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Introduction The Great Obsession

Genetic variability at the mitochondrial cyt b locus in

Atlantic cod
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(a random subsample of the sample described in Árnason, Genetics 2004)
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Introduction The Great Obsession

The Great Obsession of population geneticists (J. Gillespie)

What evolutionary forces could have lead to such divergence

between individuals of the same species?
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Introduction The Great Obsession

The Great Obsession of population geneticists (J. Gillespie)

What evolutionary forces could have lead to such divergence

between individuals of the same species?

In this talk, we will focus on neutral genetic variation, and thus the
interplay of mutation and genetic drift.

4/44



Introduction Wright-Fisher model and Kingman’s coalescent

Wright-Fisher model: The fundamental model for ‘genetic drift’

A (haploid) population of N individuals per generation,

each individual in the present generation picks a ‘parent’ at random
from the previous generation,

genetic types are inherited (possibly with a small probability of
mutation).

past
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Introduction Wright-Fisher model and Kingman’s coalescent

Genealogical point of view

Sample n (≪ N) individuals from the ‘present generation’

past

present
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Introduction Wright-Fisher model and Kingman’s coalescent

Kingman’s coalescent

Theorem (Kingman (& Hudson, Griffiths), 1982)

In the limit N → ∞, the genealogy of an n-
sample, measured in units of N generations, is
described by a continuous-time Markov chain
where each pair of lineages merges at rate 1.
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Introduction Wright-Fisher model and Kingman’s coalescent

Kingman’s coalescent

Theorem (Kingman (& Hudson, Griffiths), 1982)

In the limit N → ∞, the genealogy of an n-
sample, measured in units of N generations, is
described by a continuous-time Markov chain
where each pair of lineages merges at rate 1.

Robustness. The same limit appears for any exchangeable offspring vectors

(ν1, . . . , νN), (independent over generations),

if time is measured in units of
N

σ2
generations, where σ2 = lim

N→∞
Var(ν1)

(under a third moment condition on ν1).

7/44



Introduction Wright-Fisher model and Kingman’s coalescent

Modeling neutral variation: Superimposing types on the

coalescent

Assume that the considered genetic types
do not affect their bearer’s reproductive succes.

If as population size N → ∞,
N

σ2
× mutation prob. per ind. per generation → r ,

the type configuration in the sample can be described by putting
mutations with rate r along the genealogy.
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Introduction Wright-Fisher model and Kingman’s coalescent

Modeling neutral variation: Superimposing types on the

coalescent

Assume that the considered genetic types
do not affect their bearer’s reproductive succes.

If as population size N → ∞,
N

σ2
× mutation prob. per ind. per generation → r ,

the type configuration in the sample can be described by putting
mutations with rate r along the genealogy.

Kingman’s coalescent is the standard model of mathematical population
genetics.
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Introduction Wright-Fisher model and Kingman’s coalescent

Modeling neutral variation: infinitely-many-alleles model

If mutations always generate a completely new type,
information in n-sample is equivalent to allelic partition

(a1, a2, . . . , an)

where aj=no. of types with j representatives in the sample (
∑n

i=j jaj = n)

9/44



Introduction Wright-Fisher model and Kingman’s coalescent

Modeling neutral variation: infinitely-many-alleles model

If mutations always generate a completely new type,
information in n-sample is equivalent to allelic partition

(a1, a2, . . . , an)

where aj=no. of types with j representatives in the sample (
∑n

i=j jaj = n)

Then (Ewens’ sampling formula, 1972)

pr

(
(a1, a2, . . . , an)

)
=

n!

2r(2r + 1) · · · (2r + n − 1)

∏

j=1

(2r/j)aj

aj !
.
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Introduction Multiple merger coalescents

Question

What if the variability of surviving offspring numbers across individuals is
so large that reasonably

individual offspring variance σ2 ≈ ∞ ?

This might happen e.g. in marine species (so-called reproduction
sweepstakes).
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Introduction Multiple merger coalescents

Coalescents with multiple collisions, aka ‘Λ-coalescents’

While n lineages, any k coalesce at rate λn,k =

∫

[0,1]
xk−2(1− x)n−k Λ(dx),

where Λ is a finite measure on [0, 1]. (Sagitov, 1999; Pitman, 1999).
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∫

[0,1]
xk−2(1− x)n−k Λ(dx),

where Λ is a finite measure on [0, 1]. (Sagitov, 1999; Pitman, 1999).

Interpretation:
re-write λn,k =

∫
[0,1] x

k(1 − x)n−k 1
x2 Λ(dx) to see:

at rate 1
x2 Λ([x , x + dx ]), an ‘x-resampling event’ occurs.

Thinking forwards in time, this corresponds to an event in which the
fraction x of the total population is replaced by the offspring of a single
individual.
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Form of rates stems from λn,k = λn+1,k + λn+1,k+1 (consistency
condition).
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∫
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xk−2(1− x)n−k Λ(dx),

where Λ is a finite measure on [0, 1]. (Sagitov, 1999; Pitman, 1999).

Interpretation:
re-write λn,k =

∫
[0,1] x

k(1 − x)n−k 1
x2 Λ(dx) to see:

at rate 1
x2 Λ([x , x + dx ]), an ‘x-resampling event’ occurs.

Thinking forwards in time, this corresponds to an event in which the
fraction x of the total population is replaced by the offspring of a single
individual.

Form of rates stems from λn,k = λn+1,k + λn+1,k+1 (consistency
condition).

Note: Λ = δ0 corresponds to Kingman’s coalescent.
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Introduction Multiple merger coalescents

Cannings’ models in the

‘domain of attraction of a Λ-coalescent’

Fixed population size N, exchangeable offspring numbers in one generation

(
ν1, ν2, . . . , νN

)
.

Sagitov (1999), Möhle & Sagitov (2001) clarify under which
conditions the genealogies of a sequence of exchangeable finite population
models are described by a Λ-coalescent:

cN := pair coalescence probability over one generation → 0

( cN = 1
N−1E[ν1(ν1 − 1)] )

two double mergers asymptotically negligible compared to one triple
merger

NcN Pr
(
a given family has size ≥ Nx

)
∼

∫ 1
x

y−2Λ(dy)

Time is measured in 1/cN generations (in general 6= 1/pop. size)
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Introduction The Beta(2 − α, α)-class

Note: There are many Λ-coalescents.

Maybe a natural “first candidate”:

Λ = wδ0 + (1 − w)δψ with w , ψ ∈ (0, 1)

(as considered by Eldon & Wakeley, Genetics 2006)

13/44



Introduction The Beta(2 − α, α)-class

A ‘heavy-tailed’ Cannings model and Beta-coalescents

Haploid population of size N. Individual i has Xi potential offspring,
X1,X2, . . . ,XN are i.i.d. with mean m := E

[
X1

]
> 1,

Pr
(
X1 ≥ k

)
∼ Const. × k−α with α ∈ (1, 2).

Note: infinite variance.

Sample N without replacement from all potential offspring to form the
next generation.
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A ‘heavy-tailed’ Cannings model and Beta-coalescents

Haploid population of size N. Individual i has Xi potential offspring,
X1,X2, . . . ,XN are i.i.d. with mean m := E

[
X1

]
> 1,

Pr
(
X1 ≥ k

)
∼ Const. × k−α with α ∈ (1, 2).

Note: infinite variance.

Sample N without replacement from all potential offspring to form the
next generation.

Theorem (Schweinsberg, 2003)

Let cN = prob. of pair coalescence one generation back in N-th model.
cN ∼ const. N1−α, measured in units of 1/cN generations, the genealogy
of a sample from the N-th model is approximately described by a
Λ-coalescent with Λ = Beta(2 − α,α).(

Beta(2 − α, α)(dx) = 1[0,1](x) 1
Γ(2−α)Γ(α)x

1−α(1 − x)α−1 dx
)
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Introduction The Beta(2 − α, α)-class

Why Λ = Beta(2 − α, α)?

Heuristic argument:

Probability that first individual’s offspring provides

more than fraction y of the next generation,

given that the family is substantial (i.e. given X1 ≥ εN, for y > ε)
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Why Λ = Beta(2 − α, α)?

Heuristic argument:

Probability that first individual’s offspring provides

more than fraction y of the next generation,

given that the family is substantial (i.e. given X1 ≥ εN, for y > ε)

≈ P

( X1

X1 + (N − 1)m
≥ y

∣∣∣X1 ≥ εN
)

= P

(
X1 ≥ (N − 1)m

y

1 − y

∣∣∣X1 ≥ εN
)

∼ const.
(1 − y)α

yα
= const.’ Beta(2 − α,α)([y , 1]).
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Introduction The Beta(2 − α, α)-class

The family Beta(2 − α, α), α ∈ (1, 2]

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

1.9
1.5
1.1

Kingman’s coalescent included
as boundary case:
Beta(2 − α,α) → δ0 weakly as α→ 2.

Smaller α means tendency towards
more extreme resampling events.

For α ≤ 1, corresponding coalescents
do not come down from infinity.

Beta(2 − α,α)-coalescents appear as genealogies of α-stable
continuous mass branching process (via a time-change).

Scaling relation of mutation rate per generation relative to population
size depends on α!
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Introduction The Beta(2 − α, α)-class

‘Meta-mathematic’ associations

Brownian motion ↔ Kingman’s coalescent
∩ ∩

Stable processes ↔ Beta(2 − α,α)-coalescents
∩ ∩

General Lévy processes ↔ General Λ-coalescents
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Neutral mutation models A computer experiment

Playing god with simulated “full trees”

replacements

true α

α̂
M

L
,
f
u
ll
t
r
e
e

1
.0

1.0

1
.2

1.2

1
.4

1.4

1
.6

1.6

1
.8

1.8

2
.0

2.0

ML estimates of α for simulted datasets with sample size n = 100,
estimate based on full genealogical tree
(400 replicates for each value of α).
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Neutral mutation models Infinitely many alleles

Consider n-Λ-coalescent with mutation rate r per line (and infinite alleles
mutation model). n = (n1, . . . , nℓ), possible type configuration

Theorem (Möhle 2005)

The probability p(n) of observing a type configuration n = (n1, . . . , nℓ)
satisfies the recursion given by p(1) = 1 and

p(n) =
nr∑n

k=2

(
n
k

)
λn,k + nr

ℓ∑

j=1
nj =1

1

ℓ
p(ñ(j))

+
1∑n

k=2

(
n
k

)
λn,k + nr

n∑

k=2

ℓ∑

j=1
nj≥k

(
n

k

)
λn,k

nj − k + 1

n − k + 1
p(n − (k − 1)ej ).

(ñ(j) = (n1, . . . , nj−1, nj+1, . . . , nk) )
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Neutral mutation models Infinitely many sites

Infinitely many sites model

Model genetic locus as infinite sequence of completely linked sites,
mutations always hit a new site.

Mathematical abstraction:

a gene is [0, 1]

a type is a configuration of points on [0, 1]

Ethier & Griffiths (1987) parametrisation:

type space E = [0, 1]N

mutation operator

Bf
(
(x1, x2, . . . )

)
= r

∫ 1

0
f
(
(u, x1, x2, . . . )

)
− f

(
(x1, x2, . . . )

)
du
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Neutral mutation models Infinitely many sites

Asymptotics of the frequency spectrum

Consider an n-Beta(2 − α,α)-coalescent, mutations at rate r according to
the infinitely-many-sites model (assuming known ancestral types). Let

M(n) := #total number of mutations in the sample,

Mk(n) := #number of mutations affecting exactly k samples,

k = 1, 2, . . . , n − 1.

Theorem (Berestycki, Berestycki & Schweinsberg 2007)

M(n)

n2−α
→ r

α(α− 1)Γ(α)

2 − α
,

Mk(n)

n2−α
→ rα(α− 1)2

Γ(k + α− 2)

k!

in probability as n → ∞.
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the infinitely-many-sites model (assuming known ancestral types). Let

M(n) := #total number of mutations in the sample,

Mk(n) := #number of mutations affecting exactly k samples,

k = 1, 2, . . . , n − 1.

Theorem (Berestycki, Berestycki & Schweinsberg 2007)

M(n)

n2−α
→ r

α(α− 1)Γ(α)

2 − α
,

Mk(n)

n2−α
→ rα(α− 1)2

Γ(k + α− 2)

k!

in probability as n → ∞.

Thus M1(n)/M(n) ≈ 2 − α for n large, which suggests

α̂BBS := 2 −
M1(n)

M(n)
as an estimator for α.
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Neutral mutation models Infinitely many sites

Infinitely-many-sites model

Model genetic locus as infinite sequence of completely linked sites,
mutations always hit a new site

Example: segr. site
Seq. 1 2 3 4
1 1 0 0 0
2 1 1 0 0
3 0 0 1 1
4 0 0 1 1
5 0 0 1 0

(0=wild type, 1=mutant

assume known ancestral types)

Obs. fit IMS ⇐⇒ no sub-matrix
1 0
1 1
0 1

aa bb cc(and no row permutation).
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Neutral mutation models Infinitely many sites

Infinitely-many-sites model, II

If the infinitely-many-sites model applies, the observations correspond to a
unique rooted perfect phylogeny (or ‘genetree’).

Sequences, Genetree, obs. types

segr. site
Seq. 1 2 3 4
1 1 0 0 0
2 1 1 0 0
3 0 0 1 1
4 0 0 1 1
5 0 0 1 0

1

2

3

4

1 2 3,4 5

type multiplicity
(1, 0) 1
(2, 1, 0) 1
(4, 3, 0) 2
(3, 0) 1

Construct e.g. using Gusfield’s (1991) algorithm.

Note: purely combinatorial, does not depend on a probabilistic model for
the observations.
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Neutral mutation models (Λ-) Ethier-Griffiths’ urn

Simulating samples under the IMS model

The Ethier-Griffiths urn (1987) can be used to generate a random
sample of size n under Kingman’s coalescent
(with mutation rate r per line):

Start with 2 leaves.

When there are k leaves:

Add a mutation to a leaf w. prob. 2r
2r+(k−1) ,

split one leaf w. prob. k−1
2r+(k−1)

(leaf picked uniformly among the k).

Stop when n + 1 leaves, delete last leaf.
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Neutral mutation models (Λ-) Ethier-Griffiths’ urn

Simulating samples under the IMS model: Λ-case

(Y
(n)
t )≥0 block counting process of Λ-coalescent starting from n blocks:

Jump from i to j ∈ {1, 2, . . . , i − 1} at rate qij :=
(

i
i−j+1

)
λi ,i−j+1.

τ1 := inf{t ≥ 0 : Y
(n)
t = 1}.

Ỹ
(n)
t := Y

(n)
(τ1−t)− time-reversed block counting process

(Ỹ
(n)
t = ∂ for t ≥ τ1).

Jump rates q̃
(n)
ji = gniqi j

gnj
, q̃

(n)
n∂ = −qnn =

∑n−1
j=1 qnj ,

P(Ỹ
(n)
0 = k) = P(Y

(n)
τ1− = k) = gnkqk1.

gni := E
∫ ∞
0 1(Y

(n)
t = i) dt is the Green function (in general, not

known explicitly, but easy recursion).
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Neutral mutation models (Λ-) Ethier-Griffiths’ urn

Simulating samples under the IMS model: Λ-case, cont.

The n-Λ-“Ethier-Griffiths urn” (mutation rate r).

Begin with K leaves, P(K = k) = P(Ỹ
(n)
0 = k).

While there are k leaves:

Add a mutation to a leaf w. prob. r

kr−eq
(n)
kk

,

split one leaf into ℓ w. prob.
eq

(n)
k,k+ℓ−1

eq
(n)
kk

,

if k = n goto stop w. prob. −eq
(n)
nn

kr−eq
(n)
nn

(leaf picked uniformly among the k).

Stop.
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Computing likelihoods Tree probabilities

Recursion for tree probabilities

Can calculate P(r ,Λ)

(
observed sequence data (t,n)

)
=: p(t,n) via

1 2

3
4

0
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Computing likelihoods Tree probabilities

Recursion for tree probabilities

Can calculate P(r ,Λ)

(
observed sequence data (t,n)

)
=: p(t,n) via

1 2

3
4

0

p(t,n) =
1

rn + λn

∑

i :ni≥2

ni∑

k=2

(
n

k

)
λn,k

ni − k + 1

n − k + 1
p
(
t,n− (k − 1)ei

)

+
r

rn + λn

∑

i :ni =1,xi0unique,

s(xi )6=xj∀j

p
(
si (t),n

)

+
r

rn + λn

1

d

∑

i :ni =1,

xi0unique

∑

j:s(xi )=xj

(nj + 1)p
(
ri (t), ri (n + ej)

)
.

Extends Ethier & Griffiths (1987) to Λ-coalescents and Möhle’s
recursion (2005) to IMS model.
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Computing likelihoods Tree probabilities

Compute probabilities

Use exact recursions for moderate sample complexities.
Approach more complex samples by version of Griffiths & Tavaré’s
(1994)

Monte Carlo method

p(t,n) = E(t,n)

[ τ−1∏

i=0

f(r ,Λ)(Xi)
]

For suitable Markov chain Xi on sample configurations.

Estimate expectation via empirical mean of independent runs.

extension to Λ-coalescents by B. & Blath (2008)
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Computing likelihoods Tree probabilities

Artifical sample of size 12 analysed with r = 1 and α = 1.5:

5.0 5.5 6.0 6.5 7.0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0

Griffiths & Tavaré
lo

g
1
0
(

b sd
e
st

im
a
te

)

log10(#runs)
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Computing likelihoods Importance sampling

Histories

Interpret genealogy as sequency of historical states:
H =

(
H−τ = ((1), (0)),Hτ−1 , . . . ,H−1,H0 = (t,n)

)

1

2

3

0

((
(3, 1, 0), (1, 0), (2, 1, 0), (0)

)
, (1, 2, 1, 1)

)

30/44



Computing likelihoods Importance sampling

Histories

Interpret genealogy as sequency of historical states:
H =

(
H−τ = ((1), (0)),Hτ−1 , . . . ,H−1,H0 = (t,n)

)

1

2

3

0

H0

H−1

H−2

H−3

H−4

H−5

H−6

((
(3, 1, 0), (1, 0), (2, 1, 0), (0)

)
, (1, 2, 1, 1)

)

30/44



Computing likelihoods Importance sampling

Histories

Interpret genealogy as sequency of historical states:
H =

(
H−τ = ((1), (0)),Hτ−1 , . . . ,H−1,H0 = (t,n)

)

1

2

3

0

1

2

3

0

((
(3, 1, 0), (1, 0), (2, 1, 0), (0)

)
, (1, 2, 1, 1)

)

30/44



Computing likelihoods Importance sampling

Histories

Interpret genealogy as sequency of historical states:
H =

(
H−τ = ((1), (0)),Hτ−1 , . . . ,H−1,H0 = (t,n)

)

1

2

3

0

1

2

3

0

1

2

3

0

((
(3, 1, 0), (1, 0), (2, 1, 0), (0)

)
, (1, 2, 1, 1)

)

30/44



Computing likelihoods Importance sampling

Histories

Interpret genealogy as sequency of historical states:
H =

(
H−τ = ((1), (0)),Hτ−1 , . . . ,H−1,H0 = (t,n)

)

1

2

3

0

1

2

3

0

1

2

3

0

different histories can lead to same sample((
(3, 1, 0), (1, 0), (2, 1, 0), (0)

)
, (1, 2, 1, 1)

)
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Computing likelihoods Importance sampling

Importance sampling

We have

p(t,n) = P(r ,Λ)

(
H0 = (t,n)

)
=

∑

H:H0=(t,n)

P(r ,Λ)

(
H

)

=
∑

H:H0=(t,n)

P(r ,Λ)

(
H

)

Q
(
H

)
︸ ︷︷ ︸

=:w(H)
importance weight

Q(H),

for any law Q on histories s.th. P(r ,Λ)

∣∣∣
{H0=(t,n)}

≪ Q.

Thus,

p(t,n) ≈
1

R

R∑

i=1

w(H(i)),

where H(1), . . . ,H(R) are independent samples from Q

31/44



Computing likelihoods Importance sampling

(Theoretical) optimal solution

p(t,n) =
∑

H:H0=(t,n)

P(r ,Λ)

(
H

)

Q
(
H

) Q
(
H

)
≈

1

R

R∑

i=1

w(H(i))

Qopt(·) := P(r ,Λ)

(
·
∣∣H0 = (t,n)

)
is optimal (Stephens & Donnelly

2000):

Variance of estimator is zero since w(H(i)) ≡ p(t,n).

Finding Qopt is as hard as the original problem.

H0,H−1, . . . is Markov chain under Qopt.

Remark: Transistion probabilities qGT(Hi |Hi+1) ∝ P(r ,Λ)(Hi+1|Hi ) gives
(Λ-)Griffiths-Tavaré method.
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Computing likelihoods Importance sampling

Stephens and Donnelly’s (2000) IMS candidate

Kingman case: Choose individual uniformly:

If type is unique in sample, remove “outmost” mutation,

if at least two individuals with this type, merge two lines.

(this would be optimal for parent-independent mutations)

Heuristic extension to Λ case:

(t,n) →





(
si (t),n

)
w.p. ∝ 1 if ni = 1, xi0 unique, si (xi ) 6= xj∀j(

ri (t, ri (n + ej )) w.p. ∝ 1 if ni = 1, xi0 unique, si (xi ) 6= xj(
t,n − (k − 1)ei

)
w.p. ∝ ni q̄ni

(k) if 2 ≤ k ≤ ni ,

where q̄ni
(k) =

qn,n−k+1
Pni

l=2 qn,n−l+1
, jump probabilities of block counting process.
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Computing likelihoods Importance sampling

Artifical sample of size 12 analysed with r = 1 and α = 1.5:

5.0 5.5 6.0 6.5 7.0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0

Griffiths & Tavaré
Stephens & Donnelly

lo
g
1
0
(

b sd
e
st

im
a
te

)

log10(#runs)
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Computing likelihoods Importance sampling

Hobolth, Uyenoyama & Wiuf’s (2008) idea

Sample of size n where exactly one mutation is visible (in d copies).

0 n-d

1 d

p
(1)
(r ,Λ)(n, d) = P(r ,Λ)

{
most recent event involves indi-
vidual bearing mutation

}

Probability can be computed

Kingman case: explicit formula (HUW (2008))

Λ case: numerically, using recursion
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Computing likelihoods Importance sampling

Hobolth, Uyenoyama & Wiuf’s (2008) idea contd.

For a general sample (t,n)
0 0

1 2

4 2 5 4

2 1 3 3

iput

ui ,m =

{

where mutation m is present in dm individuals.
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Hobolth, Uyenoyama & Wiuf’s (2008) idea contd.

For a general sample (t,n)
0 0

1 2

4 2 5 4

2 1 3 3

i

carrying:

0 4

1 = d11 8

put

ui ,m =

{
p

(1)
(r ,Λ)

(n, dm) · ni

dm
if i bears m

where mutation m is present in dm individuals.
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carrying:
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Computing likelihoods Importance sampling

Hobolth, Uyenoyama & Wiuf’s (2008) idea contd.

For a general sample (t,n)
0 0

1 2

4 2 5 4

2 1 3 3

i

carrying:

0 4

1 8

0 8

5 4

not carrying:

0 11

2 1

put

ui ,m =

{
p

(1)
(r ,Λ)

(n, dm) · ni

dm
if i bears m

(
1 − p

(1)
(r ,Λ)(n, dm)

)
· ni

n−dm
otherwise,

where mutation m is present in dm individuals.
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Hobolth, Uyenoyama & Wiuf’s (2008) idea contd.

For a general sample (t,n)
0 0
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4 2 5 4

2 1 3 3
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carrying:
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1 8
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5 4

not carrying:
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2 1

0 9

3 3

0 10

4 2

put

ui ,m =
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p

(1)
(r ,Λ)
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(
1 − p

(1)
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)
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otherwise,
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Computing likelihoods Importance sampling

Hobolth, Uyenoyama & Wiuf’s (2008) idea contd.

For a general sample (t,n)
0 0

1 2

4 2 5 4

2 1 3 3

i

carrying:

0 4

1 8

0 8

5 4

not carrying:

0 11

2 1

0 9

3 3

0 10

4 2

put

ui ,m =

{
p

(1)
(r ,Λ)

(n, dm) · ni

dm
if i bears m

(
1 − p

(1)
(r ,Λ)(n, dm)

)
· ni

n−dm
otherwise,

where mutation m is present in dm individuals. Propose type i according
to

qΛ-HUW

(
i |(t,n)

)
∝

{∑
m ui ,m if i is allowed to act

0 otherwise.
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Computing likelihoods Importance sampling

Hobolth, Uyenoyama & Wiuf’s (2008) idea contd.

If proposed type i

is singleton: remove “outmost” mutation,

has ni ≥ 2: merger inside type i .

Kingman case: merge two lines

Λ-case: propose ℓ+ 1-merger w.p. ∝ Pr,Λ

{
0 n

1 do − l

∣∣∣∣
0 n

1 do

}
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Computing likelihoods Importance sampling

Artifical sample of size 12 analysed with r = 1 and α = 1.5:
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Computing likelihoods Performance

Performance

Simulated 50 samples of size 15 with r = 2 and α = 1.5. Analysed with
r = 1 and α = 1.5. Time needed to get relative error below 0.01:

0
5

10
15

20

3.9 4.5 5.1 5.7 6.3 6.9 7.5 8.1 8.7

(a) measured in log10(# runs of MC)

0
5

10
15

-0.7 -0.2 0.3 0.8 1.3 1.8 2.3 2.8 3.3

(b) measured in log10(seconds)
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Illustration and outlook Illustration

Dataset from Ward et al, Extensive Mitochondrial

Diversity Within a Single Amerindian Tribe, PNAS 1991

Analysis with Beta-Coalescent:

1

2

3

4

5

1.2 1.4 1.6 1.8 2.0
1e

−2
5

1e−25

1e
−2

4

1e−241e−23

1e
−2

3

1e−22

1e
−2

2

1e−21
1e−21

1e−20
2e−20

4e−20
6e−20

8e−20
9e−20

α

r

Mitochondrial control region from 55 female Nuu-Chah-Nulth:
α̂ML = 1.9, r̂ML = 2.2
(Sample as edited in Griffiths & Tavaré, Stat. Sci., 1994)
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Illustration and outlook Illustration

Genetic variation at the mitochondrial cyt b locus of Atlantic cod:
log-likelihood surfaces

Carr & Marshall 1991 Pepin & Carr 1993 Árnason & Palsson 1996
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0.5

1.0

1.5

2.0

2.5

3.0

1.2 1.4 1.6 1.8 2.0

−18.0

−18.0
−15.0

−15.0

−14.5

−14.5

−14.0
−13.7

−22

−21

−20

−19

−18

−17

−16

−15

−14

α

r

0.5

1.0

1.5

2.0

2.5

3.0

1.2 1.4 1.6 1.8 2.0

−15.0

−1
2.

0

−12.0−11.0

−11
.0

−10.0

−10.0

 −9.0

 −8.7
 −8.5

−20

−18

−16

−14

−12

−10

−8

α

r

0.5

1.0

1.5

2.0

2.5

3.0

1.2 1.4 1.6 1.8 2.0

−15.0

−1
2.

0

−12.0−11.0

−11
.0

−10.0

−10.0

 −9.0

 −8.8

 −8.5

−20

−18

−16

−14

−12

−10

−8

α

r
bαML = 1.55,brML = 0.6, bαBBS = 1.8 bαML = 1.4,brML = 0.8, bαBBS = 1.5 bαML = 1.4,brML = 0.8, bαBBS = 1.44

41/44



Illustration and outlook Illustration

“α-effective population size” — do the figures make sense?

In Schweinsberg’s model, we have

pair coalescence prob. cN ∼ C × N1−α

(C = αΓ(α)Γ(2 − α)m−α, where m = mean of X1)
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Illustration and outlook Illustration

“α-effective population size” — do the figures make sense?

In Schweinsberg’s model, we have

pair coalescence prob. cN ∼ C × N1−α

(C = αΓ(α)Γ(2 − α)m−α, where m = mean of X1)

Let µ = mutation rate per gen. at the considered locus, then
µ

cN

≈ r ,

hence
Neff,α ≈

( rαΓ(α)Γ(2 − α)m−α

µ

)1/(α−1)
.

Using µ = 250 × 1.85 · 10−7 (Árnason, 2004), α̂ = 1.5, r̂ = 1 (and, ad
hoc, m = 2), this gives

N̂eff,α=1.5 ≈ 3.2 · 108

Árnason (2004) writes: “... the actual population size [of atlantic cod] is
not < 109 and probably one or two orders of magnitude larger.”
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“α-effective population size” — do the figures make sense?

In Schweinsberg’s model, we have

pair coalescence prob. cN ∼ C × N1−α

(C = αΓ(α)Γ(2 − α)m−α, where m = mean of X1)

Let µ = mutation rate per gen. at the considered locus, then
µ

cN

≈ r ,

hence
Neff,α ≈

( rαΓ(α)Γ(2 − α)m−α

µ

)1/(α−1)
.

Using µ = 250 × 1.85 · 10−7 (Árnason, 2004), α̂ = 1.5, r̂ = 1 (and, ad
hoc, m = 2), this gives

N̂eff,α=1.5 ≈ 3.2 · 108

Árnason (2004) writes: “... the actual population size [of atlantic cod] is
not < 109 and probably one or two orders of magnitude larger.”

By contrast, using a Wright-Fisher model and Neff,α=2 × µ = r , we have
(using r̂α=2 = 2): N̂eff,α=2 ≈ 4.3 · 104.
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Illustration and outlook Outlook

Summary & Outlook

Eldon & Wakeley, Genetics 2006, wrote

For many species, the coalescent with multiple mergers might be a

better null model than Kingman’s coalescent.
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Summary & Outlook

Eldon & Wakeley, Genetics 2006, wrote

For many species, the coalescent with multiple mergers might be a

better null model than Kingman’s coalescent.

For panmictic fixed-size discrete generations populations, haploid
neutral one-locus theory is “mathematically complete”.

Tools for estimation exist, results point towards “non-Kingman-ness”
in certain cases.

Statistical properties of estimators?

speed-up of computer-intensive methods?

combinations between IS-methods possible
“Double-HUW” scheme: ask all pairs of mutations what to do

A good class of alternative models? In particular, true diploid models?

Application to scenarios with selection?
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Illustration and outlook Outlook

Thank you for your attention!
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