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Abstract. We consider the parabolic SPDE
QX (t,7) = 2 X (t,x) + P(X(t,2)) + p(X(t,2))W (t,2), (t,2) € Ry x [0, 1],
with the Neuman boundary condition

0xX o0X
8_m(t’0) = %(tal) =1

and some initial condition.

We use the Malliavin calculus in order to prove that, if the coefficigngmd« are smooth and
¢ > 0, then the law of any vectqiX (¢, z1), .. ., X (t,24)),0 < 1 < - - < zq4 < 1, has a smooth,
strictly positive density with respect to Lebesgue measure.
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1. Introduction

Consider the following stochastic partial differential equation

0X
W(taw)
_ PX . 0<z
- W(tax) + Z,b(X(t,ZE)) + (p(X(t,x))W(t,x), 0 < t, (11)

with boundary conditions

X(0,z) = Xo(x);
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This equation can be rigorously formulated as an integral equation
1 t rl
X(ta) = [ Gulen)Xomdy+ [ [ Gron)p(X(s,)) dy s

+f t / G () p(X (5,) W (dy, ), (1.2)

whereG is the fundamental solution of the heat equationfanx (0, 1) with
Neumann boundary conditiond/] is the white noise ot x [0, 1] andy andz)
are smooth and bounded functions.

The aim of this paper is to prove that for any> 0,d € N and any 0<
T < - < x4 < 1, the law of (X (¢, z1), ..., X (¢,24)) € R has a smooth and
strictly positive density with respect to Lebesgue measure on tHgsgt0}¢. This
may be seen as a regularity result for the marginal distributions of'tf@ 1])-
valued random variabl& (¢, -).

In order to prove this result we use the Malliavin calculus associated to the
white noiseW. We refer the reader to lkeda and Watanabe [5] for a general
presentation of Malliavin’s calculus and Nualart and Zakai [11] for the special case
of a space-time white noise. With similar aims and in the frame of two-parameter
stochastic processes also, the same machinery has already been used by Carmona
and Nualart [3] and Nualart and Sanz [10]. Anyway the situation is rather different
here. Unusually, there is a difficulty in establishing the differentiability@t, 1)
as a Wiener functional and th&” evaluations for the associated Sobolev semi-
norms. This difficulty comes from the singularity ef— G;_(z,y) ass 1 t,
and the equations satisfied by the Malliavin derivatives contain this singularity in
their initial condition. On the other hand, the relative ease with which we obtain
the evaluations of the covariance matrix is due to our strong local nondegeneracy
assumption on the diffusion coefficient.

Our proof of the strict positivity is inspired by an analogous result for SDEs due
to Ben Arous and gandre [2], see also Millet and Sanz-&§7] for the case of
hyperbolic SPDES, Aida et al. [1] and Nualart [8] for the case of random variables
defined on an abstract Wiener space. However, the abstract results do not apply
directly here, essentially because our SPDE cannot be written in Stratonovich form:
this is due to the infinite trace of the covariance operator of white noise. On the
other hand, our situation is a sense simpler than those considered in the above
references, since we are in a locally elliptic situation.

The existence of the density for the law &f(¢, z) has already been proved
by Pardoux and Zhang Tusheng [12] under a weaker nondegeneracy assumption.
However, we have not been able to prove our results under the same assumption.

The paper is organized as follows. In Section 1, we state our main result.
In Section 2, we introduce the tools from the Malliavin Calculus, we give a local
criterion for the existence of a smooth density and a condition for its strict positivity.

In Section 3, we study the smoothness of the solufidm, ) of our SPDE. In
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Section 4, we estimate the Malliavin covariance matrix. Finally, in Section 5, we
prove the strict positivity of the density.

2. Statement of the Main Result

For the sake of making some of the notations below unambiguous, let us assume
that our probability spacg?, 7, P) is defined as follows

Q0 ={p e C([0,T] x [0,1]),(0,z) = ©(t,0) = 0},
F is the Borelo-field of 2, and P is such that the canonical process
{(Wie(w) £ w(t, z); (t,2) € [0,7] x [0,1]}

is a Brownian sheet undd®, i.e. it is a zero mean Gaussian continuous random
field with correlation given by

E(W; Wsy) = (tAs) X (xAy).

LetF; = o(W(A); A € B([0,t] x [0,1])) VN where\ is the class of”-null
sets inF, andP denote ther-algebra ofF;-progressively measurable subsets of
Q% [0,T].

Let X = (X (¢,z)) be the solution of the parabolic SPDE

2
O (ta) = T 00) + 9(X(1,2)
+o(X (t,2))W (t, ), (t,z) € [0,T] x [0,1], (2.1)

with initial condition X (0,z) = Xo(z),0 < z < 1, whereXy € C(][0, 1]), and
boundary conditions

0X 0X
(1,0 = (1,2 =0; t€[0.T]

This means tha satisfies the following: for any € C?([0,1]) such that
f(0) = f(1) =0

[ xei@as = [ X))
L

1
[ [ (s, 1) (a0, (2.2)

2
X (s, x)%(az) + (X (s,z))f(z)| dzrds




30 VLAD BALLY AND ETIENNE PARDOUX

or equivalently (see Walsh [13])

x(2) = [ Guley)Xol)dy+ [ [ Guap)p(x(s,) dyos

4[] oo, )W (@, ), (2.3)
where
s — 1 —2n)?
Gi(z,y) = \/%wt Z {exp(—%)
+ exp (—(y+$4—t_2n)2> } (2.4)

is the fundamental solution of the heat equationfgnx (0, 1) with Neumann
boundary conditions.

REMARK 2.1. One could consider Dirichlet boundary conditions (Xét, 0) =
X(t,1) = 0, fort € [0,T]) instead of the Neumann boundary conditions (i.e.
(0/0x)X (t,0) = (0/0x)X (t,1) = 0). In this case the Green function is

s — 1z —2n)?
Gi(z,y) = \/% > {exp<_%>

—exp (_(y+x4—t—2n)2> } . (2.5)

All the results in the paper hold in this case also, with minor modifications.
Actually we do not use the explicit form @f but only the properties (A.1), (A.3),
(A.4) from the Appendix and thedlder continuity of(t, z) — X (¢, z) (see Walsh
[13]) which hold forG in (1.5) as well.

We assume that the coefficients fulfill the hypothesis

v, R — R are infinitely differentiable functionswvhich are bounded
together with their derivatives of all order (2.6)

Our result is the following

THEOREM 2.2.Forevery0 < z1 < 22 < --- < 24 < 1,¢ € (0, 7], the law of
(X(t,z1),...,X(t,z4)) admits a strictly positive smooth densitgpn {¢ # 0}¢,
that is there existp € C°({p # 0}, R) such that
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(i) Foreveryf € Cy(R?, R) with suppf C {¢ # 0}¢
E(f(X(t,71),...,X(t,1q)) = 9 f(y)p(y) dy. (2.7

(i) p(y) >0, Vye {p#0}

Note that in the case of Dirichlet boundary conditions Theorem 2.2 would be
trueonlyifO< 2y < --- < zg < 1.

REMARK 2.3. The densitiep,,, m € N, which we shall use as approximations

of p (see the proof of Theorem 3.1) are not equally bounded, so we can say nothing
about the boundednessmafNevertheless, under the strong ellipticity assumption
lp] = ¢ > 0, itis clear from our proof that and all its derivatives are bounded.

The proof of Theorem 2.2 goes through several steps contained in Sections 3,
4,5 and 6. Note that (A.1)..., (A.7) refer to inequalities which are stated and
proved in the Appendix, at the end of the paper.

3. The Malliavin Calculus

Let us recall the objects involved in the Malliavin calculus associatddl tadVe
denote byS the space of simple (or smooth) functionals, that is functionals of the
form

with f € C°°(R™) with at most polynomial growth at infinity, ankh, ..., A,

is an orthonormal sequence Irf(A; dt dz), whereA; =: [0,¢] x [0, 1], and for
h € LZ(AT)

=: /OT /Olh(s,y)W(dy,ds).

For ' € S one defines the first order Malliavin derivative to be fi#éA r)-valued
random variable

Délt,m)F = ; alf(W(hl)a SRR W(hm))hz(ta .TI),

whered; = 9/0z".
The derivative of ordek of F is the L?(A%.)-valued random variable given by

DFF = Z Oy 05 f(W(h1), ..., W (hm))hiy(a) ... hi, (ag),

o
Uyeenylp= =1
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where
a=(ag,...,aq), a; = (ri,z;) € Ar; 1<i<k.
Forp > 1 andk € N the spacéD, . is the completion of5 with respect to the
seminorm
k .
1P|k = (EIFI)Y? + 3 (B|D'F )7,
i=1

with

|D'F|5 = /A |D.F|?da (do denotes Lebesgue measure
T

We also define

Do = () [ Dpuk-

p>1keN

On the other hand one defines Sithe Ornstein—Uhlenbeck operator

m

LF =Y [0; 0if(W(h1),..., W(hn))
=1
—0; f(W (1), ..., W (hy))W (hy)).

This operator is closable arl,, C Dom(L) C L?(Q,F, P) (see lkeda and
Watanabe [5]). The covariance matrix associatdditthe matrixr = (0*)1<; j<a
defined by

o = (DYF!, DYFIY);  1<i,j <d.

We shall use the following ‘localized’ variant of Malliavin's absolute continuity
theorem,

THEOREM 3.1.Let T, C RY,m € N, be a sequence of open sets such that
[y, CTypr and letF: Q — R? be a measurable functional. F € (D,,)? and

E((deto) 1, Fel,,) <oo; VYg=>=1, meN, (3.1)

then P o F~! has a smooth density dh= J,, T, i.e., there existp € C°(T)
such that

B(f(F) = [ f@p)dr, 32)
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for any f:R¢ — R which is bounded, measurable and such thaipf C T.

Proof. Let {f,,m € N} be a sequence i (R?) such that 0< f,, <
1, fm|Fm =1 andfm|p$n+l =0.

Defineu/ = DFJ, G = f,,(F)(DF?, DF’)andA = {F € T',,}. With these
notations, the result follows from Theorem 2.1.4 in Nualart [9]. O

We now give a criterion for the strict positivity of the density at a given point
Yo € RY.

We first state a technical lemma, which can be found e.g. in Aida et al. [1] and
Nualart [8].

LEMMA 3.2. For any g > 0,6 > 0, there exist constants p > 0 such that any
mapping
g R - R,

satisfying
(4) |detg’(0)| >

(75)  sup(lg(@)] + lg'(x)| + 19" (z)]) < B

|z <o

)

R

is a diffeomorphism from a neighborhood®€tontained in the balB(0, c) onto
the ball B(¢(0), p).

To eachz = (2%,...,2%) € RY, andh = (hY,..., %) € H? = L?((0,T) x
(0,1))¢, we associate a transformati®h on €2, defined by

d t rx .
[Tz(w)](t,x):w(t,x)+;zi/o/O 1 (s,) dy ds.

In the next statement, we shall consider a sequ@hg?nzl,zwcHd, and we
define

d t rx .
o (w)](t,x):w(t,x)—{—;zi /o /o B (s,y) dy ds. (3.3)

THEOREM 3.3.Let F' be ad-dimensional random vector, such that for some
p € C(R?) andT an open subset &

1r(y)P o F~*(dy) = 1r(y)p(y) dy.

We assume that there exists a sequeigg,—12,... CH 4 such that the associated
sequence of random fields defined by

dn(z) ' =FoT)}

satisfies the two following conditions, for some= T, ¢, §, k > O:
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(i) limsup, .. P({|F — yol < 7} N {detd. ¢, (0) > c}
(i) 1im o0 P (SUR,) <5{110= 8 ()| + 02¢m(2)]] < k) =1

Thenp(yo) > 0.
Proof. We define

)>0 Vr > 0.

Ay = {|F _y0| < T} ﬂ{detaz¢n(0) 2 C}
N { sup([|9:¢n ()| + 1826 (2)) < k} :

2| <8
It follows from (i), (ii) that for each- > 0, there exists € N such that
(i) P(A,) > 0.

From now ony andn will be fixed, such that (iii) holds. Note that oy,

sup |pn(2)| < k' = |yo| +r + k.

|z|<é

It then follows from Lemma 3.2 that there exists> 0 such that for allv € A,,,
the mapping

z = pn(z,w)
is a diffeomorphism between an open neighborh&p(l) of 0 in R?, contained
in some ballB(0, R), and the ballB(F, «). We can and do assume thak «,

sincea depends only on, §, k, andr can be chosen arbitrarily small, and ttiais
chosen small enough such that A,, andz € V,(w) imply that

detod, ¢, (z,w) >

I\)In

From Girsanov’s Theorem, for eaehe N, z € R?

(Po F71)(d2) = en(2)(P 0 ¢,)(d2),

where
d

1 i
en(z) = exp|(z, W(hn)) — > ZzithnH%Z((O,T)X(O,l))
1

Letup(z) = (2r) (2 exp(~|2[2/2), andf € G (R R,.).
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We have
BU(P) = [ 9(2)Blea(2)f(gn ()] c:
B ([ #)en(2)f(6n()) i
B ([ 9@ (6u2) d)
gl / [ 10 >(|dezfaﬁ) () 0
[ s

\Y

\Y%

\Y%

where

0n(y) = E ((o(IF — ys o (W) (6, 0))i ).

@: Ry — [0, 1] is continuous, b, < ¢ < Lo, andi(r) = inf(r, 1). 6, (yo) > 0
follows easily from (i) and the fact thdf| F' — yo| < r} CA,,.
But

y= 2P = s o (g ) ()

is a.s. continuous, and bounded by 1.
Hence form Lebesgue’s dominated convergence thedigm,continuous.
Finally, if suppf C T,

E(F)= | flyp(y)dy> | f(y)0a(y)dy.
RrRd R4
The theorem is proved. |

4. Differentiability of the Solution

The aim of this section is to prove th#t¢, x) € D, foreach(t, z) € [0, 7] %[0, 1].
To this end we shall construct a sequence of simple functionals in the following
way. Let{e; }ren, be an orthonormal basis &f(0, T') and

_ /t /1 e (y)W(dy,ds), kEN.
0 Jo
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Then, for everyP ® B([0, 1)) measurable, square integrable procgs® x
[0,7] x [0,1] — R, one has

/Ot /olf(w, s, )W (dy, ds)

B ,i/ot (/olf(‘”’svy) e (y) dy) dW* (s). (4.1)

This is easily seen fof (s,y,w) = g(w)1yp(s)1a(y) where 0< t < ' <
T, A € B([0,1]) andg is aF; measurable random variable. Then one takes linear
combinations and.? limits.

The Equation (2.3) may be written in the form

X(t,z)

-/ " Gyl Xoly) dy + / t / "G )X (5,9)) dy s

3 [ ([otnaxeamans) are. w2
2 o o t—s\T, Y)p 5,9)) Ck\y) Uy S). .

The approximations are constructed in the following way: foe N and
t € [i/n, (i + 1)/n) we denote

+1
t::z—i-

1
and ¢, = e
We also set
= () ()
ik n n

T 1
:/o A € (Y) Lji/n,i+1/n)(s)W (dy, ds)

and define
Xn(oax) = XO(:E)’ x € [07 1]

(i

= /01 Gyn(z,y) Xo(y) dy
1

+ ;) 1/7%/0

n -1 .

DI

k=014=0

1

)
G (141/n)—(i/n) (T, Y) P (Xn (E’y» dy

)
G (141/n)—(i/n) (T, Y)p (Xn (E’y>> e (y) dy - A7y (4.3)
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and
Xn(t,z) = Xu(t,,x); 0<t<T, z€][01].

It is then clear thak,, (¢, z) solves the equation

1
Xn(t,x) = /O G, (z,) Xo(y) dy
tn 1
+/O /o Gﬁz—srf (z,y)¢(Xn (s, ,y)) dyds

S [ e X (s, dy dW*(s);
w2 [ ) Gt o070 4(0) )

0<tg<T, z€l01]. (4.4)

It is also clear thatX,,(¢,z) € S. Starting with (4.3) we may calculate the
derivatives ofX, (¢, z) and further — by taking limits — those &f (¢, ). In order
to state the equations satisfied by the derivatives we have to introduce some more
notation.

Fora = (aa,...,ay) € A we denote

la| = M (the length of«).
Leto; = (r4,2) € [0,T] x [0,1],1 < ¢ < M, and letip be such that;, > r;

for everyi # i (such aniy exists for everyy € AM outside a Lebesgue null set).
We denote

C:X = ('Fa 2) = (Tioazio) = 4y, (45)
a = (al, e ,aio_l, CMZ'O+1, e ,aM).
Then we define
M m
T (o)t o) =Y > ™ (Xn(t,,2) [[ DEIXn(t, ,2), (4.6)
m=1 i=1

where the second sup is taken over all the partitions, . . ., p,, of lengthm of
a, and

A (@) (t,x) = TP (@) (t,2) — ¢ (Xu(ty, @) DY Xt )

[0

M m
= 3 S oM™ (Xa(ty,2) [] PP X0t 2). (4.7)
m=2

=1
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Let us start with (4.3) and calculate explicitly the first order derivatives. One
has

~

1n

- 1
€ (2)Lii/n,iv1/m) (1) / G (141/m)—(i/n) (%, Y)
i=0k 0

X w(Xn (%y» e (y) dy
1

- n [-1

1
Y Lisnarrmy (M) D Y / G (141/n)—(i/n) (75 Y)
i=0 k=0j=i+1"9

0

-1

-1 1
+> Lifmiram(r) D2 1n / G(iy1/m)-(/m) (@, Y)
i=0 j=itl 0

X ' (Xn (%y» D, X <%y> dy,

with the convention thaEl-j =0.
]7
The above formula shows that

l ,
_Dg;.’z)Xn <E,Z> = 0 |f T';LF > l/n
On the other hand, since
l l
Xn(t,z) = X, <—,$> for —
n n n

one may rewrite the above equation in the form

Dj, X (t, )

k=0 o "

n tn 1 , B
+3 [ [ G @00 (Kl )
k=0 Tn 0
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t, 1
+/+ /0 Gt sz (@,9)¢' (Xn(sn,9))

XD%r,z)Xn(S;m y)dyds for Tszr <ty (4.8)

n

One checks by induction that the derivatives of ortieof X, (¢, z) solve the
equations

DMX.(t,x) =0 if ¢ <rf

n

and

= Z e (2) Gt’“—f; (x,y)Fdn)((p)(F;’y) e (y) dy
n = 1
’ 2 T () (5= .
+,€§,/,~g /o Gtz (2, 9)T0" (0) (s, y) € (y) dy AW ()

t, 1
[ ] G et W) s ) dyds, for g > vk, (4.9)
o JO T

wherea = (7, zZ) anda are defined in (4.5).

We now write the equations satisfied by the derivatives(¢f, ). Actually
D(lr,z)X(t,x) (resp.DM X (t,z)) is defined to be the solution of Equation (3.10)
(resp. (3.11)) and their significance as ‘Malliavin derivativesxat, =)’ will be
established after proving the convergence in Proposition 4.3 below.

(r,z)X(ta QI)

N

D
© 1
=Y @) [ Girloy)elX () enty) dy
k=0
+i/t/1G (z,y)¢ (X (s y))D1 X(s,y) e (y)dyde(s)
k=0’r 70 f=sih ’ (r,2) s %

t rl
+/ / Gt,s(x,y)@b'(X(s,y))D(lr »X(s,y)dyds, for r<t
r JO ’

=0 for r>t (4.10)

and, fora such thata| = M
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1
= el2) /0 Gt #(z,y)a(0) (7, y) e (y) dy
! ,i/t /ol Gis(z,9)Ta(p) (5,y) ex(y) dy AW (s)

t 1
+/ / Gi—s(z,y)To(¥)(s,y)dyds, for 7 <t
7 JO
=0 for 73>t (4.11)
with
Z Z(p HD‘MX(S Y), (4.12)
i=1

where the above second sum is extended over all the partitions , p,,, of .

REMARK 4.1. In order to see that (4.11) is a true equation which defines recur-
sively DM X (t, z) one writes

Ta(0)(5,y) = Aa(0)(s,9) + ¢ (X (s,9)) DY X (s,y), (4.13)
with
M m
Da(@)(s,y) = D23 ™ (X (s,9) [] DEX (s, ). (4.14)
m=2 i=1

REMARK 4.2. Coming back td¥ (dy,ds) (by means of (3.1)) one may write
Equations (4.10) and (4.11) in the form

1

Dy

r,z)

= G (2, 2)p(X (r,2))

X(t, )

+/ / Gt s 33 y (S y))D( )X(Say)W(dyadS)

t
[ Gt (X0 DE X5,y (4.15)

and
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DM X (t,x)
=G 7(z,2)La(p) (@)

+/rt/olGt—S(xvy)Aa(W)(S,y)W(dy,ds)
[ /01 Gr sl 9) M () (s, ) dy s
+/rt/oth—s(x’y)“"(X (5,1)) DY X (5, 4)W (dy, ds)

t 1
+ / / i, y)9' (X (5,9)) DM X (s, y) cy ds. (4.16)
7 0

PROPOSITION 4.3For everyp > 1, M € N, anda € AY,

(D) iM 00 SURy pyery BIX (8 2) — Xu(t, 2)[? = 0.
. ,
(i) M 00 SURy 2y eny B ‘fw DM X (t,z) — DM X, (t,z)? da‘ - 0.

As a consequencE (t,z) € Dy and DM X (t,2),a € A¥, represents the
Malliavin derivative of ordetM of X (¢, ).
Proof. Let us first check that

p

sup E‘/ IDMX (t,z)?da| <o0; Vp>1, MEeN (4.17)

(t T GAT

We proceed by induction oi/. Assume (3.17) holds for evei/’ < M and
p> 1

We shall use Burkholder’s inequality for Hilbert space valued martingales (see
Metivier [6], E. 2. p. 212) in the following form.

If H,, is a previsibleL.?(A})-valued process, then

/AM (// H;y(a dy,ds))zda
( N da> dy ds

The above inequality and the Equation (4.16) yield

p

p

<KE (4.18)
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p

E / IDM X (1, 2) | da
Ay

p

<K {E | (Gierw,2)Ta () (@) da

t 1
+E//G2—s ’ / 1Foo
‘0 | G (z,y) e b 1(s)

x [(Aa(0)(5,9))? + (Ao () (s,y))?] dady ds

p

+E‘ [ [ 62wl + ()

)

=: K(l1(t,z) + l2(t, z) + 13(¢, z)).

X / (DM X (s,%))? da dy ds
AM

t

Let us evaluatell¢, z). Since all the derivatives q¢f are bounded, (3.12) yields
p

<K> E

)

/ <Gt,«xz HDerz)>2da

where the sum extends over all the partitipas . . , p,,, of &, and)\; = |p;|, where
m varies from 1 toM — 1.

Note that(7, z), p1, . . . ,pm is a partition ofa. Then, the integral ovex} splits
into integrals oven, andAt ,1 <1 < m, and so one dominates the above term by

KZE(‘/ G2 (3,7 (H/ DX X (r, z)|2dpz> dzdrp>.

By (A.4) and Hlder’s inequality, assuming > 3, sog = p/(p — 1) < 3

l1(t, x)

gm-tp\ 1/277
KZ/ (E ‘/A*l |DI/,\;X(7’, )| dp; ) dr dz.
A i=1 t;

Since); < M, 1 < i < m, one applies the induction hypothesis to get

sup I1(t,z) < oo.
(t,I)GAT
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By using (4.14) and the boundedness of the derivativesarid:) one gets
l2(t, x)

<K>Y E
_KZE‘//Gt sxy/ H|D/\1Xsy)|2dozdyds

Szl

p

/ Gt s ‘T y / 1roo H|D>\ S y)|2dadyd8

p

?

where the sum extends over all the partitiongvaduch that\; = |p;| < M,1 <
i < m. Assume agaip > 3. By Holder’s inequality

p/q
(//Gtsxydyds>
t rl
x//E
o Jo

One uses (A.4) to dominate the first term in the above product. Next, the same

reasoning as above (Schwarz’'s inequality and the induction hypothesis) permits to
dominate the second term. So we have proved that

l2(t, x)

p

da dy ds.

$,Y)

sup Ia(t,x) < oo.
(t,I)GAT

By using Holder’s inequality as above one gets

I3(t, x)

P p/q
<K</ / Gfis(x,wdyds)
0 JO
t rl
x/ / E
0 JO

So we have proved that

P
dy ds.

[ IDYX(s,3) do

t rl
F(t,z) < K—l—K'/O /0 F(s,y)dyds, (4.19)

whereK andK' are constants independent(af ¢t) € Ar and

P
F(t,x) ‘/ |IDM X (t, z)|? dox
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The inequality (4.19) tells nothing about the boundedness ¢f' = ~ is a
solution of (4.19)), so we have to use a truncation argument. Fake0 and
¢e: R — R asmooth function such that (z) = z for |z| < 1/e, |¢e(z)| < 1+1/e
and|¢L(z)| < 1 for everyz € R. Let Y/ (¢, z) be the solution of Equation (4.16)

in which the last two terms are replaced by

1
/:/0 Gy s(z,y) (Y (5,1))¢ (X (s,9))W (dy, ds)
s [ Gl 00 o) (X, s,

Since|¢:(z)| < |z|, the same reasoning as above gives

p

t rl
Pta) <K +K [ ["B|[ 62(Vi(s.y)da| dyas,
0 Jo AM

with K and K’ constants independent @f z) € Ap ande > 0 and

p
F.(tz) = E ‘ |, Witt.a)Pda
AM

This guarantees that

Sup|F:(t, z)| < oo.

t,x
Since|¢: (z)| < |z, (4.20) yields
t pl
F.(t,z) < K+K'/ / F.(s,y)dyds
0 Jo
and further
t
ful) <K+ K [ f5)as,
0
where
fe(t) = S;Jp|FE(t,x)|.
By (4.21)

sup| f«(t)] < oo,
t<T

(4.20)

(4.21)
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so one may apply Gronwall's Lemma to get
£t <KX for t<T,
that is

sup sup |F.(t,z)| < KeX'T,
e>0 (t,z)eAT

It is standard to prove that

lim Y, (t,z) = Do X (¢, x)
e—0

a.s., for every fixedr € A} and(t, z) € A7. So, by Fatou’s Lemma

p p

?

E / IDM X (1, 2) | da
Ay

TT})E/ Y (t, ) da
< KeK'T,

(4.17) is proved.
In the same way one gets

p
sup sup E‘/ DM X, (t,z)?da| < oo;
n (tl‘ EAT
YVMeN and p> 1 (4.22)

We are now ready to prove the point (ii) in Proposition 4.3 (the point (i) is anal-
ogous, but simpler, so we leave it out).
We shall prove the following by induction ol

p
(App) lim supE =0.
notx

/A DM X, (t,x) — DY X (t,)) da

T

Let us first note that, if one provésd,,,) for p = 1, then the same follows for
everyp > 1. This is because of (4.17) and (4.22).

Let us now assume thé# »;/ ,,) holds for everyM’ < M and every > 1, and
let us provg(Axr,1).

Going back to Equations (4.9) and (4.11) one writes

|IDM X, (t,z) — DY X (t, ) Z 1% (¢, ) (4.23)
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with

—G—s(z,y)Aalp)(s,y)] €k (y) dy dWF(s),

(e, z //G ol 9) A (9) (5. ) € (y) dy ATV (s),

t 1
28 a) = [ [ G )l i (DAL D) 500)
_Gt—s(xa y)AOz (¢)(3a y)] dy dS,

1
-/ t LGt )t ) (910 (Xl 1) DY X (559)
—Gi—s(z,y)¢ (X (s,4)) DY X (s, y)] € (y) dy dW*(s),
8(t, ) // o @)L () (X, 9) DY Xo(s7,y)

—Gis(z,y)¢' (X (s,9)) Dy X (s, )] dy ds.

The first step is to prove that, ford i < 6

lim SUpE / 175, 2)|? dav = 0. (4.24)
Ay

L

We begin withi = 3. One has
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B|IgA(t, )7

n

=E/rt2

1
LGt )l ) (AL () (511)
k=1

2
— Gi—s(z,9)Aalp)(s,y)) Ek(y) dy | ds

t 1
S E/ /o |Gt or (@,9) L 4oy (9)AE () (577, 9)
—Gy o, y) Aa () (5, )2 dy ds

2E/ /G (@) AP () (57, 9) — Dalp) (s, )2 dy ds

+2E// G (@)Lt ()

—Gi—s(z,y)| (Aa(w)(s,y))zdyds
= UMt 2) + V(¢ ).

Let Ja,...,J, be a partition of{l1,..., M}, \; = |J;|] and Ji(a) =
{ay, ... ,ajki} for J; = {j1,...,7)}. Since the derivatives ap are bounded,
one gets

/ U twda
// dsdyG% (z,y)

xE " AL (@) (57,9) = Dalp)(s,9) [ da

KZ// dsdyG oz (z,9)
(HDl HD/\ sy)zda,
i=1

with the sum over all the partition, . . ., J,, of {1,..., M} (see (4.7) and (4.14)).
We write the above terms in the form

m (-1

) Y N Doy (C e

I=1i=1
(D) Xn(5,9) = DY 0 X (5,9))?

m

H (D?ii(a)X(s, y))z) do dy ds

1=[+1
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=ZZ / / Gz (@,9) (H /., s, (Do) X (3:9))2 i)

x /A (D30 Xals:9) = D30y X 3 0 )

< ]I /Axi(Di( )X(S,?J))zdc’i(a)> dy ds,
i=l417 0

with the conventlonthaff[Z 1 = IIi%,,,+1 = 1. Now, by using Schwarz's inequality
we dominate the above sum by

m

mooet el ) ©
ZZ/O /O Gt;t—s; (I,y) HUn,’i(S7y) dde,
=1

i=1

where

szl 1/2m—1
) Co1<ig<l—1,

2ml> 1/2m—1
)
2m—1

szl 1/
) D ol+1<i<m

UR)(5,1) = (E [, (DX X5, do
) A i

8

U (s.y) = (E /A/\l (Da! Xn(s,y) — D' X (s,y))? da

U3 s) = (E [ (D2 X (5,))2da

8

By (4.17) and (4.22)
supsup Ul )(s,y) <oo fori#l

and, by the induction hypothesis

I|m supU( l)(s y) =0.
Since
supsup/ / G (z,y)dyds < oo,
we have finally proved that

limsup/ UM(t2)do = 0.

notx JAM
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Let us now evaluat®y™ (¢, z). Note first that

2
SupE (H D)‘ $,Y) > da < 0.

Consequently

E / V") (¢, z) dov
AM
t rl ,
<KY / / dsdy(G s, (2.9 o (5) — Gisl,))
2
(H D)\ (5,9) > do
K/ / )t ) (8) = Gies(2,y))? dy ds.
So, by (A.6) one gets

limsupE [ V" (t,z)da =0,

n
t,x At

which finishes the proof of (4.24) far= 3
Let us now evalute}*(, z). One writes

ha(tw) = B [ (10,2 do
t rl
- E/AM/- / (P'}%(ths(x,-)Aa(go)(s,-))(y))zdydsda

= E/AM/ / 6 (Gies( z,) Lo, (5)

xLag (@) Aa()(s,7) ())? dy ds da,

where P} denotes the projection on the sub-spacgfo, 1)) spanned by;, i >

n + 1. We have to prove thét,,n € N converges to zero, uniformly with respect
to (¢, z) € Ap. To this end we shall first check that they are equally continuous and
then prove the pointwise convergence.
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By using the inequality( f||2 — lgl12 < (If]|+ lg)]Lf —gll (in L2(AY x Ar)
here), one gets

|hn (£, ) — hy (2, 2")]
< K(h2(t, o) + bl (¢, "))

<[, [ P00

—Gy_s(@', ) L) (s)) Lym (@)
1/2
X Aa()(s,-))(y))? dy ds da)

< K( 1/2(15 g;)+hl/2( ')
X (E/Ay/o /0 ((Gi—s(w,y) Liog (s)

1/2
—Gy—s(2',9))1am (@) Aa(0)(5,))? dy ds da>

1/2
< K(hg (1) + g *(,47)) wp(EAﬁAmem%Q

(s7y)eAT
T rl 1/2
X (/0 /0 (Gt—s(xa ?J)l[o,t) (S) — this(x,’ y)l[o,t’)(s))z dy d3> :

which converges to zero a$ — x andt’ — t.

Consequenthyi,,n € N, are equi-continuous. Let us now prove the point-
wise convergence. Clearly PiG; 4(z,-) - Au(p)(s,-))(-) — 0 asn — oo in
L?(0,1; dy). Sinceho(t, z) < oo, we may use the dominated convergence theorem
to get lim,_, hn(t,z) = 0. So we have proved (4.24) for= 4. Fori = 2,5
(resp.i = 1, 6) the proof is analogous to that for= 4 (respi = 3).

Let us now write

I (t,z) = vV (t,x) + HM (¢, 2),

[0}

with

Zﬁ/ o @)L ()0 (Xa(5,9)

—Gys(z,9)¢ (X (5,4))) DY X (s, y) e (y) dy dW*(s)
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and

n t rl
=3 [ ], Grlae (X)
x(Da! Xn(s,y) — D" X (s,y)) € (y) dy dW* (s).

Similar arguments as fdra(”) (t,z) (based on (A.6) and the induction hypothesis

X, — X) show thabﬂ&") (t, ) satisfies (4.24). A similar decomposition works for
I78(¢, ). Let us now denote

F{"(t,z) = DY X, (t,z) — DY X (t,z).
We have proved that
(n) (n) ~ [t
FO(ta) = K0+ Y [ [ e (X))
k=1"T
x F§") (s, y) e () dy AW (s)

t rl
[ Gl (X (s, FE (5,) dy s,

whereJ (" (, z) satisfies (4.24).
By taking expectations and by using the boundednegs ahdy,’ one gets

E/ )(t, 2)|? dav
t rl
<Ko+ KE [ [ G2, @yl F (s,9) dyds da
aM Jr Jo

t rl
— Ko+ K [ [ dsdyGro)B [ IFD (5,y) o,
o Jo AM

whereK,, — 0 asn — oo.
Let us denote

= SupE/ )(t,z)|? da.
Then, the above inequality gives

fult) < Kt K [ 0o /Gtsxwdy

1
< K, K”/ (5)——— ds.
+ fn(s — s
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One iterates this inequality and uses Fubini’'s Theorem to get

t
Folt) < K + K" / Fo (1) s,
0
Now, by Gronwall's Lemma

falt) < Kpef"t < K, e""T 50 as n— . O

5. Evaluation of the Covariance Matrix

The aim of this section is to prove Part (i) of Theorem 2.2. We shall apply
Theorem 3.1 to the functiondl = (X (¢,z1),...,X(t,z4)). Actually it suffices
to prove that

lim e *P((deto)¥? < av/e, FeT,)=0; VYec>0, keN, (5.1)

e—0

wherea = %’Koc (Ko isthe constantin (A.3))s is the Malliavin covariance matrix
attached ta” andl'. = {¢? > c}“.

It follows from Theorem 3.1 and the results in the preceding section that Part
(i) of Theorem 2.2 is a consequence of (5.1), which we now prove.

Let S, . (¢, z) be the solution of the equation

t 1
Sreltia) = Girlw,2) + [ [ Gorlo, ) (X(5,1)

xSy (s,y)W (dy, ds)

t pl
[ [ e (XS dyds. (62
,
Then, a standard uniqueness argument shows that
D(r,z)X(tax) = ST‘,Z(t?w)(p(X(Ta Z)) (53)

It follows that the covariance matrix is given by

g t ol
o' = / / (X (r,2)) Sz (t, ;) Sy 2 (t, ) dz dr.
0 JO

In order to evaluate det we have to get a lower bound for the quadratic form
associated to.. Let 2 min;; |z; — zj|> > e > 0 and¢ € R?. One has

B t rl ) d . 2
w6 = [ [ Ptz (;sr,z(t,xz)@> dz dr

2

T +VE d
/ + (X (r,2)) <Z Sr,z(t,xi)§i> dz dr
‘ i=1
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with

d :1:]+f
AN

X (Z Sz (t, )i Sr 2 (t, xj)fj) dz dr

i#£j
d 24 /E
N Z/ /] ))S,?,z(t,l‘])szdzdr
]:1 t—e
Let us also denote
Qrz t ZE = / / Gi—s :E y ( ay))D(r’Z)X(s’y)W(dy,ds)

+ / /0 G,y (X (5,9)) D(ry X (5,) dy s.

12(¢) > 29(¢) — 28%(¢),

Z/t/ P (X (r,2)) Q7 . (¢, 27)€F dz dr,

Ti+ve
= Z/ / ©*(X(r,2))G7_, (x5, 2)€5 dz dr
j=1 t—e

and further

d t Tj+vE
) gy — ! 2(X (1. »
o =2 ) [ e

—p (X(taxj)”Gt r(x]a ) szzdr

Tj+VE
19(6) = 3 WP(X (tzy) @/t / G2 (2;,7) dzdr.
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By (A.3),

( KO\/_ZQO (t, @ )EJ

j=1
Assume that X (t,7;)) € {¢? > c},1 < j < d. Then
(deto)¥? > |ulnf (0€,€) > 2KoC\/ec — Z 2 sup|l@-(¢)].
= lg1=1
j=1

So (4.1) will be proved as soon as we check that

. (S“p|1£2i‘1>(f)lp> <KW, yps5 =123  (54)
|€]=1

Let us evaluateﬁ‘) (£). By using Hlder’s inequality(¢ = p/(p — 1)) and the
fact that|¢{;| < 1 one gets

d zj+\E p/q
BIO )P < Kz(/ / ¥, (z;. >dzdr>

Tj+v/E
<[ PR ) - X )P b
t—e
< Kg( 3/2)— p/q % (6\/_) (\/_)p/4 Kgp(l/2+l/8)

the last inequality being a consequence of (A.5) and of tblét property of
(t,z) = X(t,2)(3 —dinzand} — dint,d > 0: see Walsh [13]).

We use now Burkholder’s inequality (i.e. (4.18)) and the boundednegsiof
order to get

t 1 t 1 2
Bl [ dar (/ / Gt_s(x,y)so'(X(s,y»sr,z(s,y)W(dy,ds>>
t—e JO r JO
P
/ / dzdr//Gt s(z,9) ”(3 y) dy ds
t—e
t 1 s 1
| [ wasc? oy [ [ SP(spayas
t—e JO t—e JO ’
pla 4 1
(/ /Gt s(z,y dyds) / / dy ds
t—e t—e JO

p

< KE

p
=KEFE
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/ / (s,y)dyds

t—e

< KB/ p/q/ / dydsE / / (s,y)dyds
t—e t—e

the last inequality being a consequence of (A.5).
Further, by using the Equation (5.2) one gets

s 1 b
E/ /S,?Z(s,y)dyds / /Gs ~(y,z)dzdr
t—e JO ’ l—e
s 1 s rl
/ / dz dr / / Gy, v)¢' (X (u,0))
t—e JO r J0O

X Sy 2 (u,v)W (du dv)

[ /01 dedr [ /01 Gy ) (X (1, 0))Sy,2 (u, v) chuco

By using (A.1) it is easy to see that the first term in the right-hand side of
the above inequality is dominated Bg:=/2. Then, by (4.5), the second term is

dominated by
/ / (u,v) du dv
t—e

Ke(@/2)- p/q/ /dszE
t—e

< Kel@/D-9/a)+1 = g(-1)/2,

P
xFE

p
; (5.5)

p
<K

+KE

P
+KE

p

the last inequality being a consequence of (4.17)
The third term (containing’) is dominated in the same way. We conclude that

E// (s,y)dyds
t—e

We plug this in (5.5) in order to get

B / /O " dodr ( / t /0 ' ats(x,y)so'(X(s,y»Sr,z(s,y)W(dy,ds>>2

< KeP™2, (5.7)

An analogous (but simpler) argument shows that (5.7) holds also if we replace
¢' by 4" andW (dy, ds) by dyds. We conclude that

p
< Kelr=9/2, (5.6)

p

EN® (6P < KeP? < KeP(H/2+1/8),
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Finally, by using Schwarz’s inequality and (4.6) we prove that
BN ()P < Ker™
and the proof is complete.

6. Strict Positivity of the Density

We now prove Part (ii) of Theorem 2.2. Lét> 0, and 0< 71 < 22 < -+~
< x4 < 1. We shall use the criterion from Theorem 3.3, with

F=(X(t,z1),...,X(t ).

First note that it suffices to prove the result fare {¢ # 0}¢ N supgdPo F~1),
since that result implies that

{p # 0} CsupgPo F7 1.
Indeed, if that inclusion would not hold, applying the resulj@t {p # 0}¢N %,
whereX. denotes the boundary of the set s(Pp F~1), would lead to 0< p(yo) =

0, sincep is continuous
Foreachm > 1,1 < i < d, let

hay (1, 2) = i1y pn (1) Lz, —2-n)v0,(zi-+2-)a1) (2),

where

(zi+27™)
/ / Gt_s(xi,y) dy ds.
t—2—m J(z;

We now definel’ by (3.3), and

It remains to show that the sequence of random vegidy§z) },cn indexed by
z satisfies the conditions of Theorem 2.3, namely (i) and (ii). We first proceed to
the

Proof of (i). Define

Wi(s, ) = OiX(S z)o T}
2t
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We have
. . t rl
w(ta) = 02(to) + [ [ e g(6)Gr(ay)
X3! (X (s,y) o T )uz" (s, ) dy ds

1
+/Ot/0 1[t—2—”,t](S)Gt75(:17,y)(p'( (S y) oTn) ( y)

x[W (dy,ds) + (2, hy(s,y)) dy ds], (6.1)

where

0 (t, ) / / Gis(z,y)p(X (s,y) o TI)hi; (s,y) dy ds.

We note that Equation (6.1) is obtained by integrating, X (¢, z) o T, against
Rt (r,z), and using Fubini's Theorem to commute the integrals. The coeffi-
cient I,_,-n 4(s) is due to the facts that},(r,z) = 1j_p-n 4(r)hi(r, 2), and
D, X (s,y)oT} =0fors <r.

From (6.1), Burkholder's and &lder’s inequalities and the boundednesgbf
andy/’, we deduce the estimate

Elu*(t, )"
< KE|02(t, o)

e 1 . /2
+KE ( || @il ds>
t—2-" JO

KB (/2/ G, 5) L+ (2 (5,1)

y4
X IuZ’i(s,y)ldde> ]
< KE|0Y (t, )P
+K P2 / / GY_(z,y) Elu* (s,y) P dy ds
t—2—n

+KV£_1/t N / G () (L + (2, b, y))))

X Elu*(s,y)|P dy ds, (6.2)



58 VLAD BALLY AND ETIENNE PARDOUX

with

unz/ /Gtsxy)dyds
t—2—n
< V2,

t 1
v = [ [ Gy @+ |z ) dy s
t—2—" JO0

By using (A.1) one gets
[ [ s vlayds

KZ / / e e (l2=y2/2(t=5)) g s
t—2—"n

i—2-n 27rt—3)
d

ot T2~ o
<K, /H ) / e t_s) e(l=v/2(t=9)) gy ds = K,
Hence, forjz| < 4§
K27 +9).
It follows that
Elu'(t,x)P < KE|02'(t,z)”

FK(ph?+08)  sup  Eui(s,y).
(s,y)€[0,t]x[0,1]

Forn large enough and small enough

K (b + 1) < &

2
and then
sup  Elu™(t,z)P <2K  sup  E|0%(t,x)|P. (6.3)
(t,x)€[0,T]x[0,1] (t,2)€[0,T]x[0,1]
Note that
02(t,z) < Kllpllso (6.4)
and for; #£ j,

. . zi+27™)
ot < el [ [ Gy s (65)
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By using (A.1) it is easy to check thelt < K2%*/2 and forj # i

z;+27") . ,
[ G anas < e e,
t—2—n

CE

for somec < 1. .
It follows that, fori # 7,0, (t,z;) — 0 asn — oo.
It then follows from (6.3), (6.4) and (6.5) that

sup Elu™(t,z)P < K, VYn€EN, |z/<é
(t,2)€[0,T]x[0,1]

A similar argument as used above shows that

Bluti(t,z) —0i(t,z)P < K(ub/>+v2)  sup  Eluli(s,y)?
(s,y)€[0,¢] x[0,1]

< K'( p/2 + Vp)
Note that wherx = 0, the term(z, h,,) in v, vanishes, and so we get
Elud'(t,z) — 03" (t, )P < K2~ ("P/4), (6.6)

Since

. t 1
00 (i) = (X (t,m:)) + /o /o Gy, y)

x[p(X (5,9)) — @(X (t,2))]h, (s,y) dy ds,
we have that

d p
det[(Hg” (t,z5))i ;] H(,o (t,2;))
1

—0, as n — oo. (6.7)

Sinceyo € {¢ # 014N supd P o F~1), there existsg > 0 such that’0 < r < ro,

B(yo,r)C{p #0}¢, and P(F € B(yo,r)) > 0.

Let
d

1
c:=—= inf ).
2 yeB(yo,ro) 1:[()0(%)

Then

d
P ({|F el <0 {Hsooc(t,xi)) > z}) 20, O<r<r

1
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hence from (6.6) and (6.7)

limsupP({|F — yo| < r} N{detd,¢n(0) > c}) >0; 0<r <o O
n—o0

Proof of (i) for 9,4, (z). Letv™! denote the solution of the affine equation

. . t rl
i) = 02 (ba) + [ Giu@yd (X(s,p) 0 T2)

X0 (5, 9) (2, b (5, y)) dy ds. (6.8)

Define

t 1
(f,w) = /0 /0 Gy, ) (X (5,y) o T)
X f(s,y)(z, hn(s,y)) dyds

and note that

N )lloe < ' llool 21l

<
< Oll@'loo X 1 flloo; weEQ, 2] 0.

Hence for small enoughf — I(f,w) is a contraction for alb € Q. Consequently
equation (6.8) has a unique solution, and furthermore from (6.4), (6.5)

o2 (t,2)| < K02 (¢, )]

(6.9)
; neN, |z <4

<
<

Writing the equation for the random field-* — v, and using similar inequalities
asin (6.2), we deduce that

E|ug,i(t7 QS) - Ugyi(ta $)|p

SK@B>+27)  sup  Eluli(s,y)?
(s,9)€[0,t]x[0,1]
+KvE  sup  Eluli(s,y) — o (s, y) [P
(s,y)€[0,t]x[0,1]

Now since for§ small enoughKv2 < % and

sup  sup  Eluli(s,y)P
|2]<6 (s,y)€[0,t]x[0,1]
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is bounded, we have that

sup sup  Bul(s,z) — ol (s,2)]" < Kul?
|2/<8 (s,2)€[0.4]x[0.1]

< K2 /4, (6.10)
Moreover
Blul(t,z) — ul' (t,z)|”
< BlODi(t,z) — 00" (¢, )|

YK+ 08)  sup Eui(s,z) — uY(s, )
(s,y)€[0,t]x[0,1]

FK (2 +08)  sup  E(lu(s,y)(X(s,y) o TP
(s,y)€[0,t]x[0,1]

— X(s,y) 0 T3)IP).

From Schwarz’s inequality, the fact thﬁ(/ﬁ/z + 1#) < 1, and the above
bound foru?*, we deduce that

sup  Bluli(t,x) —u (12
(t,2)€[0,T]x[0,1]

< sup  E|OMi(t,x) — 0% (@)
(t,x)€[0,T]x[0,1]

+K sup  (E|X(t,z) o TP — X (t,z) o T|?P)Y?
(t,2)€[0,T]%[0,1]

and the same inequality holds fa}* (¢, z) — v;’,’i, (t,z).
It is not hard to show that

sup E(|X(t,z) oT" — X (t,z) o TH%®) < K|z — 2|
(t,2)€[0,7]x[0,1]

and the same inequality holds @+ (¢, z) — 0?,’i(t, x).
These inequalities show that

Elu(t,z) — ul (t,2)|P + Elo™ (t, ) — o' (t, )P < k|2 — 2]
This, together with (6.10), shows that
E (sumuz’i(t,x) - v?"'(t,x)l”> -0,
|z|<6

asn — oo. In view of (6.9), (ii) is proved fo0, ¢, (z). O
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Proof of (i) for 924, (z). This proof is analogous to the previous one, but the
computations are more involved. Let us just write the equation for the quantity of
interest and the main steps. Define

wrik(z) = Dy o) = L),
gyuw@x)zzggﬂjﬁuzy
We have
utk(t, z)
= Ok (L, 2)

t 1 )
[ G (X0 m) o T, ) s, ) dy 0

[ G s s, (X (s, ) 0 T2 dy
(X (5,) o T2) (W (dy,ds) + (2, (5, ) dly )]

[ [ G e ! (X(s,) 0 T2 dy s

9! (X(5,) 0 T2) (W (ly,ds) + {2, o (5,)) dy )]

and a similar (simpler) equation fof**,
One first shows that

sup  sup  Blul*M(t,z) — ol (t,2)P — 0,
1218 (1) €l0.TIx (0]

asn — oo, boundv™* (¢, z), and estimate the difference®* (t, z) —u";"* (t, )

z/

andv™®* (¢, z) — v"* (¢, z). The result follows as in the previous step. O

Appendix
We present here elementary facts related to the képel(z, y).

ths(xay) S Ket,s(xay) S KIthS(xay)a (Al)

whereK, K’ are some constants and;(z, y) is the heat kernel

_ 1 |z —yl?
o) = e exp(—z(t 5 3)) |
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The first inequality follows by direct calculation and the second one by taking into
account the term correspondingiic= 0 only in (2.4).

Let f:Q x Ry x [0,1] — R be a measurable function. Then, for every
[ >0,z €][0,1]

t
/t / l +l)cIGH(:E,y)f(s,y)lzdyds<K||f||2e*(lz/2‘f>. (A.2)

Since

/t ds /x-l-\/g q
e \/m m,\/g et,s(l‘7y) y
t —
1 (1 ot s) ds — 4./¢

> = ;
t—e V2m\/t — s € 3V 2r
one has
/ / G2 (z,y)dyds > Koz, Vee[0,1, >O0. (A3)
t—e Jx—/c
A simple calculation based on (A.1) shows thatdot %’
sup / / Gt s(z,y)dyds < oo (A.4)
tl‘ EAT

and, forO<t—e <t
t 1
/ / G (2,y) dyds < K32, (A5)
t—e JO

Finally we give a discretization fa¥,_(z, y). Lett,) = (I+1)/nandt, =1/n,
fort € [l/n,(l4+1)/n). Then

tn
lim Sup/ (G (2,y) — Gi_s(z,y))?dyds = 0. (A.6)
0 n n

B

Proof of (A.6). Letn > 0. One writes
[ [G )~ Gesto) Py ds < cafo) +, ),
with

—4/7 / G xy —i—Gt s(z, y)) dy ds
n —71

and

t,—m rl
— [ [ (Gt o) = Grslay) Py s
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Thene, () < Kn/2. On the other hand
2
n

0

|th7:—s; ($7 y) - Gt75($7 y)| g Sup 8U

with the sup over € [t — s, tF — s, ].

An easy calculation shows that

\gau@,y) < K(u B 40~ 6) < K=& for w3,
U

It follows thate!, () < Kn~°-n"2.So

o1
sup | /O (Gt = (7,y) = Gis(w,y))? dyds < K(n*? +n °n?).

By takinglim,, ., first and lettingy \, O then, (A.6) is proved. O
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