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What is ABC ?

A method of inference well-suited to models for which the
likelihood is intractable }




Introduction to ABC 2 approximations in ABC Main result Numerical comparisons

What is ABC ?

example : TMRCA (Tavaré et al. 1997; Fu and Li 1997)
TMRCA

G->A 2/3 mutations
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What is ABC ?

A simple rejection algorithm

TMRCA example continued

@ Simulate the mutation rate 6 according to the prior
distribution

@ Simulate neutral coalescent trees

@ Superimpose the mutations according to a Poisson
process of rate 6/2

@ Accept the coalescent trees for which the simulated genetic
diversity s; is close enough to the observed ones sqps
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Does ABC works ?

TMRCA example continued
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Does ABC works ?

OK it works in practise, but does it work
in theary?
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First approximation in ABC

The posterior distribution P(®|D) is replaced by the partial
posterior distribution

P(Sobs|P)p(P)

P(P[Sobs) = P(Sobs)
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Second approximation in ABC

Numerical ¢

Estimating the partial posterior distribution

Method 1 : Rejection
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Second approximation in ABC

Numerical ¢

Estimating the partial posterior distribution

Method 2 : Regression adjustment
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Second approximation in ABC
Estimating the partial posterior distribution

Method 2 : Regression adjustment J

@ Local linear regression
pilsi = m(s;) + W,

@ Adjustement 5
¢F = M(Sops) + Wi,

in which the W;’s are the empirical residuals
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Measuring the error arising from the estimation of the
partial posterior distribution
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Measuring the error arising from the estimation of the
partial posterior distribution
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Measuring the error arising from the estimation of the
partial posterior distribution
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Measuring the error arising from the estimation of the
partial posterior distribution
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Main result

Main theorem
B. 2009

Asymptotic bias of p(¢|Sops)
Ce®

Asymptotic variance of p(¢|Sops)

C/

ned

where d is the dimension of the summary statistics and n is the
number of simulations.




Main result

Conseq 1 : The curse of dimensionality

Effective local size
Ne

To maintain the order of the variance constant, we have

1\1/0
€ X (E)
where d is the dimension of the summary statistics and n is the

number of simulations.




Main result

Conseq 2 : Difference between the estimators with
and without adjustment

Bias for the estimator with quadratic adjustemnt
o(€),

when the model
¢j = m(s;) + W;

is homoscedastic in the vicinity of sgps.
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How many simulations are required to reach a given
level of accuracy in ABC

@ A standard Gaussian model
(X155 Xg) ~ N((p1, - - -5 Ba), la)-

@ Given a sample of M = 10 individuals, we can compute, for
u1 = 0 the asymptotic mean square error (MSE) arising
from the estimation of the partial posterior distribution of
et

MSE(n) = bias® + variance

@ How many simulations are required so that the relative
mean square error is less than 10%
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How many simulations are required to reach a given
level of accuracy ... continued

The curse of dimensionality J
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The integrated mean square error as a function of the
dimension of the summary statistics d

The curse of dimensionality...continued
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Reducing the dimension

Joyce and Marjoram 2008, Blum and Francois 2009

—©— Smooth rejection

-8- Linear regression adjustment
Quadratic regression adjustment
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Reducing the dimension

Blum and Francois 2009
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