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Abstract. We consider the parabolic SPDE

@tX(t; x) = @
2
xX(t; x) +  (X(t; x)) + '(X(t; x)) _W(t; x); (t; x) 2 R+ � [0; 1];

with the Neuman boundary condition

@X

@x
(t; 0) =

@X

@x
(t; 1) = 1

and some initial condition.
We use the Malliavin calculus in order to prove that, if the coefficients' and are smooth and

' > 0, then the law of any vector(X(t; x1); : : : ; X(t; xd));06 x1 6 � � � 6 xd 6 1, has a smooth,
strictly positive density with respect to Lebesgue measure.
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1. Introduction

Consider the following stochastic partial differential equation

@X

@t
(t; x)

=
@2X

@x2 (t; x) +  (X(t; x)) + '(X(t; x)) _W (t; x);
0 6 x 6 1

0 6 t;
(1.1)

with boundary conditions

X(0; x) = X0(x);
@X

@x
(t;0) =

@X

@x
(t;1) = 0:

(Kb. 2) INTERPRINT: J.N.B. PIPS Nr.: 120790 MATHKAP
pota345.tex; 7/08/1996; 11:09; v.7; p.1



28 VLAD BALLY AND ETIENNE PARDOUX

This equation can be rigorously formulated as an integral equation

X(t; x) =

Z 1

0
Gt(x; y)X0(y)dy +

Z t

0

Z 1

0
Gt�s(x; y) (X(s; y))dy ds

+

Z t

0

Z 1

0
Gt�s(x; y)'(X(s; y))W (dy;ds); (1.2)

whereG is the fundamental solution of the heat equation onR+ � (0;1) with
Neumann boundary conditions,_W is the white noise onR+ � [0;1] and' and 
are smooth and bounded functions.

The aim of this paper is to prove that for anyt > 0; d 2 N and any 06
x1 < � � � < xd 6 1, the law of(X(t; x1); : : : ;X(t; xd)) 2 R

d has a smooth and
strictly positive density with respect to Lebesgue measure on the setf' 6= 0gd. This
may be seen as a regularity result for the marginal distributions of theC([0;1])-
valued random variableX(t; �).

In order to prove this result we use the Malliavin calculus associated to the
white noise _W . We refer the reader to Ikeda and Watanabe [5] for a general
presentation of Malliavin’s calculus and Nualart and Zakai [11] for the special case
of a space-time white noise. With similar aims and in the frame of two-parameter
stochastic processes also, the same machinery has already been used by Carmona
and Nualart [3] and Nualart and Sanz [10]. Anyway the situation is rather different
here. Unusually, there is a difficulty in establishing the differentiability ofX(t; y)
as a Wiener functional and theLp evaluations for the associated Sobolev semi-
norms. This difficulty comes from the singularity ofs ! Gt�s(x; y) as s " t,
and the equations satisfied by the Malliavin derivatives contain this singularity in
their initial condition. On the other hand, the relative ease with which we obtain
the evaluations of the covariance matrix is due to our strong local nondegeneracy
assumption on the diffusion coefficient.

Our proof of the strict positivity is inspired by an analogous result for SDEs due
to Ben Arous and Ĺeandre [2], see also Millet and Sanz-Solé [7] for the case of
hyperbolic SPDEs, Aida et al. [1] and Nualart [8] for the case of random variables
defined on an abstract Wiener space. However, the abstract results do not apply
directly here, essentially because our SPDE cannot be written in Stratonovich form:
this is due to the infinite trace of the covariance operator of white noise. On the
other hand, our situation is a sense simpler than those considered in the above
references, since we are in a locally elliptic situation.

The existence of the density for the law ofX(t; x) has already been proved
by Pardoux and Zhang Tusheng [12] under a weaker nondegeneracy assumption.
However, we have not been able to prove our results under the same assumption.

The paper is organized as follows. In Section 1, we state our main result.
In Section 2, we introduce the tools from the Malliavin Calculus, we give a local
criterion for the existence of a smooth density and a condition for its strict positivity.
In Section 3, we study the smoothness of the solutionX(t; x) of our SPDE. In
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MALLIAVIN CALCULUS 29

Section 4, we estimate the Malliavin covariance matrix. Finally, in Section 5, we
prove the strict positivity of the density.

2. Statement of the Main Result

For the sake of making some of the notations below unambiguous, let us assume
that our probability space(
;F ; P ) is defined as follows


 = f' 2 C([0; T ]� [0;1]); '(0; x) = '(t;0) = 0g;

F is the Borel�-field of
, andP is such that the canonical process

fWt;x(!) , !(t; x); (t; x) 2 [0; T ]� [0;1]g

is a Brownian sheet underP , i.e. it is a zero mean Gaussian continuous random
field with correlation given by

E(Wt;xWs;y) = (t ^ s)� (x ^ y):

LetFt = �(W (A);A 2 B([0; t]� [0;1])) _N whereN is the class ofP -null
sets inF , andP denote the�-algebra ofFt-progressively measurable subsets of

� [0; T ].

LetX = (X(t; x)) be the solution of the parabolic SPDE

@X

@t
(t; x) =

@2X

@x2 (t; x) +  (X(t; x))

+'(X(t; x)) _W (t; x); (t; x) 2 [0; T ]� [0;1]; (2.1)

with initial conditionX(0; x) = X0(x);0 6 x 6 1, whereX0 2 C([0;1]), and
boundary conditions

@X

@x
(t;0) =

@X

@x
(t;1) = 0; t 2 [0; T ]:

This means thatX satisfies the following: for anyf 2 C2([0;1]) such that
f 0(0) = f 0(1) = 0Z 1

0
X(t; x)f(x)dx =

Z 1

0
X0(x)f(x)dx

+

Z t

0

Z 1

0

"
X(s; x)

@2f

@x2 (x) +  (X(s; x))f(x)

#
dxds

+

Z t

0

Z 1

0
'(X(s; x))f(x)W (dx;ds); (2.2)
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30 VLAD BALLY AND ETIENNE PARDOUX

or equivalently (see Walsh [13])

X(t; x) =

Z 1

0
Gt(x; y)X0(y)dy +

Z t

0

Z 1

0
Gt�s(x; y) (X(s; y))dy ds

+

Z t

0

Z 1

0
Gt�s(x; y)'(X(s; y))W (dy;ds); (2.3)

where

Gt(x; y) =
1p
4�t

1X
n=�1

(
exp

 
�(y � x� 2n)2

4t

!

+exp

 
�(y + x� 2n)2

4t

!)
(2.4)

is the fundamental solution of the heat equation onR+ � (0;1) with Neumann
boundary conditions.

REMARK 2.1. One could consider Dirichlet boundary conditions (i.e.X(t;0) =
X(t;1) = 0, for t 2 [0; T ]) instead of the Neumann boundary conditions (i.e.
(@=@x)X(t;0) = (@=@x)X(t;1) = 0). In this case the Green function is

Gt(x; y) =
1p
4�t

1X
n=�1

(
exp

 
�(y � x� 2n)2

4t

!

�exp

 
�(y + x� 2n)2

4t

!)
: (2.5)

All the results in the paper hold in this case also, with minor modifications.
Actually we do not use the explicit form ofG but only the properties (A.1), (A.3),
(A.4) from the Appendix and the Ḧolder continuity of(t; x)! X(t; x) (see Walsh
[13]) which hold forG in (1.5) as well.

We assume that the coefficients fulfill the hypothesis

'; :R ! R are infinitely differentiable functions; which are bounded

together with their derivatives of all order: (2.6)

Our result is the following

THEOREM 2.2.For every0 6 x1 < x2 < � � � < xd 6 1; t 2 (0; T ], the law of
(X(t; x1); : : : ;X(t; xd)) admits a strictly positive smooth densityp onf' 6= 0gd,
that is there existsp 2 C1(f' 6= 0gd;R) such that
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MALLIAVIN CALCULUS 31

(i) For everyf 2 Cb(R
d ;R) with suppf � f' 6= 0gd

E(f(X(t; x1); : : : ;X(t; xd)) =

Z
Rd
f(y)p(y)dy: (2.7)

(ii) p(y) > 0; 8y 2 f' 6= 0gd:
Note that in the case of Dirichlet boundary conditions Theorem 2.2 would be

true only if 0< x1 < � � � < xd < 1.

REMARK 2.3. The densitiespm;m 2 N, which we shall use as approximations
of p (see the proof of Theorem 3.1) are not equally bounded, so we can say nothing
about the boundedness ofp. Nevertheless, under the strong ellipticity assumption
j'j > c > 0, it is clear from our proof thatp and all its derivatives are bounded.

The proof of Theorem 2.2 goes through several steps contained in Sections 3,
4, 5 and 6. Note that (A.1); : : : ; (A.7) refer to inequalities which are stated and
proved in the Appendix, at the end of the paper.

3. The Malliavin Calculus

Let us recall the objects involved in the Malliavin calculus associated toW . We
denote byS the space of simple (or smooth) functionals, that is functionals of the
form

F = f(W (h1); : : : ;W (hm));

with f 2 C1(Rm) with at most polynomial growth at infinity, andh1; : : : ; hm
is an orthonormal sequence inL2(�T ; dtdx), where�t =: [0; t] � [0;1], and for
h 2 L2(�T )

W (h) =:
Z T

0

Z 1

0
h(s; y)W (dy;ds):

ForF 2 S one defines the first order Malliavin derivative to be theL2(�T )-valued
random variable

D1
(t;x)F =

mX
i=1

@if(W (h1); : : : ;W (hm))hi(t; x);

where@i = @=@xi.
The derivative of orderk of F is theL2(�k

T )-valued random variable given by

Dk
�F =

mX
i1;:::;ik=1

@i1 : : : @ikf(W (h1); : : : ;W (hm))hi1(�1) : : : hik(�k);
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32 VLAD BALLY AND ETIENNE PARDOUX

where

� = (�1; : : : ; �k); �i = (ri; zi) 2 �T ; 1 6 i 6 k:

Forp > 1 andk 2 N the spaceDp;k is the completion ofS with respect to the
seminorm

kFkp;k = (EjF jp)1=p +
kX
i=1

(EjDiF jp2)1=p;

with

jDiF j22 =
Z
�i
T

jDi
�F j2 d� (d� denotes Lebesgue measure):

We also define

D1 =
\
p>1

\
k2N

Dp;k:

On the other hand one defines onS the Ornstein–Uhlenbeck operator

LF =
mX
i=1

[@i @if(W (h1); : : : ;W (hm))

�@if(W (h1); : : : ;W (hm))W (hi)]:

This operator is closable andD1 � Dom(L) � L2(
;F ; P ) (see Ikeda and
Watanabe [5]). The covariance matrix associated toF is the matrix� = (�ij)16i;j6d
defined by

�ij = hD1F i;D1F ji; 1 6 i; j 6 d:

We shall use the following ‘localized’ variant of Malliavin’s absolute continuity
theorem,

THEOREM 3.1.Let �m � R
d ;m 2 N, be a sequence of open sets such that

��m��m+1 and letF :
! R
d be a measurable functional. IfF 2 (D1)d and

E((det�)�q; F 2 �m) <1; 8q > 1; m 2 N; (3.1)

thenP � F�1 has a smooth density on� =
S
m �m, i.e., there existsp 2 C1(�)

such that

E(f(F )) =

Z
Rd
f(x)p(x)dx; (3.2)
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MALLIAVIN CALCULUS 33

for anyf :Rd ! R which is bounded, measurable and such thatsuppf � �.
Proof. Let ffm;m 2 Ng be a sequence inC1(Rd) such that 06 fm 6

1; fmj�m = 1 andfmj�c
m+1

= 0.

Defineuj = DF j; Gi;j = fm(F )hDF i;DF ji andA = fF 2 �mg. With these
notations, the result follows from Theorem 2.1.4 in Nualart [9]. 2

We now give a criterion for the strict positivity of the density at a given point
y0 2 R

d .
We first state a technical lemma, which can be found e.g. in Aida et al. [1] and

Nualart [8].

LEMMA 3.2. For any� > 0; � > 0, there exist constantsc; � > 0 such that any
mapping

g:Rd ! R
d ;

satisfying

(j) jdetg0(0)j > 1
�
;

(jj) sup
jxj6�

(jg(x)j + jg0(x)j+ jg00(x)j) 6 �

is a diffeomorphism from a neighborhood of0 contained in the ballB(0; c) onto
the ballB(g(0); �).

To eachz = (z1; : : : ; zd) 2 R
d , andh = (h1; : : : ; hd) 2 Hd = L2((0; T ) �

(0;1))d, we associate a transformationTz on
, defined by

[Tz(!)](t; x) = !(t; x) +
dX
i=1

zi

Z t

0

Z x

0
hi(s; y)dy ds:

In the next statement, we shall consider a sequencefhngn=1;2;:::�Hd, and we
define

[T n
z (!)](t; x) = !(t; x) +

dX
i=1

zi

Z t

0

Z x

0
hin(s; y)dy ds: (3.3)

THEOREM 3.3.Let F be a d-dimensional random vector, such that for some
p 2 C(Rd) and� an open subset ofRd

1�(y)P � F�1(dy) = 1�(y)p(y)dy:

We assume that there exists a sequencefhngn=1;2;:::;�Hd such that the associated
sequence of random fields defined by

�n(z) := F � T n
z

satisfies the two following conditions, for somey0 2 �; c; �; k > 0:
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34 VLAD BALLY AND ETIENNE PARDOUX

(i) lim supn!1 P (fjF � y0j 6 rg \ fdet@z�n(0) > cg) > 0; 8r > 0:

(ii) lim n!1 P
�
supjzj6�[k@z�n(z)k+ k@2

z�n(z)k] 6 k
�
= 1.

Thenp(y0) > 0.
Proof. We define

�n = fjF � y0j 6 rgTfdet@z�n(0) > cg
T(

sup
jzj6�

(k@z�n(z)k + k@2
z�n(z)k) 6 k

)
:

It follows from (i), (ii) that for eachr > 0, there existsn 2 N such that

(iii) P (�n) > 0.

From now on,r andn will be fixed, such that (iii) holds. Note that on�n,

sup
jzj6�

j�n(z)j 6 k0 = jy0j+ r + �k:

It then follows from Lemma 3.2 that there exists� > 0 such that for all! 2 �n,
the mapping

z ! �n(z; !)

is a diffeomorphism between an open neighborhoodVn(!) of 0 in R
d , contained

in some ballB(0; R), and the ballB(F; �). We can and do assume thatr < �,
since� depends only onc; �; k, andr can be chosen arbitrarily small, and thatR is
chosen small enough such that! 2 �n andz 2 Vn(!) imply that

det@z�n(z; !) >
c

2
:

From Girsanov’s Theorem, for eachn 2 N; z 2 R
d

(P � F�1)(dz) = en(z)(P � ��1
n )(dz);

where

en(z) = exp

"
hz;W (hn)i � 1

2

dX
1

z2
i khink2

L2((0;T )�(0;1))

#
:

Let (z) = (2�)�(d=2) exp(�jzj2=2), andf 2 C1b (Rd ;R+).
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MALLIAVIN CALCULUS 35

We have

E[f(F )] =

Z
Rd
 (z)E[en(z)f(�n(z))]dz

> E

�Z
Rd
 (z)en(z)f(�n(z))dz;�n

�

> E

�Z
Vn
 (z)en(z)f(�n(z))dz;�n

�

= E

 Z
B(F;�)

f(y)

�
 en

jdet@z�nj
�
(��1

n (y))dy;�n

!

>

Z
Rd
f(y)�n(y)dy;

where

�n(y) = E

�
'(jF � yj) �

�
en 

jdet@z�nj
�
(��1

n (y));�n

�
;

':R+ ! [0;1] is continuous, 1[0;r] 6 ' 6 1[0;�], and (r) = inf(r;1). �n(y0) > 0
follows easily from (iii) and the fact thatfjF � y0j 6 rg��n.

But

y ! '(jF � yj) �
�

 

jdet@z�nj
�
(��1

n (y))

is a.s. continuous, and bounded by 1.
Hence form Lebesgue’s dominated convergence theorem,�n is continuous.
Finally, if suppf � �,

E(F ) =

Z
Rd
f(y)p(y)dy >

Z
Rd
f(y)�n(y)dy:

The theorem is proved. 2

4. Differentiability of the Solution

The aim of this section is to prove thatX(t; x) 2 D1 for each(t; x) 2 [0; T ]�[0;1].
To this end we shall construct a sequence of simple functionals in the following
way. Letfekgk2N, be an orthonormal basis ofL2(0; T ) and

W k(t) =

Z t

0

Z 1

0
ek(y)W (dy;ds); k 2 N:
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36 VLAD BALLY AND ETIENNE PARDOUX

Then, for everyP 
 B([0;1]) measurable, square integrable processf :
 �
[0; T ]� [0;1]! R, one hasZ t

0

Z 1

0
f(!; s; y)W (dy;ds)

=
1X
k=0

Z t

0

 Z 1

0
f(!; s; y)ek(y)dy

!
dW k(s): (4.1)

This is easily seen forf(s; y; !) = g(!)1(t;t0](s)1A(y) where 06 t < t0 6
T;A 2 B([0;1]) andg is aFt measurable random variable. Then one takes linear
combinations andL2 limits.

The Equation (2.3) may be written in the form

X(t; x)

=

Z 1

0
Gt(x; y)X0(y)dy +

Z t

0

Z 1

0
Gt�s(x; y) (X(s; y))dy ds

+
1X
k=0

Z t

0

 Z 1

0
Gt�s(x; y)'(X(s; y))ek(y)dy

!
dW k(s): (4.2)

The approximations are constructed in the following way: forn 2 N and
t 2 [i=n; (i+ 1)=n) we denote

t+n =
i+ 1
n

and t�n =
i

n
:

We also set

�n
i;k = W k

�
i+ 1
n

�
�W k

�
i

n

�

=

Z T

0

Z 1

0
ek(y)1[i=n;i+1=n)(s)W (dy;ds)

and define

Xn(0; x) = X0(x); x 2 [0;1]

Xn

�
l

n
; x

�

=

Z 1

0
Gl=n(x; y)X0(y)dy

+
l�1X
i=0

1=n
Z 1

0
G(l+1=n)�(i=n)(x; y) 

�
Xn

�
i

n
; y

��
dy

+
nX

k=0

l�1X
i=0

Z 1

0
G(l+1=n)�(i=n)(x; y)'

�
Xn

�
i

n
; y

��
ek(y)dy ��n

i;k (4.3)
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and

Xn(t; x) = Xn(t
�
n ; x); 0 6 t 6 T; x 2 [0;1]:

It is then clear thatXn(t; x) solves the equation

Xn(t; x) =

Z 1

0
Gt�n

(x; y)X0(y)dy

+

Z t�n

0

Z 1

0
Gt+n�s�n (x; y) (Xn(s

�
n ; y))dy ds

+
nX

k=0

Z t�n

0

Z 1

0
Gt+n�s�n (x; y)'(Xn(s

�
n ; y))ek(y)dy dW k(s);

0 6 t 6 T; x 2 [0;1]: (4.4)

It is also clear thatXn(t; x) 2 S. Starting with (4.3) we may calculate the
derivatives ofXn(t; x) and further – by taking limits – those ofX(t; x). In order
to state the equations satisfied by the derivatives we have to introduce some more
notation.

For� = (�1; : : : ; �M ) 2 �M
T we denote

j�j =M (the length of�):

Let �i = (ri; zi) 2 [0; T ] � [0;1];1 6 i 6 M , and leti0 be such thatri0 > ri
for everyi 6= i0 (such ani0 exists for every� 2 �M

T outside a Lebesgue null set).
We denote

�� = (�r; �z) = (ri0; zi0) = �i0;

�̂ = (�1; : : : ; �i0�1; �i0+1; : : : ; �M ):
(4.5)

Then we define

�(n)� (')(t; x) =
MX
m=1

X
'(m)(Xn(t

�
n ; x))

mY
i=1

Djpij
pi Xn(t

�
n ; x); (4.6)

where the second sum
P

is taken over all the partitionsp1; : : : ; pm of lengthm of
�, and

�(n)
� (')(t; x) = �(n)� (')(t; x) � '0(Xn(t

�
n ; x))D

M
� Xn(t

�
n ; x)

=
MX
m=2

X
'(m)(Xn(t

�
n ; x))

mY
i=1

Djpij
pi Xn(t

�
n ; x): (4.7)
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38 VLAD BALLY AND ETIENNE PARDOUX

Let us start with (4.3) and calculate explicitly the first order derivatives. One
has

D1
(r;z)Xn

�
l

n
; x

�

=
l�1X
i=0

nX
k=0

ek(z)1[i=n;i+1=n)(r)

Z 1

0
G(l+1=n)�(i=n)(x; y)

�'
�
Xn

�
i

n
; y

��
ek(y)dy

+
l�1X
i=0

1[i=n;i+1=n)(r)
nX

k=0

l�1X
j=i+1

Z 1

0
G(l+1=n)�(j=n)(x; y)

�'0
�
Xn

�
j

n
; y

��
D1

(r;z)Xn

�
j

n
; y

�
ek(y)dy�n

j;k

+
l�1X
i=0

1[i=n;i+1=n)(r)
l�1X

j=i+1

1=n
Z 1

0
G(l+1=n)�(j=n)(x; y)

�'0
�
Xn

�
j

n
; y

��
D1

(r;z)Xn

�
j

n
; y

�
dy;

with the convention that
Pl�1

j=l = 0.
The above formula shows that

D1
(r;z)Xn

�
l

n
; z

�
= 0 if r+n > l=n:

On the other hand, since

Xn(t; x) = Xn

�
l

n
; x

�
for

l

n
6 t <

l + 1
n

;

one may rewrite the above equation in the form

D1
(r;z)Xn(t; x)

=
nX

k=0

ek(z)
Z 1

0
Gt+n�r�n (x; y)'(Xn(r

�
n ; y))ek(y)dy

+
nX

k=0

Z t�n

r+n

Z 1

0
Gt+n�s�n (x; y)'

0(Xn(s
�
n ; y))

�D1
(r;z)Xn(s

�
n ; y)ek(y)dy dW k(s)
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+

Z t�n

r+n

Z 1

0
Gt+n�s�n (x; y)'

0(Xn(s
�
n ; y))

�D1
(r;z)Xn(s

�
n ; y)dy ds for r+n 6 t

�
n : (4.8)

One checks by induction that the derivatives of orderM of Xn(t; x) solve the
equations

DM
� Xn(t; x) = 0 if t�n < r+n

and

DM
� Xn(t; x)

=
nX

k=0

ek(�z)
Z 1

0
Gt+n��r�n (x; y)�

(n)
�̂ (')(�r�n ; y)ek(y)dy

+
nX

k=0

Z t�n

�r+n

Z 1

0
Gt+n�s�n (x; y)�

(n)
� (')(s�n ; y)ek(y)dy dW k(s)

+

Z t�n

�r+n

Z 1

0
Gt+n�s�n (x; y)�

(n)
� ( )(s�n ; y)dy ds; for t�n > r

+
n ; (4.9)

where�� = (�r; �z) and�̂ are defined in (4.5).
We now write the equations satisfied by the derivatives ofX(t; x). Actually

D1
(r;z)X(t; x) (resp.DM

� X(t; x)) is defined to be the solution of Equation (3.10)
(resp. (3.11)) and their significance as ‘Malliavin derivatives ofX(t; x)’ will be
established after proving the convergence in Proposition 4.3 below.

D1
(r;z)X(t; x)

=
1X
k=0

ek(z)
Z 1

0
Gt�r(x; y)'(X(r; y))ek(y)dy

+
1X
k=0

Z t

r

Z 1

0
Gt�s(x; y)'0(X(s; y))D1

(r;z)X(s; y)ek(y)dy dW k(s)

+

Z t

r

Z 1

0
Gt�s(x; y) 0(X(s; y))D1

(r;z)X(s; y)dy ds; for r 6 t

= 0 for r > t (4.10)

and, for� such thatj�j =M
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DM
� X(t; x)

=
1X
k=0

ek(�z)
Z 1

0
Gt��r(x; y)��̂(')(�r; y)ek(y)dy

+
1X
k=0

Z t

�r

Z 1

0
Gt�s(x; y)��(')(s; y)ek(y)dy dW k(s)

+

Z t

�r

Z 1

0
Gt�s(x; y)��( )(s; y)dy ds; for �r < t;

= 0 for �r > t; (4.11)

with

��(')(s; y) =
MX
m=1

X
'(m)(X(s; y))

mY
i=1

Djpij
pi X(s; y); (4.12)

where the above second sum is extended over all the partitionsp1; : : : ; pm of �.

REMARK 4.1. In order to see that (4.11) is a true equation which defines recur-
sivelyDM

� X(t; x) one writes

��(')(s; y) = ��(')(s; y) + '0(X(s; y))DM
� X(s; y); (4.13)

with

��(')(s; y) =
MX
m=2

X
'(m)(X(s; y))

mY
i=1

Djpij
pi X(s; y): (4.14)

REMARK 4.2. Coming back toW (dy;ds) (by means of (3.1)) one may write
Equations (4.10) and (4.11) in the form

D1
(r;z)X(t; x)

= Gt�r(x; z)'(X(r; z))

+

Z t

r

Z 1

0
Gt�s(x; y)'0(X(s; y))D1

(r;z)X(s; y)W (dy;ds)

+

Z t

r

Z 1

0
Gt�s(x; y) 0(X(s; y))D1

(r;z)X(s; y)dy ds (4.15)

and
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DM
� X(t; x)

= Gt��r(x; �z)��̂(')(��)

+

Z t

�r

Z 1

0
Gt�s(x; y)��(')(s; y)W (dy;ds)

+

Z t

�r

Z 1

0
Gt�s(x; y)��( )(s; y)dy ds

+

Z t

�r

Z 1

0
Gt�s(x; y)'0(X(s; y))DM

� X(s; y)W (dy;ds)

+

Z t

�r

Z 1

0
Gt�s(x; y) 0(X(s; y))DM

� X(s; y)dy ds: (4.16)

PROPOSITION 4.3.For everyp > 1;M 2 N, and� 2 �M
T ,

(i) limn!1 sup(t;x)2�T EjX(t; x) �Xn(t; x)j2p = 0.

(ii) lim n!1 sup(t;x)2�T E
���R�M

T
jDM

� X(t; x) �DM
� Xn(t; x)j2 d�

���p = 0.

As a consequenceX(t; x) 2 D1 andDM
� X(t; x); � 2 �M

T , represents the
Malliavin derivative of orderM ofX(t; x).

Proof. Let us first check that

sup
(t;x)2�T

E

�����
Z
�Mt

jDM
� X(t; x)j2 d�

�����
p

<1; 8p > 1; M 2 N: (4.17)

We proceed by induction onM . Assume (3.17) holds for everyM 0 < M and
p > 1.

We shall use Burkholder’s inequality for Hilbert space valued martingales (see
Metivier [6], E. 2. p. 212) in the following form.

If Hs;y is a previsibleL2(�M
t )-valued process, then

E

������
Z
�Mt

 Z t

0

Z 1

0
Hs;y(�)W (dy;ds)

!2

d�

������
p

6 KE

�����
Z t

0

Z 1

0

 Z
�Mt

H2
s;y(�)d�

!
dy ds

�����
p

: (4.18)

The above inequality and the Equation (4.16) yield
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E

�����
Z
�Mt

jDM
� X(t; x)j2 d�

�����
p

6 K

(
E

�����
Z
�Mt

(Gt��r(x; �z)��̂(')(��))2 d�

�����
p

+E

�����
Z t

0

Z 1

0
G2
t�s(x; y)

Z
�Mt

1[�r;1](s)

� [(��(')(s; y))
2 + (��( )(s; y))

2]d�dy ds

�����
p

+E

�����
Z t

0

Z 1

0
G2
t�s(x; y)[('

0)2(X(s; y)) + ( 0)2(X(s; y))]

�
Z
�Mt

(DM
� X(s; y))2 d� dy ds

�����
p)

=: K(I1(t; x) + I2(t; x) + I3(t; x)):

Let us evaluate I1(t; x). Since all the derivatives of' are bounded, (3.12) yields

I1(t; x) 6 K
X

E

������
Z
�Mt

 
Gt��r(x; �z)

mY
i=1

D�i
piX(�r; �z)

!2

d�

������
p

;

where the sum extends over all the partitionsp1; : : : ; pm of �̂, and�i = jpij, where
m varies from 1 toM � 1.

Note that(�r; �z); p1; : : : ; pm is a partition of�. Then, the integral over�M
t splits

into integrals over�t and��i
t ;1 6 i 6 m, and so one dominates the above term by

K
X

E

 �����
Z
�t
G2
t�r(x; z)

 
mY
i=1

Z
�
�i
t

jD�i
piX(r; z)j2 dpi

!
dz dr

�����
p!

:

By (A.4) and Ḧolder’s inequality, assumingp > 3, soq = p=(p� 1) < 3
2,

I1(t; x)

6 K
XZ

�t

mY
i=1

0
@E

�����
Z
�
�i
ti

jD�i
piX(r; z)j2 dpi

�����
2m�1p

1
A

1=2m�1

dr dz:

Since�i < M;1 6 i 6m, one applies the induction hypothesis to get

sup
(t;x)2�T

I1(t; x) <1:
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By using (4.14) and the boundedness of the derivatives of' and one gets

I2(t; x)

6 K
X

E

�����
Z t

0

Z 1

0
G2
t�s(x; y)

Z
�Mt

1[�r;1)(s)
mY
i=1

jD�i
piX(s; y)j2 d� dy ds

�����
p

= K
X

E

�����
Z t

0

Z 1

0
G2
t�s(x; y)

Z
�Ms

mY
i=1

jD�i
piX(s; y)j2 d� dy ds

�����
p

;

where the sum extends over all the partitions of� such that�i = jpij < M;1 6
i 6 m. Assume againp > 3. By Hölder’s inequality

I2(t; x)

6 K
X Z t

0

Z 1

0
G2q
t�s(x; y)dy ds

!p=q

�
Z t

0

Z 1

0
E

������
Z
�Ms

�����
mY
i=1

D�i
piX(s; y)

�����
2

d�

������
p

dy ds:

One uses (A.4) to dominate the first term in the above product. Next, the same
reasoning as above (Schwarz’s inequality and the induction hypothesis) permits to
dominate the second term. So we have proved that

sup
(t;x)2�T

I2(t; x) <1:

By using Ḧolder’s inequality as above one gets

I3(t; x)

6 K

 Z t

0

Z 1

0
G2q
t�s(x; y)dy ds

!p=q

�
Z t

0

Z 1

0
E

�����
Z
�Ms

jDM
� X(s; y)j2 d�

�����
p

dy ds:

So we have proved that

F (t; x) 6 K +K 0
Z t

0

Z 1

0
F (s; y)dy ds; (4.19)

whereK andK 0 are constants independent of(x; t) 2 �T and

F (t; x) = E

�����
Z
�Mt

jDM
� X(t; x)j2 d�

�����
p

:
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44 VLAD BALLY AND ETIENNE PARDOUX

The inequality (4.19) tells nothing about the boundedness ofF (F � 1 is a
solution of (4.19)), so we have to use a truncation argument. Take" > 0 and
�":R ! R a smooth function such that�"(x) = x for jxj 6 1="; j�"(x)j 6 1+1="
andj�0"(x)j 6 1 for everyx 2 R. Let Y "

� (t; x) be the solution of Equation (4.16)
in which the last two terms are replaced by

Z t

�r

Z 1

0
Gt�s(x; y)�"(Y "

� (s; y))'
0(X(s; y))W (dy;ds)

+

Z t

�r

Z 1

0
Gt�s(x; y)�"(Y "

� (s; y)) 
0(X(s; y))dy ds:

Sincej�"(x)j 6 jxj, the same reasoning as above gives

F"(t; x) 6 K +K 0
Z t

0

Z 1

0
E

�����
Z
�Mt

�2
"(Y

"
� (s; y))d�

�����
p

dy ds; (4.20)

with K andK 0 constants independent of(t; x) 2 �T and" > 0 and

F"(t; x) = E

�����
Z
�Mt

jY "
� (t; x)j2 d�

�����
p

:

This guarantees that

sup
t;x

jF"(t; x)j <1: (4.21)

Sincej�"(x)j 6 jxj, (4.20) yields

F"(t; x) 6 K +K 0
Z t

0

Z 1

0
F"(s; y)dy ds

and further

f"(t) 6 K +K 0
Z t

0
f"(s)ds;

where

f"(t) = sup
x
jF"(t; x)j:

By (4.21)

sup
t6T

jf"(t)j <1;
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so one may apply Gronwall’s Lemma to get

f"(t) 6 Ke
K0T for t 6 T;

that is

sup
">0

sup
(t;x)2�m

T

jF"(t; x)j 6 KeK0T :

It is standard to prove that

lim
"!0

Y "
� (t; x) = D�X(t; x)

a.s., for every fixed� 2 �M
T and(t; x) 2 �T . So, by Fatou’s Lemma

E

�����
Z
�Mt

jDM
� X(t; x)j2 d�

�����
p

6 lim
"!0 E

�����
Z
�Mt

jY "
� (t; x)j2 d�

�����
p

;

6 KeK
0T :

(4.17) is proved.
In the same way one gets

sup
n

sup
(t;x)2�T

E

�����
Z
�Mt

jDM
� Xn(t; x)j2 d�

�����
p

<1;

8M 2 N and p > 1: (4.22)

We are now ready to prove the point (ii) in Proposition 4.3 (the point (i) is anal-
ogous, but simpler, so we leave it out).

We shall prove the following by induction onM

(AM;p) lim
n

sup
t;x

E

�����
Z
�M
T

[DM
� Xn(t; x)�DM

� X(t; x)]2 d�

�����
p

= 0:

Let us first note that, if one proves(AM;p) for p = 1, then the same follows for
everyp > 1. This is because of (4.17) and (4.22).

Let us now assume that(AM 0;p) holds for everyM 0 < M and everyp > 1, and
let us prove(AM;1).

Going back to Equations (4.9) and (4.11) one writes

jDM
� Xn(t; x)�DM

� X(t; x)j 6
8X

i=1

jIn;i� (t; x)j; (4.23)

pota345.tex; 7/08/1996; 11:09; v.7; p.19



46 VLAD BALLY AND ETIENNE PARDOUX

with

In;1� (t; x) =
nX

k=1

ek(�z)
Z 1

0
(Gt+n��r�n (x; y)�

(n)
�̂ (')(�r�n ; y)

�Gt��r(x; y)��̂(')(�r; y))ek(y)dy;

In;2� (t; x) =
1X

k=n+1

ek(�z)
Z 1

0
Gt��r(x; y)��̂(')(�r; y)ek(y)dy;

In;3� (t; x) =
nX

k=1

Z t

�r

Z 1

0
[Gt+n�s�n (x; y)1[�r+n ;t�n )(s)�

(n)
� (')(�sn; y)

�Gt�s(x; y)��(')(s; y)]ek(y)dy dW k(s);

In;4� (t; x) =
1X

k=n+1

Z t

�r

Z 1

0
Gt�s(x; y)��(')(s; y)ek(y)dy dW k(s);

In;5� (t; x) =
1X

k=n+1

Z t

�r

Z 1

0
Gt�s(x; y)'0(X(s; y))

�DM
� X(s; y)ek(y)dy dW k(s);

In;6� (t; x) =

Z t

�r

Z 1

0
[Gt+n�s�n (x; y)1[�r+n ;t�n )(s)�

(n)
� ( )(s�n ; y)

�Gt�s(x; y)��( )(s; y)]dy ds;

In;7� (t; x)

=
nX

k=1

Z t

�r

Z 1

0
[Gt+n�s�n (x; y)1[�r+n ;t�n )(s)'

0(Xn(s
�
n ; y))D

M
� Xn(s

�
n ; y)

�Gt�s(x; y)'0(X(s; y))DM
� X(s; y)]ek(y)dy dW k(s);

In;8� (t; x) =

Z t

�r

Z 1

0
[Gt+n�s�n (x; y)1[�r+n ;t�n )(s) 

0(Xn(s
�
n ; y))D

M
� Xn(s

�
n ; y)

�Gt�s(x; y) 0(X(s; y))DM
� X(s; y)]dy ds:

The first step is to prove that, for 16 i 6 6

lim
n

sup
t;x

E

Z
�Mt

jIn;i� (t; x)j2 d� = 0: (4.24)

We begin withi = 3. One has
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EjIn;3� (t; x)j2

= E

Z t

�r

nX
k=1

�����
Z 1

0
(Gt+n�s�n (x; y)1[�r+n ;t�n )(s)�

(n)
� (')(s�n ; y)

� Gt�s(x; y)��(')(s; y))ek(y)dy

�����
2

ds

6 E

Z t

�r

Z 1

0
jGt+n�s�n (x; y)1[�r+n ;t�n )(s)�

(n)
� ( )(s�n ; y)

�Gt�s(x; y)��( )(s; y)j2 dy ds

6 2E
Z t�n

�r+n

Z 1

0
G2
t+n�s�n (x; y)j�

(n)
� (')(s�n ; y)���(')(s; y)j2 dy ds

+2E
Z t

�r

Z 1

0
jGt+n�s�n (x; y)1[�r+n ;t�n )(s)

�Gt�s(x; y)j2(��(')(s; y))
2 dy ds

=: U (n)
� (t; x) + V

(n)
� (t; x):

Let J1; : : : ; Jm be a partition of f1; : : : ;Mg; �i = jJij and Ji(�) =
f�j1; : : : ; �j�ig for Ji = fj1; : : : ; j�ig. Since the derivatives of' are bounded,
one getsZ

�Mt

U (n)
� (t; x)d�

6

Z t

0

Z 1

0
dsdyG2

t+n�s�n (x; y)

�E
Z
�Ms

j�(n)
� (')(s�n ; y)���(')(s; y)j2 d�

6 K
XZ t

0

Z 1

0
dsdyG2

t+n�s�n (x; y)

�E
Z
�Ms

 
mY
i=1

D�i
Ji(�)

Xn(s; y)�
mY
i=1

D�i
Ji(�)

X(s; y)

!2

d�;

with the sum over all the partitionsJ1; : : : ; Jm of f1; : : : ;Mg (see (4.7) and (4.14)).
We write the above terms in the form

XZ t

0

Z 1

0
G2
t+n�s�n (x; y)

Z
�Ms

E

 
mX
l=1

l�1Y
i=1

(D�i
Ji(�)

Xn(s; y))
2

� (D�l
Jl(�)

Xn(s; y)�D�l
Jl(�)

X(s; y))2

�
mY

i=l+1

(D�i
Ji(�)

X(s; y))2

1
A d� dy ds
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=
X mX

l=1

Z t

0

Z 1

0
Gt+n�s�n (x; y)E

 
l�1Y
i=1

Z
�
�l
s

(D�i
Ji(�)

Xn(s; y))
2 dJi(�)

�
Z
�
�l
s

(D�l
Jl(�)

Xn(s; y)�D�l
Jl(�)

X(s; y))2 dJl(�)

�
mY

i=l+1

Z
�
�i
s

(D�i
Ji(�)

X(s; y))2 dJi(�)

1
A dy ds;

with the convention that
Q0

i=1 =
Qm

i=m+1 = 1. Now, by using Schwarz’s inequality
we dominate the above sum by

X mX
l=1

Z t

0

Z 1

0
G2
t+n�s�n (x; y)

mY
i=1

U
(`)
n;i (s; y)dy ds;

where

U
(`)
n;i (s; y) =

 
E

����
Z
�
�i
s

(D�i
� Xn(s; y))

2 d�
����2
m�1!1=2m�1

; 1 6 i 6 l � 1;

U
(`)
n;l (s; y) =

 
E

����
Z
�
�l
s

(D�l
� Xn(s; y)�D�l

� X(s; y))2 d�
����2
m�1!1=2m�1

;

U
(`)
n;i (s; y) =

 
E

����
Z
�
�i
s

(D�i
� X(s; y))2 d�

����2
m�1!1=2m�1

; l + 1 6 i 6 m:

By (4.17) and (4.22)

sup
n

sup
s;y

U
(`)
n;i (s; y) <1 for i 6= l

and, by the induction hypothesis

lim
n

sup
s;y

U
(`)
n;l (s; y) = 0:

Since

sup
n

sup
t;x

Z t

0

Z 1

0
G2
t+n�s�n (x; y)dy ds <1;

we have finally proved that

lim
n

sup
t;x

Z
�Ms

U (n)
� (t; x)d� = 0:
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Let us now evaluateV (n)
� (t; x). Note first that

sup
s;y

E

Z
�Ms

 
mY
i=1

D�i
Ji(�)

X(s; y)

!2

d� <1:

Consequently

E

Z
�Ms

V (n)
� (t; x)d�

6 K
XZ t

0

Z 1

0
dsdy(Gt+n�s�n (x; y)1[�r+n ;t�n )(s)�Gt�s(x; y))2

�E
Z
�Ms

 
mY
i=1

D�i
Ji(�)

X(s; y)

!2

d�

6 K

Z t

0

Z 1

0
(Gt+n�s�n (x; y)1[�r+n ;t�n )(s)�Gt�s(x; y))2 dy ds:

So, by (A.6) one gets

lim
n

sup
t;x

E

Z
�Mt

V (n)
� (t; x)d� = 0;

which finishes the proof of (4.24) fori = 3.
Let us now evalute In;4� (t; x). One writes

hn(t; x) =: E
Z
�Mt

(In;4� (t; x))2 d�

= E

Z
�Mt

Z t

�r

Z 1

0
(Pr?n (Gt�s(x; �)��(')(s; �))(y))2 dy dsd�

= E

Z
�Mt

Z T

0

Z 1

0
(Pr?n (Gt�s(x; �)1[0;t)(s)

�1�ms (�)��(')(s; �))(y))2 dy dsd�;

where Pr?n denotes the projection on the sub-space ofL2([0;1]) spanned byei; i >
n+ 1. We have to prove thathn; n 2 N converges to zero, uniformly with respect
to (t; x) 2 �T . To this end we shall first check that they are equally continuous and
then prove the pointwise convergence.
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By using the inequalityjkfk2�kgk2j 6 (kfk+kgk)kf �gk (in L2(�M
T ��T )

here), one gets

jhn(t; x)� hn(t
0; x0)j

6 K(h
1=2
n (t; x) + h

1=2
n (t0; x0))

�
 
E

Z
�M
T

Z T

0

Z 1

0
(Pr?n ((Gt�s(x; �)1[0;t)(s)

�Gt0�s(x0; �)1[0;t0)(s))1�Ms (�)

���(')(s; �))(y))2 dy dsd�

!1=2

6 K(h
1=2
n (t; x) + h

1=2
n (t0; x0))

�
 
E

Z
�M
T

Z T

0

Z 1

0
((Gt�s(x; y)1[0;t)(s)

�Gt0�s(x0; y))1�Ms (�)��(')(s; y))
2 dy dsd�

!1=2

6 K(h
1=2
0 (t; x) + h

1=2
0 (t0; x0)) � sup

(s;y)2�T

 
E

Z
�Ms

(��(')(s; y))
2 d�

!1=2

�
 Z T

0

Z 1

0
(Gt�s(x; y)1[0;t)(s)�Gt0�s(x0; y)1[0;t0)(s))2 dy ds

!1=2

;

which converges to zero asx0 ! x andt0 ! t.
Consequentlyhn; n 2 N, are equi-continuous. Let us now prove the point-

wise convergence. Clearly Pr?
n (Gt�s(x; �) � ��(')(s; �))(�) ! 0 asn ! 1 in

L2(0;1; dy). Sinceh0(t; x) <1, we may use the dominated convergence theorem
to get limn!1 hn(t; x) = 0. So we have proved (4.24) fori = 4. For i = 2;5
(resp.i = 1;6) the proof is analogous to that fori = 4 (resp.i = 3).

Let us now write

In;7� (t; x) = r(n)� (t; x) +H(n)
� (t; x);

with

r
(n)
� (t; x) =

nX
k=1

Z t

�r

Z 1

0
(Gt+n�s�n (x; y)1[�r+n ;t�n )(s)'

0(Xn(s; y))

�Gt�s(x; y)'0(X(s; y)))DM
� Xn(s; y)ek(y)dy dW k(s)
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and

H
(n)
� (t; x) =

nX
k=1

Z t

�r

Z 1

0
Gt�s(x; y)'0(X(s; y))

�(DM
� Xn(s; y)�DM

� X(s; y))ek(y)dy dW k(s):

Similar arguments as forV (n)
� (t; x) (based on (A.6) and the induction hypothesis

Xn ! X) show thatr(n)� (t; x) satisfies (4.24). A similar decomposition works for
In;8� (t; x). Let us now denote

F (n)
� (t; x) = DM

� Xn(t; x)�DM
� X(t; x):

We have proved that

F
(n)
� (t; x) = J

(n)
� (t; x) +

nX
k=1

Z t

�r

Z 1

0
Gt�s(x; y)'0(X(s; y))

�F (n)
� (s; y)ek(y)dy dW k(s)

+

Z t

�r

Z 1

0
Gt�s(x; y) 0(X(s; y))F (n)

� (s; y)dy ds;

whereJ (n)� (t; x) satisfies (4.24).
By taking expectations and by using the boundedness of'0 and 0 one gets

E

Z
�Mt

jF (n)
� (t; x)j2 d�

6 Kn +K 0E
Z
�Mt

Z t

�r

Z 1

0
G2
t�s(x; y)jF (n)

� (s; y)j2 dy dsd�

= Kn +K 0
Z t

0

Z 1

0
dsdyGt�s(x; y)E

Z
�Ms

jF (n)
� (s; y)j2 d�;

whereKn ! 0 asn!1.
Let us denote

fn(t) = sup
x
E

Z
�Mt

jF (n)
� (t; x)j2 d�:

Then, the above inequality gives

fn(t) 6 Kn +K 0
Z t

0
dsfn(s)

Z 1

0
G2
t�s(x; y)dy

6 Kn +K 00
Z t

0
fn(s)

1p
t� s

ds:
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One iterates this inequality and uses Fubini’s Theorem to get

fn(t) 6 Kn +K 000
Z t

0
fn(u)du:

Now, by Gronwall’s Lemma

fn(t) 6 Kn eK
000t 6 Kn eK

000T ! 0 as n!1: 2

5. Evaluation of the Covariance Matrix

The aim of this section is to prove Part (i) of Theorem 2.2. We shall apply
Theorem 3.1 to the functionalF = (X(t; x1); : : : ;X(t; xd)). Actually it suffices
to prove that

lim
"!0

"�kP ((det�)1=d < a
p
"; F 2 �c) = 0; 8c > 0; k 2 N; (5.1)

wherea = 4
3K0c (K0 is the constant in (A.3)),� is the Malliavin covariance matrix

attached toF and�c = f'2 > cgd.
It follows from Theorem 3.1 and the results in the preceding section that Part

(i) of Theorem 2.2 is a consequence of (5.1), which we now prove.
LetSr;z(t; x) be the solution of the equation

Sr;z(t; x) = Gt�r(x; z) +
Z t

r

Z 1

0
Gt�r(x; y)'0(X(s; y))

�Sr;z(s; y)W (dy;ds)

+

Z t

r

Z 1

0
Gt�s(x; y) 0(X(s; y))Sr;z(s; y)dy ds: (5.2)

Then, a standard uniqueness argument shows that

D(r;z)X(t; x) = Sr;z(t; x)'(X(r; z)): (5.3)

It follows that the covariance matrix� is given by

�ij =

Z t

0

Z 1

0
'2(X(r; z))Sr;z(t; xi)Sr;z(t; xj)dz dr:

In order to evaluate det� we have to get a lower bound for the quadratic form
associated to�. Let 1

4 minij jxi � xjj2 > " > 0 and� 2 R
d . One has

h��; �i =
Z t

0

Z 1

0
'2(X(r; z))

 
dX
i=1

Sr;z(t; xi)�i

!2

dz dr

>
dX

j=1

Z t

t�"

Z xj+
p
"

xj�
p
"
'2(X(r; z))

 
dX
i=1

Sr;z(t; xi)�i

!2

dz dr

> 2
3I(2)" (�)� 2I(1)" (�)
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with

I(1)" (�) =
dX

j=1

Z t

t�"

Z xj+
p
"

xj�
p
"
'2(X(r; z))

�
0
@X

i6=j
Sr;z(t; xi)�iSr;z(t; xj)�j

1
A dz dr

I(2)" (�) =
dX

j=1

Z t

t�"

Z xj+
p
"

xj�
p
"
'2(X(r; z))S2

r;z(t; xj)�
2
j dz dr:

Let us also denote

Qr;z(t; x) =

Z t

r

Z 1

0
Gt�s(x; y)'0(X(s; y))D(r;z)X(s; y)W (dy;ds)

+

Z t

r

Z 1

0
Gt�s(x; y) 0(X(s; y))D(r;z)X(s; y)dy ds:

Then

I(2)" (�) > 2
3I(4)" (�)� 2I(3)" (�);

with

I(3)" (�) =
dX

j=1

Z t

t�"

Z 1

0
'2(X(r; z))Q2

r;z(t; xj)�
2
j dz dr;

I(4)" (�) =
dX

j=1

Z t

t�"

Z xj+
p
"

xj�
p
"
'2(X(r; z))G2

t�r(xj ; z)�
2
j dz dr

and further

I(4)" (�) > I(6)" (�)� I(5)" (�);

with

I(5)" (�) =
dX

j=1

Z t

t�"

Z xj+
p
"

xj�
p
"
j'2(X(r; z))

�'2(X(t; xj))jG2
t�r(xj ; z)�2

j dz dr

I(6)" (�) =
dX

j=1

'2(X(t; xj))�
2
j

Z t

t�"

Z xj+
p
"

xj�
p
"
G2
t�r(xj ; z)dz dr:
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By (A.3),

I(6)" (�) > K0
p
"

dX
j=1

'2(X(t; xj))�
2
j :

Assume that(X(t; xj)) 2 f'2 > cg;1 6 j 6 d. Then

(det�)1=d > inf
j�j=1

h��; �i > 2
3K0C

p
"c�

3X
j=1

2 sup
j�j=1

jI(2j�1)
" (�)j:

So (4.1) will be proved as soon as we check that

E

 
sup
j�j=1

jI(2i�1)
" (�)jp

!
6 K"p(1=2+1=8); 8p > 5; i = 1;2;3; (5.4)

Let us evaluate I(5)" (�). By using Ḧolder’s inequality(q = p=(p � 1)) and the
fact thatj�j j 6 1 one gets

EjI(5)" (�)jp 6 K
dX

j=1

 Z t

t�"

Z xj+
p
"

xj�
p
"
G2q
t�r(xj ; z)dz dr

!p=q

�
Z t

t�"

Z xj+
p
"

xj�
p
"
Ej'2(X(r; z)) � '2(X(t; xj))jp dz dr

6 K"((3=2)�q)p=q � ("
p
")� (

p
")p=4 = K"p(1=2+1=8)

the last inequality being a consequence of (A.5) and of the Hölder property of
(t; x)! X(t; x)(1

2 � � in x and 1
4 � � in t; � > 0: see Walsh [13]).

We use now Burkholder’s inequality (i.e. (4.18)) and the boundedness of'0 in
order to get

E

������
Z t

t�"

Z 1

0
dz dr

 Z t

r

Z 1

0
Gt�s(x; y)'0(X(s; y))Sr;z(s; y)W (dy;ds)

!2
������
p

6 KE

�����
Z t

t�"

Z 1

0
dz dr

Z t

r

Z 1

0
G2
t�s(x; y)S

2
r;z(s; y)dy ds

�����
p

= KE

�����
Z t

t�"

Z 1

0
dy dsG2

t�s(x; y)
Z s

t�"

Z 1

0
S2
r;z(s; y)dy ds

�����
p

6 K

 Z t

t�"

Z 1

0
G2q
t�s(x; y)dy ds

!p=q Z t

t�"

Z 1

0
dy ds
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�E
�����
Z s

t�"

Z 1

0
S2
r;z(s; y)dy ds

�����
p

6 K"((3=2)�q)p=q
Z t

t�"

Z 1

0
dy dsE

�����
Z s

t�"

Z 1

0
S2
r;z(s; y)dy ds

�����
p

; (5.5)

the last inequality being a consequence of (A.5).
Further, by using the Equation (5.2) one gets

E

�����
Z s

t�"

Z 1

0
S2
r;z(s; y)dy ds

�����
p

6 K

�����
Z s

t�"

Z 1

0
G2
s�r(y; z)dz dr

�����
p

+KE

�����
Z s

t�"

Z 1

0
dz dr

Z s

r

Z 1

0
Gs�u(y; v)'0(X(u; v))

� Sr;z(u; v)W (dudv)
����
p

+KE

�����
Z s

t�"

Z 1

0
dz dr

Z s

r

Z 1

0
Gs�u(y; v) 0(X(u; v))Sr;z(u; v)dudv

�����
p

:

By using (A.1) it is easy to see that the first term in the right-hand side of
the above inequality is dominated byK"p=2. Then, by (4.5), the second term is
dominated by

K"((3=2)�q)p=q
Z s

t�"

Z 1

0
dz drE

�����
Z u

t�"

Z 1

0
S2
r;z(u; v)dudv

�����
p

6 K"((3=2)�q)(p=q)+1 = K"(p�1)=2;

the last inequality being a consequence of (4.17)
The third term (containing 0) is dominated in the same way. We conclude that

E

�����
Z s

t�"

Z 1

0
S2
r;z(s; y)dy ds

�����
p

6 K"(p�1)=2: (5.6)

We plug this in (5.5) in order to get

E

������
Z t

t�"

Z 1

0
dz dr

 Z t

r

Z 1

0
Gt�s(x; y)'0(X(s; y))Sr;z(s; y)W (dy;ds)

!2
������
p

6 K"p�2: (5.7)

An analogous (but simpler) argument shows that (5.7) holds also if we replace
'0 by 0 andW (dy;ds) by dy ds. We conclude that

EjI(3)" (�)jp 6 K"p�2 6 K"p(1=2+1=8):
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Finally, by using Schwarz’s inequality and (4.6) we prove that

EjI(1)" (�)jp 6 K"p�1

and the proof is complete.

6. Strict Positivity of the Density

We now prove Part (ii) of Theorem 2.2. Lett > 0, and 06 x1 < x2 < � � �
< xd 6 1. We shall use the criterion from Theorem 3.3, with

F = (X(t; x1); : : : ;X(t; xd)):

First note that it suffices to prove the result fory0 2 f' 6= 0gd \ supp(P � F�1),
since that result implies that

f' 6= 0gd � supp(P � F�1):

Indeed, if that inclusion would not hold, applying the result aty0 2 f' 6= 0gd \�,
where� denotes the boundary of the set supp(P �F�1), would lead to 0< p(y0) =
0, sincep is continuous

For eachn > 1;1 6 i 6 d, let

hin(r; z) = cin1[t�2�n;t](r)1[(xi�2�n)_0;(xi+2�n)^1](z);

where

(cin)
�1 =

Z t

t�2�n

Z (xi+2�n)^1

(xi�2�n)_0
Gt�s(xi; y)dy ds:

We now defineT n
z by (3.3), and

�in(z) = X(t; xi) � T n
z ; 1 6 i 6 d:

It remains to show that the sequence of random vectorsf�n(z)gn2N indexed by
z satisfies the conditions of Theorem 2.3, namely (i) and (ii). We first proceed to
the

Proof of(i). Define

un;iz (s; x) =
@

@zi
X(s; x) � T n

z :
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We have

un;iz (t; x) = �n;iz (t; x) +

Z t

0

Z 1

0
1[t�2�n;t](s)Gt�s(x; y)

� 0(X(s; y) � T n
z )u

n;i
z (s; y)dy ds

+

Z t

0

Z 1

0
1[t�2�n;t](s)Gt�s(x; y)'0(X(s; y) � T n

z )u
n;i
z (s; y)

�[W (dy;ds) + hz; hn(s; y)idy ds]; (6.1)

where

�n;iz (t; x) =

Z t

0

Z 1

0
Gt�s(x; y)'(X(s; y) � T n

z )h
i
n(s; y)dy ds:

We note that Equation (6.1) is obtained by integratingDr;zX(t; x) � T n
z against

hin(r; z), and using Fubini’s Theorem to commute the integrals. The coeffi-
cient 1[t�2�n;t](s) is due to the facts thathin(r; z) = 1[t�2�n;t](r)h

i
n(r; z), and

Dr;zX(s; y) � T n
z = 0 for s < r.

From (6.1), Burkholder’s and Ḧolder’s inequalities and the boundedness of'0
and 0, we deduce the estimate

Ejun;iz (t; x)jp

6 KEj�n;iz (t; x)jp

+KE

2
4 Z t

t�2�n

Z 1

0
G2
t�s(x; y)jun;iz (s; y)j2 dy ds

!p=2
3
5

+KE

" Z t

t�2�n

Z 1

0
Gt�s(x; y)(1+ jhz; hn(s; y)ij)

� jun;iz (s; y)jdy ds

!p#

6 KEj�n;iz (t; x)jp

+K�(p=2)�1
n

Z t

t�2�n

Z 1

0
G2
t�s(x; y)Ejun;iz (s; y)jp dy ds

+K�p�1
n

Z t

t�2�n

Z 1

0
Gt�s(x; y)(1+ jhz; hn(s; y)ij)

�Ejun;iz (s; y)jp dy ds; (6.2)
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with

�n =

Z t

t�2�n

Z 1

0
G2
t�s(x; y)dy ds

6 c
p

2�n;

�n =

Z t

t�2�n

Z 1

0
Gt�s(x; y)(1+ jhz; hn(s; y)ij)dy ds:

By using (A.1) one gets

Z t

t�2�n

Z 1

0
Gt�s(x; y)jhn(s; y)jdy ds

6 K
dX
i=1

cin

Z t

t�2�n

Z xi+2�n

xi�2�n

1p
2�(t� s)

e�(jx�yj
2=2(t�s)) dy ds

6 K
dX
i=1

cin

Z t

t�2�n

Z xi+2�n

xi�2�n

1p
2�(t� s)

e�(jxi�yj
2=2(t�s)) dy ds = Kd:

Hence, forjzj 6 �,
�n 6 K(2�n + �):

It follows that

Ejun;iz (t; x)jp 6 KEj�n;iz (t; x)jp

+K(�
p=2
n + �pn) sup

(s;y)2[0;t]�[0;1]
Ejun;iz (s; y)jp:

Forn large enough and� small enough

K(�p=2
n + �pn) 6

1
2

and then

sup
(t;x)2[0;T ]�[0;1]

Ejun;iz (t; x)jp 6 2K sup
(t;x)2[0;T ]�[0;1]

Ej�n;iz (t; x)jp: (6.3)

Note that

�n;iz (t; x) 6 Kk'k1 (6.4)

and fori 6= j,

�n;iz (t; xj) 6 k'k1cin
Z t

t�2�n

Z (xi+2�n)^1

(xi�2�n)_0
Gt�s(xj ; y)dy ds: (6.5)
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By using (A.1) it is easy to check thatcin 6 K23n=2 and forj 6= i

Z t

t�2�n

Z (xi+2�n)^1

(xi�2�n)_0
Gt�s(xj ; y)dy ds 6 Ke�c2

n(xi�xj)2
;

for somec < 1.
It follows that, fori 6= j; �in(t; xj)! 0 asn!1.
It then follows from (6.3), (6.4) and (6.5) that

sup
(t;x)2[0;T ]�[0;1]

Ejun;iz (t; x)jp 6 K; 8n 2 N; jzj 6 �:

A similar argument as used above shows that

Ejun;iz (t; x)� �n;iz (t; x)jp 6 K(�
p=2
n + �pn) sup

(s;y)2[0;t]�[0;1]
Ejun;iz (s; y)jp

6 K 0(�p=2
n + �pn):

Note that whenz = 0, the termhz; hni in �n vanishes, and so we get

Ejun;i0 (t; x)� �n;i0 (t; x)jp 6 K2�(np=4): (6.6)

Since

�n;i0 (t; xi) = '(X(t; xi)) +

Z t

0

Z 1

0
Gt�s(xi; y)

�['(X(s; y)) � '(X(t; xi))]h
i
n(s; y)dy ds;

we have that

E

�����det[(�n;i0 (t; xj))i;j ]�
dY
1

'(X(t; xi))

�����
p

! 0; as n!1: (6.7)

Sincey0 2 f' 6= 0gd \ supp(P �F�1), there existsr0 > 0 such that80< r 6 r0,

B(y0; r)�f' 6= 0gd; and P (F 2 B(y0; r)) > 0:

Let

c :=
1
2

inf
y2B(y0;r0)

dY
1

'(yi):

Then

P

 
fjF � y0j 6 rg \

(
dY
1

'(X(t; xi)) > 2c

)!
> 0; 0< r 6 r0;
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hence from (6.6) and (6.7)

lim sup
n!1

P (fjF � y0j 6 rg \ fdet@z�n(0) > cg) > 0; 0< r 6 r0: 2

Proof of(ii) for @z�n(z). Let vn;iz denote the solution of the affine equation

vn;iz (t; x) = �n;iz (t; x) +

Z t

0

Z 1

0
Gt�s(x; y)'0(X(s; y) � T n

z )

�vn;iz (s; y)hz; hn(s; y)idy ds: (6.8)

Define

I(f; !) =

Z t

0

Z 1

0
Gt�s(x; y)'0(X(s; y) � T n

z )

�f(s; y)hz; hn(s; y)idy ds

and note that

kI(f; !)k1 6 k'0k1jzjkfk1
6 �k'0k1 � kfk1; ! 2 
; jzj 6 �:

Hence for� small enough,f ! I(f; !) is a contraction for all! 2 
. Consequently
equation (6.8) has a unique solution, and furthermore from (6.4), (6.5)

jvn;iz (t; x)j 6 Kj�n;iz (t; x)j
6 K 0; n 2 N; jzj 6 �: (6.9)

Writing the equation for the random fieldun;iz �vn;iz , and using similar inequalities
as in (6.2), we deduce that

Ejun;iz (t; x)� vn;iz (t; x)jp

6 K(�
p=2
n + 2�np) sup

(s;y)2[0;t]�[0;1]
Ejun;iz (s; y)jp

+K�pn sup
(s;y)2[0;t]�[0;1]

Ejun;iz (s; y)� vn;iz (s; y)jp:

Now since for� small enoughK�pn 6
1
2, and

sup
jzj<�

sup
(s;y)2[0;t]�[0;1]

Ejun;iz (s; y)jp
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is bounded, we have that

sup
jzj6�

sup
(s;x)2[0;t]�[0;1]

Ejun;iz (s; x)� vn;iz (s; x)jp 6 K�p=2
n

6 K2�(np=4): (6.10)

Moreover

Ejun;iz (t; x)� un;iz0 (t; x)jp

6 Ej�n;iz (t; x)� �n;iz0 (t; x)jp

+K(�
p=2
n + �pn) sup

(s;y)2[0;t]�[0;1]
Ejun;iz (s; x)� un;iz0 (s; x)jp

+K(�
p=2
n + �pn) sup

(s;y)2[0;t]�[0;1]
E(jun;iz (s; y)(X(s; y) � T n

z

�X(s; y) � T n
z0)jp):

From Schwarz’s inequality, the fact thatK(�
p=2
n + �pn) 6

1
2, and the above

bound forun;iz , we deduce that

sup
(t;x)2[0;T ]�[0;1]

Ejun;iz (t; x)� un;iz0 (t; x)jp

6 sup
(t;x)2[0;T ]�[0;1]

Ej�n;iz (t; x)� �n;iz0 (t; x)jp

+K sup
(t;x)2[0;T ]�[0;1]

(EjX(t; x) � T n
z �X(t; x) � T n

z0 j2p)1=2

and the same inequality holds forvn;iz (t; x) � vn;iz0 ; (t; x).
It is not hard to show that

sup
(t;x)2[0;T ]�[0;1]

E(jX(t; x) � T n
z �X(t; x) � T n

z0 j2p) 6 Kjz � z0j2p

and the same inequality holds for�n;iz (t; x)� �n;iz0 (t; x).
These inequalities show that

Ejun;iz (t; x)� un;iz0 (t; x)jp +Ejvn;iz (t; x)� vn;iz0 (t; x)jp 6 kjz � z0jp:
This, together with (6.10), shows that

E

 
sup
jzj6�

jun;iz (t; x)� vn;iz (t; x)jp
!
! 0;

asn!1. In view of (6.9), (ii) is proved for@z�n(z). 2
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Proof of (ii) for @2
z�n(z). This proof is analogous to the previous one, but the

computations are more involved. Let us just write the equation for the quantity of
interest and the main steps. Define

un;i;kz (t; x) =
@

@zk
un;iz (t; x); vn;i;kz (t; x) =

@

@zk
vn;iz (t; x);

�n;i;kz (t; x) =
@

@zk
�n;iz (t; x):

We have

un;i;kz (t; x)

= �n;i;kz (t; x)

+

Z t

t�2�n

Z 1

0
Gt�s(x; y)'0(X(s; y) � T n

z )u
n;i
z (s; y)hkn(s; y)dy ds

+

Z t

t�2�n

Z 1

0
Gt�s(x; y)un;iz (s; y)un;kz (s; y)[ 00(X(s; y) � T n

z )dy ds

+'00(X(s; y) � T n
z )(W (dy;ds) + hz; hn(s; y)idy ds)]

+

Z t

t�2�n

Z 1

0
Gt�s(x; y)un;i;kz (s; y)[ 0(X(s; y) � T n

z )dy ds

+'0(X(s; y) � T n
z )(W (dy;ds) + hz; hn(s; y)idy ds)]

and a similar (simpler) equation forvn;i;kz .
One first shows that

sup
jzj6�

sup
(t;x)2[0;T ]�[0;1]

Ejun;i;kz (t; x)� vn;i;kz (t; x)jp ! 0;

asn!1, boundvn;i;kz (t; x), and estimate the differencesun;i;kz (t; x)�un;i;kz0 (t; x)

andvn;i;kz (t; x) � vn;i;kz0 (t; x). The result follows as in the previous step. 2

Appendix

We present here elementary facts related to the kernelGt�s(x; y).

Gt�s(x; y) 6 Ket;s(x; y) 6 K 0Gt�s(x; y); (A.1)

whereK;K 0 are some constants andet;s(x; y) is the heat kernel

et;s(x; y) =
1p

2�(t� s)
exp

 
�jx� yj2

2(t� s)

!
:
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The first inequality follows by direct calculation and the second one by taking into
account the term corresponding ton = 0 only in (2.4).

Let f :
 � R+ � [0;1] ! R be a measurable function. Then, for every";
l > 0; x 2 [0;1]Z t

t�"

Z
(x�l;x+l)c

jGt�s(x; y)f(s; y)j2 dy ds 6 Kkfk2
2 e�(l

2=2"): (A.2)

SinceZ t

t�"
dsp

2�(t� s)

Z x+
p
"

x�p"
et;s(x; y)dy

>

Z t

t�"
1p

2�
p
t� s

�
1� t� s

"

�
ds =

4
p
"

3
p

2�
;

one hasZ t

t�"

Z x+
p
"

x�p"
G2
t�s(x; y)dy ds > K0

p
"; 8x 2 [0;1]; " > 0: (A.3)

A simple calculation based on (A.1) shows that forq < 3
2

sup
(t;x)2�T

Z t

0

Z 1

0
G2q
t�s(x; y)dy ds <1 (A.4)

and, for 06 t� " 6 tZ t

t�"

Z 1

0
G2q
t�s(x; y)dy ds 6 K"(3=2)�q: (A.5)

Finally we give a discretization forGt�s(x; y). Lett+n = (l+1)=nandt�n = l=n,
for t 2 [l=n; (l + 1)=n). Then

lim
n!1 sup

t;x

Z t�n

0
(Gt+n�s�n (x; y)�Gt�s(x; y))2 dy ds = 0: (A.6)

Proof of(A.6). Let � > 0. One writes

Z t�n

0

Z 1

0
(Gt+n�s�n (x; y)�Gt�s(x; y))2 dy ds 6 "n(�) + "0n(�);

with

"n(�) = 4
Z t�n

t�n��

Z 1

0
(G2

t+n�s�n (x; y) +G2
t�s(x; y))

2 dy ds

and

"0n(�) =
Z t�n��

0

Z 1

0
(Gt+n�s�n (x; y) �Gt�s(x; y))2 dy ds:
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Then"n(�) 6 K�1=2. On the other hand

jGt+n�s�n (x; y)�Gt�s(x; y)j 6 sup
���� @@uGu(x; y)

���� � 2
n
;

with the sup overu 2 [t� s; t+n � s�n ].
An easy calculation shows that���� @@uGu(x; y)

���� 6 K(u�(3=2) + u�(5=2)) 6 K��(5=2) for u > �:

It follows that"0n(�) 6 K��5 � n�2. So

sup
t;x

Z t+n

0

Z 1

0
(Gt+n�s�n (x; y)�Gt�s(x; y))2 dy ds 6 K(�1=2 + ��5n�2):

By takinglimn!1 first and letting� & 0 then, (A.6) is proved. 2
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