Computing likelihoods under A-coalescents

Matthias Birkner

LMU Munich, Dept. Biology II

Joint project with Jochen Blath and Matthias Steinrücken, TU Berlin

Probabilistic Models of Evolutionary Biology CIRM, Luminy, 25–29 May 2009

- Introduction
- Beta $(2 \alpha, \alpha)$ -coalescents
- Mutation models: Infinitely-many-alleles, infinitely-many-sites
- Computing likelihoods under (Λ-)coalescents
- Importance sampling methods
- Summary & Outlook

Genetic variability at the mitochondrial cyt b locus in Atlantic cod

	468	481	487	488	490	496	508	523	562	601	631	643	649	685	691
66	t	а	а	С	а	а	t	g	а	t	g	а	С	С	g
17	-	-	-	-	-	-	С	-	-	-	-	-	-	-	-
14	-	-	-	-	-	-	-	а	-	-	-	-	-	t	-
8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	t
1	-	-	-	-	-	-	-	-	-	-	-	-	-	t	-
2	-	-	1	t	-	-	1	1	-	1	-	-	1	-	-
1	-	-	-	-	-	-	-	а	-	-	-	g	-	t	-
1	-	-	-	-	-	-	-	-	-	-	-	-	t	-	-
1	I	I	I	I	g	I	С	I	I	I	I	I	I	I	-
1	-	-	-	-	-	g	-	-	-	-	-	-	-	-	-
1	I	I	ъ	I	I	I	I	I	I	I	а	I	I	I	t
1	-	-	-	-	-	-	с	-	bg	-	-	-	1	-	-
1	g	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	-	1	I	I	I	1	I	I	1	С	1	1	I	I	-
1	-	с	-	-	-	-	с	-	-	-	-	-	-	-	-

(a random subsample of the sample described in Árnason, Genetics 2004)

The Great Obsession of population geneticists (J. Gillespie)

What evolutionary forces could have lead to such divergence between individuals of the same species?

The Great Obsession of population geneticists (J. Gillespie)

What evolutionary forces could have lead to such divergence between individuals of the same species?

In this talk, we will focus on *neutral* genetic variation, and thus the interplay of *mutation* and *genetic drift*.

- A (haploid) population of N individuals per generation,
- each individual in the present generation picks a 'parent' at random from the previous generation,
- genetic types are inherited (possibly with a small probability of mutation).

- A (haploid) population of N individuals per generation,
- each individual in the present generation picks a 'parent' at random from the previous generation,
- genetic types are inherited (possibly with a small probability of mutation).

- A (haploid) population of N individuals per generation,
- each individual in the present generation picks a 'parent' at random from the previous generation,
- genetic types are inherited (possibly with a small probability of mutation).

- A (haploid) population of N individuals per generation,
- each individual in the present generation picks a 'parent' at random from the previous generation,
- genetic types are inherited (possibly with a small probability of mutation).

Genealogical point of view

Sample $n \ll N$ individuals from the 'present generation'

Kingman's coalescent

Theorem (KINGMAN (& HUDSON, GRIFFITHS), 1982)

In the limit $N \rightarrow \infty$, the genealogy of an nsample, measured in units of N generations, is described by a continuous-time Markov chain where each pair of lineages merges at rate 1.

Kingman's coalescent

Theorem (KINGMAN (& HUDSON, GRIFFITHS), 1982)

In the limit $N \rightarrow \infty$, the genealogy of an nsample, measured in units of N generations, is described by a continuous-time Markov chain where each pair of lineages merges at rate 1.

$$(\nu_1, \ldots, \nu_N),$$
 (independent over generations),

if time is measured in units of $\frac{N}{\sigma^2}$ generations, where $\sigma^2 = \lim_{N \to \infty} \operatorname{Var}(\nu_1)$ (under a third moment condition on ν_1).

Modeling neutral variation: Superimposing types on the coalescent

Assume that the considered genetic types do not affect their bearer's reproductive succes.

```
If as population size N 
ightarrow \infty,
```

 $rac{N}{\sigma^2}$ × mutation prob. per ind. per generation ightarrow r,

the type configuration in the sample can be described by putting mutations with rate r along the genealogy.

Modeling neutral variation: Superimposing types on the coalescent

Assume that the considered genetic types do not affect their bearer's reproductive succes.

```
If as population size N \to \infty,
```

 $rac{N}{\sigma^2}$ × mutation prob. per ind. per generation ightarrow r,

the type configuration in the sample can be described by putting mutations with rate r along the genealogy.

Kingman's coalescent is the *standard model* of mathematical population genetics.

Modeling neutral variation: infinitely-many-alleles model

If mutations always generate a *completely new type*, information in *n*-sample is equivalent to allelic partition

$$(a_1, a_2, \ldots, a_n)$$

where $a_j = no$ of types with j representatives in the sample $(\sum_{i=j}^{n} ja_j = n)$

Modeling neutral variation: infinitely-many-alleles model

If mutations always generate a *completely new type*, information in *n*-sample is equivalent to allelic partition

$$(a_1, a_2, \ldots, a_n)$$

where $a_j = no$. of types with j representatives in the sample $(\sum_{i=j}^{n} ja_j = n)$

Then (EWENS' sampling formula, 1972)

$$p_r((a_1, a_2, \ldots, a_n)) = \frac{n!}{2r(2r+1)\cdots(2r+n-1)} \prod_{j=1}^{n} \frac{(2r/j)^{a_j}}{a_j!}$$

What if the variability of surviving offspring numbers across individuals is so large that reasonably

```
individual offspring variance \sigma^2 \approx \infty ?
```

This might happen e.g. in marine species (so-called *reproduction sweepstakes*).

While *n* lineages, any *k* coalesce at rate $\lambda_{n,k} = \int_{[0,1]} x^{k-2} (1-x)^{n-k} \Lambda(dx)$, where Λ is a finite measure on [0, 1]. (Sagitov, 1999; Pitman, 1999).

While *n* lineages, any *k* coalesce at rate $\lambda_{n,k} = \int_{[0,1]} x^{k-2} (1-x)^{n-k} \Lambda(dx)$,

where Λ is a finite measure on [0, 1]. (Sagitov, 1999; Pitman, 1999).

Interpretation:

re-write
$$\lambda_{n,k} = \int_{[0,1]} x^k (1-x)^{n-k} \frac{1}{x^2} \Lambda(dx)$$
 to see:
at rate $\frac{1}{x^2} \Lambda([x, x + dx])$, an 'x-resampling event' occurs.

Thinking forwards in time, this corresponds to an event in which the fraction x of the total population is replaced by the offspring of a single individual.

While *n* lineages, any *k* coalesce at rate $\lambda_{n,k} = \int_{[0,1]} x^{k-2} (1-x)^{n-k} \Lambda(dx)$, where Λ is a finite measure on [0,1]. (Soritor: 1000) Ditmon 1000)

where Λ is a finite measure on [0, 1]. (Sagitov, 1999; Pitman, 1999).

Interpretation:

re-write
$$\lambda_{n,k} = \int_{[0,1]} x^k (1-x)^{n-k} \frac{1}{x^2} \Lambda(dx)$$
 to see:
at rate $\frac{1}{x^2} \Lambda([x, x + dx])$, an 'x-resampling event' occurs.

Thinking forwards in time, this corresponds to an event in which the fraction x of the total population is replaced by the offspring of a single individual.

Form of rates stems from $\lambda_{n,k} = \lambda_{n+1,k} + \lambda_{n+1,k+1}$ (consistency condition).

While *n* lineages, any *k* coalesce at rate $\lambda_{n,k} = \int_{[0,1]} x^{k-2} (1-x)^{n-k} \Lambda(dx)$, where Λ is a finite measure of [0,1]. (So fitted 1000) Different 1000)

where Λ is a finite measure on [0, 1]. (Sagitov, 1999; Pitman, 1999).

Interpretation:

re-write
$$\lambda_{n,k} = \int_{[0,1]} x^k (1-x)^{n-k} \frac{1}{x^2} \Lambda(dx)$$
 to see:
at rate $\frac{1}{2} \Lambda([x, x + dx])$, an 'x-resampling event' occurs.

Thinking forwards in time, this corresponds to an event in which the fraction x of the total population is replaced by the offspring of a single individual.

Form of rates stems from $\lambda_{n,k} = \lambda_{n+1,k} + \lambda_{n+1,k+1}$ (consistency condition).

Note: $\Lambda = \delta_0$ corresponds to Kingman's coalescent.

Cannings' models in the 'domain of attraction of a Λ-coalescent'

Fixed population size N, exchangeable offspring numbers in one generation

$$(\nu_1,\nu_2,\ldots,\nu_N).$$

SAGITOV (1999), MÖHLE & SAGITOV (2001) clarify under which conditions the genealogies of a sequence of exchangeable finite population models are described by a Λ -coalescent:

- $c_N :=$ pair coalescence probability over one generation $\rightarrow 0$ ($c_N = \frac{1}{N-1} \mathbb{E}[\nu_1(\nu_1 - 1)]$)
- two double mergers asymptotically negligible compared to one triple merger
- $Nc_N \Pr(a \text{ given family has size} \ge Nx) \sim \int_x^1 y^{-2} \Lambda(dy)$

Time is measured in $1/c_N$ generations (in general $\neq 1$ /pop. size)

Note: There are many Λ -coalescents.

Maybe a natural "first candidate":

$$\Lambda = w \delta_0 + (1-w) \delta_\psi$$
 with $w, \psi \in (0,1)$

(as considered by Eldon & Wakeley, Genetics 2006)

A 'heavy-tailed' Cannings model and Beta-coalescents

Haploid population of size *N*. Individual *i* has X_i potential offspring, X_1, X_2, \ldots, X_N are i.i.d. with mean $m := \mathbb{E}[X_1] > 1$, $\Pr(X_1 \ge k) \sim \text{Const.} \times k^{-\alpha}$ with $\alpha \in (1, 2)$. Note: infinite variance.

Sample N without replacement from all potential offspring to form the next generation.

A 'heavy-tailed' Cannings model and Beta-coalescents

Haploid population of size *N*. Individual *i* has X_i potential offspring, X_1, X_2, \ldots, X_N are i.i.d. with mean $m := \mathbb{E}[X_1] > 1$, $\Pr(X_1 \ge k) \sim \text{Const.} \times k^{-\alpha}$ with $\alpha \in (1, 2)$. Note: infinite variance.

Sample N without replacement from all potential offspring to form the next generation.

Theorem (SCHWEINSBERG, 2003)

Let $c_N = \text{prob. of pair coalescence one generation back in N-th model.}$ $c_N \sim \text{const. } N^{1-\alpha}$, measured in units of $1/c_N$ generations, the genealogy of a sample from the N-th model is approximately described by a Λ -coalescent with $\Lambda = \text{Beta}(2 - \alpha, \alpha)$. $\left(\text{Beta}(2 - \alpha, \alpha)(dx) = \mathbb{1}_{[0,1]}(x) \frac{1}{\Gamma(2-\alpha)\Gamma(\alpha)} x^{1-\alpha}(1-x)^{\alpha-1} dx \right)$

Heuristic argument:

Probability that first individual's offspring provides

more than fraction y of the next generation,

Heuristic argument:

Probability that first individual's offspring provides

more than fraction y of the next generation,

$$\approx \mathbb{P}\Big(\frac{X_1}{X_1+(N-1)m}\geq y\Big|X_1\geq \varepsilon N\Big)$$

Heuristic argument:

Probability that first individual's offspring provides

more than fraction y of the next generation,

$$\approx \mathbb{P}\Big(\frac{X_1}{X_1 + (N-1)m} \ge y \Big| X_1 \ge \varepsilon N\Big) \\ = \mathbb{P}\Big(X_1 \ge (N-1)m\frac{y}{1-y}\Big| X_1 \ge \varepsilon N\Big)$$

Heuristic argument:

Probability that first individual's offspring provides

more than fraction y of the next generation,

$$\approx \quad \mathbb{P}\Big(\frac{X_1}{X_1 + (N-1)m} \ge y \Big| X_1 \ge \varepsilon N\Big) \\ = \mathbb{P}\Big(X_1 \ge (N-1)m\frac{y}{1-y}\Big| X_1 \ge \varepsilon N\Big) \\ \sim \text{const.} \frac{(1-y)^{\alpha}}{y^{\alpha}} = \text{const.' Beta}(2-\alpha, \alpha)([y, 1]).$$

Introduction The Beta $(2 - \alpha, \alpha)$ -class

The family $Beta(2 - \alpha, \alpha), \alpha \in (1, 2]$

- Kingman's coalescent included as boundary case: Beta $(2 - \alpha, \alpha) \rightarrow \delta_0$ weakly as $\alpha \rightarrow 2$.
- Smaller α means tendency towards more extreme resampling events.
- For $\alpha \leq 1$, corresponding coalescents do not come down from infinity.

- Beta(2 α, α)-coalescents appear as genealogies of α-stable continuous mass branching process (via a time-change).
- Scaling relation of mutation rate per generation relative to population size depends on $\alpha!$

'Meta-mathematic' associations

$\begin{array}{cccc} \text{Brownian motion} & \leftrightarrow & \text{Kingman's coalescent} \\ & \cap & & \cap \\ \text{Stable processes} & \leftrightarrow & \text{Beta}(2-\alpha,\alpha)\text{-coalescents} \\ & \cap & & \cap \\ \text{General Lévy processes} & \leftrightarrow & \text{General } \Lambda\text{-coalescents} \end{array}$

Playing god with simulated "full trees"

ML estimates of α for simulted datasets with sample size n = 100, estimate based on *full genealogical tree* (400 replicates for each value of α).

Consider *n*- Λ -coalescent with mutation rate *r* per line (and infinite alleles mutation model). **n** = (n_1, \ldots, n_ℓ), possible type configuration

Theorem (MÖHLE 2005)

The probability $p(\mathbf{n})$ of observing a type configuration $\mathbf{n} = (n_1, \dots, n_\ell)$ satisfies the recursion given by p(1) = 1 and

$$p(\mathbf{n}) = \frac{nr}{\sum_{k=2}^{n} \binom{n}{k} \lambda_{n,k} + nr} \sum_{j=1}^{\ell} \frac{1}{\ell} p(\tilde{\mathbf{n}}^{(j)}) + \frac{1}{\sum_{k=2}^{n} \binom{n}{k} \lambda_{n,k} + nr} \sum_{k=2}^{n} \sum_{j=1 \atop n_j \ge k}^{\ell} \binom{n}{k} \lambda_{n,k} \frac{n_j - k + 1}{n - k + 1} p(\mathbf{n} - (k - 1)\mathbf{e}_j).$$
$$\tilde{\mathbf{n}}^{(j)} = (n_1, \dots, n_{j-1}, n_{j+1}, \dots, n_k))$$

Infinitely many sites model

Model genetic locus as infinite sequence of completely linked sites, mutations always hit a new site.

Mathematical abstraction:

- \bullet a gene is [0,1]
- ullet a type is a configuration of points on [0,1]

Ethier & Griffiths (1987) parametrisation:

- type space $E = [0,1]^{\mathbb{N}}$
- mutation operator

$$Bf((x_1, x_2, \dots)) = r \int_0^1 f((u, x_1, x_2, \dots)) - f((x_1, x_2, \dots)) du$$

Asymptotics of the frequency spectrum

Consider an *n*-Beta $(2 - \alpha, \alpha)$ -coalescent, mutations at rate *r* according to the *infinitely-many-sites* model (assuming known ancestral types). Let

M(n) := #total number of mutations in the sample,

 $M_k(n) := \#$ number of mutations affecting exactly k samples,

$$k=1,2,\ldots,n-1.$$

Theorem (BERESTYCKI, BERESTYCKI & SCHWEINSBERG 2007)

$$\frac{M(n)}{n^{2-\alpha}} \to r \frac{\alpha(\alpha-1)\Gamma(\alpha)}{2-\alpha}, \quad \frac{M_k(n)}{n^{2-\alpha}} \to r\alpha(\alpha-1)^2 \frac{\Gamma(k+\alpha-2)}{k!}$$
probability as $n \to \infty$.

Asymptotics of the frequency spectrum

Consider an *n*-Beta $(2 - \alpha, \alpha)$ -coalescent, mutations at rate *r* according to the *infinitely-many-sites* model (assuming known ancestral types). Let

M(n) := #total number of mutations in the sample,

 $M_k(n) := \#$ number of mutations affecting exactly k samples,

$$k=1,2,\ldots,n-1.$$

in

Theorem (BERESTYCKI, BERESTYCKI & SCHWEINSBERG 2007)

$$\frac{M(n)}{n^{2-\alpha}} \to r \frac{\alpha(\alpha-1)\Gamma(\alpha)}{2-\alpha}, \quad \frac{M_k(n)}{n^{2-\alpha}} \to r\alpha(\alpha-1)^2 \frac{\Gamma(k+\alpha-2)}{k!}$$
probability as $n \to \infty$.

Thus $M_1(n)/M(n) \approx 2 - \alpha$ for *n* large, which suggests

$$\widehat{lpha}_{\mathrm{BBS}} := 2 - \frac{M_1(n)}{M(n)}$$
 as an estimator for α .
Infinitely-many-sites model

Model genetic locus as infinite sequence of completely linked sites, mutations always hit a new site

Example:

	segr. site			
Seq.	1	2	3	4
1	1	0	0	0
2	1	1	0	0
3	0	0	1	1
4	0	0	1	1
5	0	0	1	0

(0=wild type, 1=mutant

assume known ancestral types)

Obs. fit IMS \iff no sub-matrix $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 0 \\ \end{pmatrix}$ (and no row permutation). $\begin{pmatrix} 0 & 1 \\ 0 & 1 \\ \end{pmatrix}$

Infinitely-many-sites model, II

If the infinitely-many-sites model applies, the observations correspond to a unique rooted perfect phylogeny (or 'genetree').

Construct e.g. using GUSFIELD's (1991) algorithm.

Note: purely combinatorial, does not depend on a probabilistic model for the observations.

Simulating samples under the IMS model

The ETHIER-GRIFFITHS urn (1987) can be used to generate a random sample of size n under Kingman's coalescent (with mutation rate r per line):

- Start with 2 leaves.
- When there are k leaves:

Add a mutation to a leaf w. prob. $\frac{2r}{2r+(k-1)}$, split one leaf w. prob. $\frac{k-1}{2r+(k-1)}$

(leaf picked uniformly among the k).

• Stop when n+1 leaves, delete last leaf.

Simulating samples under the IMS model: A-case

 $(Y_t^{(n)})_{\geq 0}$ block counting process of Λ -coalescent starting from n blocks:

• Jump from i to $j \in \{1, 2, \dots, i-1\}$ at rate $q_{ij} := {i \choose i-j+1} \lambda_{i,i-j+1}$.

•
$$\tau_1 := \inf\{t \ge 0 : Y_t^{(n)} = 1\}.$$

$$\begin{split} \widetilde{Y}_{t}^{(n)} &:= Y_{(\tau_{1}-t)-}^{(n)} \text{ time-reversed block counting process} \\ \bullet \ (\widetilde{Y}_{t}^{(n)} = \partial \text{ for } t \geq \tau_{1}). \\ \bullet \text{ Jump rates } \widetilde{q}_{ji}^{(n)} &= \frac{g_{ni}q_{ij}}{g_{nj}}, \ \widetilde{q}_{n\partial}^{(n)} &= -q_{nn} = \sum_{j=1}^{n-1} q_{nj}, \\ \bullet \ \mathbb{P}(\widetilde{Y}_{0}^{(n)} = k) &= \mathbb{P}(Y_{\tau_{1}-}^{(n)} = k) = g_{nk}q_{k1}. \end{split}$$

• $g_{ni} := \mathbb{E} \int_0^\infty \mathbf{1}(Y_t^{(n)} = i) dt$ is the Green function (in general, not known explicitly, but easy recursion).

Simulating samples under the IMS model: A-case, cont.

The $n-\Lambda$ -"Ethier-Griffiths urn" (mutation rate r).

- Begin with K leaves, $\mathbb{P}(K = k) = \mathbb{P}(\widetilde{Y}_0^{(n)} = k)$.
- While there are k leaves:

Add a mutation to a leaf w. prob. $\frac{r}{kr - \tilde{q}_{kk}^{(n)}}$, split one leaf into ℓ w. prob. $\frac{\tilde{q}_{k,k+\ell-1}^{(n)}}{\tilde{q}_{kk}^{(n)}}$, if k = n goto stop w. prob. $\frac{-\tilde{q}_{nn}^{(n)}}{kr - \tilde{q}_{nn}^{(n)}}$

(leaf picked uniformly among the k).

Stop.

Recursion for tree probabilities

Can calculate $\mathbb{P}_{(r,\Lambda)}($ observed sequence data $(\mathbf{t},\mathbf{n})) =: p(\mathbf{t},\mathbf{n})$ via

Recursion for tree probabilities

Can calculate $\mathbb{P}_{(r,\Lambda)}($ observed sequence data $(\mathbf{t},\mathbf{n})) =: p(\mathbf{t},\mathbf{n})$ via

$$p(\mathbf{t}, \mathbf{n}) = \frac{1}{rn + \lambda_n} \sum_{\substack{i:n_i \ge 2 \\ s(\mathbf{x}_i) \neq \mathbf{x}_j \forall j}} \sum_{k=2}^{n_i} {n \choose k} \lambda_{n,k} \frac{n_i - k + 1}{n - k + 1} p(\mathbf{t}, \mathbf{n} - (k - 1)\mathbf{e}_i)$$
$$+ \frac{r}{rn + \lambda_n} \sum_{\substack{i:n_i = 1, x_{ij} \text{ unique,} \\ s(\mathbf{x}_i) \neq \mathbf{x}_j \forall j}} p(\mathfrak{s}_i(\mathbf{t}), \mathbf{n})$$
$$+ \frac{r}{rn + \lambda_n} \frac{1}{d} \sum_{\substack{i:n_i = 1, \\ x_{in} \text{ unique}}} \sum_{j: \mathfrak{s}(\mathbf{x}_i) = \mathbf{x}_j} (n_j + 1) p(\mathfrak{r}_i(\mathbf{t}), \mathfrak{r}_i(\mathbf{n} + \mathbf{e}_j)).$$

Extends ETHIER & GRIFFITHS (1987) to Λ -coalescents and MÖHLE's recursion (2005) to IMS model.

Compute probabilities

Use exact recursions for moderate sample complexities.

Approach more complex samples by version of GRIFFITHS & TAVARÉ's (1994)

Monte Carlo method

$$p(\mathbf{t},\mathbf{n}) = \mathbb{E}_{(\mathbf{t},\mathbf{n})} \Big[\prod_{i=0}^{\tau-1} f_{(r,\Lambda)}(X_i) \Big]$$

- For suitable Markov chain X_i on sample configurations.
- Estimate expectation via empirical mean of independent runs.
- extension to Λ-coalescents by B. & BLATH (2008)

Artifical sample of size 12 analysed with r = 1 and $\alpha = 1.5$:

(((3,1,0),(1,0),(2,1,0),(0)),(1,2,1,1))

Interpret genealogy as sequency of historical states: $\mathcal{H} = (H_{-\tau} = ((1), (0)), H_{\tau-1}, \dots, H_{-1}, H_0 = (\mathbf{t}, \mathbf{n}))$ H_{-6} H_{-5} H_{-3} 2 3

(((3,1,0),(1,0),(2,1,0),(0)),(1,2,1,1))

(((3,1,0),(1,0),(2,1,0),(0)),(1,2,1,1))

different histories can lead to same sample (((3,1,0),(1,0),(2,1,0),(0)),(1,2,1,1))

We have

$$p(\mathbf{t}, \mathbf{n}) = \mathbb{P}_{(r,\Lambda)} (H_0 = (\mathbf{t}, \mathbf{n})) = \sum_{\substack{\mathcal{H}: H_0 = (\mathbf{t}, \mathbf{n}) \\ \mathcal{H}: H_0 = (\mathbf{t}, \mathbf{n})}} \mathbb{P}_{(r,\Lambda)} (\mathcal{H})}{\underbrace{\mathbb{Q}(\mathcal{H})}_{\substack{=:w(\mathcal{H}) \\ \text{importance weight}}}} \mathcal{Q}(\mathcal{H}),$$

for any law \mathcal{Q} on histories s.th. $\mathbb{P}_{(r,\Lambda)}\Big|_{\{H_0=(\mathbf{t},\mathbf{n})\}}\ll \mathcal{Q}.$ Thus,

$$p(\mathbf{t},\mathbf{n}) \approx \frac{1}{R} \sum_{i=1}^{R} w(\mathcal{H}^{(i)}),$$

where $\mathcal{H}^{(1)},\ldots,\mathcal{H}^{(R)}$ are independent samples from $\mathcal Q$

(Theoretical) optimal solution

$$p(\mathbf{t},\mathbf{n}) = \sum_{\mathcal{H}: \mathcal{H}_0 = (\mathbf{t},\mathbf{n})} \frac{\mathbb{P}_{(r,\Lambda)}(\mathcal{H})}{\mathcal{Q}(\mathcal{H})} \mathcal{Q}(\mathcal{H}) \approx \frac{1}{R} \sum_{i=1}^{R} w(\mathcal{H}^{(i)})$$

 $\mathcal{Q}_{\text{opt}}(\cdot) := \mathbb{P}_{(r,\Lambda)}(\cdot | H_0 = (\mathbf{t}, \mathbf{n}))$ is optimal (Stephens & Donnelly 2000):

- Variance of estimator is zero since $w(\mathcal{H}^{(i)}) \equiv p(\mathbf{t}, \mathbf{n})$.
- Finding \mathcal{Q}_{opt} is as hard as the original problem.
- H_0, H_{-1}, \ldots is Markov chain under Q_{opt} .

Remark: Transistion probabilities $q_{\text{GT}}(H_i|H_{i+1}) \propto \mathbb{P}_{(r,\Lambda)}(H_{i+1}|H_i)$ gives (Λ -)Griffiths-Tavaré method.

STEPHENS AND DONNELLY's (2000) IMS candidate

Kingman case: Choose individual uniformly:

- If type is unique in sample, remove "outmost" mutation,
- if at least two individuals with this type, merge two lines.

(this would be optimal for parent-independent mutations)

Heuristic extension to Λ case:

$$(\mathbf{t}, \mathbf{n}) \rightarrow \begin{cases} \left(\mathfrak{s}_{i}(\mathbf{t}), \mathbf{n}\right) & \text{w.p. } \propto 1 \text{ if } n_{i} = 1, x_{i0} \text{ unique, } \mathfrak{s}_{i}(\mathbf{x}_{i}) \neq \mathbf{x}_{j} \forall j \\ \left(\mathfrak{r}_{i}(\mathbf{t}, \mathfrak{r}_{i}(\mathbf{n} + \mathbf{e}_{j})\right) & \text{w.p. } \propto 1 \text{ if } n_{i} = 1, x_{i0} \text{ unique, } \mathfrak{s}_{i}(\mathbf{x}_{i}) \neq \mathbf{x}_{j} \\ \left(\mathbf{t}, \mathbf{n} - (k - 1)\mathbf{e}_{i}\right) & \text{w.p. } \propto n_{i}\bar{q}_{n_{i}}(k) \text{ if } 2 \leq k \leq n_{i}, \end{cases}$$

where $\bar{q}_{n_i}(k) = \frac{q_{n,n-k+1}}{\sum_{l=2}^{n_i} q_{n,n-l+1}}$, jump probabilities of block counting process.

Artifical sample of size 12 analysed with r = 1 and $\alpha = 1.5$:

HOBOLTH, UYENOYAMA & WIUF's (2008) idea

Sample of size n where exactly one mutation is visible (in d copies).

Probability can be computed

- Kingman case: explicit formula (HUW (2008))
- Λ case: numerically, using recursion

HOBOLTH, UYENOYAMA & WIUF's (2008) idea contd.

HOBOLTH, UYENOYAMA & WIUF's (2008) idea contd.

HOBOLTH, UYENOYAMA & WIUF's (2008) idea contd.

HOBOLTH, UYENOYAMA & WIUF's (2008) idea contd.

HOBOLTH, UYENOYAMA & WIUF's (2008) idea contd.

HOBOLTH, UYENOYAMA & WIUF's (2008) idea contd.

where mutation m is present in d_m individuals. Propose type i according to

$$q_{\Lambda-HUW}(i|(\mathbf{t},\mathbf{n})) \propto egin{cases} \sum_m u_{i,m} & ext{if } i ext{ is allowed to act} \\ 0 & ext{otherwise.} \end{cases}$$

HOBOLTH, UYENOYAMA & WIUF's (2008) idea contd.

If proposed type i

- is singleton: remove "outmost" mutation,
- has $n_i \ge 2$: merger inside type *i*.
 - Kingman case: merge two lines

•
$$\Lambda$$
-case: propose $\ell + 1$ -merger w.p. $\propto \mathbb{P}_{r,\Lambda} \left\{ \begin{array}{cc} (0) & n \\ f & f \\ (1) & d_o - I \end{array} \middle| \begin{array}{cc} (0) & n \\ f & f \\ (1) & d_o \end{array} \right\}$

Artifical sample of size 12 analysed with r = 1 and $\alpha = 1.5$:

Performance

Simulated 50 samples of size 15 with r = 2 and $\alpha = 1.5$. Analysed with r = 1 and $\alpha = 1.5$. Time needed to get relative error below 0.01:

(a) measured in log10(# runs of MC)

(b) measured in log10(seconds)

Dataset from Ward et al, Extensive Mitochondrial Diversity Within a Single Amerindian Tribe, *PNAS* 1991

Analysis with Beta-Coalescent:

Mitochondrial control region from 55 female Nuu-Chah-Nulth: $\hat{\alpha}_{ML} = 1.9$, $\hat{r}_{ML} = 2.2$ (Sample as edited in Griffiths & Tavaré, *Stat. Sci.*, 1994)

Genetic variation at the mitochondrial cyt *b* locus of Atlantic cod: log-likelihood surfaces

In Schweinsberg's model, we have

pair coalescence prob. $c_N \sim C \times N^{1-\alpha}$

 $(C = \alpha \Gamma(\alpha) \Gamma(2 - \alpha) m^{-\alpha}$, where m = mean of X_1)

In Schweinsberg's model, we have

pair coalescence prob. $c_N \sim C \times N^{1-\alpha}$

 $(C = \alpha \Gamma(\alpha) \Gamma(2 - \alpha) m^{-\alpha}$, where m = mean of X_1)

Let $\mu =$ mutation rate per gen. at the considered locus, then $\frac{\mu}{c_N} \approx r$

In Schweinsberg's model, we have

pair coalescence prob.
$$\mathit{c_N} \sim \mathit{C} imes \mathit{N}^{1 - lpha}$$

 $(C = \alpha \Gamma(\alpha) \Gamma(2 - \alpha) m^{-\alpha}$, where m = mean of X_1)

Let $\mu =$ mutation rate per gen. at the considered locus, then $\frac{\mu}{c_N} \approx r$, $N_{\mathrm{eff},\alpha} \approx \left(\frac{r \alpha \Gamma(\alpha) \Gamma(2-\alpha) m^{-\alpha}}{\mu}\right)^{1/(\alpha-1)}.$ hence

In Schweinsberg's model, we have

pair coalescence prob.
$$\mathit{c_N} \sim \mathit{C} imes \mathit{N}^{1-lpha}$$

 $(C = \alpha \Gamma(\alpha) \Gamma(2 - \alpha) m^{-\alpha}$, where m = mean of X_1)

Let $\mu =$ mutation rate per gen. at the considered locus, then $\frac{\mu}{c_N} \approx r$, $N_{\mathrm{eff},\alpha} \approx \left(\frac{r\alpha\Gamma(\alpha)\Gamma(2-\alpha)m^{-\alpha}}{\mu}\right)^{1/(\alpha-1)}.$ hence

Using $\mu = 250 \times 1.85 \cdot 10^{-7}$ (ÁRNASON, 2004), $\hat{\alpha} = 1.5$, $\hat{r} = 1$ (and, ad hoc, m = 2), this gives

$$\widehat{N}_{\mathrm{eff},\alpha=1.5} \approx 3.2 \cdot 10^{8}$$

Arnason (2004) writes: "... the actual population size [of atlantic cod] is not $< 10^9$ and probably one or two orders of magnitude larger."

In Schweinsberg's model, we have

pair coalescence prob.
$$\mathit{c_N} \sim \mathit{C} imes \mathit{N}^{1-lpha}$$

 $(C = \alpha \Gamma(\alpha) \Gamma(2 - \alpha) m^{-\alpha}$, where m = mean of X_1)

Let $\mu =$ mutation rate per gen. at the considered locus, then $\frac{\mu}{c_N} \approx r$, $N_{\mathrm{eff},\alpha} \approx \left(\frac{r\alpha\Gamma(\alpha)\Gamma(2-\alpha)m^{-\alpha}}{m}\right)^{1/(\alpha-1)}.$ hence

Using $\mu = 250 \times 1.85 \cdot 10^{-7}$ (ÁRNASON, 2004), $\hat{\alpha} = 1.5$, $\hat{r} = 1$ (and, ad hoc, m = 2), this gives

$$\widehat{N}_{\mathrm{eff},\alpha=1.5} \approx 3.2 \cdot 10^{8}$$

Arnason (2004) writes: "... the actual population size [of atlantic cod] is not $< 10^9$ and probably one or two orders of magnitude larger."

By contrast, using a Wright-Fisher model and $N_{\text{eff},\alpha=2} \times \mu = r$, we have (using $\hat{r}_{\alpha-2} = 2$): $\widehat{N}_{\text{eff }\alpha=2} \approx 4.3 \cdot 10^4.$

Outlook

Summary & Outlook

Eldon & Wakeley, Genetics 2006, wrote

For many species, the coalescent with multiple mergers might be a better null model than Kingman's coalescent.
Summary & Outlook

Eldon & Wakeley, Genetics 2006, wrote

For many species, *the* coalescent with multiple mergers might be a better null model than Kingman's coalescent.

- For panmictic fixed-size discrete generations populations, haploid neutral one-locus theory is "mathematically complete".
- Tools for estimation exist, results point towards "non-Kingman-ness" in certain cases.
- Statistical properties of estimators?
- speed-up of computer-intensive methods?
 - combinations between IS-methods possible
 - "Double-HUW" scheme: ask all pairs of mutations what to do
- A good class of alternative models? In particular, true diploid models?
- Application to scenarios with selection?

Thank you for your attention!