		introduction 00	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustration
--	--	--------------------	---------------------------------	---------------------------------	------------------------

The site frequency spectrum of dispensable genes

Franz Baumdicker

Albert-Ludwigs Universität Freiburg

June 15, 2015

Federal Ministry of Education and Research

sfs of dispensable genes

University of Freiburg

introduction	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustratio
•0	000000000	00000000	0000000000

Introduction

The distributed genome hypothesis

The set of genes in a population of bacteria is distributed over all individuals.

- individuals of the same population do not have the same set of genes
- no organism contains the full complement of genes of the species
- genes can be gained and get lost again

introduction	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustration
00	000000000	00000000	0000000000

data structure

- genomes are set of genes
- a gene is either present or absent in each of the genomes
- gene sequences of the same gene are typically not identical between genomes (SNPs)

introduction	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustrations
00	●00000000	00000000	000000000

Tree-indexed Markov chain for gene gain and loss

- ► I := [0,1] set of all possible genes, which might be gained
- T Kingman coalescent
- ▶ Define the Markov chain (G_t)_{t∈T} with state space N_f([0, 1]), the space of finite counting measures on [0, 1] = I.
- G_t makes transitions forwards in time

from *m* to $m + \delta_u$ at rate $\frac{\theta_1}{2}\lambda_I(du)$, from *m* to $m - \delta_u$ at rate $\frac{\rho}{2}m(u)$

along \mathcal{T} . λ_I is Lebesgue measure on I

▶ Denote the *n* leaves of the tree by 1, ..., n ∈ T.
G₁, ..., G_n describe the genes present in individuals 1, ..., n.

introduction	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustration
00	00000000	00000000	0000000000

infinitely many genes model - time measured in N_e

- genealogy is given by Kingman's coalescent
- pairs of lineages coalesce at rate 1
- genes are gained ($\mathbf{\nabla}$) at rate $\frac{\theta_1}{2}$
- each gene is lost (•) at rate $\frac{\rho}{2}$

gene frequency spectrum

The gene frequency spectrum is given by $G_1, ..., G_n$, where

 $G_k := |\{u \in I : u \in \mathcal{G}_i \text{ for exactly } k \text{ different } i\}|.$

 G_k is the number of genes present in k of n individuals

We can calculate the expected gene frequency spectrum using Hoppe's urn model...

Hoppe's urn

Start with

- one black ball with weight ρ and
- one colored ball with weight 1.
- Draw a ball at random. If the ball is
- $\bullet \to \bullet \bullet\,$ black: put back the black ball and an additional ball in a new color.
- $\bullet \to \bullet \bullet\,$ black: put back the colored ball with an additional ball of the same color.
- continue until there are n colored balls in the urn

introduction	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustrations
00	00000000	00000000	000000000

introduction 00	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustrations

Prob. for next event to be a merger/split:

backwards in time (coalescent)

$$\frac{\binom{i}{2}}{\binom{i}{2} + i\frac{\rho}{2}} = \frac{i-1}{i-1+\rho}$$

forwards in time (urn)

The Infinitely Many Genes Model	site mutations in the IMG model	results & illustrations 0000000000
	The Infinitely Many Genes Model	The Infinitely Many Genes Model site mutations in the IMG model 000000000000000000000000000000000000

 G_k : Number of genes present in k of n individuals

$$\mathbb{E}[G_k] = \int_{I} \mathbb{E}[du \in \mathcal{G}_i \text{ for } k \text{ different } i]$$

$$= \sum_{i=1}^{n} \sum_{l=1}^{i} \mathbb{P}[l\text{-th line during } T_i \text{ is of size } k]$$

$$\cdot \int_{I} \mathbb{P}[\text{gene gain in } du \text{ on } l\text{-th line during } T_i]$$

$$= \sum_{i=1}^{n} \sum_{l=1}^{i} \binom{n-i}{k-1} \frac{(k-1)!(i-1+\rho)\cdots(n-k-1+\rho)}{(i+\rho)\cdots(n-1+\rho)}$$

$$\cdot \int_{I} \frac{\theta_1}{i(i-1+\rho)} du$$

sfs of dispensable genes

introduction	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustrations
00	0000000000	00000000	000000000

expected gene frequency spectrum

 G_k : Number of genes present in k of n individuals

$$\mathbb{E}[G_k] = \frac{\theta_1}{k} \frac{n \cdots (n-k+1)}{(n-1+\rho) \cdots (n-k+\rho)}$$

sfs of dispensable genes

University of Freiburg

introduction 00	The Infinitely Many Genes Model 00000000●0	site mutations in the IMG model	results & illustrations

Based on the IMGM we can analyze microbial pangenomes:

- estimate θ_1 and ρ and test the hypothesis of neutral genome evolution based on the observed gene frequency spectrum
- estimate the number of different genes in the population
- forecast number of new genes found in sequencing projects provide general insights:
 - ► The expected number of dispensable genes in freq > 0.01, can not exceed the ~28 fold of the average single genome size:
 - $\mathbb{E}[G^{0.01}] \leq 28.33 \cdot \mathbb{E}[G]$ (even for strong selection/HGT)
 - $\mathbb{E}[G^{0.5}] \leq 1.0 \cdot \mathbb{E}[G]$ (only for neutral genes)
 - the pangenome grows like $\theta_1 log(N)$ for large population sizes
- "easily" account for additional features
 - \blacktriangleright horizontal gene transfer \rightarrow ancestral gene transfer graph
 - site mutations within the genes

results & illustrations

Diversity of the Prochlorococcus-pan-genome

- *p*-value (neutrality) ≈ 0.630
- pangenome: 57792 genes
- persistant genes: \sim 8500

- sequenced genomes: 41 (11)
- known genes: 9331 (5025)
- ▶ 52 genes in 42th genome

introduction	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustrat
00		•00000000	0000000000

- What about the site mutations within the gene sequences?
- How does the site frequency spectrum for dispensable genes look like?

Tree-indexed Markov chain for gene gain, loss and site mutation

- I := [0, 1] set of all possible genes, which might be gained
- ▶ J = (0, 1] set of all sites, which might mutate
- \mathcal{T} Kingman coalescent
- Define the Markov chain (M_t)_{t∈T} with state space N_f([0,1]²), the space of finite counting measures on [0,1]² = I × ({0} ∪ J).
- \mathcal{M}_t makes transitions forwards in time

from *m* to $m + \delta_{(u,0)}$ at rate $\frac{\theta_1}{2}\lambda_I(du)$, from *m* to $m - m|_{\{u\} \times I}$ at rate $\frac{\rho}{2}m(u,0)$, and

from *m* to $m + \delta_{(u,v)}$ at rate $\frac{\theta_2}{2}m(u,0)\lambda_I(dv)$

along \mathcal{T} . λ_I is Lebesgue measure on I

• Denote the *n* leaves of the tree by $1, ..., n \in \mathcal{T}$.

 $\mathcal{M}_1, ..., \mathcal{M}_n$ describe the genes & site mutations present in individuals 1, ..., n.

introduction	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustratio
00	000000000	0000000	0000000000

IMG model with site mutations – time measured in N_e

- along Kingman's coalescent
- pairs of lines merge at rate 1
- genes are gained ($\mathbf{\nabla}$) at rate $\frac{\theta_1}{2}$
- each gene is lost (•) at rate $\frac{\rho}{2}$
- ► a present gene is hit by a site mutation (×) at rate ^θ/₂

Gene 1 Gene 2 Gene 3 Gene 4 Genome 1 --T-- -A---Genome 2 ____ X **X** Genome 3 ----- -AA---**X** x 🗙 T---- 🗙 Genome 4 AC--🗙 т----× Genome 5

joint gene and site frequency spectrum

The *joint gene and site frequency spectrum* is given by $G_{1,1}, \ldots, G_{1,n}, G_{2,1}, \ldots, G_{2,n}, \ldots, G_{n,n}$, where

 $G_{k,s} := \left| \left\{ (u,v) \in I \times I : u \in \mathcal{G}_i \text{ for exactly } k \text{ different } i, i_1, \dots, i_k, \\ \text{and } (u,v) \in \mathcal{M}_{i_i} \text{ for exactly } s \text{ different } i_j \text{ with } j \in \{1, \dots, k\} \right\} \right|$

 $G_{k,s}$ is the number of SNPs present in *s* of *k* sequences, where the corresponding gene exists in *k* of *n* genomes.

We can calculate the expected joint gene and site frequency spectrum using Hoppe's urn model...

A line during T_i is of size k if the ball belonging to this line produces exactly k offspring.

Let $\mathcal{T}(i, k, m)$ be the set of all T_j for $j \in \{i, ..., n\}$ where m of j colored balls in the urn are marked by a gene gain.

site mutations in the IMG model introduction The Infinitely Many Genes Model results & illustrations 000000000 $\mathbb{E}[G_k] = \int \mathbb{E}[du \in \mathcal{G}_i \text{ for } k \text{ different } i]$ $\mathbb{E}[G_{k,s}] = \int_{I} \int_{I} \mathbb{E}[(du, 0) \in \mathcal{M}_i \text{ for exactly } k \text{ different } i$ and $(du, dv) \in \mathcal{M}_i$ for exactly *s* different *i*] $=\sum_{i=1}^{n}\sum_{l=1}^{i}\mathbb{P}[/\text{th line during } T_i \text{ is of size } k] \cdot \int_{I}\mathbb{P}[\text{mark in } du \text{ on } l\text{th line during } T_i]$ $\cdot \int_{I} \mathbb{E} \left[(du \times dv) \in \mathcal{M}_{i_j} \text{ for } s \text{ different } i_j \middle| \begin{array}{c} \text{Ith line during } \mathcal{T}_i \text{ is of size } k \\ \text{and has mark in } du \text{ during } \mathcal{T}_i \end{array} \right]$ (*)

$$(\star) = \sum_{m=1}^{k} \sum_{r=1}^{m} \mathbb{P}[r \text{th line during } \mathcal{T}(i, k, m) \text{ is of size } s] \\ \cdot \int_{J} \mathbb{P}[\text{ mutation in } dv \text{ on } r \text{th line during } \mathcal{T}(i, k, m)]$$

introduction 00	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustrations 0000000000

$$(\star) = \sum_{m=1}^{k} \sum_{r=1}^{m} \mathbb{P}[r \text{th line during } \mathcal{T}(i, k, m) \text{ is of size } s]$$
$$\cdot \int_{J} \mathbb{P}[\text{ mutation in } dv \text{ on } r \text{th line during } \mathcal{T}(i, k, m)]$$
$$= \sum_{m=1}^{k} \sum_{r=1}^{m} \binom{k-m}{s-1} \frac{(s-1)!(m-1)\cdots(k-s-1)}{(m)\cdots(k-1)}$$
$$\cdot \frac{\theta_{2}}{2} \sum_{j=i}^{n} \mathbb{P}[\mathcal{T}_{j} \in \mathcal{T}(i, k, m)] \mathbb{E}[\mathcal{T}_{j}]$$

expected joint gene and site frequency spectrum

$$\mathbb{E}[G_{k,s}] = \frac{\theta_1}{k} \frac{(n-k+1)\cdots n}{(n-k+\rho)\cdots (n-1+\rho)} \frac{\theta_2}{s} \frac{k}{n} \binom{n-1}{s}^{-1} \sum_{j=0}^{n-s-1} \frac{j+1}{j+1+\rho} \binom{n-j-2}{s-1}$$

- gene gain rate $\frac{\theta_1}{2}$
- gene loss rate $\frac{\rho}{2}$
- site mutation rate $\frac{\theta_2}{2}$

introduction 00	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustrations

The site frequency spectrum of gene $u \in [0, 1]$ is given by $S_1^u, \ldots, S_{F(u)}^u$, where

 $S_s^u := |\{v \in J : v \in \mathcal{M}_i(u, .) \text{ for exactly } s \text{ different } i \text{ with } \mathcal{M}_i(u, 0) = 1\}|$

if $F(u) := |\{i \in \{1, \ldots, n\} : \mathcal{M}_i(u, 0) = 1\}|$ is frequency of gene u.

We are interested in

 $\mathbb{E}[S^u_s | F(u) = k]$

the expected site frequency spectrum of dispensable genes present in k of n individuals

introduction	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustrations
00	000000000	00000000	●000000000

site frequency spectrum: classic vs. dispensable

The site frequency spectrum in dispensable genes present in k out of n individuals is given for s < k by

$$\mathbb{E}[S_s^u | F(u) = k] = \frac{\mathbb{E}[G_{k,s}]}{\mathbb{E}[G_k]}$$
$$= \frac{\theta_2}{s} \frac{k}{n} {\binom{n-1}{s}}^{-1} \sum_{j=0}^{n-s-1} \frac{j+1}{j+1+\rho} {\binom{n-j-2}{s-1}}$$
$$\leq \frac{\theta_2}{s} \frac{k}{n}$$

introduction 00	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustrations

site frequency spectrum for dispensable genes in frequency k

sfs of dispensable genes

University of Freiburg

sfs of dispensable genes

University of Freiburg

estimators for the scaled site mutation rate θ_2

Tajimas estimator

 $\widehat{\pi} := \sum_{i < j}^{n} \pi_{ij} \qquad \qquad \mathbb{E}[\widehat{\pi}] = \sum_{s=1}^{k-1} \mathbb{E}[C_s^u] \frac{s(k-s)}{\binom{k}{2}} = \theta_2$

 π_{ij} : number of sites which differ between individual *i* and individual *j*.

introduction 00	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustrations

estimators for the site mutation rate of disp. genes

u dispensable gene, which appears in k out of n individuals

$$\begin{split} \mathbb{E}[S_{\text{seg}}] &= \sum_{s=1}^{k-1} \mathbb{E}[S_s^u | F(u) = k] \\ \mathbb{E}_{disp}[\widehat{\theta}_W] &= \theta_2 \frac{\frac{k}{n} \sum_{s=1}^{k-1} \frac{1}{s} \binom{n-1}{s}^{-1} \sum_{j=0}^{n-s-1} \frac{j+1}{j+1+\rho} \binom{n-j-2}{s-1}}{\sum_{s=1}^{k-1} \frac{1}{s}} \leq \frac{k}{n} \theta_2 \\ \mathbb{E}_{disp}[\widehat{\pi}] &= \sum_{s=1}^{k-1} \mathbb{E}[S_s^u | F(u) = k] \frac{s(k-s)}{\binom{k}{2}} \\ &= \theta_2 \frac{2}{k(k-1)} \frac{k}{n} \sum_{s=1}^{k-1} (k-s) \binom{n-1}{s}^{-1} \sum_{j=0}^{n-s-1} \frac{j+1}{j+1+\rho} \binom{n-j-2}{s-1} \\ &\leq \frac{k}{n} \theta_2 \end{split}$$

introduction 00	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustrations

Tajima's D for dispensable genes present in 8 of 20 individuals

Tajima's D for dispensable genes present in 19 of 20 individuals

introduction 00	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustratio 0000000●00

conclusion

- bacterial genes can be gained and lost
- the site frequency spectrum of dispensable genes differs from the classical site frequency spectrum
- frequency spectra can be calculated using Hoppe's urn
- uncorrected standard estimates for the site mutation rate θ₂ are biased for a dispensable gene present in k of n genomes
- $\mathbb{E}[\widehat{\theta}] \leq \frac{k}{n}\theta_2$, $\mathbb{E}[\widehat{\pi}] \leq \frac{k}{n}\theta_2$
- $\mathbb{E}[\hat{\theta}] \neq \mathbb{E}[\hat{\pi}]$ Tajima's D tends to be negative for disp. genes

introduction 00	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustrations 00000000●0

Thank you for your attention

introduction	The Infinitely Many Genes Model	site mutations in the IMG model	results & illustrations
00	000000000	00000000	00000000

Publications

- (a) Baumdicker, F., W. R. Hess, and P. Pfaffelhuber. *The diversity of a distributed genome in bacterial populations.* The Annals of Applied Probability (2010)
- (b) Baumdicker, F., W. R. Hess, and P. Pfaffelhuber. The infinitely many genes model for the distributed genome of bacteria. Genome Biology and Evolution (2012)
- (c) Baumdicker, F. and P. Pfaffelhuber. The infinitely many genes model with horizontal gene transfer. Electronic Journal of Probability (2014)
- (d) Baumdicker, F. The site frequency spectrum of dispensable genes. Theoretical Population Biology (2015)