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Introduction

Some motivations in population dynamics or genetics

Coming down from infinity"=" regulation for large initial population.

The effect of the competition arising in a large population [think of
trees having a huge number of seeds].
The short time behavior of genealogies in large population (such
as Lambda coalescent, see Aldous, Schweinsberg, Berestycki,
Berestycki, Limic, ...).

Minimal conditions for persistence in a varying environment (WIP
with Sylvie Méléard), scaling limits of individual based models.

Geometric convergence to stationary distribution,
Uniqueness of Quasi-Stationary Distribution (see [Van Dorn,
Cattiaux & al] ...).
Speed of convergence to the QSD (see [Champagnat,
Villemonais, 15]).
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Introduction

Outline

Coming down from infinity for birth and death processes and
competition for one specie [joint work with S. Méléard and M.
Richard].

Comparing a stochastic process to a dynamical system with
non-expansive vector field and coming down from infinity.

Some example in dimension 2 : (stochastic) Lotka Volterra
competition model.
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Coming down from infinity for birth and death process

Model

Evolution of the population size (Xt : t ≥ 0) as a jump process :

k → k + 1 birth at rate λk

k → k − 1 death at rate µk

We work under the extinction condition [Karlin McGregor 57]∑
k≥1

1
λkπk

=∞, (1)

where
π1 =

1
µ1

and for k ≥ 2, πk =
λ1 · · ·λk−1

µ1 · · ·µk
.
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Coming down from infinity for birth and death process

Coming down from infinity

Let Tn = inf{t ≥ 0 : Xt = n} and

S = lim
n→∞

En(T0) =
∑
i≥1

πi +
∑
n≥1

1
λnπn

∑
i≥n+1

πi .

Proposition
The process comes down from infinity, in the sense that

∃m, t > 0 : inf
k∈N

Pk (Tm < t) > 0

iff
S <∞.

The weak limit of Pn in P(D([0,∞),N ∪ {∞})) as n→∞ exists and is
denoted by P∞ and, as soon as the process comes down from infinity,

∀t > 0 : Xt <∞, while X0 =∞ P∞ a.s.
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Coming down from infinity for birth and death process with S. Méléard and M. Richard

How does X come down from infinity ?

We assume that En+1(Tn)/E∞(Tn)
n→∞−→ α.

Theorem
i) If α > 0 and λn/µn → ` ∈ [0,1), then

Tn

E∞(Tn)

(d)−→
n→+∞

∑
k≥0

α (1− α)k Zk ,

where (Zk )k i.i.d. r.v. whose Laplace transform G`,α is characterized by

∀a > 0, G`,α(a)
[
`
(
1−G`,α(a(1− α))

)
+ 1 + a(1− `(1− α))

]
= 1.

ii) If α = 0 (+L2 assumption), then

Tn

E∞(Tn)
n→∞−→ 1 in P∞ − probability.
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Coming down from infinity for birth and death process with S. Méléard and M. Richard

A.s. convergence and central limit theorem under additional
assumptions for ii).

Proofs relies on the decomposition of Tn as the infinite sum of
independent r.v.+
-Convergence of Laplace exponent as fixed point following proofs for
continuous fractions for i).
-Klesov asymptotic results for sum of i.i.d. r.v. for ii).

Examples
If µn = exp(βn) and λn/µn → `, then Tn/E∞(Tn)→ Z`,1−exp(−β) in
distribution.
If µn = exp(n/ log n) log n, then Tn/E∞(Tn)→ 1 in P∞ but not a.s.
If µn = cn% (% > 1) and λn/µn → 0, then the a.s. convergence and
C.L.T. hold.
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Coming down from infinity for birth and death process with S. Méléard and M. Richard

The speed of coming down from infinity

Define the speed

vt := inf{n ≥ 0; E∞(Tn) ≤ t}

Corollary

Assuming also that lim supn→∞ λn/µn < 1, then

Xt

vt

t↓0−→ 1 in P∞ − probability.

Proof using the maximal height of the excursions of X during [Tn+1,Tn)
+ inversion technic.
Example : µn ∼ cn%, then a.s. convergence and C.L.T. for

t1/(%−1)Xt as t ↓ 0.

% = 2, λk = 0 yields Aldous speed of coming down from infinity for
Kingman Coalescent (or logistic pure death process).

Vincent Bansaye (Polytechnique) 19th june. CIRM, Luminy. 8 / 22



Coming down from infinity for birth and death process with S. Méléard and M. Richard

The speed of coming down from infinity

Define the speed

vt := inf{n ≥ 0; E∞(Tn) ≤ t}

Corollary

Assuming also that lim supn→∞ λn/µn < 1, then

Xt

vt

t↓0−→ 1 in P∞ − probability.

Proof using the maximal height of the excursions of X during [Tn+1,Tn)
+ inversion technic.
Example : µn ∼ cn%, then a.s. convergence and C.L.T. for

t1/(%−1)Xt as t ↓ 0.

% = 2, λk = 0 yields Aldous speed of coming down from infinity for
Kingman Coalescent (or logistic pure death process).

Vincent Bansaye (Polytechnique) 19th june. CIRM, Luminy. 8 / 22



Approximation by a dynamical system

Random Pertubation of a dynamical system

Let X be a càdlàg process on E ⊂ Rd such that

Xt = x0 +

∫ t

0
ψ(Xs)ds + Rt ,

where ψ satisfies for each x , y ∈ D ⊂ Rd (E ⊂ D and D open),

(ψ(x)− ψ(y)).(x − y) ≤ L ‖ x − y ‖22 [L non − expansivity ]

and
Rt = At + Mc

t + Md
t (R0 = 0)

where At is càdlàg adapted with finite variations, Mc
t is a continuous

local martingale and Md
t is a totally discontinuous local martingale.
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Approximation by a dynamical system

Xt = x0 +

∫ t

0
ψ(Xs)ds + Rt

and x the dynamical system associated with ψ

xt = x0 +

∫ t

0
ψ(xs)ds

Proposition

As long as the dynamical system xt is in D (i.e. for T ≤ TD(x0)),{
sup
t≤T
‖ Xt − xt ‖2≥ ε

}
⊂
{

T R
L (ε) ≤ T

}
where T R

L (ε) := inf
{

t ≥ 0 : 1lsups≤t−‖Xs−xs‖2≤εR̃t ≥ (εexp(−2LT ))2
}

and R̃t = 2
∫ t

0
(Xs− − xs).dRs+ ‖< Mc

t >‖1 +
∑
s≤t

‖ ∆Rs ‖22 .
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Approximation by a dynamical system

Sketch of proof

Taking the L1 norm of the quadratic variation of X − x (or using Itô’s
formula),

‖ Xt − xt ‖22 = 2
∫ t

0
(Xs − xs).(ψ(Xs)− ψ(xs))ds + 2

∫ t

0
(Xs− − xs).dRs

+ ‖< Mc
t >‖1 +

∑
s≤t

‖ Xs − Xs− ‖22 .

As ψ is L non-expansive on D, for each t ≤ TD(x0), noting
St = sups≤t ‖ Xs − xs ‖2,

1lSt−≤εS
2
t ≤ 1lSt−≤ε

[
2L
∫ t

0
‖ Xs − xs ‖22 ds + 2

∫ t

0
(Xs− − xs).dRs

+ ‖< Mc
t >‖1 +

∑
s≤t

‖ Xs − Xs− ‖22
]
.

+Gronwall lemma to get 1lSt−≤εS
2
t < ε for t < T R

L (η).
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Approximation by a dynamical system

Inequality for martingale

Writing
Mt = Mc

t + Md
t

the local martingale and

St = sup
s≤t
‖ Xs − xs ‖2,

we obtain by Markov inequality and (Doob) maximal inequality for
martingales

Px0 (ST > ε)

≤ Ce4LT

ε2

[
Ex0

(
‖
∫ T

0
1lSs−≤ε|dA|s ‖21

)

+Ex0

(
sup
s≤T

1lSs−≤ε ‖< Mc
s >‖1

)
+ Ex0

∑
s≤T

1lSs−≤ε ‖ ∆Xs ‖22

]
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Approximation by a dynamical system

Stochastic differential equations

X = (X i : i = 1 . . . d) ∈ D([0,∞),E) satisfies

X i
t = x0 +

∫ t

0
bi(Xs)ds +

∫ t

0
σi(Xs)dBi

s +

∫ t

0

∫
X

H i(Xs−, z)N(ds,dz)

where
B is a d dimensional Brownian motion ;
N is a punctual Poisson measure independent of B, with intensity
dsq(dz) and Ñ its compensated measure

Xt = x0 +

∫ t

0
ψ(Xs)ds + Mt

where M is a local martingale given by

Mt =

∫ t

0
σ(Xs)dBs +

∫ t

0

∫
X

H(Xs−, z)Ñ(ds,dz)

and < Mt >=
∫ t

0 σ(Xs)2ds +
∫ t

0

∫
X H(Xs−, z)2dsq(dz)
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Approximation by a dynamical system

Let F be a C2 function such that its Jacobian matrix JF is invertible on
D. We set

bF (x) = b(x) + JF (x)−1
(∫
X

[F (x + H(x , z))− F (x)]q(dz)

)
and the associated flow φF par

φF (x0,0) = x0,
∂

∂t
φF (x0, t) = bF (φF (x0, t)).

and

VF (x) = (JF (x)σ(x))2 +

∫
X

[F (x + K (x , z))− F (x)]2q(dz).

is giving the bracket of the martingale part.
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Approximation by a dynamical system

φF (x0,0) = x0,
∂

∂t
φF (x0, t) = bF (φF (x0, t))

ψF = (JF bF ) ◦ F−1 =

(
JF b(.) +

∫
X

[F (.+ H(x , z))− F (.)]q(dz)

)
◦ F−1

Theorem

We assume that ψF is L non-expansive on F (D) (+some technical
assumption). Then, for all x0 ∈ D

Px0

(
sup

t≤T∧TD(x0)

‖ F (Xt )− F (φF (x0, t)) ‖2> ε

)

≤ Ce4LT

ε2

∫ T

0

[
1 + V̄F ,ε(x0, s)

]
ds,

where V̄F ,ε(x0, s) = sup
x∈E

‖F (x)−F (φF (x0,s))‖2≤ε

‖ VF (x) ‖1 .
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Approximation by a dynamical system Dimension 1

Stochastically monotone model

Definition
For all x0 ≤ x1, t ≥ 0, a ∈ R,

Px0(Xt ≥ a) ≤ Px1(Xt ≥ a)

Examples : birth and death process, Λ coalescent ;
random catastrophes IF the rate of catastrophe does not depend (or
decreases )on the size of the population, diffusions ...

We also assume that F goes to∞ and bF (x) is negative for x large
enough.
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Approximation by a dynamical system Dimension 1

Criteria for instantaneous coming down from infinity

Proposition (In progress.)
Assume that X is stochastically monotone, ψF is L non expansive and∫ .

0
sup
x0∈E

V̄F (x0, s) <∞.

The sequence Px converges weakly in P(DE∪{∞}([0,T ])) as x →∞
(x ∈ E) to P∞.

(i) If
∫∞
.

1
−bF (x)

< +∞, then

∀t > 0 : Xt <∞ and lim
t↓0+

F (Xt )− F (xt ) = 0 P∞ a.s.

(ii) Otherwise P∞(∀t > 0 : Xt = +∞) = 1.

Vincent Bansaye (Polytechnique) 19th june. CIRM, Luminy. 17 / 22



Approximation by a dynamical system Dimension 1

Criteria for instantaneous coming down from infinity

Proposition (In progress.)
Assume that X is stochastically monotone, ψF is L non expansive and∫ .

0
sup
x0∈E

V̄F (x0, s) <∞.

The sequence Px converges weakly in P(DE∪{∞}([0,T ])) as x →∞
(x ∈ E) to P∞.

(i) If
∫∞
.

1
−bF (x)

< +∞, then

∀t > 0 : Xt <∞ and lim
t↓0+

F (Xt )− F (xt ) = 0 P∞ a.s.

(ii) Otherwise P∞(∀t > 0 : Xt = +∞) = 1.

Vincent Bansaye (Polytechnique) 19th june. CIRM, Luminy. 17 / 22



Approximation by a dynamical system Dimension 1

Two examples

Λ coalescent. X=number of blocks.

F (x) = log(x), ψF (x) ↓ VF (x) bounded

and we recover [Berestycki, Berestycki, Limic 10]

lim
t↓0

log(Xt )− log(vt ) = 0, i .e. Xt/vt → 1 P∞ a.s.

Birth and death processes. µk = ck% (% > 1), λk − λn ≤ C(k − n)

F (x) = x1/2−ε, ψF (x) ↓, VF (x) ∼ x%−2ε, φ(x0, t) ≤ c.t1/(1−%)

and setting φ(∞, t) = [c(%− 1)t ]1/(1−%)

lim
t↓0

X 1/2−ε
t − φ(∞, t)1/2−ε = 0 P∞ a.s.

Possible extension to multiple births, random catastrophes, ... and
(logistic) Feller diffusion...
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Two dimensional competition Lotka Volterra diffusion In progress

dX 1
t = X 1

t (τ1 − aX 1
t − cX 2

t )dt + σ1

√
X 1

t dB1
t

dX 2
t = X 2

t (τ2 − bX 2
t − dX 1

t )dt + σ2

√
X 2

t dB2
t

with intraspecific competition a,b > 0 and interspecific competition
c,d ≥ 0.

We compare this process to dynamical system whose flow φF = φ
given by

(x1
t )′ = x1

t (τ1 − ax1
t − cx2

t )

(x2
t )′ = x2

t (τ2 − bx2
t − dx1

t )
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Two dimensional competition Lotka Volterra diffusion In progress

Approximation by the flow coming down from infinity

Note that each component of X comes back to infinity and set

Dε = {x ∈ (0,∞)2 : x1 ≥ 2ε, x2 ≥ 2ε}

and dβ(x , y) = |xβ1 − yβ1 |+ |x
β
2 − yβ2 |.

Proposition

For any β ∈ [0,1) and ε > 0,

lim
T→0

sup
x0∈Dε

Px0

(
sup

t≤T∧TDε (x0)

dβ(Xt , xt ) ≥ ε

)
= 0

The proof consists in gluing a collections of domains (cones) where

Fβ,γ(x) = (xβ1 , γxβ2 )

is non-expansive and apply the previous result.
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Approximation by the flow coming down from infinity
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Two dimensional competition Lotka Volterra diffusion In progress

Classification using Poincaré compactification for flows

(i-intraspecifc) If b > c and a > d , then there exists x∞ ∈ (0,∞)2 such
that for any x0 ∈ (0,∞)2and η > 0,

lim
T→0

lim
r→∞

Prx0

(
sup

ηT≤t≤T
‖ tXt − x∞ ‖2≥ ε

)
= 0.

(ii-interspecific) If c > b and d > a, then for any ε > 0 and β ∈ (0,1),

lim
T→0

lim
r→∞

Prx0

(
sup
t≤T

dβ(Xt , φ(rx0, t)) ≥ ε

)
= 0.

(iii-unbalanced) If b > c and d > a, then for any T > 0,

lim
r→∞

Prx0

(
inf{t ≥ 0 : X 2

t = 0} ≤ T
)

= 1
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Two dimensional competition Lotka Volterra diffusion In progress

Simulations : a = b = 1, c = 0.3, d = 0.5 (i-intra)

2 simulations and the dynamic system for 2 initial large values (105).

Vincent Bansaye (Polytechnique) 19th june. CIRM, Luminy. 22 / 22



Two dimensional competition Lotka Volterra diffusion In progress

Simulations : a = b = 1, c = 1.3, d = 1.4 (ii-inter)

2 simulations and the dynamic system for 2 initial large values (105).
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Two dimensional competition Lotka Volterra diffusion In progress

Simulations : a = b = 1, c = 1/3, d = 3

2 simulations and the dynamic system for 2 initial large values (105).
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Two dimensional competition Lotka Volterra diffusion In progress

Thanks for your attention !
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