convergence theorem, it is sufficient to prove that∑n
i=1

(
Ỹi − E(Ỹi)

)
n

−→
n

0.
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Due to corollary 3.22 in [2]†, it is again sufficient to prove that

∞∑
i=1

E(Ỹi
2
)

i2
<∞.

Indeed, we have that
∞∑
i=1

E(Ỹi
2
)

i2
≤ 2m.

The underlying calculation can be found in the proof of theorem 3.30 in [2]. �

Remark 4.1. In the case m <∞ and Xt → −∞, we have that

1

t
M(+)

t → 0 a.s. as t→∞,

since eventually Xt remains negative. Furthermore, if we assume that
∫ 0

−∞ αν(dα) >

−∞ then the previous Lemma implies that

Mt

t
→ 0 a.s. as t→∞,

whether Xt → −∞ or not. But we refrain from adding any unnecessary assumption

on ν.

Theorem 4.1. In the case v > m, Xt → −∞ with speed v −m in the sense that

Xt

t
−−−→
t→∞

m− v a.s.

Proof. We have that

Xt = X0 − vt+

∫
[0,t]×R×[0,1]

αϕ(Xs−, α, ξ)M(ds, dα, dξ)

≤ X0 − vt+

∫ t

0

m(−)(Xs)ds+M(−)
t ,

since we have deleted negative jumps (recall the notation defined before Lemma 4.1).

Hence
Xt

t
=
X0

t
− v +

1

t

∫ t

0

m(Xs)ds+
Mt

t
≤ X0

t
− v +m+

M(−)
t

t
.

†In the proof of this Corollary, we replace Kolmogorov’s inequality by Doob’s inequality for

martingales, and the result holds in our case.
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It follows from Lemma 4.1 that

lim sup
t→∞

Xt

t
≤ −v +m a.s.

In particular, Xt → −∞ a.s. as t→∞, and combined with (14), we deduce that

∀ε > 0 ∃tε such that ∀s ≥ tε, m(Xs) > m− ε.

Then, ∀ε > 0 and t > tε

Xt

t
≥ Xtε

t
+ (m− ε− v)× t− tε

t
+
Mt −Mtε

t
.

Hence,

lim inf
t→∞

Xt

t
≥ −v +m a.s.

We conclude that Xt → −∞ a.s. with speed v −m. �

4.2. The case v < m

Define for all x ∈ R

ψ(x) = m(x)− v. (16)

In this section, we assume that either ν(R) < ∞, or else the following mild growth

condition on g(x, α) for small x > 0, which is satisfied in case g is given by (3) and

(2) : for some δ > 0, c > 0,

|g(x, α)| ≤ c|x|, for all 0 < x ≤ δ. (17)

Theorem 4.2. In the case v < m, if (17) is satisfied, then Xt is recurrent in the sense

of Harris. Moreover, Xt possesses a unique invariant probability measure.

Proof. Step 1: Xt returns to [−K,K] in finite time
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We have

|Xt| = |X0|+
∫ t

0

sign(Xs)ψ(Xs)ds+

∫ t

0

sign(Xs−)dMs

+
∑
s≤t

(|Xs− + ∆Xs| − |Xs−| − sign(Xs−∆Xs))

= |X0|+
∫ t

0

sign(Xs)ψ(Xs)ds+

∫ t

0

sign(Xs−)dMs

+ 2
∑
s≤t

1{Xs−(Xs−+∆Xs)<0}|Xs− + ∆Xs|

= |X0|+
∫ t

0

(sign(Xs)ψ(Xs) + Φ(Xs)) ds+M?
t ,

where

M?
t =

∫ t

0

sign(Xs−)dMs+2

∫
[0,t]×R×[0,1]

|Xs−+α|1{Xs−(Xs−+α)<0}ϕ(Xs−, α, ξ)M̄(ds, dα, dξ),

and

Φ(x) =

−2
∫ −x
−2x

(x+ α)g(x, α)ν(dα), if x > 0;

2
∫ −2x

−x (x+ α)g(x, α)ν(dα), if x < 0.

Furthermore, if Ψ(x) = sign(x)ψ(x) + Φ(x), we have for x > 0

Ψ(x) = −v +

∫ 0

−x
αg(x, α)ν(dα) +

∫ −x
−2x

(|α| − 2x)g(x, α)ν(dα)

≤ −v +

∫ 0

−x
αg(x, α)ν(dα),

and for x < 0,

Ψ(x) = v −
∫ |x|

0

αg(x, α)ν(dα) +

∫ 2|x|

|x|
(α− 2|x|)g(x, α)ν(dα)

≤ v −
∫ |x|

0

αg(x, α)ν(dα).

For x > 0, Ψ(x) ≤ −v, and lim sup
x→−∞

Ψ(x) ≤ v −m. Consequently if we let

c1 =

inf
(
v, m−v2

)
, if m <∞,

v, if m =∞,

there exists K > 0 sufficiently large such that for all |x| > K,

Ψ(x) = sign(x)ψ(x) + Φ(x) ≤ −c1.
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We now show that for some C > 0,

0 ≤ Φ(x) ≤ C(1 + |x|), for all x ∈ R. (18)

Indeed, for all (α, x) such that α(x+ α) < 0 and g(x, α) > 0, |x+ α| ≤ |x| ≤ |α|. Now

if |x| ≤ 1,

Φ(x) ≤ 2

∫ 2

−2

|α|ν(dα) <∞,

and if |x| > 1,

Φ(x) ≤ 2|x|
∫

[−1,1]c
ν(dα).

(18) follows from the last two inequalities. We can deduce from Proposition 3.2,

Corollary 3.1 and (18) that M?
t is a martingale. Let us now assume that |X0| > K

and define

TK = inf{t > 0, |Xt| ≤ K}

From Doob’s optional sampling theorem,

E|Xt∧TK | ≤ |X0| − c1 E(t ∧ TK),

yielding

ETK <
|X0|
c1

<∞.

Step 2: Xt visits [0,K + vT ] infinitely often

Here K ′ = K + vT where T > 0 and p is the lower bound of the probability that,

starting from any given point x ∈ [−K, 0) at time t0, X hits [0,K ′] before time t0 +T .

Clearly we can choose T such that p > 0. We now define a random variable β as

follows:

If XTK ∈ [0,K], then β = 0. Otherwise, we restart our process X at time t0 = TK

from x0 ∈ [−K, 0). If X hits [0,K ′] before time T , then β = 1. If not, we look at the

position XT of X at time T . Two cases are possible:

• If |XT | > K, we wait until X enters [−K,K]. Since |XT | ≤ K ′, the time α2

needed to do so satisfies (see Step 1)

E(α2) ≤ K ′

c1
.
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• If −K ≤ XT < 0, we start afresh from there, since the probability to reach

[0,K ′] in a time less than T is greater than or equal to p.

So either at time T or at time T +α2, we start again from a position belonging to the

interval [−K,K]. If [0,K ′] is reached during the next time interval of length T , then

β = 2. If not, we repeat the procedure. A.s. one of the mutually independent trials is

successful. We have that

T+
K′ ≤ TK +

β∑
i=1

(T + αi) ,

where T+
K′ = inf {t > 0; Xt ∈ [0,K ′]} and β is a stopping time associated with the

sequence (αi)i≥1. It follows from the martingale version of Wald’s formula that

ET+
K′ < ETK +

1

p

(
T +

K ′

c1

)
,

since P(β > k) ≤ (1− p)k, hence Eβ < 1/p.

Step 3: Xt hits zero infinitely often

If ν(R−) < ∞, starting from any point in (0,K ′] at time 0, there is a no jump of Xt

before it hits 0 with probability

exp

(
−ν(R−)

K ′

v

)
.

If ν(R−) =∞, we choose 0 < δ < K ′ such that (17) is satisfied and

q =
cδ

v

∫ 0

−δ
|α|ν(dα) < 1.

Let Aδ be the event that there is no jump of size < −δ before Xt hits R−.

P(Aδ) ≤ exp

(
−ν(−∞,−δ)K

′

v

)
.

Moreover for 0 < x < δ

Px(Xt jumps over 0 | Aδ) ≤ E
∫

[0, δv ]×[−δ,−Xs−]×[0,1]

1Xs−<0ϕ(Xs−, α, ξ)M(ds, dα, dξ)

= E
∫ δ

v

0

1Xs<0

∫ −Xs
−δ

g(Xs, α)ν(dα)ds

≤ c
∫ δ

v

0

∫ 0

−δ
|α|ν(dα)ds = q.
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If p = P(Acδ) then, starting from any point in (0,K ′],

P(Xt hits R− without visiting 0) ≤ p+ (1− p)q < 1.

Since Xt visits (0,K ′] infinitely often, and hits 0 with positive probability after any

such visit, the same argument as above yields that for any x ∈ R, ExT0 < ∞, where

T0 = inf {t > 0; Xt = 0}. In particular, the process is Harris recurrent, since it satisfies

condition (b) on page 490 of Meyn and Tweedie [14] with µ = δ0.

Step 4: Existence of an invariant probability measure

Let Xt start from X0 = 0 and define

T+ = inf {t > 0; Xt ≥ 0} .

We want to show that T+ > 0 a.s. Let ξt = 1{T+≤t}. We have

ξt =

∫
[0,t]×R+×[0,1]

1{Xs−≤0}1{α≥−Xs−}ϕ(Xs−, α, ξ)M(ds, dα, dξ).

Hence

Eξt = E
∫ t

0

1{Xs−≤0}

∫ −2Xs

−Xs
g(Xs, α) ν(dα) ds

≤ c E
∫ t

0

1{Xs−≤0}

∫ −2Xs

−Xs
|Xs| ν(dα) ds

≤ c t
∫ 2vt

0

αν(dα),

where c is the constant defined by condition (17). Thus

P(T+ ≤ t) = P(ξt = 1) = Eξt ≤ c t
∫ 2vt

0

αν(dα),

yielding P(T+ > t)→ 1 as t ↓ 0. Since T0 = inf {t > 0; Xt = 0} ≥ T+, T0 > 0 P0 a.s.

Define the measure µ on (R,B) by

µ(A) = E0

∫ T0

0

1A(Xs)ds.

It follows from Step 3 that µ(R) = E0(T0) < ∞, hence µ is a finite measure and we

define the probability measure

µ̄(A) =
µ(A)

µ(R)
.
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µ̄ is invariant under the semi group Pt associated to the Markov process Xt. Indeed

for any t,

E0

∫ t

0

1A(Xs)ds = E0

∫ T0+t

T0

1A(Xs)ds.

Hence,

E0

∫ T0

0

1A(Xs)ds = E0

∫ T0+t

t

1A(Xs)ds

= E0

∫ T0

0

1A(Xt+s)ds

=

∫ ∞
0

P0(Xt+s ∈ A, s < T0)ds

=

∫ ∞
0

∫
R
P0(Xs ∈ dz, s < T0)Pz(Xt ∈ A)ds

=

∫
R
Pz(Xt ∈ A)µ(dz).

Step 5: Uniqueness of the invariant probability measure

Since an invariant probability measure exists, there exists an invariant ergodic probabil-

ity measure which we again denote by µ̄. From the ergodic theorem, if f is continuous

and bounded, as t→∞

1

t

∫ t

0

f(Xs)ds→
∫
f(x)µ̄(dx) Pµ̄ a.s.

Now, if t > T0

1

t

∫ t

0

f(Xs)ds =
1

t

∫ T0

0

f(Xs)ds+
1

t

∫ t

T0

f(Xs)ds.

Consequently, as t→∞

1

t

∫ t

T0

f(Xs)ds→
∫
f(x)µ̄(dx).

Thus, if µ̄′ is another ergodic invariant probability measure,∫
f(x)µ̄(dx) =

∫
f(x)µ̄′(dx),

for all f continuous and bounded. Uniqueness of the ergodic invariant probability

measure and hence of the invariant probability measure follows.

�
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Remark 4.2. Note that condition (17) is rather weak. It is hard to find an example

of a g that would satisfy (4), but not (17). This new condition is not really necessary.

It simplifies our proof, since it allows us to prove that 0 is visited infinitely many times.

We have decided to adopt it, since it is not a serious restriction. At any rate, Steps 1

and 2 of our proof do not necessitate this assumption.

4.3. The case v = m

We first state a lemma that we will apply several times in this section.

Lemma 4.3. Let Xt be a finite variation càdlàg process.

1. If Φ ∈ C1, then

Φ(Xt) = Φ(X0)+

∫ t

0

Φ′(Xs−)dXs+
∑

s≤t,∆Xs 6=0

Φ(Xs−+∆Xs)−Φ(Xs−)−Φ′(Xs−)∆Xs,

where ∆Xs = Xs −Xs−, ∀s.

2. Moreover, if Φ ∈ C2 such that Φ′′ is an increasing function and ∆Xs ≥ 0 for all

s, then

Φ(Xt)− Φ(X0)−
∫ t

0

Φ′(Xs−)dXs ≤
1

2

∑
s≤t,∆Xs 6=0

Φ′′(Xs− + ∆Xs)(∆Xs)
2.

If Φ ∈ C2 such that Φ′′ is a decreasing function and ∆Xs ≥ 0 for all s, then

Φ(Xt)− Φ(X0)−
∫ t

0

Φ′(Xs−)dXs ≤
1

2

∑
s≤t,∆Xs 6=0

Φ′′(Xs−)(∆Xs)
2.

In particular, choosing Φ(x) = x2, we deduce that

X2
t = X2

0 + 2

∫ t

0

Xs−dXs +
∑
s≤t

(∆Xs)
2
. (19)

Proof. The first part of this lemma is a well known result (see [16]). We will only

prove part 2 of the lemma. If Φ ∈ C2 then it follows from Taylor’s formula that there

exists a random function β taking its values in [0, 1] such that for all s

Φ(Xs)− Φ(Xs−)− Φ′(Xs−)∆Xs =
1

2
Φ′′(Xs− + βs∆Xs) (∆Xs)

2
.
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If Φ′′ is an increasing function and y ≥ 0 then

Φ′′(x) ≤ Φ′′(x+ βsy) ≤ Φ′′(x+ y).

If Φ′′ is a decreasing function and y ≥ 0 then

Φ′′(x+ y) ≤ Φ′′(x+ βsy) ≤ Φ′′(x).

�

Note that V ≤ ∞ and at this stage we do not assume that V is finite. In the case

m = v, the asymptotic behavior of the process Xt depends on the asymptotic behavior

of the mean net rate of adaptation ψ(x) defined in (16) as x→ −∞.

Theorem 4.3. We assume that m = v and that

supp(ν) ⊂ (−∞,K], for some K > 0. (20)

If moreover

lim sup
x→−∞

|xψ(x)| < V

2
, (21)

then the process Xt is Harris recurrent but the mean return time to a compact is

infinite.

Proof. First note that, since m = v implies ψ(x) ≤ 0 for all x ≤ 0, condition (21) is

equivalent to

lim inf
x→−∞

|x|ψ(x) > −V
2
.

To prove recurrence under condition (21), we recall that

Xt = X0 +

∫ t

0

ψ(Xs)ds+Mt. (22)

We will apply Lemma 4.3 with Φ(x) = log |x|, with x < 0. Here Φ′′ is decreasing.
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Hence as long as Xt remains negative,

log |Xt| ≤ log |X0|+
∫ t

0

ψ(Xs)

Xs
ds+

∫ t

0

1

Xs−
dMs −

1

2

∑
s≤t

(∆Xs)
2

X2
s−

= log |X0|+
∫ t

0

ψ(Xs)

Xs
ds+

∫ t

0

1

Xs−
dMs

− 1

2

∫ t

0

∫
R+

∫ 1

0

α2ϕ(Xs−, α, ξ)

X2
s−

M̄(ds, dα, dξ)− 1

2

∫ t

0

V (Xs)

X2
s

ds

= log |X0|+
∫ t

0

(
ψ(Xs)

Xs
− V (Xs)

2X2
s

)
ds+ M̂t,

where M̂ is a martingale. For all a < b < 0, define the stopping time

Sa,b = inf(t > 0, Xt ≤ a or Xt ≥ b).

It follows from our assumption that there exists L > 0 such that

inf
x≤−L

{
|x|ψ(x) +

V (x)

2

}
> 0. (23)

For any N > L, from Doob’s optional sampling theorem, if −N < X0 < −L < −K−1,

E log |Xt∧S−N,−L | ≤ log |X0|+ E
∫ t∧S−N,−L

0

(
ψ(Xs)

Xs
− V (Xs)

2X2
s

)
ds.

Letting t tend to ∞,

E log |XS−N,−L | ≤ log |X0|.

Define the stopping times

T ↑−L = inf {t > 0, Xt ≥ −L} ,

T ↓−N = inf {t > 0, Xt ≤ −N} .

From (20) and the condition on L, log |XS−N,−L | > 0. It follows from the previous

estimate that

logN × P(T ↓−N < T ↑−L) < log |X0|.

By the same argument as in the proof of Theorem 4.2, Xt will visit [−L,L], thus also

(0, L) infinitely often, and also 0. Note that the process remains in (−∞, L] when

starting there. Therefore, the process X is Harris recurrent.

Let now X0 < −(L+ 1). For all N > L, multiplying (22) by −1, we have

−Xt∧S−N,−L = |X0| −
∫ t∧S−N,−L

0

ψ(Xs)ds−
∫ t∧S−N,−L

0

dMs,
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By Doob’s theorem and letting t tend to ∞, since again ψ(x) ≤ 0 for x ≤ 0

−EXS−N,−L = |X0| − E
∫ S−N,−L

0

ψ(Xs)ds ≥ |X0|, hence

LP(T ↑−L < T ↓−N ) +NP(T ↓−N < T ↑−L) ≥ |X0|,

since XS−N,−L = −N on the event
{
T ↓−N < T ↑−L

}
, and XS−N,−L ≥ −L on the comple-

mentary event. We have

lim inf
N→∞

NP(T ↓−N < T ↑−L) ≥ |X0| − L > 0. (24)

It follows from Lemma 4.3 that

X2
t = X2

0 −
∫ t

0

2|Xs|ψ(Xs)ds+

∫ t

0

2Xs−dMs +
∑
s≤t

(∆Xs)
2.

On the other hand, for t ≤ S−N,−L,∑
s≤t

(∆Xs)
2 =

∫ t

0

∫
R+

∫ 1

0

α2ϕ(Xs−, α, ξ)M̄(ds, dα, dξ)

+

∫ t

0

∫
R+

α2g(Xs−, α)ν(dα)ds.

Thus, from (23) and the fact that from (20), V (x) ≤ V <∞,

X2
t∧S−N,−L ≤ X

2
0 + 2V × (t ∧ S−N,−L) + M̃t∧S−N,−L ,

where M̃·∧S−N,−L is a martingale. Letting t tend to ∞, we have for all ε > 0

EX2
S−N,−L ≤ X

2
0 + 2V ES−N,−L, hence

ES−N,−L ≥
N2P(T ↓−N < T ↑−L)−X2

0

2V
.

It follows by monotone convergence that

E(T ↑−L) = lim
N→∞

ES−N,−L ≥ lim inf
N→∞

{
NP(T ↓−N < T ↑−L)× N

2V
− X2

0

2V

}
.

Combining this with (24), we deduce that ET ↑−L =∞. In other words, the return times

to compacts have infinite expectation. �

Using similar arguments as in Step 4 of the proof of Theorem 4.2, one should be

able to conclude that Xt has an infinite invariant measure, which is unique up to a

multiplicative constant.
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Remark 4.3. Condition (21) is rather weak. Under the current assumption on the

support of ν, it can be shown to hold in particular if ν is finite and g given by (3)

and (2). On the other hand, our very strong condition (20) on the support of ν may

not be necessary. It might however very well be that in casem = v a stronger condition

on the tail of the law of ν than in case m > v is necessary for recurrence. We do not

know what is the optimal condition.

We now consider the case m = v and lim inf
x→−∞

|xψ(x)| > V
2 , which implies in particular

that V <∞.

Theorem 4.4. Assume that m = v and

lim inf
x→−∞

|xψ(x)| > V

2
. (25)

If, moreover, there exist 0 < p0 < 1 and 0 < β0 < 1 such that for all 0 < β < β0

|x|p0+2

∫ ∞
−βx

α2g(x, α)ν(dα) −−−−−→
x→−∞

0, (26)

then Xt is transient, that is Xt → −∞ a.s., and moreover Xt
t → 0 a.s.

Remark 4.4. The conditions of Theorem 4.4 are satisfied in the case where both ν is

infinite and its tail is not too heavy, while g is given by (3) and (2). For example, if

ν(dα) =

(
1

α1+δ
1|α|<1 + ρ(α)1|α|>1

)
dα,

where ρ(α) ≤ C|α|−(5+δ′), |α| > 1 for some δ, δ′ > 0. Condition (25) follows from the

fact that V <∞ while |xψ(x)| → ∞ as |x| → ∞.

Condition (26) is easy to check.

Proof. First note that condition (25) is equivalent to

lim sup
x→−∞

|x|ψ(x) < −V
2
.
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Hence there exist K > 0 and 0 < p ≤ p0 such that

sup
x≤−K

{
|x|ψ(x) + (2p+ 1)

V (x)

2

}
< 0. (27)

Let f be the C2(R)-function such that f(−1) = 1, f ′(−1) = p, and

f ′′(x) =
p(p+ 1)

|x|p+2
1{x≤−1} + p(p+ 1)1{x≥−1},

with p being a real number in (0, 1) for which (27) holds. Then it follows from Lemma

4.3 applied to f , since f ′′ is an increasing function, as long as Xs ≤ 0 for s ≤ t

f(Xt) ≤ f(X0) +

∫ t

0

ψ(Xs)f
′(Xs)ds+

1

2

∫ t

0

∫ ∞
0

f ′′(Xs + α)α2g(Xs, α)ν(dα)ds+Nt,

where the martingale N is defined by

Nt =
1

2

∫ t

0

∫ ∞
0

∫ 1

0

[
f ′(Xs−) + f ′′(Xs− + α)α2

]
ϕ(Xs−, α, ξ)M̄(ds, dα, dξ).

Let us admit for the moment:

Lemma 4.4. If (26) holds, then

lim
x→−∞

|x|p+2

∫ ∞
0

f ′′(x+ α)α2g(x, α)ν(dα) = p(p+ 1)V.

This implies that

lim
x→−∞

|x|p+2

∫ ∞
0

f ′′(x+ α)α2g(x, α)ν(dα) < lim
x→−∞

p(2p+ 1)V (x).

Hence, there exists N ≥ K such that for all x ≤ −N ,∫ ∞
0

f ′′(x+ α)α2g(x, α)ν(dα) < p(2p+ 1)
V (x)

|x|p+2
.

Thus, for all k > 0 satisfying −kN < X0 < −N ,

f(Xt∧S−kN,−N ) ≤ f(X0) +

∫ t∧S−kN,−N

0

p

|Xs|p+1

[
ψ(Xs) + (2p+ 1)

V (Xs)

2|Xs|

]
ds

+Nt∧S−kN,−N .

Now if k ≥ 3, letting X0 = −2N , it follows from (27) that

E(f(Xt∧S−kN,−N )) ≤ 1

(2N)p
.
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Thus, if we let t tend to ∞,

1

Np
P(S−kN,−N = T ↑−N )) ≤ E

1

|XS−kN,−N |p
≤ 1

(2N)p
.

Now letting k tend to ∞,

P(T ↑−N <∞) ≤ 1

2p
. (28)

Let for all k ≥ 1

Bk =
{
T ↑−N ≥ T

↓
−kN

}
The (Bk)k≥1 is a decreasing sequence of sets such that

lim
k

P(Bk) = P(B),

where B = {Xt hits −kN before −N for all k ≥ 1} ⊂
{
Xt −−−→

t→∞
−∞

}
. It follows

from (28) that

P(Xt −−−→
t→∞

−∞) > P(B) ≥ 1− 1

2p
.

On Bc, Xt enters (−N,+∞). The arguments from section 4.2 show that sooner or

later the process Xt will hit −2N again, and from there the probability of going to

−∞ is bounded from below by 1 − 1/2p since this will happen each time the process

gets above −N , hence

Xt −−−→
t→∞

−∞ a.s.

And since m = v <∞, it follows from Lemma 4.1 and Remark 4.1 that Mt

t → 0, hence

by the same arguments as in the proof of Therorem 4.1.

Xt

t
−−−→
t→∞

0 a.s..

�

Proof of Lemma 4.4. For any 0 < β < β0 < 1, if x < −(1− β)−1,

|x|p+2

∫ ∞
0

f ′′(x+ α)g(x, α)α2ν(dα) = |x|p+2

∫ −βx
0

f ′′(x+ α)α2g(x, α)ν(dα)

+ |x|p+2

∫ ∞
−βx

f ′′(x+ α)α2g(x, α)ν(dα)

≤
∫ −βx

0

p(p+ 1)

(1− β)p+2
α2g(x, α)ν(dα)

+ |x|p+2p(p+ 1)

∫ ∞
−βx

α2g(x, α)ν(dα).
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On the other hand,

|x|p+2

∫ ∞
0

f ′′(x+ α)α2g(x, α)ν(dα) ≥ p(p+ 1)

∫ −βx
0

|x|p+2

|x+ α|p+2
α2g(x, α)ν(dα)

> p(p+ 1)

∫ −βx
0

α2g(x, α)ν(dα).

Letting x→ −∞ in the two above inequalities, we deduce from (26), which holds with

p0 replaced by p ≤ p0,

p(p+ 1)V ≤ lim inf
x→−∞

|x|p+2

∫ ∞
0

f ′′(x+ α)α2g(x, α)ν(dα)

≤ lim sup
x→−∞

|x|p+2

∫ ∞
0

f ′′(x+ α)α2g(x, α)ν(dα)

≤ p(p+ 1)

(1− β)p+2
V.

Thus, letting β → 0, it follows that

|x|p+2

∫ ∞
0

f ′′(x+ α)α2g(x, α)ν(dα) −−−−−→
x→−∞

p(p+ 1)V.

�

Remark 4.5. We have not been able to precise the large time behavior of the process

Xt when the measure ν is of the type

ν(dα) ≈ dα

α2+δ
1{α≥1}, 0 < δ ≤ 1

2
,

which still satisfies m < ∞. In this case, V = ∞, |xψ(x)| → ∞ as |x| → ∞, and (26)

also fails.

5. Generalization to the case of a time-variable speed

In the following, we treat the case where the speed of environmental change is a random

function of time Vt, Vt being Ft progressively measurable, where again Ft is such that

our Poisson Point Process M satisfies both that M
∣∣
[0,t]×R×[0,1]

is Ft measurable and

M
∣∣
(t,+∞)×R×[0,1]

is independent of Ft. The stochastic equation describing the evolution

of phenotypic lag becomes

Xt = X0 − Vt +

∫ t

0

m(Xs)ds+Mt. (29)

As above, we study three cases:



SDE driven by a Poisson Point Process 29

5.1. The transient case

Here we assume that there exists a constant v̄ ∈ R such that

lim
t→∞

Vt
t

= v̄ a.s.

It is easy to see that results (14) and (15) hold in the new context of equation (29),

provided v̄ > m. Following the steps of the proof in section 4.1, we can see that

Xt → −∞ a.s. with speed v̄ −m.

5.2. The recurrent case

In this section we assume that

Vt =

∫ t

0

v1(s)ds+MV (t),

where MV (t) is a continuous Ft–martingale, v1(t) → v̄ a.s., as t → ∞, and for all

T > 0, sup
0≤t≤T

E[ |Vt| ] <∞.

Under the above conditions, together with v̄ < m we will prove that the process Xt is

Harris recurrent. We define again

TK = inf{t > 0, |Xt| ≤ K}.

Assume that |X0| > K. We rewrite the same inequality from Step 1 of the proof of

Theorem 4.2 :

|Xt| ≤ |X0|+
∫ t

0

{
sign(Xs)[m(Xs)− v1(s)] + Φ(Xs)

}
ds+

∫ t

0

sign(Xs)dMV (s) +M?
t ,

where M?
t is a martingale. We prove again that ETK < ∞. Then we prove that Xt

visits [0,M + (v̄ + 1)T ] infinitely often using the same arguments as Step 2. The rest

of the proof remains unchanged. Thus, Xt is Harris recurrent and the return time to

[−K,K] has finite expectation. If Vt is deterministic, then Xt is a Markov process and

we again conclude the existence of a unique invariant probability measure.
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5.3. The limiting case

Here we assume that

Vt =

∫ t

0

v1(s)ds, and v1(t)→ v̄ a.s. as t→∞.

Define moreover

vsup = sup
s
v1(s),

vinf = inf
s
v1(s),

ψsup(x) = m(x)− vsup,

ψinf(x) = m(x)− vinf ,

We formulate two sets of assumptions:

Assumptions A

• vsup <∞,

• lim inf
x→−∞

|x|ψsup(x) > −V2 .

Assumptions B

• vinf <∞,

• lim sup
x→−∞

|x|ψinf(x) < −V2 .

Under the set of assumptions A and hypothesis (20), we can prove that the process is

Harris recurrent. We have, however, not been able to prove that the return time to

compacts has infinite expectation.

Ideas of Proof. Apply Lemma 4.3 to the process in equation (29) with f(x) = log |x|,

with x < 0. Here f ′′ is decreasing. Hence, as long as Xt remains negative,

log |Xt| ≤ log |X0|+
∫ t

0

(
ψsup(Xs)

Xs
− V (Xs)

2X2
s

)
ds+

∫ t

0

vsup − v1(s)

Xs
ds+M′t

< log |X0|+
∫ t

0

(
ψsup(Xs)

Xs
− V (Xs)

2X2
s

)
ds+M′t,
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where M′ is a martingale. Then we continue the proof as for the case of constant

speed. �

Under the set of assumptions B and hypothesis (26), we can prove that

Xt −−−→
t→∞

−∞ and
Xt

t
−−−→
t→∞

0.

Ideas of Proof. We take the same function f we constructed in the case of constant

speed. We have f ′ > 0, and

f(Xt) ≤ f(X0) +

∫ t

0

ψinf(Xs)f
′(Xs)ds+

∫ t

0

(vinf − v1(s))f ′(Xs)ds

+
1

2

∫ t

0

∫ ∞
0

f ′′(Xs + α)α2g(Xs, α)ν(dα)ds+N ′t

≤ f(X0) +

∫ t

0

ψinf(Xs)f
′(Xs)ds+

1

2

∫ t

0

∫ ∞
0

f ′′(Xs + α)α2g(Xs, α)ν(dα)ds+N ′t,

where N ′ is a martingale. Then we continue the proof as for the case of constant speed.

�
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