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Adaptive dynamics

Adaptive dynamics is a biological theory that describes the evolution of

biological populations:

in space of phenotypes and/or geographic locations

with locally varying fitness

interacting through ecological competition

subject to mutation/migration

Adaptive dynamics should explain how an initial populations distributes

and diversifies to create a structured population. Key mechanisms are

drift towards higher fitness (canonical equation)

evolutionary branching (splitting of populations to reduce

competition)
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The standard model

Markov processes on space of positive measures.

Trait-space: X some Polish space (e.g. Rd ,Zd
);

Configuration space: Point measures on X : νt ≡
�Nt

i=1 δxi (t)
represents a population of Nt individuals, i , with traits xi (t).

Generator acting on a suitable core of functions f : Mp(X ) → R by

Lf (ν) =

�

X
[f (ν + δx)− f (ν)]b(x)(1−m(x))ν(dx)

+

�

X
[f (ν − δx)− f (ν)]

�
d(x) +

�

X
c(x , y)ν(dy)

�
ν(dx)

+

�

X

�

X
[f (ν + δx+y))− f (ν)]m(x)M(x , dy)ν(dx).
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The standard model

Here the functions d , b, c , p,m have the following meaning:

b(x): the natural birth rate of an individual with trait x ;

d(x): the natural death rate of individual with trait x ;

c(x , y) the increment of the death rate of an individual with trait x

due to the presence of an individual with trait y (competition kernel);

m(x): rate of mutation of an individual x when giving birth;

M(x , dy): probability distribution of the type of a mutant child of an

individual of type x .
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Scaling and time scales

Three parameters:

large typical population size K ;

small total mutation rate u;

small single mutations steps σ;

This can be achieved by performing the following re-scaling:

ν → 1
K ν ≡ νK ,u,σ

;

c(x , y) → 1
K c(x , y);

m(x) → um(x);

M(x , dy) → M(x ,σdy) ≡ Mσ
(x , dy).
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Scaling and time scales

Case 1: K ↑ ∞, u,σ > 0, fixed; T < ∞ fixed

⇒ Law of large numbers, deterministic (integro-differential) equations

(Fournier and Méléard, 2004)

Case 1a: K ↑ ∞, σ > 0, fixed, T < ∞ fixed, u ↓ 0:

⇒ Law of large numbers, mutation free logistic equations

Case 2: K ↑ ∞, σ > 0, fixed, u ↓ 0, T ∼ ln(1/u) : (B, Wang, 2012)

⇒ deterministic jump process (trait substitution sequence)
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Scaling and time scales

Case 3: K ↑ ∞, u = uK � 1
K lnK ,σ > 0, fixed; T ∼ (Ku)−1

(Champagnat-Méléard 09,10):

Convergence to (random) jump process (Trait substitution sequence

(TSS));

Evolutionary branching at critical points of invasion fitness

(Polymorphic evolution sequence (PES))
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Scaling and time scales

Case 4: K ↑ ∞, u � 1
K lnK ,σ > 0, T ∼ (Ku)−1

; then σ ↓ 0, time

rescaled by σ−2
:

⇒ Canonical equation of adaptive dynamics: Monomorphic population

z̄(x(t))δx(t), where

dxt

dt
=

�
h [h m(xt) z(xt) ∂1f (xt , xt)]+M(xt , dh),

(Champagnat-Ferrière-Ben Arous ’01, Champagnat-Lambert ’07)

z̄(x) =
b(x)−d(x
c(x ,x) : equilibrium of a monomorphic population of trait x

f (x , y) = b(y)− d(y)− z̄(x)c(x , y): invasion fitness of trait y from x .
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All limits in one step.....

Theorem ((Baar, B, Champagnat, ’15))

Assume that all functions are smooth that for some α > 0,

K
− 1

2+α � σK � 1 and

exp(−K
α
) � uK �

σ1+α
K

K lnK
,

Let νK0 ∼ z(x)δx , x ∈ X . Then, for all T > 0,

�
νKt/(KuKσK

2)

�
0≤t≤T

→ (z(xt)δxt )0≤t≤T

in probability, as K → ∞, where (xt)0≤t≤T solves the CEAD.
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Steps in the proof

Basic strategy similar to the one in Champagnat et al: First show that a

momomorphic initial population with trait x is replaced by a monomorphic

population with trait x + h, if f (x , x + h) > 0 and h is in the support of

M(x , ·). Happens in three phases:

Mutations occur, mutants die out again, until a mutant population

exceeds a certain threshold level.

The mutant population grows at the expense of the resident

population until the resident is below a threshold.

The resident population dies out.
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The usual conditions...

Main features used in the standard setting (σ > 0, indep. of K ):

Never more than one mutant trait alive. No mutation after the first

successful mutant appears and before the resident dies out.

Second phase is completed in finite time; during this phase, evolution

close to deterministic solution of Lotka-Volterra system (LLN).

During Phase 1 and Phase 2, resident, resp. mutant population size

essentially constant.

Almost all of this brakes down, if σ = σK ↓ 0.........
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The difficulties

Need to control 1/σK successful mutations steps.

1/σK mutations needed to produce one successful mutation

Condition uk ≤ σ1+α
K

K lnK does not rule out occasional coexistence of

several mutants (but no coexistence of successful mutatants)

In phases 1 and 3, much sharper control of resident (mutant)

population needed to ensure approximation by super-(sub) critical

branching processes

Phase 2 takes time of order σ−1
K lnK : cannot use LLN!
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In pictures
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The conditions

σK � K
− 1

2+α
ensures that evolutionary advantage of mutant is not

compensated by fluctuations in the size of the resident population,

which are of order K−1/2
.

exp(−Kα
) � uK ensures that fluctuations of the resident population

are small enough over the entire time of an invasion.

uK � σ1+α
K

K lnK ensures that no successful mutants arrive during an

invasion period.

1/(KuKσ2
K ) is the number of mutations (σ−2

K ) necessary to move the

population by order 1 times the mean time (1/KuK ) between two

mutations.
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Main techniques

Couplings: Use monotone couplings with birth-death processes to get

fairly precise upper and lower bounds.

Extended process: We enrich the process by tagging each particle the

the number of the mutation it is the offspring of. This allows to deal

with simultaneous mutant.

A rigorous stochastic Euler scheme to replace the LLN in Phase 2.
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The deterministic system

For σ = 0, the deterministic Lotka-Volterra system with traits x and x + h

has an invariant manifold of fixed points connecting the monomorphic

resident and monomorphic mutant populations.
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When σK > 0, this turns into an integral curve along which drift is O(σK ).
Show that the stochastic system moves along this curve with speed O(σK ).
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Stochastic Euler scheme
Control the motion in small increments, similar to Euler schemes. Use that

total mass changes only with speed σ2
K !
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From one step to the CEAD

Duration of invasion phase ≤ σ−1
K lnK much smaller than time scale

between successful mutations, 1/(σKuKK ).

Single step distributed according to M(x , dh).

Precise value of fixation probability ∂1f (xt , xt)σKh, precise mutation

rate z̄(xt)m(xt).

Thus, speed of change of xt is

uKKz̄(xt)m(xt) σKh σKh[∂1f (xt , xt)]+

where h is random with law M(xt , dh).
Finally, LLN leads to CEAD.
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Thank you for your attention!
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