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Abstract

We consider a discrete model of population with interaction where
the birth and death rates are non linear functions of the population
size. After proceeding to renormalization of the model parameters, we
obtain in the limit of large population that the population size evolves
as a diffusion solution of the SDE

Zxt = x +

∫ t

0
f(Zxs )ds + 2

∫ t

0

∫ Zx
s

0
W (ds, du),

where W (ds, du) is a time space white noise on ([0,∞))2.
We give a Ray-Knight representation of this diffusion in terms of the
local times of a reflected Brownian motion H with a drift that depends
upon the local time accumulated by H at its current level, through
the function f ′/2.

.

Keywords : Galton–Watson processes with interaction, generalized Feller diffusion
AMS 2000 subject classification. (Primary) 60J80, 60F17 (Secondary) 92D25.

1



2

Introduction

Consider a population evolving in continuous time with m ancestors at time
t = 0, in which each individual, independently of the others, gives birth
to children at a constant rate µ, and dies after an exponential time with
parameter λ. For each individual we superimpose additional birth and death
rates due to interactions with others at a certain rate which depends upon
the size of the total population. For instance, we might decide that each
individual dies because of competition at a rate equal to γ times the number
of presently alive individuals in the population, which amounts to add a
global death rate equal to γ(Xm

t )2, if Xm
t denotes the total number of alive

individuals at time t.
If we consider this population with m = [Nx] ancestors at time t = 0,

weight each individual with the factor 1/N , and choose µN = 2N + θ, λN =
2N and γN = γ/N , then it is shown in Le, Pardoux and Wakolbinger [11]
in the above particular case of a quadratic competition term that the “total
population mass process” converges weakly to the solution of the Feller SDE
with logistic drift

dZx
t =

[
θZx

t − γ(Zx
t )2
]
dt+ 2

√
Zx
t dWt, Z

x
0 = x. (0.1)

The diffusion Zx is called Feller diffusion with logistic growth and models the
evolution of the size of a large population with competition. In this model θ
represent the supercritical branching parameter while γ is the rate at which
each individual is killed by any one of his contemporaneans. This model has
been studied in Lambert [10], who shows in particular that its extinction
time is finite almost surely.

We generalize the logistic model by replacing the quadratic function θz−
γz2 by a more general nonlinear function f of the population size. We then
obtain in the continuous setting a diffusion which is the solution of the SDE

Zx
t = x+

∫ t

0

f(Zx
s )ds+ 2

∫ t

0

∫ Zx
s

0

W (ds, du), (0.2)

where the function f satisfies the following hypothesis.
Hypothesis A: f ∈ C(R+;R), f(0) = 0 and ∃β ≥ 0 such that

f(x+ y)− f(x) ≤ βy ∀x, y ≥ 0.

The equation (0.2) has a unique strong solution (see [7]). Note that the
hypothesis A implies that

∀x ≥ 0, f(x) ≤ βx.
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An equivalent way to write (0.2) is the following.

Zx
t = x+

∫ t

0

f(Zx
s )ds+ 2

∫ t

0

√
Zx
s dW

x
s , (0.3)

where W x is a standard Brownian motion. However, the joint evolution
of the various population sizes {Zx

t , t ≥ 0} corresponding to different initial
population sizes x would necessitate a complicated description of the joint
law of the {W x

. , x ≥ 0}. Whereas the formulation (0.2) due to Dawson, Li
[7] with one unique space-time white noise W , describes exactly the joint
evolution of {Zx

t , t ≥ 0, x ≥ 0} which we have in mind. We call this diffusion
the generalized Feller diffusion. In order to derive this continuous model,
we first define a discrete model. For defining jointly the discrete model for
all initial population sizes, we need as in [13] to impose a non symmetric
competition rule between the individuals, which we will describe in section
1 below. We do a suitable renormalization of the parameters of the discrete
model in order to obtain in section 2 a large population limit of our model
which is a generalized Feller diffusion. Section 3 is devoted to give a Ray
Knight representation for such a generalized Feller diffusion. The proof of
this representation uses tools from stochastic analysis, in particular the “ex-
cursion filtration”, following an analogous proof of another generalized Ray
Knight theorem in [12].

1 Discrete model with a general interaction

In this section we set up a discrete mass continuous time approximation of the
generalized Feller diffusion. We consider a discrete model of population with
interaction in which each individual, independently of the others, gives birth
naturally at rate λ, dies naturally at rate µ. Moreover, we suppose that
each individual gives birth and dies because of interaction with others at
rates which depend upon the current population size. Moreover, we exclude
multiple births at any given time and we define the interaction rule through
a function f which satisfies hypothesis A.

In order to define our model jointly for all initial sizes, we need to intro-
duce a non symmetric description of the effect of the interaction as in [3] and
[11], but here we allow the interaction to be favorable to some individuals.

1.1 The model

We consider a continuous time Z+–valued population process {Xm
t , t ≥ 0},

which starts at time zero from m ancestors who are arranged from left to
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right, and evolves in continuous time. The left/right order is passed on
to their offsprings: the daughters are placed on the right of their mothers
and if at a time t the individual i is located at the left of individual j,
then all the offsprings of i after time t will be placed on the left of all the
offsprings of j. Since we have excluded multiple births at any given time,
this means that the forest of genealogical trees of the population is a planar
forest of trees, where the ancestor of the population X1

t is placed on the far
left, the ancestor of X2

t −X1
t immediately on his right, etc... Moreover, we

draw the genealogical trees in such a way that distinct branches never cross.
This defines in a non–ambiguous way an order from left to right within the
population alive at each time t. See Figure 1. We decree that each individual
feels the interaction with the others placed on his left but not with those on
his right. Precisely, at any time t, the individual i has an interaction death
rate equal to (f(Li(t) + 1)− f(Li(t)))− or an interaction birth rate equal
to (f(Li(t) + 1)− f(Li(t)))+, where Li(t) denotes the number of individuals
alive at time t who are located on the left of i in the above planar picture.
This means that the individual i is under attack by the others located at his
left if f(Li(t) + 1)− f(Li(t)) < 0 while the interaction improve his fertility if
f(Li(t)+1)−f(Li(t)) > 0. Of course, conditionally upon Li(·), the occurence
of a “competition death event” or an “interaction birth event” for individual
i is independent of the other birth/death events and of what happens to the
other individuals. In order to simplify our formulas, we suppose moreover
that the first individual in the left/right order has a birth rate equal to
λ+ f+(1) and a death rate equal to µ+ f−(1).

The resulting total interaction death and birth rates endured by the pop-
ulation Xm

t at time t is then

Xm
t∑

k=1

[(f(k)−f(k−1))+− (f(k)−f(k−1)−] =

Xm
t∑

k=1

(f(k)−f(k−1)) = f(Xm
t ).

As a result, {Xm
t , t ≥ 0} is a continuous time Z+–valued Markov process,

which evolves as follows. Xm
0 = m. If Xm

t = 0, then Xm
s = 0 for all s ≥ t.

While at state k ≥ 1, the process

Xm
t jumps to

{
k + 1, at rate λk +

∑k
`=1(f(`)− f(`− 1))+;

k − 1, at rate µk +
∑k

k=1(f(`)− f(`− 1))−.

1.2 Coupling over ancestral population size

The above description specifies the joint evolution of all {Xm
t , t ≥ 0}m≥1,

or in other words of the two–parameter process {Xm
t , t ≥ 0,m ≥ 1}. In
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Figure 1: Planar forest with five ancestors
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the case of a linear function f , for each fixed t > 0, {Xm
t , m ≥ 1} is an

independent increments process. In the case of a nonlinear function f , we
believe that for t fixed {Xm

t , m ≥ 1} is not a Markov chain. That is to
say, the conditional law of Xn+1

t given Xn
t differs from its conditional law

given (X1
t , X

2
t , . . . , X

n
t ). The intuitive reason for that is that the additional

information carried by (X1
t , X

2
t , . . . , X

n−1
t ) gives us a clue as to the fertility

or the level of competition that the progeny of the n + 1st ancestor had to
beneficit or to suffer from, between time 0 and time t.

However, {Xm
· , m ≥ 1} is a Markov chain with values in the space

D([0,∞);Z+) of càdlàg functions from [0,∞) into Z+, which starts from 0 at
m = 0. Consequently, in order to describe the law of the whole process, that
is of the two–parameter process {Xm

t , t ≥ 0,m ≥ 1}, it suffices to describe
the conditional law of Xn

· , given {Xn−1
· }. We now describe that conditional

law for arbitrary 1 ≤ m < n. Let V m,n
t := Xn

t − Xm
t , t ≥ 0. Conditionally

upon {X`
· , ` ≤ m}, and given that Xm

t = x(t), t ≥ 0, {V m,n
t , t ≥ 0} is a Z+–

valued time inhomogeneous Markov process starting from V m,n
0 = n − m,

whose time–dependent infinitesimal generator {Qk,`(t), k, ` ∈ Z+} is such
that its off–diagonal terms are given by

Q0,`(t) = 0, ∀` ≥ 1, and for any k ≥ 1,

Qk,k+1(t) = µk +
k∑
`=1

(f(x(t) + `)− f(x(t) + `− 1))+,

Qk,k−1(t) = λk +
k∑
`=1

(f(x(t) + `)− f(x(t) + `− 1))−,

Qk,`(t) = 0, ∀` 6∈ {k − 1, k, k + 1}.

The reader can easily convince himself that this description of the con-
ditional law of {Xn

t −Xm
t , t ≥ 0}, given Xm

· is prescribed by what we have
said above, and that {Xm

· , m ≥ 1} is indeed a Markov chain.

Remark 1.1 Note that if the function f is increasing on [0, a], a > 0 and
decreasing on [a,∞), the interaction improves the rate of fertility in a popu-
lation whose size is smaller than a but for large size the interaction amounts
to competition within the population. This is reasonable because when the
population is large, the limitation of resources implies competition within the
population. For a positive interaction (for moderate population sizes) one can
realize that an increase in the population size allows a more efficient orga-
nization of the society, with specalisation among its members, thes resulting
in better food production, health care, etc... We are mainly interested in the
model with interaction defined with functions f such that limx→∞ f(x) = −∞.
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Note also that we could have generalized our model to the case f(0) ≥ 0.
f(0) > 0 would mean an immigration flux. The reader can easily check that
results in section 2 would still be valid in this case. However in Proposition
1.3 and in section 3.3 below, assumption f(0) = 0 is crucial, since we need
the population to get extinct in finite time a.s..

1.3 The associated exploration process in the discrete
model

The just described reproduction dynamics gives rise to a forest Fm of m trees
of descent, drawn into the plane as sketched in Figure 2. Note also that, with
the above described construction, the (Fm,m ≥ 1), are coupled: the forest
Fm+1 has the same law as the forest Fm to which we add a new tree generated
by an ancestor placed at the (m + 1)st position. If the function f tends to
−∞ and m is large enough, the trees further to the right of the forest Fm
have a tendency to stay smaller because of the competition : they are “under
attack” from the trees to their left. From Fm we read off a continuous and
piecewise linear R+-valued path Hm = (Hm

s ) (called the exploration process
of Fm) which is described as follows.

Starting from the initial time s = 0 the process Hm rises at speed p until
it hits the top of the first ancestor branch (this is the leaf marked with D
in Figure 2). There it turns and goes downwards, now at speed −p, until
arriving at the next branch point (which is B in Figure 2). From there it
goes upwards into the (yet unexplored) next branch, and proceeds in a similar
fashion until being back at height 0, which means that the exploration of the
leftmost tree is completed. Then explore the next tree, and so on. See Figure
2.

We define the local time Lms (t) accumulated by the process Hm at level t
up to time s by:

Lms (t) = lim
ε→0

1

ε

∫ s

0

1t≤Hm
r <t+εdr.

The process Hm is piecewise linear, continuous with derivative ±p : at any
time s ≥ 0, the rate of appearance of minima (giving rise to new branches)
is equal

pµ+
[
f(bp

2
Lms (Hm

s )c+ 1)− f(bp
2
Lms (Hm

s )c)
]+

,

and the rate of appearance of maxima (describing deaths of branches) is
equal to

pλ+
[
f(bp

2
Lms (Hm

s )c+ 1)− f(bp
2
Lms (Hm

s )c)
]−
.
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D

B

Figure 2: A forest with two trees and its exploration process.
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Let Sm be the time needed in order to explore the forest Fm. We have

Sm = inf{s > 0;
p

2
Lms (0) ≥ m}.

Under the assumption that Sm <∞ a.s. for all m ≥ 1, we have the following
discrete Ray Knight representation (see Figure 1.3).

(Xm
t , t ≥ 0,m ≥ 1) ≡

(p
2
LmSm(t), t ≥ 0,m ≥ 1

)
.

1.4 Renormalized discrete model

Now we proceed to a renormalization of this model. For x ∈ R+ and N ∈ N,
we choose m = bNxc, µ = 2N , λ = 2N , we multiply f by N and divide
by N the argument of the function f . We affect to each individual in the
population a mass equal to 1/N . Then the total mass process ZN,x, which

starts from bNxc
N

at time t = 0, is a Markov process whose evolution can be
described as follows.

ZN,x jumps from k
N

to

{
k+1
N

at rate 2Nk +N
∑k

i=1

(
f( i

N
)− f( i−1

N
)
)+

k+1
N

at rate 2Nk +N
∑k

i=1

(
(f( i

N
)− f( i−1

N
)
)−
,

Clearly there exist two mutually independent standard Poisson processes P1

and P2 such that

ZN,x
t =

bNxc
N

+
1

N
P1

∫ t

0

2N2ZN,x
r +N

NZN,x
r∑

i=1

(f(
i

N
)− f(

i− 1

N
))+

 dr


− 1

N
P2

∫ t

0

2N2ZN,x
r +N

NZN,x
r∑

i=1

(f(
i

N
)− f(

i− 1

N
))−

 dr

 .

Consequently there exists a local martingale MN,x such that

ZN,x
t =

bNxc
N

+

∫ t

0

f(ZN,x
r )dr +MN,x

t . (1.1)

Since MN,x is a purely discontinous local martingale, its quadratic variation
[MN,x] is given by the sum of the squares of its jumps, i.e.

[MN,x]t =
1

N2

P1

∫ t

0

2N2ZN,x
r +N

NZN,x
r∑

i=1

(f(
i

N
)− f(

i− 1

N
))+

 dr


+P2

∫ t

0

2N2ZN,x
r +N

NZN,x
r∑

i=1

(f(
i

N
)− f(

i− 1

N
))−

 dr

 . (1.2)
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Figure 3: Discrete Ray Knight representation.
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We deduce from (1.2) that the conditional quadratic variation 〈MN,x〉 of
MN,x is given by

〈MN,x〉t =

∫ t

0

{
4ZN,x

r +
1

N
||f ||N,0,ZN,x

r

}
dr, (1.3)

where for any z = k
N

, z′ = k′

N
, k ∈ Z+ such that k ≤ k′,

||f ||N,z,z′ =
k′∑

i=k+1

|f(
i

N
)− f(

i− 1

N
)|.

Now we precise the law of the pair
(
ZN,x, ZN,y

)
, for any x, y ∈ R+ such

that x ≤ y. Let V N,x,y := ZN,y − ZN,x, and consider the pair of process(
ZN,x, V N,x,y

)
, which starts from

(
bNxc
N
, bNyc−bNxc

N

)
at time t = 0, and whose

dynamic is described by:
(
ZN,x, V N,x,y

)
jumps

from ( i
N
, j
N

) to


( i+1
N
, j
N

) at rate 2Ni+
∑i

k=1(f( k
N

)− f(k−1
N

)+

( i−1
N
, j
N

) at rate 2Ni+
∑i

k=1(f( k
N

)− f(k−1
N

))−

( i
N
, j+1
N

) at rate 2Nj +
∑j

k=1(f( i+k
N

)− f( i+k−1
N

)+

( i
N
, j−1
N

) at rate 2Nj +
∑j

k=1(f( i+k
N

)− f( i+k−1
N

)−

.

The process V N,x,y can be expressed as follows.

V N,x,y
t =

bNyc − bNxc
N

+

∫ t

0

[
f(ZN,x

r + V N,x,y
r )− f(ZN,x

r )
]
dr +MN,x,y

t ,

(1.4)

where MN,x,y is a local martingale whose conditional quadratic variation
〈MN,x,y〉 is given by

〈MN,x,y〉t =

∫ t

0

{
4V N,x,y

r +
1

N
||f ||N,ZN,x

r ,V N,x,y+ZN,x
r

}
dr. (1.5)

Since ZN,x and V N,x,y never jump at the same time,

[MN,x,MN,x,y] = 0, hence 〈MN,x,MN,x,y〉 = 0, (1.6)

which implies that the martingales MN,x and MN,x,y are orthogonal.
Consequently, ZN,x + V N,x,y solves the SDE

ZN,x
t + V N,x,y

t =
bNyc
N

+

∫ t

0

f(ZN,x
r + V N,x,y

r )dr + M̃N,x,y
t .
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where M̃N,x,y is a local martingale with 〈M̃N,x,y〉 given by

〈M̃N,x,y〉t = 〈MN,x〉t + 〈MN,x,y〉t = 〈MN,x+y〉t, ∀t ≥ 0.

We then deduce that for any x, y ∈ R+ such x ≤ y,

ZN,x + V N,x,y (d)
= ZN,y.

In fact, we have that

V N,x,y
t =

bNyc − bNxc
N

+
1

N
P 1

N ∫ t

0

NV N,x,y
s∑
k=1

(
f(ZN,x

s +
k

N
)− f(ZN,x

s +
k

N
)

)+

ds


− 1

N
P 2

N ∫ t

0

NV N,x,y
s∑
k=1

(
f(ZN,x

s +
k

N
)− f(ZN,x

s +
k

N
)

)−
ds


+

1

N
P 3

(
2N2

∫ t

0

V N,x,y
s ds

)
− 1

N
P 4

(
2N2

∫ t

0

V N,x,y
s ds

)
,

where P 1, P 2, P 3 and P 4 are mutually independent standard Poisson pro-
cesses which are all independent of ZN,x

. . It follows that conditionally upon{
ZN,x′ , x′ ≤ x

}
, MN,x,y is a local martingale.

Remark 1.2 We can also proceed to the renormalisation of the exploration
process to provide a discrete Ray Knight representation of the process ZN,x.
We choose the slope p = 2N and we denote by HN the exploration processes
associated to the forest FN,x of bNxc trees. Let LNs (t) be the local time of
the process HN at level t up to time s. At any time s, the rate of minima of
HN is equal to

4N2 +N

[
f(
bNLNs (HN

s )c
N

+ 1/N)− f(
bNLNs (HN

s )c
N

)

]+

,

and the rate of maxima is equal to

4N2 +N

[
f(
bNLNs (HN

s )c
N

+ 1/N)− f(
bNLNs (HN

s )c
N

)

]−
.

Let SN,x be the time to explore the forest FN,x. We have that

SN,x = inf{s > 0;LNs (0) ≥ bNxc
N
}.
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Under the assumption that SN,x < ∞ a.s. for all x > 0, the discrete Ray
Knight representation with the renormalization becomes:(

ZN,x
t , t ≥ 0, x ≥ 0

)
≡
(
LNSN,x(t), t ≥ 0, x ≥ 0

)
.

One could probably deduce from this discrete approximation the Ray Knight
representation of the general Feller diffusion by a limiting argument, as it is
done in [4] in the linear case and in [11] in the quadratic case. But in this
work we use stochastic analysis tools for proving our extended Ray Knight
theorem.

1.5 Continous model with a general competition

Given a space-time white noise W (ds, du), we now define an R+–valued two–
parameter stochastic process {Zx

t , t ≥ 0, x ≥ 0} which is such that for each
fixed x > 0, {Zx

t , t ≥ 0} is a continuous process, solution of the SDE (0.2).
We have that for any 0 < x < y, {V x,y

t := Zy
t − Zx

t , t ≥ 0} solves the SDE

V x,y
t = y − x+

∫ t

0

[f(Zx
s + V x,y

s )− f(Zx
s )] ds+ 2

∫ t

0

∫ Zx
s +V x,y

s

Zx
s

W (ds, du)

(1.7)

The process V x,y is nonnegative almost surely. We have that
∫ t

0

∫ Zx
s

0
W (ds, du)

and
∫ t

0

∫ Zx
s +V x,y

s

Zx
s

W (ds, du) are orthogonal since

[0, Zx
s ] ∩ (Zx

s , Z
x
s + V x,y

s ] = ∅,

and∫ t

0

∫ Zx
s

0

W (ds, du) +

∫ t

0

∫ Zx
s +V x,y

s

Zx
s

W (ds, du) =

∫ t

0

∫ Zx
s +V x,y

s

0

W (ds, du) a.s.

This implies that Zy = Zx + V x,y a.s. It follows that, for each t ≥ 0, the
process {Zx

t , x ≥ 0} is almost surely non decreasing and for 0 ≤ x < y, the
conditional law of Zy

· , given {Zx′
t , x

′ ≤ x, t ≥ 0} and Zx
t = z(t), t ≥ 0, is

the law of the sum of z plus the solution of (1.7) with Zx
t replaced by z(t).

Note that when Zx
. is replaced by a deterministic trajectory z, the solution

of (1.7) is independent of {Zx′
. , x

′ < x} . Hence the process {Zx
· , x ≥ 0}

is a Markov process with values in C([0,∞),R+), the space of continuous
functions from [0,∞) into R+, starting from 0 at x = 0. In the case f linear,
the increments of the mapping x→ Zx

t are independent, for each t > 0.
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For x ≥ 0, define T x0 the extinction time of the process Zx by:

T x0 = inf {t > 0;Zx
t = 0} .

For any x ≥ 0, we call the process Zx subcritical if it goes extinct almost
surely in finite time i.e if T x0 is finite almost surely. The assumption A implies

that f(x)
x

is bounded. Let us introduce the notation

Λ(f) :=

∫ ∞
1

exp

(
−1

2

∫ u

1

f(r)

r
dr

)
du. (1.8)

We have the following Proposition.

Proposition 1.3 Suppose that f satisfies hypothesis A. For any x ≥ 0, Zx

is subcritical if and only if Λ(f) =∞. In particular we have:

i) A sufficient condition for P (T x0 <∞) = 1 is: there exists z0 ≥ 1 such
that f(z) ≤ 2, ∀z ≥ z0,

ii) A sufficient condition for P (T x0 =∞) > 0 is: there exists z0 > 1 and
δ > 0 such that f(z) ≥ 2 + δ, ∀ z ≥ z0.

Proof:
Let S ∈ C2(R+) and 0 ≤ a < x < b. By Itô’s formula applied to the

process Zx and the function S, we have that for any t ≥ 0,

S(Zx
t ) = S(x) +

∫ t

0

(S ′(Zx
s )f(Zx

s ) + 2S ′′(Zx
s )Zx

s ) ds+ 2

∫ t

0

S ′(Zx
s )
√
Zx
s dWs.

(1.9)

Let us denote by A the generator of Zx. If we can find a strictly increasing
function S on the interval [a, b] such that AS ≡ 0, then the drift term in
(1.9) vanishes and so Zx will be just a time changed Brownian motion in
[S(a), S(b)]. Such a function S is called a scale function of the diffusion Zx.
We choose as scale function: for any z ≥ 0,

S(z) =

∫ z

1

exp

(
−1

2

∫ u

1

f(r)

r
dr

)
du.

Let us denote by T xy the random time at which Zx hits y for the first time.
We have for any 0 ≤ a < x < b

P(T xa < T xb ) =
S(b)− S(x)

S(b)− S(a)
, and P(T xa <∞) = lim

b→∞
P(T xa < T xb ).
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If the function S(z) tends to infinity as z goes to infinity, then P(T xa <∞) =
1. Otherwise 0 < P(T xa <∞) < 1. From this we deduce that Zx goes extinct
almost surely in finite time if and only if limz→∞ S(z) =∞ i.e. if and only if
Λ(f) =∞. The rest of the Proposition is immediate.

2 Convergence as N →∞
The aim of this section is to prove the convergence in law as N →∞ of the
two–parameter process {ZN,x

t , t ≥ 0, x ≥ 0} defined in section 1.4 towards
the process {Zx

t , t ≥ 0, x ≥ 0} defined in section 1.5. We need to make
precise the topology for which this convergence will hold. We note that the
process ZN,x

t (resp. Zx
t ) is a Markov processes indexed by x, with values in

the space of càdlàg (resp. continuous) functions of t D(([0,∞);R+) (resp.
C(([0,∞);R+)). So it will be natural to consider a topology of functions of
x, with values in functions of t.

For each fixed x, the process t → ZN,x
t is càdlàg, constant between its

jumps, with jumps of size±N−1, while the limit process t→ Zx
t is continuous.

On the other hand, both ZN,x
t and Zx

t are discontinuous as functions of
x. x → Zx

· has countably many jumps on any compact interval, but the
mapping x → {Zx

t , t ≥ ε}, where ε > 0 is arbitrary, has finitely many
jumps on any compact interval, and it is constant between its jumps. Recall
that D([0,∞);R+) equipped with the distance d0

∞ defined by (16.4) in [5]
is separable and complete, see Theorem 16.3 in [5]. We have the following
statement

Theorem 2.1 Suppose that the Hypothesis A is satisfied. Then as N →∞,

{ZN,x
t , t ≥ 0, x ≥ 0} ⇒ {Zx

t , t ≥ 0, x ≥ 0}

in D([0,∞);D([0,∞);R+)), equipped with the Skohorod topology of the space
of càdlàg functions of x, with values in the Polish space D([0,∞);R+) equipped
with the metric d0

∞.

Proof of the theorem

To prove the theorem, we first show that for fixed x ≥ 0 the sequence{
ZN,x, N ≥ 0

}
is tight in D([0,∞);R+).
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2.1 Tightness of ZN,x

For this end, we first establish a few lemmas.

Lemma 2.2 For all T > 0, x ≥ 0, there exist a constant C0 > 0 such that
for all N ≥ 1,

sup
0≤t≤T

E
(
ZN,x
t

)
≤ C0.

Moreover, for all t ≥ 0, N ≥ 1,

E
(
−
∫ t

0

f(ZN,x
r )dr

)
≤ x.

Proof: Let (τn, n ≥ 0) be a sequence of stopping times such that τn tends

to infinity as n goes to infinity and for any n,
(
MN,x

t∧τn , t ≥ 0
)

is a martingale

and ZN,x
t∧τn ≤ n. Taking the expectation on both sides of equation (1.1) at

time t ∧ τn, we obtain

E
(
ZN,x
t∧τn

)
=
bNxc
N

+ E
(∫ t∧τn

0

f(ZN,x
r )dr

)
. (2.1)

It follows from the hypothesis A on f that

E
(
ZN,x
t∧τn

)
≤ bNxc

N
+ β

∫ t

0

E(ZN,x
r∧τn)dr

From Gronwall and Fatou Lemmas, we deduce that there exists a constant
C0 > 0 which depends only upon x and T such that

sup
N≥1

sup
0≤t≤T

E
(
ZN,x
t

)
≤ C0.

From (2.1), we deduce that

−E
(∫ t∧τn

0

f(ZN,x
r )dr

)
≤ bNxc

N
.

Since −f(ZN,x
r ) ≥ −βZN,x

r , the second statement follows using Fatou’s
Lemma and the first statement.
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We now have the following lemma.

Lemma 2.3 For all T > 0, x ≥ 0, there exists a constant C1 > 0 such that
:

sup
N≥1

E
(
〈MN,x〉T

)
≤ C1.

Proof: For any N ≥ 1 and k, k′ ∈ Z+ such that k ≤ k′, we set z = k
N

and

z′ = k′

N
. We deduce from hypothesis A on f that

||f ||N,z,z′ =
k′∑

i=k+1

{(
f(

i

N
)− f(

i− 1

N
)

)+

+

(
f(

i

N
)− f(

i− 1

N
)

)−}

=
k′∑

i=k+1

{
2

(
f(

i

N
)− f(

i− 1

N
)

)+

−
(
f(

i

N
)− f(

i− 1

N
)

)}
.

Consequentely,

||f ||N,z,z′ ≤ 2β(z′ − z) + f(z)− f(z′). (2.2)

We deduce from (2.2), (1.3) and Lemma 2.2 that

E
(
〈MN,x〉T

)
≤
∫ T

0

{
(4 +

2β

N
)E(ZN,x

r )− 1

N
E
(
f(ZN,x

r

)}
dr

≤ (4 +
2β

N
)C0T +

x

N
.

Hence the lemma.

It follows from this that MN,x is in fact a square integrable martingale.
We also have

Lemma 2.4 For all T > 0, x ≥ 0, there exist two constants C2, C3 > 0 such
that :

sup
N≥1

sup
0≤t≤T

E
(
ZN,x
t

)2

≤ C2,

sup
N≥1

sup
0≤t≤T

E
(
−
∫ t

0

ZN,x
r f(ZN,x

r )dr

)
≤ C3.

Proof: We deduce from (1.1) and Itô’s formula that(
ZN,x
t

)2

=

(
bNxc
N

)2

+ 2

∫ t

0

ZN,x
r f(ZN,x

r )dr + 〈MN,x〉t +M
N,x,(2)
t , (2.3)
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where MN,x,(2) is a local martingale. Let (σn, n ≥ 1) be a sequence of stopping

times such that limn→∞ σn = +∞ and for each n ≥ 1,
(
M

N,x,(2)
t∧σn , t ≥ 0

)
is a

martingale. Taking the expectation on the both sides of (2.3) at time t ∧ σn
and using hypothesis A, Lemma 2.3, Gronwall and Fatou lemmas we obtain
that for all T > 0, there exists a constant C2 > 0 such that :

sup
N≥1

sup
0≤t≤T

E
(
ZN,x
t

)2

dr ≤ C2.

We also have that

2E
(
−
∫ t∧σn

0

ZN,x
r f(ZN,x

r )dr

)
≤
(
bNxc
N

)2

+ C1

From Hypothesis A, we have −ZN,x
r f(ZN,x

r ) ≥ −β(ZN,x
r )2. The result now

follows from Fatou’s Lemma.

We want to check tightness of the sequence
{
ZN,x, N ≥ 0

}
using Aldous’

criterion. Let {τN , N ≥ 1} be a sequence of stopping time in [0, T ]. We
deduce from Lemma 2.4

Proposition 2.5 For any T > 0 and η, ε > 0, there exists δ > 0 such that

sup
N≥1

sup
0≤θ≤δ

P

(∣∣∣∣∣
∫ (τN+θ)∧T

τN

f(ZN,x
r )dr

∣∣∣∣∣ ≥ η

)
≤ ε.

Proof: Let c be a non negative constant. We have∣∣∣∣∣
∫ (τN+θ)∧T

τN

f(ZN,x
r )dr

∣∣∣∣∣ ≤ sup
0≤r≤c

|f(r)|δ +

∫ τN+θ

τN

1{ZN,x
r >c}|f(ZN,x

r )|dr

But∫ τN+θ

τN

1{ZN,x
r >c}|f(ZN,x

r )|dr ≤ c−1

∫ T

0

ZN,x
r

(
f+(ZN,x

r ) + f−(ZN,x
r )

)
dr

≤ c−1

∫ T

0

(
2ZN,x

r f+(ZN,x
r )− ZN,x

r f(ZN,x
r )

)
dr

≤ c−1

∫ T

0

(
2β(ZN,x

r )2 − ZN,x
r f(ZN,x

r )
)
dr.

From this and Lemma 2.4, we deduce that ∀ N ≥ 1

sup
0≤θ≤δ

P

(∣∣∣ ∫ (τN+θ)∧T

τN

f(ZN,x
r )dr

∣∣∣ ≥ η

)
≤ η−1E

(∣∣∣∣∣
∫ (τN+θ)∧T

τN

f(ZN,x
r )dr

∣∣∣∣∣
)

≤ sup
0≤r≤c

|f(z)|δ
η

+
A

cη
,
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with A = 2βC2T + C3. The result follows by choosing c = 2A/εη, and then
δ = εη/2 sup0≤r≤c |f(z)|.

From Proposition 2.5, the Lebesgue integral term in the right hand side of
(1.1) satisfies Aldou’s condition [A], see [1]. The same Proposition, Lemma
2.2, (1.3) and (2.2) imply that < MN,x > satisfies the same condition, hence
so does MN,x, according to Rebolledo’s theorem, see [9]. Since all jumps are
of size 1

N
, tightness follows. We have proved

Proposition 2.6 For any fixed x ≥ 0, the sequence of processes
{
ZN,x, N ≥ 1

}
is tight in D ([0,∞);R+).

We deduce from Proposition 2.6 the following Corollary.

Corollary 2.7 For any 0 ≤ x < y the sequence of processes
{
V N,x,y, N ≥ 1

}
is tight in D ([0,∞);R+)

Proof: For any x fixed the process ZN,x has jumps equal to ± 1
N

which tends
to zero as N → ∞. It follows from that and equation (1.1) that any weak
limit of a converging subsequence of ZN,x is continuous and is the unique weak
solution of equation (0.2). We deduce that for any x, y ≥ 0, the sequence{
ZN,y − ZN,x, N ≥ 1

}
is tight since

{
ZN,x, N ≥ 1

}
and
{
ZN,y, N ≥ 1

}
are

tight and both have a continuous limit as N →∞.

2.2 Proof of Theorem 2.1

From Theorem 13.5 in [5], Theorem 2.1 follows from the two next Proposi-
tions

Proposition 2.8 For any n ∈ N, 0 ≤ x1 < x2 < · · · < xn,(
ZN,x1 , ZN,x2 , · · · , ZN,xn

)
⇒ (Zx1 , Zx2 , · · · , Zxn)

as N →∞, for the topology of locally uniform convergence in t.

Proof: We prove the statement in the case n = 2 only. The general state-
ment can be proved in a very similar way. For 0 ≤ x1 < x2, we consider
the process

(
ZN,x1 , V N,x1,x2

)
, using the notations from section 1. The argu-

ment preceding the statement of Proposition 2.6 implies that the sequences
of martingales MN,x1 and MN,x1,x2 are tight. Hence(
ZN,x1 , V N,x1,x2 ,MN,x1 ,MN,x1,x2

)
is tight. Thanks to (1.1), (1.4), (1.3), (1.5)

and (1.6), any converging subsequence of
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{
ZN,x1 , V N,x1,x2 ,MN,x1 ,MN,x1,x2 , N ≥ 1

}
has a weak limit

(Zx1 , V x1,x2 ,Mx1 ,Mx1,x2) which satisfies

Zx1
t = x1 +

∫ t

0

f(Zx1
s )ds+Mx1

t

V x1,x2
t = x2 − x1 +

∫ t

0

f [f(Zx1
s + V x1,x2

s )− f(Zx1
s )] ds+Mx1,x2

t ,

where the continuous martingales Mx1 and Mx1,x2 satisfy

〈Mx〉t = 4

∫ t

0

Zx1
s ds, 〈Mx1,x2〉t = 4

∫ t

0

V x1,x2
s ds, 〈Mx1 ,Mx1,x2〉t = 0.

This implies that the pair (Zx1 , V x1,x2) is a weak solution of the system of
SDEs (0.2) and (1.7), driven by the same space-time white noise. The result
follows from the uniqueness of the system, see [7].

Proposition 2.9 There exists a constant C, which depends only upon θ and
T , such that for any 0 ≤ x < y < z, which are such that y−x ≤ 1, z−y ≤ 1,

E
[

sup
0≤t≤T

|ZN,y
t − ZN,x

t |2 × sup
0≤t≤T

|ZN,z
t − ZN,y

t |2
]
≤ C|z − x|2.

We first prove the

Lemma 2.10 For any 0 ≤ x < y, we have

sup
0≤t≤T

E
(
ZN,y
t − ZN,x

t

)
= sup

0≤t≤T
E(V N,x,y

t ) ≤
(
bNyc
N
− bNxc

N

)
eβT ,

Proof: Let (σn, n ≥ 0) be a sequence of stopping times such that limn→∞ σn =

+∞ and
(
MN,x,y

t∧σn

)
is a martingale. Taking the expectation on the both sides

of (1.4) at time t ∧ σn we obtain that

E(V N,x,y
t∧σn ) ≤

(
bNyc
N
− bNxc

N

)
+ β

∫ t

0

E(V N,x,y
r∧σn )dr (2.4)

Using Gronwall and Fatou lemmas, we obtain that

sup
0≤t≤T

E(V N,x,y
t ) ≤

(
bNyc
N
− bNxc

N

)
eβT .
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Proof of Proposition 2.9 Using equation (1.4), a stopping time argu-
ment as above, Lemma 2.10 and Fatou’s lemma, where we take advantage of
the inequality f(ZN,x

r )− f(ZN,x
r + V N,x,y

r ) ≥ −βV N,x,y
r , we deduce that

E
(∫ t

0

[
f(ZN,x

r )− f(ZN,x
r + V N,x,y

r )
]
dr

)
≤ bNyc

N
− bNyc

N
. (2.5)

We now deduce from (1.5), Lemma 2.10, inequalities (2.5) and (2.2) that for
each t > 0, there exists a constant C(t) > 0 such that

E
(
〈MN,x,y〉t

)
≤ C(t)

(
bNyc
N
− bNyc

N

)
. (2.6)

This implies that MN,x,y is in fact a square integrable martingale. For any
0 ≤ x < y < z, we have ZN,z

t − ZN,y
t = V N,y,z

t and ZN,y
t − ZN,x

t = V N,x,y
t for

any t ≥ 0. On the other hand we deduce from (1.4) and the hypothesis A

sup
0≤t≤T

(V N,x,y
t )2 ≤ 3

(
bNyc
N
− bNxc

N

)2

+ 3β2T

∫ T

0

sup
0≤s≤r

(V N,x,y
s )2dr

+ 3 sup
0≤t≤T

(
MN,x,y

t

)2

,

sup
0≤t≤T

(V N,y,z
t )2 ≤ 3

(
bNzc
N
− bNyc

N

)2

+ 3β2T

∫ t

0

sup
0≤s≤r

(V N,y,z
s )2dr

+ 3 sup
0≤t≤T

(
MN,y,z

t

)2

.

Now let Gx,y := σ
(
ZN,x
t , ZN,y

t , t ≥ 0
)

be the filtration generated by ZN,x and

ZN,y. It is clear that for any t, V N,x,y
t is measurable with respect to Gx,y. We

then have

E
[

sup
0≤t≤T

|V N,x,y
t |2 × sup

0≤t≤T
|V N,y,z
t |2

]
= E

[
sup

0≤t≤T
|V N,x,y
t |2E

(
sup

0≤t≤T
|V N,y,z
t |2|Gx,y

)]
.

Conditionally upon ZN,x and ZN,y = u(.), V N,y,z solves the following SDE

V N,y,z
t =

bNzc − bNyc
N

+

∫ t

0

[
f(V N,y,z

r + u(r))− f(u(r))
]
dr +MN,y,z

t ,

where MN,y,z is a martingale conditionally upon Gx,y, hence the arguments
used in Lemma 2.10 lead to

sup
0≤t≤T

E
(
V N,y,z
t |Gx,y

)
≤
(
bNzc
N
− bNyc

N

)
eβT ,
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and those used to prove (2.5) yield

E
(∫ t

0

f(ZN,y
r )− f(ZN,y

r + V N,y,z
r )dr|Gx,y

)
≤ bNzc

N
− bNyc

N
.

From this we deduce (see the proof of (2.6)) that

E
(
〈MN,y,z〉t|Gx,y

)
≤ C(t)

(
bNzc
N
− bNyc

N

)
.

From Doobs’s inequality we have

E
(

sup
0≤t≤T

|MN,y,z
t |2|Gx,y

)
= E

(
〈MN,y,z〉T |Gx,y

)
≤ C(T )

(
bNzc
N
− bNyc

N

)
.

Since 0 < z − y < 1, we deduce that

E
(

sup
0≤t≤T

|V N,y,z
t |2|Gx,y

)
≤ 3(1 + C(T ))

(
bNzc
N
− bNyc

N

)
+ 3β2T

∫ T

0

E
(

sup
0≤s≤r

(V N,y,z
s )2|Gx,y

)
dr,

From this and Gronwall’s lemma we deduce that there exists a constant
K1 > 0 such that

E
(

sup
0≤t≤T

|V N,y,z
t |2|Gx,y

)
≤ K1

(
bNzc
N
− bNyc

N

)
. (2.7)

Similary we have

E
[

sup
0≤t≤T

(
V N,x,y
s

)2
]
≤ K1

(
bNyc
N
− bNxc

N

)
,

Since 0 ≤ y − x < z − x and 0 ≤ z − y < z − x, we deduce that

E
[

sup
0≤t≤T

|V N,x,y
t |2 × sup

0≤t≤T
|V N,y,z
t |2

]
≤ K2

1

(
bNzc
N
− bNxc

N

)2

,

hence the result.

Proof of Theorem 2.1 We now show that for any T > 0,

{ZN,x
t , 0 ≤ t ≤ T, x ≥ 0} ⇒ {Zx

t , 0 ≤ t ≤ T, x ≥ 0}
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in D([0,∞);D([0, T ],R+)). From Theorems 13.1 and 16.8 in [5], since from
Proposition 2.8, for all n ≥ 1, 0 < x1 < · · · < xn,

(ZN,x1
· , . . . , ZN,xn

· )⇒ (Zx1
· , . . . , Z

xn
· )

in D([0, T ];Rn), it suffices to show that for all x̄ > 0, ε, η > 0, there exists
N0 ≥ 1 and δ > 0 such that for all N ≥ N0,

P(wx̄,δ(Z
N) ≥ ε) ≤ η, (2.8)

where for a function (x, t)→ z(x, t)

wx̄,δ(z) = sup
0≤x1≤x≤x2≤x̄,x2−x1≤δ

inf {‖z(x, ·)− z(x1, ·)‖, ‖z(x2, ·)− z(x, ·)‖} ,

with the notation ‖z(x, ·)‖ = sup0≤t≤T |z(x, t)|. But from the proof of Theo-
rem 13.5 in [5], (2.8) for ZN follows from Proposition 2.9

3 Ray Knight representation of a general Feller

diffusion

In this section we establish a Ray-Knight representation of Feller’s branching
diffusion solution of (0.2), in terms of the local time of a reflected Brownian
motion H with a drift that depends upon the local time accumulated by H
at its current level, through the function f ′ where f is a function satisfying
the following hypothesis.
Hypothesis B: f ∈ C1(R+;R+), f(0) = 0 and there exist a constant β > 0
such that

f ′(x) ≤ β ∀x ≥ 0.

Note that hypothesis B follows from hypothesis A if we assume that f is
differentiable.

The proof we give here is purely in terms of stochastic analysis, and is
inspired by previous work of Norris, Rogers and Williams [12] and Pardoux,
Wakolbinger [13]. We specify an SDE for a process (Hs), from which the
generalized Feller’s diffusion solution of (0.2) can be read off from reflected
Brownian motion with a drift that is a function of the local time accumulated
by H at its current level. One way to understand the form of the drift is to
see (Hs) as the limit of the exploration process HN of the forest of random
trees associated to ZN,x. Precisely, fix z ∈ C(R+;R+), the set of continuous
functions from R+ into R+ and consider the stochastic differential equation

Hz
s = Bs +

1

2

∫ s

0

f ′(z(Hz
r ) + Lzr(H

z
r ))dr +

1

2
Lzs(0), (3.1)
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where B is a standard Brownian motion, and for s, t ≥ 0 Lzs(t) is the local
time accumulated by Hz at level t up to time s. For x > 0 define

Sx = inf {r > 0 : Lzs(0) > x} and S = sup
x>0

Sx.

We first suppose that f satisfies hypothesis B and the following.
Hypothesis C:

∃ a, b ∈ R : ∀z ≥ 0, |f ′(z)| ≤ az + b.

3.1 Case where f ′ satisfies hypothesis C.

In this subsection we suppose that f verifies hypothesis C. We have

Proposition 3.1 For any z ∈ C(R+;R+), equation (3.1) has a unique weak
solution.

Proof: Let H denote Brownian motion reflected above 0 defined on a
probability space (Ω,F ,P). H solves the following equation

Hs = Bs +
1

2
Ls(0),

where B is a Fs standard Brownian motion, and L is the local time of H.
Let

Ms :=
1

2

∫ s

0

f ′(z(Hr) + Lr(Hr))dBr and Gs = exp

(
Ms −

1

2
〈M〉s

)
.

We will show below that E(Gs) = 1, for all s ≥ 0, which is a sufficient
condition for G to be a martingale. By application of the Girsanov theorem,
there exists a new probability P̃z on (Ω,F) such that

dP̃z
dP
|Fs = Gs, s ≥ 0,

where (Fs, s ≥ 0) is the natural filtration of H. Moreover under P̃z,

B̃z
s := Bs −

1

2

∫ s

0

f ′(z(Hr) + Lr(Hr))dr, s ≥ 0

is a standard Brownian motion. The fact that E(Gs) = 1 for any s ≥ 0
follows thanks to assumption C from the existence of a constant c such that

sup
0≤r≤s

E(exp(c(Lr(Hr))
2) <∞. (3.2)

The inequality (3.2) is estabilished in [13], see Lemma 2 and Lemma 3. The
uniqueness is also proved in [13] and that argument does not make use of
hypothesis C.
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For K > 0, we now consider Brownian motion reflected in the interval
[0, K]

HK = Bs +
1

2
LKs (0)− 1

2
LKs (K−),

defined on (Ω,F ,P), where LK denotes the local time of HK . Define for
x > 0

SKx = inf
{
s > 0;LKs (0) > x

}
.

We again define

MK
s :=

1

2

∫ s

0

f ′(z(HK
r ) + LKr (HK

r ))dBr and GK
s = exp

(
MK

s −
1

2
〈MK〉t

)
.

The same argument as above shows that E(GK
s ) = 1 for all s ≥ 0. This

implies that there exists a probability P̃K,z defined on the measurable space
(Ω,F) under which

B̃z
s = HK − 1

2
LKs (0) +

1

2
LKs (K−)− 1

2

∫ s

0

f ′(z(HK
r ) + LKr (HK

r ))dr,

is a P̃K,z-Brownian motion. That is the equation

HK = B̃s +
1

2
LKs (0)− 1

2
LKs (K−) +

1

2

∫ s

0

f ′(z(HK
r ) + LKr (HK

r ))dr (3.3)

admits a weak solution. Uniqueness of the weak solution of (3.3) is obtained
in a similar way as concerning (3.1). Moreover we have that (see again [13])

P̃K,z
(
SKx <∞

)
= 1.

We now have the following Ray Knight representation.

Proposition 3.2 For any K > 0 and z ∈ C(R+;R+), the law of
{
LKSK

x
(t),

0 ≤ t < K
}

under P̃K,z is the same as the law of {Zx,z
t , 0 ≤ t < K}, where

Zx,z solves the SDE

dZx,z
t = [f(Zx,z

t + z(t))− f(z(t))] dt+ 2
√
Zx,z
t dWt, Z

x,z
0 = x, (3.4)

and W is a standard Brownian motion.

The proof of this Proposition is similar to that done in [13] in the quadratic
case. We will give below some details of the proof in the more general case
without hypothesis C.
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3.2 Existence and uniqueness of weak solution of (3.3)
without hypothesis C

Now we do not suppose anymore that f satisfies hypothesis C. We have

Proposition 3.3 For any K > 0, z ∈ C(R+;R+), there exists a probability
P̃K,z under which equation (3.3) has a unique weak solution on the random
interval [0, SK), where SK = supx≥0 S

K
x .

Proof: Consider again, for K > 0, the Brownian motion HK reflected in
the interval [0, K] defined on (Ω,F ,P).

HK = Bs +
1

2
LKs (0)− 1

2
LKs (K−).

For n ≥ 1, we define the function gn(r) = f ′(n∧r). It is clear that there exist
two constants a, b ≥ 0 such that |gn(r)| ≤ ar+ b. Thanks to Proposition 3.1,
there exits for each n ≥ 1 a probability P̃K,z,n such,

dP̃K,z,n

dP
|Fs = exp

{
MK,n

t − 1

2
〈MK,n〉t

}
, s ≥ 0,

where MK,n
s := 1

2

∫ s
0
gn(z(HK

r ) + LKr (HK
r ))dBr. Under P̃K,z,n,

B̃z,n
s = HK

s −
1

2
LKs (0)− 1

2

∫ s

0

gn(z(HK
r ) + LKr (HK

r ))dr +
1

2
LKs (K−), ∀s ≥ 0,

(3.5)
is a standard Brownian motian. For n ≥ 1, we define the stopping time

Tn = inf

{
s > 0; sup

0≤t<K

[
z(t) + LKs (t)

]
> n

}
.

We need the following result which is a variant of Theorem 1.3.5 from Stroock-
Varadhan [15], whose proof is very similar to that in [15].

Theorem 3.4 Let Ω = C(R+,R+) be the canonical path space with its
canonical filtration {Ft}, and let (Tn) be an increasing sequence of stopping
times satisfying Tn ≤ SK a.s. ∀n ≥ 1. Suppose there is a sequence (Pn) of
probabilities on (Ω,F) such that

• Pn+1 agrees with Pn on FTn;

• for each x > 0,
Pn
(
Tn < SKx

)
→ 0 as n→∞.
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Then there exists a probability P on (Ω,FSK ) such that for each n,

P = Pn on FTn .

This proves the existence of a probability P̃K,z on (Ω,FSK ), provided we show
that for all x > 0,

P̃K,z,n
(
Tn < SKx

)
→ 0 as n→∞.

We have

P̃K,z,n
(
Tn < SKx

)
= P̃K,z,n

(
sup

0≤t<K
LKSK

x
(t) > n

)
.

From Propostion 3.2, under P̃K,z,n, (LKSK
x

(t), 0 ≤ t < K) has the same law as

(Zx,z,n
t , 0 ≤ t < K) solution of the SDE

dZx,z,n
t =

(∫ z(t)+Zx,z,n
t

z(t)

gn(u)du

)
dt+ 2

√
Zx,z,n
t dWt, Zx,n

0 = x.

For any x ≥ 0, consider the process Z̃x, which is solution of the SDE

Z̃x
t = x+ β

∫ t

0

Z̃x
r dr + 2

∫ t

0

√
Z̃x
r dWr.

By a well known comparison theorem for one dimensional SDEs, see [14]
theorem X.3.7, we have that for any x ≥ 0 and z ∈ C(R+;R+), Zx,z,n ≤ Z̃x

a.s. . We then have that

P̃K,z,n
(
Tn < SKx

)
= P̃K,z,n

(
sup

0≤t<K
LKSK

x
(t) > n

)
= P

(
sup

0≤t<K
Zx,z,n
t > n

)
≤ P

(
sup

0≤t<K
Z̃x
t > n

)
→ 0 as n→∞.

We thus have proved for all K > 0 and z ∈ C(R+;R+), the existence of a
probability P̃K,z under which on [0, SK),

B̃z
s = HK

s −
1

2
LKs (0) +

1

2

∫ s

0

f ′(z(HK
r ) + LKr (HK

r ))dr +
1

2
LKs (K−)

is a standard Brownian motion. Uniqueness is obtained in a similar way as
in [13]. Hence the Proposition.
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For any z ∈ C(R+;R+), we have the following Ray Knight representation.

Proposition 3.5 For any K > 0, z ∈ C(R+;R+) and x ≥ 0, the law of(
LKSK

x
(t), 0 ≤ t < K

)
under P̃K,z is the same as the law of (Zx,z

t , 0 ≤ t < K)

Proof: For K > 0 and z ∈ C(R+), we work under the probability measure
P̃K,z. Using Tanaka’s formula, we have for any r ≥ 0 and 0 ≤ t < K, the
following identity

(HK
r − t)− = (−t)− +

∫ r

0

1{HK
s ≤t}dH

K
s +

1

2
LKr (t) (3.6)

Recall that for any x ≥ 0, PK,z(SKx <∞) = 1. Hence from (3.6),

LKSK
x

(t) = 2

∫ SK
x

0

1{HK
s ≤t}dH

K
s .

Combining with equation (3.3), we get

LKSK
x

(t) = x+ 2

∫ SK
x

0

1{HK
s ≤t}dB̃s +

∫ SK
x

0

1{HK
s ≤t}f

′(z(HK
s ) + LKs (HK

s ))ds.

From the generalized occupation time formula (see Exercise V I.1.15 in [14]),
we obtain∫ SK

x

0

1{HK
s ≤t}f

′(z(HK
s ) + LKs (HK

s ))ds =

∫ t

0

∫ SK
x

0

f ′(z(r) + LKs (r))dLKs (r)dr

=

∫ t

0

(
f(z(r) + LKSK

x
(r))− f(z(r))

)
dr.

The key idea of the proof is now to introduce the “excursion filtration”, as
in [12] and [13]. For any 0 ≤ t < K and s ≥ 0, let define

As(t) :=

∫ s

0

1{HK
r ≤t}dr, τ(r, t) = inf {s > 0;As(t) > r} ,

J(s, t) :=

∫ s

0

1{HK
r ≤t}dB̃r ξ(r, t) := J(τ(r, t), t)

F(r,t) := σ(ξ(r, t) : 0 ≤ u ≤ r), ςt = F(∞,t),

Nt :=

∫ SK
x

0

1{HK
s ≤t}dB̃s.

For fixed t, the process (J(s, t), s ≥ 0) is a martingale with respect to Fs,
while (ξ(r, t), r ≥ 0) is a F(r,t)-martingale and its quadratric variation equals
r. Consequently (ξ(r, t), r ≥ 0) is a F(r, t)-Brownian motion. We then have
the
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Lemma 3.6 The process (Nt, 0 ≤ t < K) is a continuous ςt-martingale with
its quadratic variation given by

〈N〉t = 4

∫ t

0

LKSK
x

(r)dr.

This result is an easy consequence of Theorem 1 in [12]. By the martingale
representation theorem, we deduce that there exists a Brownian motion W
such that

Nt = 2

∫ t

0

√
LK
SK
x

(r)dWr.

Consequently for all 0 ≤ t < K,

LKSK
x

(t) = x+

∫ t

0

(
f(z(r) + LKSK

x
(r))− f(z(r))

)
dr + 2

∫ t

0

√
LK
SK
x

(r)dWr.

3.3 Ray Knight theorem in the subcritical case

We first prove the following proposition (recall the definition (1.8) of Λ(f))

Proposition 3.7 Suppose that f satisfies hypothesis B and Λ(f) = ∞.
Then equation (3.1) admits a unique weak solution on [0, S).

Proof: For x > 0 and K > 0, let define

ΩK,x =

{
sup

[0,SK
x ]

HK′
< K, ∀ K ′ > K

}
.

For any x ≥ 0 and z ∈ C, since we are in the subcritical case, there exists
Tx,z < ∞ a.s. such that , Zx,z

t = 0, ∀ t ≥ Tx,z. We deduce from this and
Proposition 3.5 that for any fixed x ≥ 0,

Ω = ∪K>0ΩK,x a.s. .

Note that the family of events
{

ΩK,x, K > 0
}

is increasing, and on ΩK,x,

HK′
= H a.s., for any K ′ > K. We can define a probability P̃z,x on (Ω,FSx)

such that P̃z,x=P̃K,z on ΩK,x. Under P̃z,x, on [0, Sx]

B̃z
s = Hs −

1

2

∫ s

0

f ′(z(r) + Lr(Hr))dr −
1

2
Ls(0)
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is a standard Brownian motion. This proves that (3.1) has a weak solution
on [0, Sx] whose uniqueness can be proved as in [13]. ON A A NOUVEAU
BESOIN DU TH DE SV ! We can deduce that there exists a probabilty P̃z
under which, on [0, S) B̃z is a standard Brownian motion, where

S = sup
x≥0

Sx.

For z ≡ 0, we write P̃ = P̃z. The following statement is a generalized Ray
Knight theorem in the subcritical case.

Theorem 3.8 Suppose that f satisfies Hypothesis B and Λ(f) = ∞. Then
the law of the random fields {LSx(t), t ≥ 0, x ≥ 0} under the probability P̃ is
the same as the law of {Zx

t , t ≥ 0, x ≥ 0}.

We first establish the following Proposition.

Proposition 3.9 Assume that the two assumptions of Theorem 3.8 holds.
Then for any x and z ∈ C(R+;R+) fixed, the law of {LSx(t), t ≥ 0} under P̃z
coincides with is the law of {Zx,z

t , t ≥ 0}.

Proof: We have that for any K > 0, z ∈ C(R+;R+), under P̃K,z,
(
LKSK

x
(t),

0 ≤ t < K
)

has the same law as (Zx,z
t , 0 ≤ t < K). A consequence of this is

that for any 0 < K < K ′,{
LKSK

x
(t), 0 ≤ t < K

}
(d)
=
{
LK

′

SK′
x

(t), 0 ≤ t < K
}
. (3.7)

It now follows that for any K, under P̃z, (LSx(t), 0 ≤ t < K) has the same

law as
(
LKSK

x
(t), 0 ≤ t < K

)
under P̃K,z,x. We then obtain that for any K > 0

(LSx(t), 0 ≤ t < K)
(d)
= (Zx,z

t , 0 ≤ t < K) .

Hence the proposition, letting K go to ∞.

In particular, for x fixed, the law of {LSx(t), t ≥ 0} under P̃ is the same
as the law of {Zx

t , t ≥ 0}.

Remark 3.10 The identity (3.7) could also obtained from a generalization
of Lemma 2.1 in Delmas [8]. For 0 < a < b, we define the application πa,b

with maps continuous trajectories with value in [0, b] into trajectories with
values in [0, a] as follows. If u ∈ C(R+, [0, b]),

ρu(s) =

∫ s

0

1u(r)<adr, πa,b(u)(s) = u(ρ−1
u (s)).
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The following equality in law holds.

πa,b(Hb)
(d)
= Ha.

This identity together with the strong Markov property of the Brownian mo-
tion implies (3.7).

Proof of Theorem 3.8 Recall that (Zx
. , x ≥ 0) is a Markov process with

value in the space of continuous paths from R+ into R+ with compact sup-
port. From Proposition 3.9 with z ≡ 0, its marginal laws coincide with
those of LSx(.). We now check that (LSx(.), x ≥ 0) is a Markov process. This
follows readily from the fact that for any 0 ≤ x < y, conditionnaly upon(
LSx′

(.), x′ ≤ x
)

and given LSx(.) = z(.), on [0, Sy] the process Hx
s := HSx+s

solves the SDE

Hx
s = B̄s +

1

2

∫ s

0

(f ′(z(Hx
r ) + Lzr(H

x
r ))) dr +

1

2
Lzs(0),

where B̄ is a Brownian motion independent of
(
LSx′

(t), x′ ≤ x, 0 ≤ t ≤ Sx
)

and Lz denotes the local time of Hx, which is also the additional local time
accumulated by H after time Sx. To complete the proof of the theorem it now
suffices to prove that for any x, y ≥ 0 the conditional law of

(
LSx+y(t), t ≥ 0

)
given (LSx(t), t ≥ 0) is the same as the conditional law of

(
Zx+y
t , t ≥

)
given

(Zx
t , t ≥ 0). Conditioned upon LSx(.) = z(.), LSx+y(.)−LSx() is the collection

of local times accumulated by Hx up to time Sy, and it has the same law as
LzSy

(.) while conditionally upon Zx = z(.), Zx+y − Zx has the same law as
Zy,z. The identity of those two laws has been established in Proposition 3.9.

We can deduce from the Proposition 3.9 and the occupation time formula
that

Corollary 3.11 Suppose that f satisfies Hypothesis B and Λ(f) = ∞. We
have

∀x ≥ 0, P̃ (Sx <∞) = 1.

Proof: Let g(h) = 1, for any h > 0. By the occupation times’s formula, we
have

Sx =

∫ Sx

0

g(Hr)dr

=

∫ ∞
0

LSx(t)dt =

∫ Tx
0

0

Zx
r dr <∞ a.s.
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Note that Sx is the total mass of the process (Zx
t , t ≥ 0).
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