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HOMOGENIZATION OF A SEMILINEAR PARABOLIC PDE WITH LOCALLY
PERIODIC COEFFICIENTS: A PROBABILISTIC APPROACH

Abdellatif Benchérif-Madani
1

and Étienne Pardoux
2

Abstract. In this paper, a singular semi-linear parabolic PDE with locally periodic coefficients is
homogenized. We substantially weaken previous assumptions on the coefficients. In particular, we
prove new ergodic theorems. We show that in such a weak setting on the coefficients, the proper
statement of the homogenization property concerns viscosity solutions, though we need a bounded
Lipschitz terminal condition.
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1. Introduction

In this paper we continue investigating locally periodic homogenization in the case of the following semi-linear
parabolic PDE defined on the product set [0, T ]× Rd, T > 0,⎧⎨⎩ ∂tu

ε(t, x) + Γε
(x

ε
, x, uε(t, x),∇uε(t, x), ∂2uε(t, x)

)
= 0,

uε(T, x) = g(x)
(1.1)

where

Γε
(x

ε
, x, uε(t, x),∇uε(t, x), ∂2uε(t, x)

)
=

1
2

∑d

i,j=1
aij

(x

ε
, x
)

∂2
xixj

uε(t, x)

+
∑d

i=1

(
1
ε
bi + b′i

)(x

ε
, x
)

∂xiu
ε(t, x)

+
1
ε
e
(x

ε
, x, uε(t, x)

)
+ f

(x

ε
, x, uε(t, x),∇uε(t, x)σ

(x

ε
, x
))

,

for all ε > 0 and x in Rd. The function g(x) is Lipschitz continuous and bounded. All the coefficients are periodic
with respect to the first variable with period one in each direction of Rd. The matrix σ(x1, x2) = [σij(x1, x2)]
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1 Université Ferhat Abbas, Fac. Sciences, Dépt. Maths., Sétif 19000, Algeria; lotfi madani@yahoo.fr
2 CMI, LATP – CNRS and Université de Provence, 39, rue F. Joliot Curie, 13453 Marseille Cedex 13, France; pardoux@latp.unimrs.fr

c© EDP Sciences, SMAI 2007

Article published by EDP Sciences and available at http://www.esaim-ps.org or http://dx.doi.org/10.1051/ps:2007026

http://www.edpsciences.org
http://www.esaim-ps.org
http://dx.doi.org/10.1051/ps:2007026
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for x1 and x2 in Rd satisfies σσ∗(x1, x2) = a(x1, x2) where the matrix a(x1, x2) = [aij(x1, x2)] is supposed to
be uniformly elliptic. That is ∃λ strictly positive and finite s.t. for all x1, x2 and ξ in Rd

(a(x1, x2)ξ, ξ) ≥ λ ‖ξ‖2
. (1.2)

Our previous (probabilistic) arguments in [2] and [3] in the case of linear coefficients e(x/ε, x, uε(t, x)) =
e(x/ε, x)uε(t, x) and vanishing non-linear term f = 0 were based on the Feynman-Kac formula. It is well
known that a natural extension of this technique to the non-linear case turns out to be the theory of backward
stochastic differential equations first discovered by Pardoux and Peng, see [13], and the references therein, for
a complete and profound account. The operator acting on x in Rd

Lε =
1
2

∑d

i,j=1
aij

(x

ε
, x
)

∂2
xixj

+
∑d

i=1

(
1
ε
bi + b′i

)(x

ε
, x
)

∂xi (1.3)

which appears in (1.1) is the infinitesimal generator of the following (forward) SDE, built on some probability
space (Ω,F ,Ft, Bt, P ), where Bt is under P an Ft-Brownian motion,

Xε,t,x
s = x +

∫ s

t

(
1
ε
b + b′

)(
Xε,t,x

r

ε
, Xε,t,x

r

)
dr +

∫ s

t

σ

(
Xε,t,x

r

ε
, Xε,t,x

r

)
dBr, (1.4)

for all 0 ≤ t ≤ s ≤ T and x in Rd; whereas the non-linear term is the coefficient in the backward SDE, carried
by the above probability space, see the notation below,

Y ε,t,x
s = g(Xε,t,x

T ) +
∫ T

s

(
1
ε
e + f

)(
Xε,t,x

r

ε
, Xε,t,x

r , Y ε,t,x
r , Zε,t,x

r

)
dr −

∫ T

s

Zε,t,x
r dBr; (1.5)

the process (Y ε,t,x
. , Zε,t,x

. ) is FB
. -adapted and subject to the condition

E

(
sup

t≤s≤T

∣∣Y ε,t,x
s

∣∣2)+ E

∫ T

t

∥∥Zε,t,x
r

∥∥2 dr < ∞, (1.6)

for all ε > 0. Note that uε(t, x) = Y ε,t,x
t is deterministic and solves (1.1) given our assumptions on the coefficients.

Our aim in this paper is to establish, under weak conditions on the coefficients, the pointwise convergence as
ε → 0 of uε towards the solution of equation (3.6) below. For example in [12], who deals with the totally periodic
case, the coefficient e satisfies a kind of an algebraic sub-linear growth in y, namely e(x, y) = e0(x, y) + e1(x)y
where e0(x, y) is bounded besides taking f = 0. Note also that although Delarue [8] deals with a quasi-linear
equation, he considers only periodic coefficients and his conditions concerning σ, b and e are much stronger than
ours. Moreover, the functions that are homogenized possess weak second derivatives. However, his treatment
of the homogenization process is more complete due to the presence of more regularity. On the other hand,
although we don’t allow for a quadratic growth in the gradient, our work does considerably relax some of the
regularity hypotheses of [4], where homogenization is studied by purely analytical methods.

Some facts from [3] will be used here, sometimes without special warnings.
The idea is still to freeze the slow component in (1.3) and consider the following family of operators indexed

by x2 (since the coefficient b′ plays no asymptotic role it is omitted),

Lx2 =
1
2

∑d

i,j=1
aij(x1, x2)∂2

x1
i x1

j
+
∑d

i=1
bi(x1, x2)∂x1

i
. (1.7)

These operators generate the following diffusions with transition densities pt(x1, x1′, x2)

Xx2

t = x1 +
∫ t

0

b(Xx2

r , x2)dr +
∫ t

0

σ(Xx2

r , x2)dBr,
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which may rather be thought of as diffusions on the compact torus T d, i.e.

·
X

x2

t = x1 +
∫ t

0

b(
·

X
x2

r , x2)dr +
∫ t

0

σ(
·

X
x2

r , x2)dBr,

with transition densities

·
pt(x

1, x1′, x2) =
∑

k1...kd

pt

(
x1, x1′ +

d∑
i=1

kiei, x
2

)
,

ei being the canonical basis of Rd and ki integers. In what follows we shall drop the dots when no ambi-
guity arises. These diffusions possess invariant probability measures µ(dx1, x2) with densities p∞(x1, x2), see
Pardoux [12]. It is crucial to impose on the singular coefficients b and e the following centering condition for all
x2 and y. As this relation appears several times below and to avoid unnecessary repetitions, we shall use the
general notation h for b, e and other functions of interest, namely we have

∫
Td

h(x1, x2, y)µ(dx1, x2) = 0. (1.8)

We can then solve the Poisson equation

Lx2 ĥ(x1, x2, y) = −h(x1, x2, y), (1.9)

and carry on with the usual line of proof (see e.g. the introduction in [2]), provided we have sufficient regularity.
Recall that in the linear case we first establish a tightness result for the family of processes Xε, ε > 0, in the
space C( [0, T ] , Rd) endowed with the sup-norm and proceed to identify the limit via an ergodic theorem and a
martingale problem formulation. In the non-linear case however, it seems difficult to work out tightness results
for the process Y ε (and the related martingale M ε, see (2.17)) in C( [0, T ] , Rd) endowed with the sup-norm and
it turns out that the weaker topology of Jakubowski [9] on D( [0, T ] , Rd+1) is convenient, see also [11] where a
tightness criterion is established (actually relaxed by Kurtz [10]). Moreover, it is important to note that given
our formal assumptions on the coefficients, a natural stability argument, first devised in [5] and used below
with a slight modification, seems to be necessary since the family of processes Zε, ε > 0, does not seem to
converge. In particular, Pardoux’s weak convergence scheme can’t be carried out as such. Instead, we simply
begin by guessing the form of the limit PDE (see (3.6)) and then prove that convergence takes place. The whole
procedure below for homogenizing our PDE (1.1) should not be too surprising since there seems indeed to be a
gap in the bridge between viscosity solutions and BSDEs. This is well accounted for in e.g. [1].

Notation 1.1. Let ξ denote any coefficient a, b, b′, e and f . Even if the coefficients a, b and b′ do not depend on
y we still allow for the notation ξ(r, r, r, r) meaning respectively ξ(Xε

r

ε , Xε
r), ξ(Xε

r

ε , Xε
r , Y

ε
r ) and ξ(Xε

r

ε , Xε
r , Y

ε
r , Zε

r).
There should be no confusion with space variables since we use different letters for these variables. However,
in a solution u(r, r) of a parabolic equation the first r obviously refers to the time variable. We will also drop
unambiguous superscripts like e.g. (t, x). The quantity ζ(t) − ζ(s) is shortened, using the difference operator,
as ∆s,tζ(.). The linear space of Rd valued continuous, respectively càdlàg, functions on [0, T ] is denoted by
C( [0, T ] , Rd), respectively D( [0, T ] , Rd). If u(x) is a function of x in Rd, we shall write ∂xu(x) to denote the
d-dimensional vector whose i-th coordinate is ∂xiu(x) ; similarly ∂2

xu(x) will denote a d × d matrix and so on.
Unimportant constants will invariably be designated by c the value of which may vary from line to line while
proofs are in process but when there are many constants within a string of relations, we will use c, c′ ...
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1.1. Condition A

Our standing assumptions are in this section, next to (1.2) in which λ is fixed,∫
Td

b(x1, x2)µ(dx1, x2) = 0,∫
Td

e(x1, x2, y)µ(dx1, x2) = 0,

for all (x1, x2, y), and g ∈ W 1,∞, the conditions:

1.1.1. A1 Regularity

The coefficients σ, b, and b′ satisfy a global Lipschitz condition, i.e. there exists a constant c s.t. for any
ξ = σ, b, and b′ ∥∥ξ(x1, x2) − ξ(x1′, x2′)

∥∥ ≤ c(
∥∥x1 − x1′∥∥+

∥∥x2 − x2′∥∥).
Moreover, for ξ = a and b, the partial derivatives ∂x2ξ(x1, .) belong to W 1,p

loc (Rd), for some large p and all
x1 ∈ T

d, and
sup

x2∈Rd

∥∥∂2
x2ξ(., x2)

∥∥
Lp(T d)

< ∞.

The first order partials of the coefficient e(x1, x2, y) exist and satisfy for some c′ > 0 and all triples (x1, x2, y)

(‖∂x1e‖ + ‖∂x2e‖)(x1, x2, y) ≤ c′(1 + |y|),
|∂ye| (x1, x2, y) ≤ c′.

The second partial derivatives of e with respect to (x2, x2), (x2, y) and (y, y) exist and satisfy∥∥∂2
x2e(., x2, y)

∥∥
Lp(T d)

+
∥∥∂2

x2ye(., x2, y)
∥∥

Lp(T d)
≤ c′′,∥∥∂2

ye(., x2, y)
∥∥

Lp(T d)
≤ c′′

1
(1 + |y|) ,

for some large p and c′′ > 0.
The coefficient f(x1, x2, y, v) admits first order partials, which satisfy the condition∥∥∂x1f(x1, x2, y, v)

∥∥+
∥∥∂x2f(x1, x2, y, v)

∥∥ ≤ c′′′(1 + |y| + ‖v‖),∣∣∂yf(x1, x2, y, v)
∣∣ ≤ c′′′,∥∥∂vf(x1, x2, y, v)
∥∥ ≤ c′′′,

for some c′′′ > 0 and all (x1, x2, y, v) uniformly with respect to x1 in T
d and x2 in Rd and moreover it is jointly

continuous.

1.1.2. A2 Growth

The coefficients σ, b and b′ are bounded, i.e. there exists a constant K s.t. for any ξ = σ, b, b′∥∥ξ(x1, x2)
∥∥ ≤ K,

and the coefficients e and f satisfy a sub-linear growth in (y, v),∣∣(e + f)(x1, x2, y, v)
∣∣ ≤ K ′(1 + |y| + ‖v‖),

for some K ′ and all x1 in T
d, x2 in Rd, y in R and v in Rd.
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Note that for every ε > 0 our conditions guarantee the existence and uniqueness of solutions of the above sys-
tem of forward-backward SDEs subject to condition (1.6) and that a viscosity solution uε(t, x) to equation (1.1)
exists and is unique, see Theorem 12.3 p. 54 in [1].

1.2. Technical facts

We begin with the following simple fact, actually of independent interest, which will be needed below.

Lemma 1.2. Let (Ω,F) be a measurable space carrying two probability measures P and P̂ s.t. P̂ is absolutely
continuous with respect to P . If a family of continuous processes {ξn

s }n, t ≤ s ≤ T , is P -tight, relative to a
fixed metric on C [t, T ], then it is also P̂ -tight with respect to this same metric. If moreover the density ζ = dP̂

dP

is in L2(P ) then for some absolute constant c > 0 we have for any non-negative random variable θ

Ê(θ) ≤ c
√

E(θ2).

Proof. Fix a topology on C [0, T ] and designate the Radon-Nikodym derivative by ζ. As the family of processes
ξn
s is P -tight, for any δ > 0 there exists a compact Kδ in C [0, T ] s.t. P (ξn

. ∈ Kc
δ ) < δ for all n. We also have

P̂ (ξn
. ∈ Kc

δ ) =
∫

{ξn
. ∈Kc

δ}

ζ(ω)P (dω),

which implies the first result immediately since ζ is integrable.
The inequality follows from Cauchy-Schwarz. �

On the other hand, let α and β be two positive numbers. The following inequality will be used several times
below,

2αβ ≤ ρα2 + ρ−1β2, (1.10)
where ρ is a small positive number which may depend on the particular product αβ.

1.3. A growth lemma

We need to control the growth in x and y of partial derivatives of b̂ and ê. We have the

Lemma 1.3. There are constants c0, c, c′, c′′ and c′′′ s.t. for all (x1, x2, y) in T d × Rd+1

(∥∥∥b̂∥∥∥+
∥∥∥∂x1 b̂

∥∥∥+
∥∥∥∂x2 b̂

∥∥∥+
∥∥∥∂2

x2 b̂
∥∥∥+

∥∥∥∂2
x1x2 b̂

∥∥∥) (x1, x2) ≤ c0,

and on the other hand

(|∂y ê| + ∥∥∂2
x1y ê

∥∥+
∥∥∂2

x2y ê
∥∥+

∥∥∂3
x1x2y ê

∥∥)(x1, x2, y) ≤ c,

(
∥∥∂3

x1yyê
∥∥+

∣∣∂2
y ê
∣∣)(x1, x2, y) ≤ c′

1
(1 + |y|)

and

(|ê| + ‖∂x1 ê‖ + ‖∂x2 ê‖ +
∥∥∂2

x1 ê
∥∥+

∥∥∂2
x1x2 ê

∥∥+
∥∥∂2

x2 ê
∥∥+

∥∥∂3
x1x2x2 ê

∥∥)(x1, x2, y) ≤ c′′(1 + |y|).

Finally ∥∥∂x2p∞(x1, x2)
∥∥ ≤ c′′′.

Moreover, all these partial derivatives are continuous.
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Proof. It suffices to use the same manipulations as in Lemma 1 in [3] and take derivatives in the following
Poisson equation

Lx2 ê(x1, x2, y) = −e(x1, x2, y),

for (x1, x2, y) ∈ T d × Rd+1 and to notice that the right hand-side of the corresponding Poisson equation is
always majorized by either an absolute constant or by c(1 + |y|). Let us e.g. deal with the estimate of ∂3

x1x2x2 ê.
We have by our notation convention

∂x2Lx2 ê + Lx2∂x2 ê = −∂x2e.

Since equation (1.9) for e implies that ê(., x2, y) is in W 2,∞(T d) for all (x2, y) ∈ Rd+1 and the coefficient a is
Lipschitz, then ∂x2 ê(., x2, y) is also in W 2,∞(T d) for all (x2, y) ∈ Rd+1 with a norm majorized by c(1 + |y|).
Next we have

∂2
x2Lx2 ê + 2∂x2Lx2∂x2 ê + Lx2∂2

x2 ê = −∂2
x2e,

Condition A on a, b and e then gives immediately the result.
The other estimates are carried out in a similar way and are left to the reader.
The estimate on the derivatives with respect to x2 of the invariant probability density p∞(x1, x2) follows

from Lemma 18 in [2]. �

2. Removing the singularities

We want to get rid of the factor ε−1 in both the forward and backward SDEs above but keeping as few
conditions on the coefficients as possible. Our method of attack, in fact Freidlin’s (see the introduction in [2]),
consists in applying the joint Itô formula on the functions b̂ and ê, when possible. In that respect, it follows
from Lemma 1.3 that b̂ is in W 2,∞

loc (T d × Rd) and that ê is in W 2,p(T d × Rd+1) for some large p which allows
the use of the Itô-Krylov formula.

2.1. Treatment of the forward process

Let us first define

F ′(x1, x2) = (∂x1 b̂b′ + ∂x2 b̂b + Tr∂2
x1x2 b̂a)(x1, x2),

G(x, y) = [(I + ∂x1 b̂)σ](x1, x2), (2.1)

where, see the notation above, the quantity Tr∂2
x1x2 b̂a stands for the vector whose components are Tr∂2

x1x2 b̂ia,
1 ≤ i ≤ d. Recall that 0 ≤ t ≤ s ≤ T . We have, see [3], the decomposition

Xε
s = X

ε

s + Rε
s, (2.2)

where

X
ε

s = x +
∫ s

t

F ′(r, r)dr +
∫ s

t

G(r, r)dBr ,

and

Rε
s = ε

[∫ s

t

(
∂x2 b̂b′ +

1
2
Tr∂2

x2 b̂a

)
(r, r)dr +

∫ s

t

∂x2 b̂σ(r, r)dBr + (̂b(t, t) − b̂(s, s))
]

.

Note that since b, b′ and a are bounded we have

E(sup
s≤T

‖Rε
s‖4) ≤ cε4, (2.3)

whence the tightness (in the sup-norm) sufficient condition (which was proved in [3] under weaker conditions).
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Corollary 2.1. There exists a constant c s.t. for all 0 ≤ α ≤ β ≤ T and ε > 0

E(
∥∥Xε

β − Xε
α

∥∥4) ≤ c[(β − α)2 + ε4].

Note that we also have the following estimate which will be needed below

E(
∥∥Xε

β − Xε
α

∥∥2) ≤ c[(β − α) + ε2].

2.2. Treatment of the backward process

In order to remove the singularity of the backward process, we shall use a kind of stopping argument. Let us
take a fine enough equidistant subdivision of the interval [0, T ] by means of the points ti, i = 0, ..., [T/∆t] = N ,
where t0 = 0 and ∆t = ti − ti−1. We denote by t∗ the largest ti below t, by t∗ the least ti above t. On the
last interval [T∗, T ] however, we make the convention that for r ∈ (T∗, T ] we have r∗ = T (instead of T∗ + ∆t).
We also note that t∗ = t when t = ti. We define in particular the subdivisions ∆tk = kε2, where k is a positive
integer, and call ∆t1 the neutral subdivision. We add a superscript (subscript) k to indicate which subdivision
is involved. Recall that we have for s ≤ T

Y ε
s = g(Xε

T ) +
∫ T

s

(
1
ε
e + f

)
(r, r, Y ε

r , Zε
r)dr −

∫ T

s

Zε
rdBr.

Define for s ≤ T the discontinuous càdlàg adapted process

Ŷ k,ε
s = Y ε

s − εê

(
Xε

s

ε
, Xε

s, Y
ε
s∗(k)

)
,

that is the process Ŷ k,ε
s is continuous on each (tki−1, t

k
i ) and undergoes a jump at each tki , tk1 ≤ tki ≤ T∗(k) (there

should be no ambiguity with these inequalities). We have thanks to the Itô formula,

∫ T

s

1
ε
e(r, r, Y ε

r∗(k)
)dr = ε[ê(s, s, Y ε

s∗(k)
) − ê(T, T, Y ε

T∗(k)
)] +

∫ T

s

[∂x1 ê(r, r, r∗(k))b′(r, r) + ∂x2 ê(r, r, r∗(k))b(r, r)

+ Tr∂2
x1x2 ê(r, r, r∗(k))a(r, r)

+ ε∂x2 ê(r, r, r∗(k))b′(r, r) +
ε

2
Tr∂2

x2 ê(r, r, r∗(k))a(r, r)]dr

+
∫ T

s

(∂x1 ê + ε∂x2 ê)(r, r, r∗(k))σ(r, r)dBr

+ ε

tk
i =T∗(k)∑
tk
i >s

∆tk
i−1,tk

i
ê(tki , tki , Y ε

. ).

Hence we have the representation

Ŷ k,ε
s = [g(Xε

T ) − εê(T, T, Y ε
T∗(k)

] +

T∫
s

Ûk,ε
r dr −

T∫
s

Ẑk,ε
r dBr + Jk,ε

s , (2.4)
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where

Ûk,ε
1,r =

1
ε
∆r∗(k),re(r, r, Y

ε
. ),

Ûk,ε
2,r = [∂x1 ê(r, r, r∗(k))b′(r, r) + ∂x2 ê(r, r, r∗(k))b(r, r)

+ Tr∂2
x1x2 ê(r, r, r∗(k))a(r, r)],

Ûk,ε
3,r = [ε∂x2 ê(r, r, r∗(k))b′(r, r) +

ε

2
Tr∂2

x2 ê(r, r, r∗(k))a(r, r)],

Ûk,ε
r =

3∑
i=1

Ûk,ε
i,r + f(r, r, Y ε

r , Zε
r) (2.5)

and
Ẑk,ε

r = Zε
r − (∂x1 ê + ε∂x2 ê)(r, r, r∗(k))σ(r, r) (2.6)

and finally

Jk,ε
s = ε

T∗(k)∑
tk
i >s

∆tk
i−1,tk

i
ê(tki , tki , Y ε

. ).

2.3. Establishing tightness

Having thus produced a non singular process Ŷ k,ε
s , which depends on k and is asymptotically close to Y ε

s , let
us turn to the study of the tightness problem. Consider the formula (2.4). It is important to notice that in the
first time interval [s, s∗(k)) in the Lebesgue (respectively the stochastic) integral the process Ûk,ε

r (respectively
the process Ẑk,ε

r ) has the component Y ε
s∗(k)

which stays lagging below s. The same phenomenon arises in the

first jump term in Jk,ε
s . Therefore estimating the second moment of the process Ŷ k,ε

s and the first moment of the

related process
T∫
s

∥∥∥Ẑk,ε
r

∥∥∥2

dr by the usual methods needs a special care. This will allow us to handle supremums

that run backwards in time. Of all the terms in (2.5), it is the first one which requires attention since it has
exactely the reverse behaviour of the jump term Jk,ε

s in (2.4).

2.3.1. Estimates on the increments of Y ε

Let us begin with the following easy lemma.

Lemma 2.2. Under the above notations, there exists a constant c > 0 and an ε0 > 0 s.t. for any k ≥ 1, ε ≤ ε0
and r in [0, T ], we have

‖Zε
r‖ ≤ c

(
1 +

∣∣∣∆r∗(k) ,rY
ε
.

∣∣∣+ |Y ε
r | +

∥∥∥Ẑk,ε
r

∥∥∥) (2.7)

and ∣∣∣Ûk,ε
r

∣∣∣ ≤ c

(
1 +

1
ε

∣∣∆r∗(k),rY
ε
.

∣∣+ |Y ε
r | +

∥∥∥Ẑk,ε
r

∥∥∥) .

Proof. The first inequality follows immediately from Lemma 1.3, when ε ≤ 1 we have

‖Zε
r‖ ≤ c

(
1 +

∣∣∣Y ε
r∗(k)

∣∣∣+ ∥∥∥Ẑk,ε
r

∥∥∥)
≤ c

(
1 +

∣∣∣∆r∗(k) ,rY
ε
.

∣∣∣+ |Y ε
r | +

∥∥∥Ẑk,ε
r

∥∥∥) .

This inequality will serve to recover the process
∥∥∥Ẑk,ε

r

∥∥∥2

when we deal with Lebesgue integrals involving the

process ‖Zε
r‖2.

The other inequality is proved in a similar way and follows from the first inequality (2.7). �
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This allows us to control powers of the increments of the process Y ε
s . We have the

Lemma 2.3. There exists an absolute constant c > 0 that depends only on the coefficients in Condition A and
an ε0 > 0 s.t., when ε ≤ ε0 we have on each ∆tki , i = 1, ..., Nk + 1, k ≥ 1,

∣∣∣Y ε
r − Y ε

tk
i−1

∣∣∣ ≤ c

⎛⎜⎝∆tk +
1
ε

r∫
tk
i−1

∣∣∣Y ε
u − Y ε

tk
i−1

∣∣∣du +
∥∥∥∆tk

i−1,rX
ε
.

∥∥∥+
∣∣∣Y ε

tk
i−1

∣∣∣ ∥∥∥∆tk
i−1,rX

ε
.

∥∥∥

+

r∫
tk
i−1

|Y ε
u | du +

r∫
tk
i−1

∥∥∥Ẑk,ε
u

∥∥∥du +

∣∣∣∣∣∣∣
r∫

tk
i−1

Ẑk,ε
u dBu

∣∣∣∣∣∣∣
⎞⎟⎠ .

Proof. Notice first that e is Lipschitz with respect to y, that b and b′ are bounded and that, thanks to Lemma 1.3,
there is a constant c > 0 s.t. for all ε ≤ 1

ε
∣∣∣∆tk

i−1,rê(., ., t
k
i−1)

∣∣∣ ≤ c
(
1 +

∣∣∣Y ε
tk
i−1

∣∣∣) ∥∥∥∆tk
i−1,rX

ε
.

∥∥∥ ,

then it suffices to use Lemma 2.2 in the Itô-Krylov decomposition (2.4). �

Applying the Gronwall-Bellman inequality, we deduce the

Corollary 2.4. Under the same hypotheses as in the previous lemma we have∣∣∣Y ε
r − Y ε

tk
i−1

∣∣∣ ≤ ceckε
(
∆tk +

∥∥∥∆tk
i−1,rX

ε
.

∥∥∥+
∣∣∣Y ε

tk
i−1

∣∣∣ ∥∥∥∆tk
i−1,rX

ε
.

∥∥∥
+

r∫
tk
i−1

|Y ε
u | du +

r∫
tk
i−1

∥∥∥Ẑk,ε
u

∥∥∥du +

∣∣∣∣∣∣∣
r∫

tk
i−1

Ẑk,ε
u dBu

∣∣∣∣∣∣∣
⎞⎟⎠

and the

Corollary 2.5. There exists an absolute constant c > 0 which depends only on the coefficients in Condition A
s.t., for any fixed k ≥ 1 there is an ε0(k) > 0 s.t. when ε ≤ ε0 we have on each ∆tki , i = 1, ..., Nk + 1,

E sup
r∈∆tk

i

∣∣∣Y ε
r − Y ε

tk
i−1

∣∣∣2 ≤ c

⎛⎜⎝∆tk +
∫

∆tk
i

E |Y ε
u |2 du + ∆tkE

∣∣∣Y ε
tk
i−1

∣∣∣2 + E

∫
∆tk

i

∥∥∥Ẑk,ε
u

∥∥∥2

du

⎞⎟⎠ .

Proof. Since the coefficients of the forward equation are bounded, it suffices to write thanks to the relation (2.2)
and to Lemma 1.3

∣∣∣Y ε
tk
i−1

∣∣∣ ∥∥∥∆tk
i−1,rX

ε
.

∥∥∥ ≤ c(ε + ∆tk)
∣∣∣Y ε

tk
i−1

∣∣∣+
∥∥∥∥∥∥∥

r∫
tk
i−1

∣∣∣Y ε
tk
i−1

∣∣∣ Ĝ(u, u)dBu

∥∥∥∥∥∥∥ ,

where

Ĝ(u, u) = (I + ∂x1 b̂ + ε∂x2 b̂)(u, u).
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By the Burkholder-Davis-Gundy inequality, we see that for any given k, we can choose an ε0 s.t. for all ε ≤ ε0
we have

E sup
r∈∆tk

i

∥∥∥∣∣∣Y ε
tk
i−1

∣∣∣∆tk
i−1,rX

ε
.

∥∥∥2

≤ c(1 + ∆tk)∆tkE
∣∣∣Y ε

tk
i−1

∣∣∣2 ≤ c′∆tkE
∣∣∣Y ε

tk
i−1

∣∣∣2 .

Using convexity, the inequalities of Cauchy-Schwarz and Burkholder-Davis-Gundy on the relation of the above
corollary we arrive at the desired result, upon taking ε small enough. �

Remark 2.6. Notice that in both the previous corollaries, the time r can take the extreme value tki .

Before we work out the usual a priori estimates, let us first settle the problems that we mentionned at the
beginning if this subsection. We formulate our treatment as an independent

Lemma 2.7. There exists a constant c > 0 s.t., for any fixed k > 0 there is an ε0(k) > 0 s.t. for all ε ≤ ε0 and
s ≤ T

E sup
s∗(k)≤r≤s∗(k)

∣∣∆s∗(k),rY
ε
.

∣∣2 ≤ c

(
1 + sup

s≤r≤T
E
∣∣∣Ŷ k,ε

r

∣∣∣2) .

Proof. We can write by Corollary 2.5

E sup
s∗(k)≤r≤s∗(k)

∣∣∆s∗(k),rY
ε
.

∣∣2 ≤ c∆tk

⎛⎜⎝1 + sup
s∗(k)≤r≤s∗(k)

E |Y ε
r |2 + E

s∗(k)∫
s∗(k)

∥∥∥Ẑk,ε
u

∥∥∥2

du

⎞⎟⎠
≤ c∆tk

⎛⎜⎝1 + sup
s∗(k)≤r≤s∗(k)

E |Y ε
r |2 + E

s∗(k)∫
s∗(k)

‖Zε
u‖2 du

⎞⎟⎠ ,

since by definition of Ẑk,ε
u it follows by Lemma 1.3 that for ε ≤ 1 and u in [s∗(k), s

∗(k)] we have

∥∥∥Ẑk,ε
u

∥∥∥2

≤ c

(
1 +

∣∣∣Y ε
s∗(k)

∣∣∣2 + ‖Zε
u‖2

)
.

On the other hand, by Condition A and by a well known BSDE estimate, derived when starting from our crude
and untreated BSDE on [s∗(k), s

∗(k)], i.e.

Y ε
r = Y ε

s∗(k) +
∫ s∗(k)

r

(
1
ε
e + f

)
(u, u, Y ε

u , Zε
u)du −

∫ s∗(k)

r

Zε
udBu,

the right hand-side of the above inequality is majorized, when ε ≤ ε0(k), by

c(1 + E
∣∣Y ε

s∗(k)

∣∣2),
since the factor 1

ε (more than) cancels out with ∆tk = kε2.
Next we need to recover the process Ŷ k,ε

s , that is we have to compare our former process Y ε
s with the new

one Ŷ k,ε
s . Recall that we have for all s ≤ T

Y ε
s = Ŷ k,ε

s + εê(s, s, Y ε
s∗(k)

),
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so that by well known inequalities when ε ≤ 1

E |Y ε
s |2 ≤ c[E

∣∣∣Ŷ k,ε
s

∣∣∣2 + ε2(1 + E
∣∣∣Y ε

s∗(k)

∣∣∣2)]
≤ c(1 + E

∣∣∣Ŷ k,ε
s

∣∣∣2 + ε2E
∣∣∣∆s∗(k),s∗(k)Y ε

.

∣∣∣2 + ε2E
∣∣Y ε

s∗(k)

∣∣2).
We also know from the above manipulation that when ε is small enough

E
∣∣∣∆s∗(k),s∗(k)Y ε

.

∣∣∣2 ≤ c(1 + E
∣∣Y ε

s∗(k)

∣∣2),
so that

E |Y ε
s |2 ≤ c

(
1 + E

∣∣∣Ŷ k,ε
s

∣∣∣2 + ε2E
∣∣Y ε

s∗(k)

∣∣2) .

Now
E
∣∣Y ε

s∗(k)

∣∣2 ≤ sup
s≤r≤T

E |Y ε
r |2 ,

which gives for any s ≤ T

(1 − cε2) sup
s≤r≤T

E |Y ε
r |2 ≤ c

(
1 + sup

s≤r≤T
E
∣∣∣Ŷ k,ε

r

∣∣∣2) , (2.8)

when ε ≤ ε0(k), which immediately implies our lemma. �

Remark 2.8. The sharp estimate on E sup
s∗(k)≤r≤s∗(k)

∣∣∆s∗(k),rY
ε
.

∣∣2 given by Corollary 2.5 is not really needed

in order to prove the above lemma. A rough and well known estimate based on the untreated BSDE above is
sufficient since we can control k thanks to the parameter ρ1 as announced in equation (1.10), see below.

2.3.2. A priori estimates

We seek to establish the following relation, see e.g. [11],

sup
ε≤ε0

⎛⎝E sup
0≤s≤T

|Y ε
s |2 + E

T∫
0

‖Zε
r‖2 dr

⎞⎠ < c, (2.9)

for some fixed c > 0 and ε0. This fundamental estimate will serve to imply that the family of processes (Y ε
s , M ε

s)
(see eq. (2.17) below for the definition of the martingale M ε

s) is tight in the Jakubowski S-topology. We will
use parameters ρ > 0 which will be used as in equation (1.10).

By the Itô formula, we have for t ≤ s ≤ T

∣∣∣Ŷ k,ε
s

∣∣∣2 +

T∫
s

∥∥∥Ẑk,ε
r

∥∥∥2

dr +
T∗(k)∑
tk
i >s

(∆Ŷ k,ε

tk
i

)2 = [g(Xε
T ) − εê(T, T, Y ε

T∗(k)
)]2 +

T∫
s

2Ŷ k,ε
r Ûk,ε

r dr

−
T∫

s

2Ŷ k,ε
r Ẑk,ε

r dBr −
T∗(k)∑
tk
i >s

2Ŷ k,ε

tk
i −

· ∆Ŷ k,ε

tk
i

, (2.10)

where ∆Ŷ k,ε

tk
i

stands for the jump of the process Ŷ k,ε
s at the instant tki , i.e.

∆Ŷ k,ε

tk
i

= Ŷ k,ε

tk
i +

− Ŷ k,ε

tk
i −

= ε[ê(tki , tki , Y ε
tk
i−1

) − ê(tki , tki , Y ε
tk
i
)].
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Keep in mind our convention about the stars ∗ in the introduction of this section and apply the expected value
operator E on both sides of the above Itô formula. Take ε ≤ 1, we have thanks to standard inequalities, to
Lemmas 1.3 and 2.2 (it is easy to see that the expected value of the stochastic integral vanishes)

E
∣∣∣Ŷ k,ε

s

∣∣∣2 + E

T∫
s

∥∥∥Ẑk,ε
r

∥∥∥2

dr +
T∗(k)∑
tk
i >s

E
∣∣∣∆Ŷ k,ε

tk
i

∣∣∣2 ≤ c

[
1 + E |g(Xε

T )|2 + ε2E
∣∣∆T∗(k),T Y ε

.

∣∣2

+
1
ρ2
1

s∗(k)∫
s

E
∣∣∣Ŷ k,ε

r

∣∣∣2 dr + ρ2
1

s∗(k)∫
s

1
ε2

E
∣∣∣Y ε

r − Y ε
s∗(k)

∣∣∣2 dr

+ ρ2
1

s∗(k)∫
s

E |Y ε
r |2 dr + ρ2

1

s∗(k)∫
s

E
∥∥∥Ẑk,ε

r

∥∥∥2

dr

+
1
ρ2
2

T∫
s∗(k)

E
∣∣∣Ŷ k,ε

r

∣∣∣2 dr + ρ2
2

T∫
s∗(k)

1
ε2

E
∣∣∣Y ε

r − Y ε
r∗(k)

∣∣∣2 dr

+ ρ2
2

T∫
s∗(k)

E |Y ε
r |2 dr + ρ2

2

T∫
s∗(k)

E
∥∥∥Ẑk,ε

r

∥∥∥2

dr

+ E
∣∣∣Ŷ k,ε

s∗(k)−

∣∣∣ ∣∣∣∆Ŷ k,ε
s∗(k)

∣∣∣+ T∗(k)∑
tk
i >s∗(k)

E
∣∣∣Ŷ k,ε

tk
i −

∣∣∣ ∣∣∣∆Ŷ k,ε

tk
i

∣∣∣ ].
Due to the factor ε2, the third term on the right above ε2E

∣∣∆T∗(k),T Y ε
.

∣∣2 is easily treated by Lemma 2.7, we
indeed have

ε2E
∣∣∆T∗(k),T Y ε

.

∣∣2 ≤ ε2c

(
1 + sup

s≤r≤T
E
∣∣∣Ŷ k,ε

r

∣∣∣2) .

The fifth and seventh terms on the right hand-side above are also dealt with easily using Lemma 2.7. Next, let
us write thanks to Corollary 2.5 and to the inequality (2.8)

T∫
s∗(k)

1
ε2

E
∣∣∣Y ε

r − Y ε
r∗(k)

∣∣∣2 dr ≤ k

T∗(k)∑
tk
i >s∗(k)

E sup
r∈∆tk

i

∣∣∣∆tk
i−1,rY

ε
.

∣∣∣2

≤ ck

⎛⎝1 +

T∫
s∗(k)

E |Y ε
r |2 dr +

T∫
s∗(k)

E
∥∥∥Ẑk,ε

r

∥∥∥2

dr + sup
s∗(k)≤r≤T

E |Y ε
r |2

⎞⎠
≤ c(k)

⎛⎝1 + sup
s≤r≤T

E
∣∣∣Ŷ k,ε

r

∣∣∣2 +

T∫
s

E
∥∥∥Ẑk,ε

r

∥∥∥2

dr

⎞⎠ . (2.11)

It then suffices to take k, ρ1 and ρ2 s.t. the quantities ρ2
i k, i = 1, 2, are small enough uniformly.

Let us now consider the contribution of the first jump term. Clearly by Lemma 1.3 we have for some c > 0,
all ε > 0, all k ≥ 1 and all jump times tki ∣∣∣∆Ŷ k,ε

tk
i

∣∣∣ ≤ cε
∣∣∣∆tk

i−1,tk
i
Y ε
·
∣∣∣ .
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There exist two constants c(k), c′(k) > 0 and an ε0 > 0 s.t. for all ε ≤ ε0 we have by equation (1.10) and
Lemma 2.7

E
∣∣∣Ŷ k,ε

s∗(k)−

∣∣∣ ∣∣∣∆Ŷ k,ε
s∗(k)

∣∣∣ ≤ c

(
εE

∣∣∣Ŷ k,ε
s∗(k)−

∣∣∣2 +
1
ε
E
∣∣∣∆Ŷ k,ε

s∗(k)

∣∣∣2)
≤ cε

(
sup

s≤r≤T
E
∣∣∣Ŷ k,ε

r

∣∣∣2 + E
∣∣∣∆s∗(k),s∗(k)Y ε

.

∣∣∣2)
≤ c + c′ε sup

s≤r≤T
E
∣∣∣Ŷ k,ε

r

∣∣∣2 .

Let us at last consider the remaining jump terms. We have for any number ν in (0, 1) by our interpolation
equation (1.10)

E

T∗(k)∑
tk
i >s∗(k)

∣∣∣Ŷ k,ε

tk
i −

∣∣∣ ∣∣∣∆Ŷ k,ε

tk
i

∣∣∣ ≤ c

⎡⎣kν

⎛⎝ T∗(k)∑
tk
i >s∗(k)

ε2E
∣∣∣Ŷ k,ε

tk
i −

∣∣∣2
⎞⎠+ k−ν

⎛⎝ T∗(k)∑
tk
i >s∗(k)

E
∣∣∣∆tk

i−1,tk
i
Y ε

.

∣∣∣2
⎞⎠⎤⎦

≤ c

⎡⎣kν

⎛⎝ sup
s≤r≤T

E
∣∣∣Ŷ k,ε

r

∣∣∣2 T∗(k)∑
tk
i >s∗(k)

ε2

⎞⎠+ k−ν

⎛⎝ T∗(k)∑
tk
i >s∗(k)

E
∣∣∣∆tk

i−1,tk
i
Y ε

.

∣∣∣2
⎞⎠⎤⎦

≤ c

⎛⎝kν−1 sup
s≤r≤T

E
∣∣∣Ŷ k,ε

r

∣∣∣2 + k−ν

T∗(k)∑
tk
i >s∗(k)

E
∣∣∣∆tk

i−1,tk
i
Y ε

.

∣∣∣2
⎞⎠ .

The sum on the right hand-side above is treated as in the inequality (2.11) (there is however no k in front).
The remaining terms are easy.

Now, adding all these terms together, we find that for some constant c = c(ρ1, ρ2, k) > 0, there is an ε0 > 0
s.t. for all ε ≤ ε0 and all s in [0, T ]

sup
s≤r≤T

E
∣∣∣Ŷ k,ε

r

∣∣∣2 + E

T∫
s

∥∥∥Ẑk,ε
r

∥∥∥2

dr ≤ c

⎛⎝1 + E |g(Xε
T )|2 +

T∫
s

sup
r≤u≤T

E
∣∣∣Ŷ k,ε

u

∣∣∣2 dr

⎞⎠ . (2.12)

We are now in the position to establish our sought-for estimate.

Lemma 2.9. Under the above notations, there exists a c > 0 which depends only on d, T and other absolute
constants from condition A and an ε0 > 0 s.t. when ε ≤ ε0, we have

E

(
sup

0≤s≤T

∣∣∣Ŷ k,ε
s

∣∣∣2)+ E

T∫
0

∥∥∥Ẑk,ε
r

∥∥∥2

dr < c.

Proof. It follows from the fact that g is bounded and from using the Gronwall-Bellman inequality on the
inequality (2.12) that the following inequality holds for some c > 0, for some fixed k, all ε sufficiently small and
all s in [0, T ],

sup
s≤r≤T

E
∣∣∣Ŷ k,ε

r

∣∣∣2 + E

T∫
s

∥∥∥Ẑk,ε
r

∥∥∥2

dr ≤ c.

A further application of the Burkholder-Davis-Gundy inequality on the Itô formula (2.10) above gives the
result. �
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Now we go back to our original process Y ε
. . We can state the

Corollary 2.10. Under the above notations, there exists a c > 0 which depends only on d, T and other absolute
constants from condition A and an ε0 > 0 s.t. when ε ≤ ε0, we have

sup
ε≤ε0

⎛⎝E sup
0≤s≤T

|Y ε
s |2 + E

T∫
0

‖Zε
r‖2 dr

⎞⎠ < c.

Proof. Let us just remark that the use of Lemmas 1.3, 2.2 and the relation (2.8) in the above bounds yields
that there exists a c > 0 s.t. for all ε sufficiently small, we have

E( sup
0≤s≤T

|Y ε
s |2) + E

T∫
0

‖Zε
r‖2 dr < c(k). (2.13)

�

In particular from the estimate

sup
0≤s≤T

E
(∣∣Y ε,0,x0

s

∣∣2) < c(k),

we deduce thanks to the fact that Y ε,0,x0
0 is deterministic, to the fact that g is bounded and from Theorems 3.1

and 3.2 (existence and uniqueness results which imply the Markovian character of the process Y ε
s for any ε > 0)

of Delarue[7] that there exists a constant cy, which depends only on d, T and other absolute constants that
appear in Condition A, s.t. for any ε ≤ 1

P

(
sup

0≤s≤T
|Y ε

s | ≤ cy

)
= 1, (2.14)

and consequently we also have by Lemma 1.3, for some constant ĉy and ε ≤ 1

P

(
sup

0≤s≤T

∣∣∣Ŷ k,ε
s

∣∣∣ ≤ ĉy

)
= 1. (2.15)

We can also deduce the following from our fundamental estimate above,

Lemma 2.11. There exists a constant cz s.t. for all ε sufficiently small

E

⎛⎝ T∫
0

‖Zε
r‖2 dr

⎞⎠2

< cz .

Proof. The first step consists in writing thanks to the Itô formula (2.10) the inequality

E

(
sup

0≤s≤T

∣∣∣Ŷ k,ε
s

∣∣∣4)+ E

⎛⎝ T∫
0

∥∥∥Ẑk,ε
r

∥∥∥2

dr

⎞⎠2

≤ c

⎡⎢⎣E
∣∣∣g(Xε

T ) − εê(T, T, Y ε
T∗(k)

)
∣∣∣4 + E

∣∣∣∣∣∣
T∫

0

Ŷ k,ε
r Ûk,ε

r dr

∣∣∣∣∣∣
2

+E

⎛⎝ sup
0≤s≤T

∣∣∣Ŷ k,ε
s

∣∣∣2 T∫
0

∥∥∥Ẑk,ε
r

∥∥∥2

dr

⎞⎠+ E

∣∣∣∣∣∣
T∗(k)∑
tk
i >0

Ŷ k,ε

tk
i −

· ∆Ŷ k,ε

tk
i

∣∣∣∣∣∣
2
⎤⎥⎦ .
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Using the above computations and the equality (2.15) we can show that for some absolute constant cz, only
depending on absolute constants from Condition A, we have for all 0 < ε < 1,

E

⎛⎝ T∫
0

‖Zε
r‖2 dr

⎞⎠2

< cz . �

Recall again that the backward process is given by

Y ε
s = g(Xε

T ) +
∫ T

s

(
1
ε
e + f

)(
Xε

r

ε
, Xε

r , Y
ε
r , Zε

r

)
dr −

∫ T

s

Zε
rdBr.

Let us now set

Ŷ ε
s = Y ε

s − εê

(
Xε

s

ε
, Xε

s, Y
ε
s

)
,

and write thanks again to the Itô formula

Ŷ ε
s = Ŷ ε

T +
∫ T

s

{
(∂x1 êb′ + ∂x2 êb − ∂y êe + Tr∂2

x1x2 êa + ∂x1 êa∂2
x1y ê

+ f)(r, r, Y ε
r , Z̃ε

r + ∂x1 êσ) + ε

[
∂x2 êb′(r, r, Y ε

r ) − ∂y êf(r, r, Y ε
r , Zε

r)

+ ∂x2 êa∂2
x1y ê(r, r, Y ε

r ) + ∂y ê(r, r, Y ε
r )Zε

rσ
∗∂2

x1y ê(r, r, Y ε
r )

+
1
2
Tr∂2

x2 êa(r, r, Y ε
r ) + ∂2

x2y êσ(r, r, Y ε
r )Zε

r +
1
2
∂2

y ê(r, r, Y ε
r ) ‖Zε

r‖2

]}
dr

−
∫ T

s

{Z̃ε
r − ε[∂x2 êσ(r, r, Y ε

r ) + ∂y ê(r, r, Y ε
r )Zε

r ]}dB̃r, (2.16)

where

B̃r = Br −
∫ r

0

σ∗∂2
x1y ê(u, u, Y ε

u )du,

Z̃ε
r = Zε

r − (∂x1 êσ)(r, r, Y ε
r ).

We define thanks to a Girsanov’s transform a new probability measure P̃ s.t. under P̃ the process B̃r is a
Brownian motion. Define also the martingale

M ε
s = −

∫ s

0

Z̃ε
rdB̃r. (2.17)

Note that from the equality (2.14)
P̃ ( sup

0≤s≤T
|Y ε

s | ≤ cy) = 1. (2.18)

We are now in the position to state the

Corollary 2.12. The family of processes (Y ε
. , M ε

. ) in [0, T ] indexed by ε is P̃ -tight in the Jakubowski S topology.

Proof. The following criterion ensures tightness in the Jakubowski S-topology for a càdlàg family of processes yε
s

sup
ε≤ε0

[sup
s≤T

Ẽ |yε
s| + CV (T )] < ∞, (2.19)
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where CV (T ) stands for the conditional variation

CV (T ) = sup

{
Ẽ
∑

i

∣∣∣Ẽ(∆ti−1,tiy
ε
. | Fti−1)

∣∣∣} ,

where the supremum is taken over all finite partitions of the interval [0, T ]. We first show that the process
yε

s = Ŷ ε
s is P -tight. Since εê(Xε

s

ε , Xε
s, Y

ε
s ) converges to zero (in sup-norm) a.s. by the relation (2.18), tightness

for the process Y ε
s itself follows from that of Ŷ ε

s . The tightness for the martingale M ε
s is clearly established

in the same way. Let ti be any partition of [0, T ]. From Lemmas 1.3, 2.11, 1.2 and from the relations (2.13)
and (2.18) the first term on the left hand-side of the formula (2.19) is easily dealt with. It remains only to note
that by the elementary properties of the conditional expectation we have

Ẽ
∑

i

∣∣∣Ẽ(∆ti−1,tiy
ε
. | Fti)

∣∣∣ ≤ cẼ
∑

i

∫ ti

ti−1

(1 + |Y ε
r | + ‖Zε

r‖ + ε ‖Zε
r‖2)dr

≤ cẼ

∫ T

0

(1 + ‖Zε
r‖ + ε ‖Zε

r‖2)dr.

Our corollary follows immediately from Lemma 1.2, Corollary 2.10, Lemma 2.11 and the Cauchy-Schwarz
inequality. �

Remark 2.13. Note that once an appropriate k is chosen it is kept fixed and that c(k) → ∞ as k → ∞. It
is also important to notice that the constant on the right-hand side of the inequality (2.13) depends only on
absolute constants from Condition A and on bounds on E[g(Xε

T )]2.

3. The convergence uε(t, x) → u(t, x)

Fix 0 ≤ t ≤ T and x in Rd. All our processes below are running on the time interval [t, T ] and Xε
s starts

from x, but most of the time we omit these superscripts. Recall that the backward process is given by

Y ε
s = g(Xε

T ) +
∫ T

s

(
1
ε
e + f

)
(r, r, Y ε

r , Zε
r)dr −

∫ T

s

Zε
rdBr.

Let us now rewrite the formula (2.16),

Y ε
s = g(Xε

T ) +
∫ T

s

(∂x1 êb′ + ∂x2 êb − ∂y êe + Tr∂2
x1x2 êa + ∂x1 êa∂2

x1y ê

+ f)(r, r, Y ε
r , Z̃ε

r + ∂x1 êσ)dr −
∫ T

s

Z̃ε
rdB̃r + ρε

s,

where it is recalled that

B̃r = Br −
∫ r

0

σ∗∂2
x1y ê(u, u, Y ε

u )du,

Z̃ε
r = Zε

r − (∂x1 êσ)(r, r, Y ε
r ),

and
ρε

s = ρε
1,s + ρε

2,s, (3.1)
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where

ρε
1,s = ε

∫ T

s

[
∂x2 êb′(r, r, Y ε

r ) − ∂y êf(r, r, Y ε
r , Zε

r) + ∂x2 êa∂2
x1y ê(r, r, Y ε

r )

+ ∂y ê(r, r, Y ε
r )Zε

rσ
∗∂2

x1y ê(r, r, Y ε
r )

+
1
2
Tr∂2

x2 êa(r, r, Y ε
r ) + ∂2

x2y êσ(r, r, Y ε
r )Zε

r +
1
2
∂2

y ê(r, r, Y ε
r ) ‖Zε

r‖2

]
dr

+ ε

∫ T

s

[∂x2 êσ(r, r, Y ε
r ) + ∂y ê(r, r, Y ε

r )Zε
r ] dB̃r,

and
ρε
2,s = ε[ê(s, s, Y ε

s ) − ê(T, T, Y ε
T )].

The change of measure from P to P̃ we made while studying tightness has also consequences on the forward
process. That is, the processes X

ε

s and Rε
s defined in (2.2) undergo changes similar to those in Y ε

s and ρε
s, we

only notice that

X
ε

s = x +
∫ s

t

(F ′ + Gσ∗∂2
x1y ê)

(
Xε

r

ε
, Xε

r , Y
ε
r

)
dr +

∫ s

t

G

(
Xε

r

ε
, Xε

r

)
dB̃r.

Define in this respect

F = F ′ + Gσ∗∂2
x1y ê,

Λ = GG∗. (3.2)

Recall also that we proved in the previous section while studying tightness that there exists a constant cy, which
depends only on d, T and other absolute constants that appear in Condition A, and an ε0 > 0 s.t. for any ε ≤ ε0

P ( sup
0≤s≤T

|Y ε
s | ≤ cy) = 1.

Concerning the Zε process, we will also need an eighth power in what follows.

Lemma 3.1. There exists an ε0 > 0 and a constant cz s.t. for all 0 < ε ≤ ε0

E

⎡⎢⎣
⎛⎝ T∫

0

‖Zε
r‖2 dr

⎞⎠4
⎤⎥⎦ < cz.

Proof. It suffices to take the fourth power in equation (2.10) and to use the estimate of Lemma 2.11 together
with that of equation (2.15). �

The two latter facts together with the relation (2.3) yield, thanks to uniform integrability and to the bound-
edness of the integrands, the

Corollary 3.2. For each (t, x) in [0, T ]× Rd, the following convergences

sup
s≤T

‖Rε
s‖ → 0

and
sup
s≤T

|ρε
s| → 0,

hold in L2(P̃ ) as ε → 0.
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By the above considerations and by Lemma 1.2, the sequence of processes (Xε
. , Y

ε
. , M ε

. ) is P̃ -tight in
C( [0, T ]) × (D [0, T ])2 where the first space is equipped with the sup-norm and the two other factors with
the Jakubowski S-topoloy.

The main nonlinear coefficient in the backward process is given by

U(x1, x2, y, z) =
(
∂x1 êb′ + ∂x2 êb − ∂y êe + Tr∂2

x1x2 êa + ∂x1 êa∂2
x1y ê + f

)
(x1, x2, y, z + ∂x1 êσ),

and therefore the process Y ε
s has the same asymptotic behaviour as the process

Y
ε

s = g(Xε
T ) +

∫ T

s

U

(
Xε

r

ε
, Xε

r , Y
ε
r , Z̃ε

r

)
dr −

∫ T

s

Z̃ε
rdB̃r.

Note that we have
U(x1, x2, y, z) = U1(x1, x2, y) + U2(x1, x2, y, z) (3.3)

where U1 is the part of U that does not depend on z and

U2(x1, x2, y, z) = f(x1, x2, y, z + ∂x1 êσ(x1, x2, y)).

Define also the martingale

M ε
s = −

∫ s

0

Z̃ε
rdB̃r. (3.4)

Since the gradient ∇uε(t, x) is not sufficiently well behaved as ε → 0, we are not going to identify the limit points
of the family (Xε

. , Y
ε
. , M ε

. ) by the usual weak-limit methods, instead we only prove that uε(t, x) → u(t, x). Let
us homogenize our coefficients to see the limit operator

F (x2, y) =
∫

Td

F (x1, x2, y)µ(dx1, x2),

Λ(x2) =
∫

Td

Λ(x1, x2)µ(dx1, x2),

U(x2, y, z) =
∫

Td

U [x1, x2, y, zG(x1, x2) + ∂x1 êσ(x1, x2, y)]µ(dx1, x2). (3.5)

Consider now the non-linear parabolic PDE{
∂tu(t, x) + Γ(x, u(t, x),∇u(t, x), ∂2u(t, x)) = 0,

u(T, x) = g(x),
(3.6)

where
Γ(x, u(t, x),∇u(t, x), ∂2u(t, x)) = Lu(t, x) + U(x, u(t, x),∇u(t, x)),

in which
L(x, .) =

1
2

∑d

i,j=1
Λij(x)∂2

xixj
(.) +

∑d

i=1
F i(x, .)∂xi(.), (3.7)

and U is given by (3.5). The fact that our limit PDE is strongly non degenerate, i.e.

(Λ(x)ξ, ξ) ≥ λ ‖ξ‖2 ,

for some λ > 0 and all (ξ, x) in R2d, follows easily from the relations (3.5) and from the well known bounds on
the density p∞(x1, x2) of the invariant measure which are uniform in the variables (x1, x2). It also follows from
Condition A and Lemma 1.3 that the nonlinear coefficient

Γ′(x, y, z) = (F (x, y), z) + U(x, y, z),
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is locally Lipschitz continuous with

‖∂xΓ′(x, y, z)‖ ≤ c(1 + |y| + ‖z‖),
|∂yΓ′(x, y, z)| ≤ c,

‖∂zΓ′(x, y, z)‖ ≤ c,

for some constant c and all (x, y, z) in R2d+1. Theorem 6.1 of [7] implies that the semi-linear PDE (3.6) has a
unique bounded continuous viscosity solution u(t, x) in C1,2([0, T ) × Rd, R) ∩ C([0, T ]× Rd, R) s.t.

|u(t1, x1) − u(t2, x2)| ≤ c(|t2 − t1|1/2 + ‖x2 − x1‖); (3.8)

while the gradient ∇u(s, x) is β-Holder continuous, for some β ∈ (0, 1], in [t, T − δ]× Rd for any δ ∈ (0, T − t).
We need however more regularity in what follows.

3.1. Smoothing of some coefficients

We shall now regularize the functions g and U2 (recall that U2 is defined in (3.3) and (3.5)) in such a way
that the solution of the PDE{

∂tu
ε(t, x) + Γε(x, uε(t, x),∇uε(t, x), ∂2uε(t, x)) = 0,

uε(T, x) = gε(x),
(3.9)

with
Γε(x, uε(t, x),∇uε(t, x), ∂2uε(t, x)) = Luε(t, x) + U1(x, uε(t, x)) + U

ε

2(x, uε(t, x),∇uε(t, x)),
has a bounded Hessian matrix.

In order to explain this smoothing which depends on ε itself, let θ1(ε) and θ2(ε) be two positive functions of
ε > 0 that tend to zero as ε → 0. They will be fixed below. Now consider the regularized coefficients

gε(x) = θ−d
1

∫
Rd

g(x − x′)ϕ
(

x′

θ1

)
dx′

U
ε

2(x, y, z) = θ
−(2d+1)
2

∫
R2d+1

U2(x − x′, y − y′, z − z′)ϕ
(

x′

θ2
,
y′

θ2
,
z′

θ2

)
dx′dy′dz′,

where the mollifier ϕ is a smooth function with compact support in R2d+1. These regularized functions U
ε

2 and
gε remain (locally) Lipschitz with their former constants. It follows from [8] p. 2322 that the solution uε(t, x)
of the Cauchy problem (3.9) satisfies for some constants c∇ > 0, M(ε) > 0 and all (t, x) ∈ [0, T ]× Rd

sup
ε>0

(|uε(t, x)| + ‖∇uε(t, x)‖) ≤ c∇,∥∥∂2
xuε(t, x)

∥∥ ≤ M(ε);

for all ε > 0, where c∇ is a constant that depends only on absolute constants from Condition A and M(ε)
depends on θ1(ε) and θ2(ε) with M(ε) → ∞ as ε → 0 when we are dealing with “true” viscosity solutions with
unbounded second derivatives defined on compacts of [0, T ) × Rd ; which is our standpoint in this paper. On
the other hand, we also have for any β ∈ (0, 1) , uε ∈ C(1+β/2,2+β)([0, T ] × Rd, R), i.e. in particular for all
(t1, x1) and (t2, x2) in [t, T ] × Rd,∥∥∂2

xuε(t1, x1) − ∂2
xuε(t2, x2)

∥∥ ≤ N(ε)(|t2 − t1|β/2 + ‖x2 − x1‖β), (3.10)

where N(ε) → ∞ as ε → 0.
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The following obvious technical result will be needed below. Fix a β ∈ (0, 1) ; then it is possible to choose
θ1(ε) and θ2(ε) sufficiently large compared to ε s.t. as ε → 0 we have

εM(ε) → 0,

εβN(ε) → 0. (3.11)

We also need the following crucial lemma the proof of which is deferred to Section 4.

Lemma 3.3. With the above notations, for all (t, x) ∈ [0, T ]× Rd,

uε(t, x) − uε(t, x) → 0,

as ε → 0.

3.2. Identification of the limit

Our main result in this paper is the following

Theorem 3.4. Under condition A, there exists a unique bounded continuous viscosity solution u(t, x) of equa-
tion (3.6). For any (t, x) ∈ [0, T ]× Rd,

uε(t, x) → u(t, x),
as ε → 0.

Proof. Fix (t, x) ∈ [0, T ]× Rd. It follows from Remark 6.3 p. 34 of [6] that

uε(t, x) → u(t, x)

as ε → 0. Hence the Theorem follows from Lemma 3.3. �

4. Proof of Lemma 3.3

Fix (t, x) ∈ [0, T ]× Rd. Recall that we have

X
ε,t,x

s = x +
∫ s

t

F

(
Xε,t,x

r

ε
, Xε,t,x

r , Y ε,t,x
r

)
dr +

∫ s

t

G

(
Xε,t,x

r

ε
, Xε,t,x

r

)
dB̃r,

Y
ε,t,x

s = g(Xε,t,x
T ) +

∫ T

s

U

(
Xε,t,x

r

ε
, Xε,t,x

r , Y ε,t,x
r , Z̃ε,t,x

r

)
dr −

∫ T

s

Z̃ε,t,x
r dB̃r.

We note that
|uε(t, x) − uε(t, x)| ≤ Ẽ

∣∣∣Y ε,t,x
t − Y

ε,t,x

t

∣∣∣+ Ẽ
∣∣∣Y ε,t,x

t − uε(t, x)
∣∣∣ .

From Corollary 3.2 we have

Ẽ
∣∣∣Y ε,t,x

t − Y
ε,t,x

t

∣∣∣ = Ẽ |ρε
t|

→ 0,

as ε → 0. Let us deal with the second term on the right hand-side of the above inequality. We can write (from
now on, r stands for X

ε

r, s for X
ε

s and T for X
ε

T )

Y
ε

s = g(Xε
T ) +

∫ T

s

[U2(r, r, Y ε
r , Z̃ε

r) − U2(r, r, Y ε
r ,∇uε(r, r)G(r, r))]dr

+
∫ T

s

{U1(r, r, Y ε
r ) + U2[r, r, Y ε

r ,∇uε(r, r)G(r, r)]}dr −
∫ T

s

Z̃ε
rdBr.
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On the other hand, let us write thanks to the Itô formula,

uε(s, s) = gε(T ) +
∫ T

s

[−∂ru
ε(r, r) − L∞,εuε(r, r)]dr −

∫ T

s

∇uε(r, r)G(r, r)dB̃r ,

where we introduce the operator (see also eq. (1.3) and (3.2))

L∞,ε =
1
2

∑d

i,j=1
Λij

(
Xε

r

ε
, Xε

r

)
∂2

xixj
+
∑d

i=1
Fi

(
Xε

r

ε
, Xε

r , Y
ε
r

)
∂xi .

Recall that the operator L(x, .) was defined in equations (3.5) and (3.7), so that we have in particular

L(X
ε

r, .) =
1
2

∑d

i,j=1
Λij(X

ε

r)∂
2
xixj

+
∑d

i=1
F i(X

ε

r, ·)∂xi .

Hence we can write

uε(s, s) = gε(T ) +
∫ T

s

ρε
1,rdr +

∫ T

s

[U1(r, uε(r, r)) + U2(r, uε(r, r),∇uε(r, r))

− (L∞,ε − L(r, .))uε(r, r)]dr −
∫ T

s

∇uε(r, r)G(r, r)dB̃r ,

where
ρε
1,r = (U

ε

2 − U2)(r, uε(r, r),∇uε(r, r)).
We have moreover (suppressing the trace symbol Tr)∫ T

s

(L∞,ε − L(r, .))uε(r, r)dr =
1
2

∫ T

s

[Λ(r, r) − Λ(r)]∂2uε(r, r)dr +
∫ T

s

[F (r, r, Y ε
r ) − F (r, Y ε

r )]∇uε(r, r)dr

+
∫ T

s

[F (r, Y
ε

r) − F (r, uε(r, r))]∇uε(r, r)dr +
∫ T

s

ρε
2,rdr,

where
ρε
2,r =

1
2
[Λ(r) − Λ(r)]∂2uε(r, r) + [F (r, Y ε

r ) − F (r, Y
ε

r]∇uε(r, r).

Now, with
ρε

r = ρε
1,r − ρε

2,r, (4.1)
we can write

uε(s, s) = gε(T ) +
∫ T

s

ρε
rdr +

∫ T

s

[U1(r, Y ε
r ) + U2(r, Y ε

r ,∇uε(r, r))]dr

−
∫ T

s

[(L∞,ε − 1
2
Λ(r)∂2(·) − F (r, Y ε

r )∇(·))uε(r, r)]dr

+
∫ T

s

[U1(r, uε(r, r)) − U1(r, Y ε
r )]dr

+
∫ T

s

[U2(r, uε(r, r),∇uε(r, r)) − U2(r, Y ε
r ,∇uε(r, r))]dr

−
∫ T

s

[F (r, Y
ε

r) − F (r, uε(r, X
ε

r))]∇uε(r, r)dr −
∫ T

s

∇uε(r, r)G(r, r)dB̃r .
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The natural idea is now to substract uε(s, s) from Y
ε

s rightaway and prove that this difference is small. However,
we immediately run into technical difficulties which stem from the fact that the ergodic character of the second
and third functionals on the right hand-side of the above relation would be destroyed by the use of rough
inequalities. Another difficulty is that the second order derivatives of uε(s, x) (in the space variables) explode
as ε → 0. As far as the first problem is concerned, it is convenient to define first a few processes in order to
shorten the above relations and substract uε(s, s) from Y

ε

s (modulo a crucial ergodic term, see (4.3) below).
Define

δε
r = δε

1,r + δε
2,r + δε

3,r, (4.2)
where

δε
1,r = U1(r, r, Y ε

r ) − U1(r, Y ε
r ),

δε
2,r = U2(r, r, Y ε

r ,∇uε(r, r)G(r, r)) − U2(r, Y ε
r ,∇uε(r, r)),

δε
3,r = [L∞,ε − 1

2
Λ(r)∂2(·) − F (r, Y ε

r )∇(·)]uε(r, r).

Define also

δY ε
s = Y

ε

s − uε(s, s) +
∫ s

t

δε
rdr

= Y ε
s − uε(s, s) − ρε

s +
∫ s

t

δε
rdr,

δZε
s = Z̃ε

s −∇uε(s, s)G(s, s), (4.3)

see again (3.1) for the definition of the process ρε. We have therefore

δY ε
s = g(T ) − gε(T ) +

∫ T

t

δε
rdr −

∫ T

s

ρε
rdr +

∫ T

s

[U2(r, r, Y ε
r , Z̃ε

r) − U2(r, r, Y ε
r ,∇uε(r, r)G(r, r))]dr

−
∫ T

s

[U1(r, uε(r, r)) − U1(r, Y ε
r )]dr −

∫ T

s

{U2[r, uε(r, r),∇uε(r, r)] − U2[r, Y ε
r ,∇uε(r, r)]}dr

+
∫ T

s

[F (r, Y
ε

r) − F (r, uε(r, r))]∇uε(r, r)dr −
∫ T

s

δZε
rdB̃r.

We now use the Itô formula, yielding

(δY ε
s )2 +

∫ T

s

‖δZε
r‖2 dr =

{
[g(T )− gε(T )] +

∫ T

t

δε
rdr

}2

− 2
∫ T

s

ρε
rδY

ε
r dr

+ 2
∫ T

s

[U2(r, r, Y ε
r , Z̃ε

r) − U2(r, r, Y ε
r ,∇uε(r, r)G(r, r))]δY ε

r dr

− 2
∫ T

s

[U1(r, uε(r, r)) − U1(r, Y ε
r )]δY ε

r dr

− 2
∫ T

s

[U2(r, uε(r, r),∇uε(r, r)) − U2(r, Y ε
r ,∇uε(r, r))]δY ε

r dr

+ 2
∫ T

s

[F (r, Y
ε

r) − F (r, uε(r, X
ε

r))]∇uε(r, r)δY ε
r dr

− 2
∫ T

s

δY ε
r δZε

rdB̃r.
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By (1.10), the first (Lebesgue) integrand on the right hand-side above is dominated (in absolute value) by

|ρε
r|2 + |δY ε

r |2 .

Since U2 is Lipschitz with respect to the last variable, we see that the second integrand is majorized by

c(ρ2 ‖δZε
r‖2 + ρ−2 |δY ε

r |2),

where ρ is an arbitrary (small) positive number. From the relation (2.2) and the following inequality

|uε(r, r) − Y ε
r | ≤

∣∣∣∣∫ r

t

δε
udu

∣∣∣∣+ |ρε
r| + |δY ε

r | ,

we can see that the three remaining integrands in the Lebesgue integrals are dominated by the quantity

c

(∣∣∣∣∫ r

t

δε
udu

∣∣∣∣2 + ‖Rε
r‖2 + |ρε

r|2 + |δY ε
r |2

)
.

We thus deduce from the Gronwall-Bellman inequality

Ẽ sup
t≤s≤T

|δY ε
s |2 + Ẽ

∫ T

t

‖δZε
s‖2 ds ≤ c[Ẽ

∣∣g(T )− gε(T )
∣∣2 + Ẽ

(
sup

t≤s≤T

∣∣∣∣∫ s

t

δε
rdr

∣∣∣∣2
)

+ Ẽ sup
t≤s≤T

(|ρε
s|2 + ‖Rε

s‖2 + |ρε
s|2)].

Thanks to Corollary 3.2, there remains only to show that the random variables

sup
t≤s≤T

∣∣∣∣∫ s

t

δε
rdr

∣∣∣∣ and sup
t≤s≤T

|ρε
s|

tend to zero in L2(P̃ ).

Lemma 4.1. We have as ε → 0
Ẽ sup

t≤s≤T
|ρε

s|2 → 0.

Proof. Since the treatment of ρε
1,s is easy, we only deal with the term ρε

2,s (see (4.1)). By Lemma 1.3 it follows
that both Λ and F are Lipschitz. By Lemma 3.1 and the relation (3.11) we can write,

Ẽ sup
t≤s≤T

∣∣ρε
2,s

∣∣2 ≤ cε2(c2
∇ + M2(ε)). �

It remains only to treat the term above involving δε
r. It suffices to apply the following ergodic theorem to deal

with each of the components in δε
r.

Theorem 4.2. We have as ε → 0

Ẽ sup
t≤s≤T

∣∣∣∣∫ s

t

δε
rdr

∣∣∣∣2 → 0.

Recall the decomposition (4.2) and define

δε
3,s = δε

31,s + δε
32,s,
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where

δε
31,s = [F (s, s, Y ε

s ) − F (s, Y ε
s )]∇uε(s, s),

δε
32,s =

1
2
Tr[Λ(s, s) − Λ(s)]∂2

xuε(s, s).

Let us postpone for a while the study of the term δε
32,s, which is delicate since the derivatives ∂2

xixj
uε(s, x),

1 ≤ i, j ≤ d, may explode at infinity, (s, x) ∈ [0, T ]× Rd. We first treat δε
1,s, δε

2,s and δε
31,s.

The convergence to zero in P̃ -Probability of

sup
t≤s≤T

∣∣∣∣∫ s

t

δε
i,rdr

∣∣∣∣ ,
for i = 1, 2, 31, follows from Lemma 4.2 of Pardoux [12]. Moreover, there exists a constant c > 0 s.t. for all
ε ≤ 1 we have a.s.

sup
t≤s≤T

∣∣δε
i,s

∣∣ ≤ c,

for all i = 1, 2, 31, by Lemma 1.3 and the boundedness of a, the process Y ε (see (2.14)) and the gradient ∇uε ;
whence the convergence to zero in L2(P̃ ).

On the other hand, to deal with the term δε
32,s, we define the matrix

h2(x1, x2) = Λ(x1, x2) − Λ(x2),

and set for (x1, x2, s, x3) ∈ [0, T ]× R3d

Hε
2(x

1, x2, s, x3) = Trh2(x1, x2)∂2
x3uε(s, x3).

We have the

Lemma 4.3. The function
Hε

2(x
1, x2, s, x3),

defined for (x1, x2, s, x3) ∈ [0, T ] × R3d, is periodic with respect to the first variable with period one in each
direction of Rd and satisfies (1.8). For each (t, x) in [0, T ]× Rd

sup
t≤s≤T

∣∣∣∣∫ s

t

Hε
2

(
Xε

r

ε
, Xε

r , r, X
ε

r

)
dr

∣∣∣∣ → 0,

in L2(P̃ ) as ε → 0.

Proof. We want to apply the Itô formula. Since h2 need not be smooth, let us make use of regularization.
Consider the regularized function,

hε
2(x

1, x2) = η(ε)−2d

∫
R2d

h2(x1 − x1′, x2 − x2′)ϕ
(

x1′

η(ε)
,

x2′

η(ε)

)
dx1′dx2′,

where ϕ is a standard mollifier. We also define as in Section 2 of [3]

aε(x1, x2) = ε−d

∫
Rd

a(x1, x2 − x2′)ϕ
(

x2′

ε

)
dx2′,

bε(x1, x2) = ε−d

∫
Rd

b(x1, x2 − x2′)ϕ
(

x2′

ε

)
dx2′.
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The function hε
2 need not be orthogonal to µε(dx1, x2), the invariant probability measure for the diffusion Xε,x2

s

on T d given by

Xε,x2

s = x1 +
∫ s

t

bε(Xε,x2

r , x2)dr +
∫ s

t

σε(Xε,x2

r , x2)dB̃r,

with generator (see also (1.7))

Lε
x2 =

1
2

d∑
i,j=1

aε
ij(x

1, x2)∂2
x1

i x1
j
+

d∑
i=1

bε
i(x

1, x2)∂x1
i
.

That is why we solve the following Poisson problem

Lε
x2ĥε

2(x
1, x2) = h

ε

2(x
2) − hε

2(x
1, x2),

where

h
ε

2(x
2) =

∫
Td

hε
2(x

1, x2)pε
∞(x1, x2)dx1,

in which pε∞(x1, x2) stands for the density of µε(dx1, x2). Next, we need to set

h2,ε(x1, x2) = h2(x1, x2) − hε
2(x

1, x2).

Note that
Ĥε

2(x
1, x2, s, x3) = ĥε

2(x
1, x2)∂2

x3uε(s, x3),

solves the above Poisson problem with the function (h
ε

2 − hε
2)∂

2
x3u

εas a source term.
Now, we define the discontinuous càdlàg semi-martingale (s∗(1), X

ε

s∗(1)
) with values in [0, T ]×Rd. Thanks to

the Itô formula for the above function Ĥε
2(x1, x2, s, x3) on the jump process (Xε

s

ε , Xε
s, s∗(1), X

ε

s∗(1)
) for s ∈ [t, T ],

suppressing the Trace symbol Tr, the superscript 3 of x3 and the ∗(1) for convenience, we have∫ T

s

Hε
2

(
Xε

r

ε
, Xε

r , r, X
ε

r

)
dr =

∫ T

s

h2(r, r)∆r∗,r∂
2
xuε(., X

ε

. )dr +
∫ T

s

(Lr − Lε
r)ĥ

ε
2(r, r)∂

2
xuε(r∗, X

ε

r∗)dr

+
∫ T

s

h2,ε(r, r)∂2
xuε(r∗, X

ε

r∗)dr +
∫ T

s

h
ε

2(r, r)∂
2
xuε(r∗, X

ε

r∗)dr

+ ε

∫ T

s

[∂x1 ĥε
2b

′ + ∂x2 ĥε
2b + ∂2

x1x2 ĥε
2a](r, r)∂2

xuε(r∗, X
ε

r∗)dr

+ ε

∫ T

s

∂x1 ĥε
2σ(r, r)∂2

xuε(r∗, X
ε

r∗)dB̃r

+ ε2
∫ T

s

[∂x2 ĥε
2b

′ +
1
2
∂2

x2 ĥε
2a](r, r)∂2

xuε(r∗, X
ε

r∗)dr

+ ε2
∫ T

s

∂x2 ĥε
2σ(r, r)∂2

xuε(r∗, X
ε

r∗)dB̃r

+ ε2
T∗∑

ti>s

ĥε
2(ti, ti)∆ti−1,ti∂

2
xuε(., X

ε

. ) + ε2∆T,sĥ
ε
2(., .)∂

2
xuε(.∗, X

ε

.∗).

We have by (3.10)

Ẽ
∥∥∥∆r∗,r∂

2
xuε(., X

ε

. )
∥∥∥2

≤ cN(ε)2ε2β ;
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so that thanks to the relation (3.11) we have N(ε)εβ → 0 as ε → 0. Let us now consider the second term on the
right-hand side above. Since a, b and h2 are Lipschitz, it follows that both the first and the second derivatives
of ĥε

2 with respect to x1 are bounded. It then suffices to apply the relation (3.11). The treatment of the third
term is also a consequence of the Lipschitz character of h2. On the other hand, the computation in the proof
of Lemma 7 in [3] and the relation (3.11) settle our fourth term. The fifth and the sixth terms are easy. As far
as the seventh term is concerned, recall from Lemma 8 in [3] that we have

sup
x2∈Rd

ε
∥∥∂2

x2pε
∞(., x2)

∥∥
L2(T d)

< ∞,

so that by the Cauchy-Schwarz inequality, we can set an upper bound on the second order partial derivatives
of h

ε

2 ; therefore provided η(ε) decreases to zero slowly enough, our seventh term tends to zero indeed by the
relations (3.11) as ε → 0. The eighth term is easy. Next, since ĥε

2(x1, x2) is bounded, it remains only to notice
that the jump term behaves like the first term since ∆ti = ε2; which proves our lemma. �

Theorem 4.2 is now established.
From Corollary 3.2, Lemma 4.1 and Theorem 4.2 we have

sup
t≤s≤T

|δY ε
s | → 0

in L2(P̃ ) as ε → 0. Hence it clearly follows from equation (4.3) that

Ẽ
∣∣∣Y ε,t,x

t − uε(t, x)
∣∣∣ → 0,

as ε → 0 from which Lemma 3.3 follows immediately.

Remark 4.4. It seems hard to work out estimates similar to those in the relation (3.11) when g is in C0,1(R),
let alone g continuous with polynomial growth at infinity. This technical problem, which stems from the fact
that our limit PDE has become quite coupled and also depends explicitely on the linear growth of x at infinity
as a function of u and ∇u, prevents us from treating these cases as well.
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