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Abstract

We study the bijection betwen binary Galton Watson trees in con-
tinuous time and their exploration process, both in the sub- and in the
supercritical cases. We then take the limit over renormalized quanti-
ties, as the size of the population tends to infinity. We thus deduce
Delmas’ generalization of the second Ray–Knight theorem.

.

Introduction

There are various forms of bijection between an exploration (or height) pro-
cess and a random binary tree. This paper starts with a description of
such a bijection, and a new rather simple proof that a certain law on the
exploration paths is in bijection with the law of a continuous time binary
Galton–Watson random tree. The result in the critical case has been first
established by Le Gall [9], and in the subcritical case by Pitman, Winkel [11],
see also Geiger, Kersting [6], Lambert [8], where the exploration processes
are jump processes, while ours are continuous. For similar results in the case
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where the approximating process is in discrete time and the tree is not nec-
essarily binary, see Duquesne, Le Gall [4]. We consider also the supercritical
case, which is new. Inspired by the work of Delmas [3], we note that in the
supercritical case, the random tree killed at time a > 0 is in bijection with
the exploration process reflected below a. Moreover, one can define a unique
local time process, which describes the local times of all the reflected explo-
ration processes, and has the same law as the supercritical Galton Watson
process. We next renormalize our Galton Watson tree and height process,
and take the weak limit, thus providing a new proof of Delmas’ extension
[3] of the second Ray–Knight theorem. The classical version of this theorem
establishes the identity in law between the local time of reflected Brownian
motion considered at the time when the local time at 0 reaches x, and at
all levels, and a Feller critical branching diffusion. The same result holds
in the subcritical (resp. supercritical) case, Brownian motion being replaced
by Brownian motion with drift (in the supercritical case, reflection below
an arbitrary level, as above, is requested). The exploration process in fact
describes the genealogical tree (in the sense of Aldous [1]) of the population,
whose total mass follows a Feller SDE. Our proof by approximation makes
this interpretation completely transparent. The paper is organized as follows.
Section 1 is devoted to the description of the bijection between height curves
and binary trees. Section 2 presents the relation between laws of height
processes and Galton Watson trees and the “discrete Ray Knight theorem”.
Section 3 presents the results of convergence of both the population process
and the height process, in the limit of large populations. Finally section 4
deduces the generalized Ray–Knight theorem from our convergences and the
results at the discrete level.

1 Preliminaries

We denote by Hp,m the set of piecewise linear functions H : s 7→ H(s) from
[0, Tm] into R+ with alternating slopes p and −p, which start from (0,0) with
slope p, is reflected whenever it hits zero, and is stopped at the time Tm of
its m–th return to zero, which is assumed to be finite. We shall write Hp for
Hp,1. We add the restriction that between two consecutive visits to zero, the
curve in Hp,m should have all its local minima at distinct heights.

We denote by T the set of finite rooted binary trees which are defined as
follows: an ancestor is born at time 0. Until she eventually dies, she gives
birth successively to an arbitrary number of offsprings. The same happens
to each of her offsprings, and the offsprings of her offsprings, etc... until
eventually the population dies out. We denote by Tm the set of forests which
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are the union m elements of T .
There is a well known bijection between binary trees and exploration

processes. Under the curve representing an element H ∈ Hp, we can draw
a tree as follows. The height hlfmax of the leftmost local maximum of H is
the lifetime of the ancestor and the heigh hlowmin of the lowest non zero local
minimum is the time of the birth of the first offspring of the ancestor. If
there is no such local minimum, the ancestor dies before giving birth to any
offspring. We draw a horizontal line at level hlowmin. H has two excursions
above hlowmin. The right one is used to represent the fate of the first offspring
and of the progeny of the later. The left one is used to represent the fate of
the ancestor and of the rest of his progeny excluding the first offspring and
her progeny. If there is no other local mimimum of H neither at the left, nor
at the right of the first explored one, it means that there is no further birth:
we draw a vertical line up to the unique local maximum, whose height is a
death time. Continuing until there is no further local minimum-maximum to
explore, we define a bijection Φp from Hp into T (see Figure 1). Repeating
the same procedure, we extend Φp as a bijection between Hp,m and Tm. Note
that describing the exploration process from a tree is obvious (the horizontal
distances between the vertical branches are arbitrary). See the top of Figure
1.

We now define probability measures on Hp (resp. Hp,m) and T (resp.
Tm). We describe first the subcritical case (by a slight abuse of terminology,
subcritical in the present paper always means either subcritical or critical).
Let 0 < µ ≤ λ be two parameters. We define a stochastic process whose
trajectories belong to Hp as follows. Let {Uk, k ≥ 1} and {Vk, k ≥ 1} be
two mutually independent sequences of i.i.d exponential random variables
with means 1/λ and 1/µ respectively. Let Zk = Uk − Vk, k ≥ 1. Pλ,µ is the
law of the random element of Hp, which is such that the height of the first
local maximum is U1, that of the first local minimum is (Z1)

+. If (Z1)
+ = 0,

the process is stopped. Otherwise, the height of the second local maximum is
Z1 +U2, the height of the second local minimum is (Z1 +Z2)

+, etc. Because
µ ≤ λ, the process returns to zero a.s. in finite time. The random trajectory
which we have constructed is an excursion above zero (see the bottom of
Figure 1). We define similarly a law on Hp,m as the concatenation of m i.
i. d. such excursions, and denote it by Pλ,µ. This random element defined
above is called an exploration process or height process. We associate the
continuous time Galton Watson tree (in particular it is a random element
of T ) with the same pair of parameters (λ, µ) as follows. The lifetime of
each individual is exponential with expectation 1/λ, and during her lifetime,
independently of it, each individual gives birth to offsprings according to a
Poisson process with rate µ. The behaviours of the various individuals are i.
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+
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+
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+

•

•

hlowmin
•

•
hlfmax

Figure 1: Bijection between H2 and T (see above), and a trajectory of an
exploration process (see below)
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i. d. We denote by Qλ,µ the law on Tm of m i. i d. random trees whose law
is as just described.

In the supercritical case, the case where λ > µ, the exploration process
defined above does not come back to zero a.s.. To overcome this difficulty, we
add a reflection below an arbitrary level a > 0, and we consider the height
process Ha = {Ha

t , t ≥ 0} reflected at level a defined as above, with the
addition of the rule that whenever the process reaches the level a, it stops
and starts immediately going down with slope −p for a duration of time
exponential with expectation 1/µ. Again the process stops when first going
back to zero. The reflected process Ha comes back to zero almost surely.
Indeed, let Aan denote the event “Ha does not reach zero during its n first
descents”. We have clearly, since the levels of local maxima are bounded by
a,

P(An) ≤ (1− exp(−µa))n,

which goes to zero as n −→∞. Hence the result. For each a ∈ (0,+∞), and
any pair (λ, µ) of positive numbers, denote by Pλ,µ,a the law of the process
Ha. Define Qλ,µ,a to be the law of the binary Galton–Watson tree with birth
rate µ and death rate λ, killed at time t = a (i. e. all individuals alive at
time a− are killed at time a). Pλ,µ,+∞ makes perfect sense in case µ ≤ λ,
Qλ,µ,+∞ is always well defined.

2 Correspondance of laws

The aim of this section is to prove that, for any λ, µ > 0 and a ∈ (0,+∞)
[including the case a = +∞ in the case µ ≤ λ] , Pλ,µ,aΦ−1p = Qλ,µ,a. Let us
state some basic results on the homogeneous Poisson process, which will be
useful in the sequel.

2.1 Preliminary results

Let T = (Tk)k≥0 be a Poisson point process on R+ with intensity µ. This
means that T0 = 0, and (Tk+1 − Tk, k ≥ 0) are i.i.d exponential r.v’s with
mean 1/µ. Let (Nt, t ≥ 0) be the counting process associated with T , that
is

∀t ≥ 0, Nt = sup {k ≥ 0, Tk ≤ t} .
The first result is well-known and elementary.

Lemma 2.1 Let M be a non negative random variable independent of T ,
and define

RM = sup
k≥0
{Tk;Tk ≤M} .
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Then M − RM
(d)
= V ∧M where V and M are independent, V has an expo-

nential distribution with mean µ.
Morever, on the event {RM > s}, the conditionnal law of NR−

M
− Ns given

RM is Poisson with parameter µ(RM − s).

The second one is :

Lemma 2.2 Let T = (Tk)k≥0 be a Poisson point process on R+ with intensity
µ. M a positive random variable which is independent of T . Consider the
integer valued random variable K such that TK = RM and a second Poisson
point process T ′ = (T ′k)k≥0 with intensity µ, which is jointly independent of

the first and of M . Then T =
(
T k
)
k≥0 defined by:

T k =

{
Tk if k < K
TK + T ′k−K+1 if k ≥ K

is a Poisson point process on R+ with intensity µ, which is independent of
RM .

Proof: Let (Nt, t ≥ 0),
(
N t, t ≥ 0

)
and (N ′t , t ≥ 0)) be the counting pro-

cesses associated to T , T and T ′.
It suffices to prove that for any n ≥ 1, 0 < t1 < · · · < tn and k1, . . . , kn ∈ N∗,

ξt = P
(
N t1 = k1, . . . , N tn = kn|RM

)
= e−µtn

n∏
i=1

(µ(ti − ti−1))ki−ki−1

(ki − ki−1)!
.

Since there is no harm in adding t′is, we only need to do that computation
on the event that there exists 2 ≤ i ≤ n such that ti−1 < RM < ti, in which
case a standard argument yields easily the claimed result, thanks to Lemma
2.1. Indeed we have that

ξt = P
(
Nt1 = k1, · · · , Nti−1

= ki−1, NR−
M

+N ′ti−t = ki, · · · , NR−
M

+N ′tn−t = kn

)

= P

(
Nt1 = k1, · · · , Nti−1

−Nti−2
= ki−1 − ki−2, NR−

M
−Nti−1

+N ′ti−RM
= ki − ki−1,

N ′ti+1−RM
−N ′ti−RM

= ki+1 − ki, · · · , N ′tn−RM
−N ′tn−1−RM

= kn − kn−1
)

= e−µtn
n∏
i=1

(µ(ti − ti−1))ki−ki−1

(ki − ki−1)!
.
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2.2 Basic theorem

We are now in a position to prove

Theorem 2.3 For any λ, µ > 0 and a ∈ (0,+∞) [ including the case a =
+∞ in the case µ ≤ λ ] ,

Qλ,µ,a = Pλ,µ,aΦ−1p .

The theorem says that the tree associated to the exploration process Ha is
a continuous-time binary tree with death rate λ and birth rate µ, killed at
time a, and vice versa.
Proof: The individuals making up the population represented by the tree
whose law is Qλ,µ,a, will be numbered: ` = 1, 2, .... 1 is the ancestor of the
whole family. The subsequent individuals will be identified below. We will
show that this tree is explored by a process whose law is precisely Pλ,µ,a.
We introduce the family (T `k , k ≥ 0, ` ≥ 1) of mutually independent Poisson
processes with intensity µ. For any ` ≥ 1, the process T `k describes the times
of birth of the offsprings of the individual `. We define U` to be the lifetime
of individual `.

• Step 1: We start from the initial time t = 0 and climb up to the level
M1 of height U1 ∧ a, where U1 follows an exponential law with mean
1/λ. We go down from M1 until we find the most recent point of the
Poisson process (T 1

k ) which gives the times of birth of the offsprings
of individual 1. So from Lemma 2.1, we have descended by V1 ∧M1,
where V1 follows an exponential law with mean 1/µ, and is independent
of M1. We hence reach the level m1 = M1 − V1 ∧M1.
If m1 = 0, we stop, else we turn to

• Step 2: We give the label 2 to this last offspring of the individual 1,
born at the time m1. Let us define (T̄ 2

k ) by:

T̄ 2
k =

{
T 1
k if k < K1

T 1
K1

+ T 2
k−K1+1 otherwise

where K1 is such that T 1
K1

= m1.
Thanks to Lemma 2.2, (T̄ 2

k ) is a Poisson process with intensity µ on
R+, which is independent of m1 and in fact also of (U1, V1).
Starting from m1, the exploration process climbs up to level M2 =
(m1 +U2)∧a, where U2 is an exponential r.v. with mean 1/λ, indepen-
dent of (U1, V1). Starting from level M2, we go down a height M2 ∧ V2
where V2 follows an exponential law with mean 1/µ and is independent
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of (U2, U1, V1), to find the most recent point of the Poisson process (T̄ 2
k ).

At this moment we are at the level m2 = M2 − V2 ∧M2. If m2 = 0 we
stop. Otherwise we give the label 3 to the individual born at time m2,
and repeat step 2 until we reach 0. See Figure 2.

Since either we have a reflection at level a or µ ≤ λ, zero is reached a.s.
after a finite number of iterations. It is clear that the random variables Mi

and mi determine fully the law Qλ,µ,a of the binary tree killed at time t = a
and they both have the same joint distribution as the levels of the successive
local minima and maxima of the process Ha under Pλ,µ,a.

2.3 A discrete Ray–Knight theorem

For any a, µ, λ > 0, we consider the exploration process {Ha
t , t ≥ 0} defined

in section 1 which is reflected in the interval [0, a] and stopped at the first
moment it reaches zero for the m-th time. To this process we can associate
a forest of m binary trees with birth rate µ and death rate λ, killed at time
t = a, which all start with a single individual at the initial time t = 0.
Consider the branching process in continuous time (Za,m

t , t ≥ 0) describing
the number of offsprings alive at time t of the m ancestors born at time 0.
Every individual in this population, independently of the others, lives for an
exponential time with parameter λ and gives birth to offsprings according
to a Poisson process of intensity µ. We now choose the slopes of the piece-
wise linear process Ha to be ±2 (i. e. p = 2). We define the local time
accumulated by Ha at level t up to time s:

Las(t) = lim
ε↓0

1

ε

∫ s

0

1{t≤Ha
r<t+ε}dr. (2.1)

Las(t) equals the number of pairs of branches of Ha which cross the level t
between times 0 and s. Note that a local minimum at level t counts for two
crossings, while a local maximum at level t counts for none. We have the
“occupation time formula”: for any integrable function g,∫ s

0

g(Ha
r )dr =

∫ ∞
0

g(r)Las(r)dr.

Let
τam = inf {s > 0 : Las(0) ≥ m} . (2.2)

Laτm(t) counts the number of descendants of m ancestors at time 0, which are
alive at time t. Then we have
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•M1

*

m1*

*
⇐⇒ m2

•M2 •M3

•M4

m3

a

Figure 2: An equivalent way to represent a binary tree
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Lemma 2.4 For all λ, µ > 0 and a ∈ (0,+∞) [ including the case a = +∞
in the case µ ≤ λ ].{

Laτam(t), t ≥ 0,m ≥ 1
}
≡ {Za,m

t , t ≥ 0,m ≥ 1} a.s..

We want now to establish a similar statement without the arbitrary param-
eter a. There remains a difficulty only in the supercritical case. For any
0 < a < b, we define the application Πa,b which maps trajectories from Hp

with values in [0, b] into trajectories with values in [0, a]. To any function
u ∈ C(R+, [0, b]), we associate the increasing function ρu specified by :

ρu(0) = 0;
dρu(s)

ds
= 1{u(s)>a}, s ≥ 0.

We define
Πa,b(u)(s) = us−ρu(s)

Lemma 2.5

Πa,b(Hb)
(d)
= Ha

Proof: It is in fact sufficient to show that the conditional law of the level
of the first local minimum of Hb after crossing the level a downwards, given
the past of Hb, is the same as the conditional law of the level of the first
local minimum of Ha after a reflexion at level a, given the past of Ha. This
identity follows readily from the “lack of memory” of the exponential law.

This last Lemma says that reflecting under a, or choping out the pieces
of trajectory above level a, yields the same result (at least in law).

We now consider the case p = 2. To each λ, µ > 0, m ≥ 1, we associate
the process {Zm

t , t ≥ 0} which describes the evolution of number of descen-
dants of m ancestors, with birth rate µ and death rate λ. For each a > 0
[ including the case a = +∞ in the case µ ≤ λ ], we let (Ha

s , s ≥ 0) denote
the exploration process of the genealogical tree of this population killed at
time a, La denotes its local time and τam is defined by (2.2). It follows readily
from Lemma 2.5 that for any 0 < a < b,(

Lbτbm(t), 0 ≤ t < a,m ≥ 1
)

(d)
=
(
Laτam(t), 0 ≤ t < a,m ≥ 1

)
. (2.3)

The compatibilty relation (2.3) implies the existence of a projective limit
{Lm(t), t ≥ 0,m ≥ 1} with values in R+, which is such that for each a > 0,

{Lm(t), 0 ≤ t < a,m ≥ 1} (d)
= {Laτam(t), 0 ≤ t < a,m ≥ 1}. (2.4)

We have the following “discrete Ray–Knight Theorem”.
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Proposition 2.6

{Lm(t), t ≥ 0,m ≥ 1} (d)
= {Zm

t , t ≥ 0,m ≥ 1} .
Proof: It suffices to show that for any a ≥ 0, m ≥ 1

{Lm(t), 0 ≤ t < a,m ≥ 1} (d)
= {Zm

t , 0 ≤ t < a,m ≥ 1}.
This result follows from (2.4) and Lemma 2.4.

2.4 Renormalisation

Let x > 0 be arbitrary, and N ≥ 1 be an integer which will eventually go

to infinity. Let
(
Z

[Nx]
t

)
t≥0

denote the branching process which describes the

number of descendants at time t of [Nx] ancestors, in the population with
birth rate µN = σ2

2
N +α and death rate λN = σ2

2
N + β, where α, β ≥ 0. We

set

XN,x
t =

Z
[Nx]
t

N
.

In particular we have that XN,x
0 = [Nx]

N
−→ x when N −→ +∞. Let Ha,N

be the exploration process associated to
{
Z [Nx], 0 ≤ t < a

}
defined in the

same way as previously, but with slopes ±2N , and λ, µ are replaced by λN
and µN . We define also La,Ns (t), the local time accumulated by Ha,N at level
t up to time s, as

La,Ns (t) =
4

σ2
lim
ε↓0

1

ε

∫ s

0

1{t≤Ha,N
r <t+ε}dr (2.5)

The motivation of the factor 4
σ2 will be clear after we have taken the limit as

N → ∞. La,Ns (t) equals to 4/Nσ2 times the number of pairs of t-crossings
of Ha,N between times 0 and s. Let

τa,Nx = inf

{
s > 0 : La,Ns (0) ≥ 4

σ2

[Nx]

N

}
. (2.6)

We define for all N ≥ 1 the projective limit {LNx (t), t ≥ 0, x > 0}, which is
such that for each a > 0,

{LNx (t), 0 ≤ t < a, x > 0} (d)
= {La,N

τa,Nx
(t), 0 ≤ t < a, x > 0}.

Propositon 2.6 translates as

Lemma 2.7 We have the identity in law

{LNx (t), t ≥ 0, x > 0} (d)
=

{
4

σ2
XN,x
t , t ≥ 0, x > 0

}
.
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3 Weak convergence

3.1 Weak convergence of XN,x

The following result, which is well known, gives the weak convergence of the
sequence of process

{
XN,x, N ≥ 1

}
, see e.g. Grimvall [7].

Proposition 3.1 XN,x ⇒ Xx as N →∞ for the topology of locally uniform
convergence, where Xx is the unique solution of the following Feller SDE

Xx
t = x+ (α− β)

∫ t

0

Xx
r dr + σ

∫ t

0

√
Xx
r dBr, t ≥ 0.

3.2 Tightness criteria in D([0,+∞))

Let us present a sufficient condition for tightness which shall be useful below.
Consider a sequence {Xn

t , t ≥ 0}n≥1 of one–dimensional semimartingales,
which is such that for each n ≥ 1,

Xn
t = Xn

0 +

∫ t

0

ϕn(s)ds+Mn
t , 0 ≤ t ≤ T ;

〈Mn〉t =

∫ t

0

ψn(s)ds, t ≥ 0;

where for each n ≥ 1, Mn
· is a locally square–integrable martingale, ϕn and

ψn are progressively mesurable measurable processes with value in R and
R+ respectively. Since our martingales {Mn

t , t ≥ 0} will be discontinuous,
we need to consider their trajectories as elements of D ([0,+∞)), the space
of right continuous functions with left limits at every point, from [0,+∞)
into R, which we equip with the Skorohood topology, see Billingsley [2]. The
following statement can be deduced from Theorems 16.10 and 13.4 in [2].

Proposition 3.2 A sufficient condition for the sequence {Xn
t , t ≥ 0}n≥1 to

be tight in D([0,∞)) is that both

the sequence of r.v.’s {Xn
0 , n ≥ 1} is tight; (3.1)

and for some c > 0,
sup

n≥1,s>0
(|ϕns |+ ψns ) ≤ c. (3.2)

If moreover, for any T > 0, as n→∞,

sup
0≤t≤T

|Mn
t −Mn

t−| → 0 in probability,

then any limit X of a weakly converging subsequence of the original sequence
{Xn}n≥1 is a. s. continuous.
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3.3 Tightness of Ha,N

Consider now the exploration process {Ha,N
s , s ≥ 0} of the forest of trees

representing the population {Z [Nx]
t , 0 ≤ t < a}. Let {V a,N

s , s ≥ 0} be the

{−1, 1}–valued process which is such that s a. e. dHa,N
s

ds
= 2NV a,N

s . The
R+ × {−1, 1}–valued process {(Ha,N

s , V a,N
s ), s ≥ 0} is a Markov process,

which solves the following SDE :

dHa,N
s

ds
= 2NV a,N

s , Ha,N
0 = 0, V a,N

0 = 1,

dV a,N
s = 21{V a,N

s−
=−1}dP

+
s − 21{V a,N

s−
=1}dP

−
s +

Nσ2

2
dLa,Ns (0)− Nσ2

2
dLa,Ns (a−),

(3.3)

where {P+
s , s ≥ 0} and {P−s , s ≥ 0} are two mutually independent Poisson

processes, with intensities respectively

σ2N2 + 2αN and σ2N2 + 2βN,

La,Ns (0) and La,Ns (a−) denote respectively the number of visits to 0 and a
by the process Ha,N up to time s, multiplied by 4/Nσ2 (see (2.5)). These
two terms in the expression of V a,N stand for the reflection of Ha,N above
0 and below a. Note that our definition of La,N makes the mapping t −→
La,Ns (t) right continuous for each s > 0. Hence La,Ns (t) = 0 for t ≥ a, while
La,Ns (a−) = limn→∞ L

a,N
s (a− 1

n
) > 0 if Ha,N has reached the level a by time

s.
We now write a submartingale problem satisfied by the process {(Ha,N

s , V a,N
s ),

s ≥ 0}. We are not interested in writing it for arbitrary functions of the two
variables (h, v), but rather for specific functions, which will be convenient for
taking the limit as N → ∞. Note that the process {V a,N

s , s ≥ 0} oscillates
faster and faster as N grows, and that in the limit some averaging takes
place. We thus implement the so called “perturbed test function method”
used in stochastic averaging, see e. g. Ethier, Kurtz [5]. For f ∈ C2(R), let

fN(h, v) = f(h) +
v

Nσ2
f ′(h),

ANfN(h, v) =
2

σ2
f ′′(h) + 1{v=−1}

4α

σ2
f ′(h)− 1{v=+1}

4β

σ2
f ′(h).

If f ′(0) ≥ 0 and f ′(a) ≤ 0, then

M f,N,a
s := fN(Ha,N

s , V N
s )− fN(0, 1)−

∫ s

0

ANfN(HN
r , V

N
r )dr (3.4)
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is a local submartingale. If we rather choose successively f(h) = h and
f(h) = h2, we deduce from (3.3) that there exist two local martingales
{M1,a,N

s , s ≥ 0} and {M2,a,N
s , s ≥ 0} such that

Ha,N
s +

V a,N
s

Nσ2
=

1

Nσ2
+

4α

σ2

∫ s

0

1{V a,N
r =−1}dr −

4β

σ2

∫ s

0

1{V a,N
r =+1}dr

+
1

2

[
La,Ns (0)− La,N0+ (0)

]
− 1

2
La,Ns (a−) +M1,a,N

s ,

(Ha,N
s )2 +

2

Nσ2
Ha,N
s V a,N

s =
4

σ2
s+

8α

σ2

∫ s

0

1{V a,N
r =−1}H

a,N
r dr

− 8β

σ2

∫ s

0

1{V a,N
r =+1}H

a,N
r dr − aLa,Ns (a−) +M2,a,N

s .

It follows from the above computations that

〈M1,a,N〉s =
4

σ2
s+

8α

Nσ4

∫ s

0

1{V a,N
r =−1}dr +

8β

Nσ4

∫ s

0

1{V a,N
r =1}dr, (3.5)

and from (3.5) that {M1,a,N
s , s ≥ 0} is in fact a martingale. One difficulty

which we want to get rid of is the local time terms in the expression for Ha,N
s +

V a,N
s

Nσ2 , which introduce some additional complication for checking tightness.
For that sake, we consider a new pair of processes (Ga,N ,W a,N), which is
R× {−1, 1}–valued and satisfies:

Ga,N
s = 2N

∫ s

0

W a,N
r dr,

W a,N
s = 1 +

∑
i∈Z

{
2

∫ s

0

1{ai≤Ga,N
r ≤(i+1)a}(−1)i1{Wa,N

r−
=−(−1)i}dP

+
r

− 2

∫ s

0

1{ai≤Ga,N
r ≤(i+1)a}(−1)i1{Wa,N

r−
=−(−1)i}dP

−
r

}
with the same P+ and P− as above. We claim that

Ha,N = a.s. lim
k→∞

ϕk(G
a,N),

V a,N =
∑
i∈Z

(−1)i1{ai≤Ga,N≤(i+1)a}W
a,N ,

where

ϕk = ψk ◦ · · · ◦ ψ1,
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and for every j, the mapping ψj from R into R is defined by:

ψj(x) =

{
|x|, if j is odd;
a− |x− a|, if j is even.

Indeed, since Ga,N
s is locally bounded, to each r > 0 we can associate a ran-

dom index k suck that 0 ≤ ψk(G
a,N
s ) ≤ a, for 0 ≤ s ≤ r, which implies that

φk+j(G
a,N
s ) = φk(G

a,N
s ), for 0 ≤ s ≤ r, j ≥ 1. Note that ψ1 consists in re-

flecting the Ga,N trajectory above 0, ψ2 reflecting below a. Those operations
are repeated until the thus obtained trajectory stays in [0, a]. The reader can
convince himself that it then coincides with Ha,N . Tightness of {Ga,N} will
imply that of {Ha,N}, since

∀s, t |Ha,N
s −Ha,N

t | ≤ |Ga,N
s −Ga,N

t |.
We have

Ga,N
s +

W a,N
s

Nσ2
=

1

Nσ2
+

4α

σ2

∑
i∈Z

∫ s

0

1{ai≤Ga,N
r ≤(i+1)a}(−1)i1{Wa,N

r−
=−(−1)i}dr

− 4β

σ2

∑
i∈Z

∫ s

0

1{ai≤Ga,N
r ≤(i+1)a}(−1)i1{Wa,N

r−
=(−1)i}dr + M̃1,N,a

s

(3.6)

〈M̃1,N,a〉s =
4

σ2
s+

8α

Nσ4

∑
i∈Z

∫ s

0

1{ai≤Ga,N
r ≤(i+1)a}1{Wa,N

r−
=−(−1)i}dr

+
8β

Nσ4

∑
i∈Z

∫ s

0

1{ai≤Ga,N
r ≤(i+1)a}1{Wa,N

r−
=(−1)i}dr. (3.7)

From (3.6), (3.7) and Proposition 3.2 follows tightness of the lefthand side
of (3.6). Since moreover N−1W a,N

s → 0 a.s. uniformly with respect to s,
the sequence {Ga,N , N ≥ 1} is tight in D([0,+∞)). Because Ga,N is a.
s. continuous for each N ≥ 1, it follows from a well known property of
Skorohod’s topology :

Lemma 3.3 For any a > 0, the sequence {Ha,N , s ≥ 0}N≥1 is tight in
C([0,∞)).

Remark 3.4 In the subcritical case (α ≤ β), we can choose a = +∞, which
simplifies the above construction. HN is obtained from GN by reflection
around 0 (HN ≡ |GN |), and GN is defined by:

GN
s = 2N

∫ s

0

WN
r dr,

WN
s = 1 + 2

∫ s

0

sign(GN
r )1{WN

r−
=−sign(GN

r )}dP
+
r − 2

∫ s

0

sign(GN
r )1{WN

r−
=sign(GN

r )}dP
−
r



3 WEAK CONVERGENCE 16

3.4 Weak convergence of Ha,N

Let us state our convergence result.

Theorem 3.5 For any a > 0 [ including the case a = +∞ in the case α ≤
β ], Ha,N ⇒ Ha in C([0,∞)) as N →∞, where {Ha

s , s ≥ 0} is the process

2(α− β)

σ2
s+

2

σ
Bs

reflected in [0, a]. In other words, Ha is the unique weak solution of the
reflected SDE

Ha
s =

2(α− β)

σ2
s+

2

σ
Bs +

1

2
Ls(0)− 1

2
Ls(a

−). (3.8)

The statement that {Ha
s , s ≥ 0} is the process

(
2(α−β)
σ2 s+ 2

σ
Bs, s ≥ 0

)
reflected in [0, a] amounts to say (see Stroock-Varadhan [13]) that for any
f ∈ C2(R) with f ′(0) ≥ 0, f ′(a) ≤ 0,

M f
s := f(Ha

s )− f(Ha
0 )− 2

σ2

∫ s

0

[f ′′(Ha
r )− (α− β)f ′(Ha

r )] dr,

is a submartingale. It remains to establish this property by taking the weak
limit in (3.4). This will follow readily from

Lemma 3.6 For any sequence
(
UN , N ≥ 1

)
⊂ C([0,+∞)) which is such

that UN ⇒ U as N →∞, for all s > 0,∫ s

0

1{V a,N
r =1}U

N
r dr ⇒

1

2

∫ s

0

Urdr,

∫ s

0

1{V a,N
r =−1}U

N
r dr ⇒

1

2

∫ s

0

Urdr.

Proof: It is an easy exercise to check that the mapping

Φ : C([0,+∞))× C↑([0,+∞))→ C([0,+∞))

defined by

Φ(x, y)(t) =

∫ t

0

x(s)dy(s),

where C↑([0,+∞)) denotes the set of increasing continuous functions from
[0,∞) into R, and the three spaces are equipped with the topology of locally
uniform convergence, is continuous. Consequently it suffices to prove that
locally uniformly in s > 0, ∫ s

0

1{V a,N
r =1}dr →

s

2

in probability, as N → ∞. In fact since both the sequence of processes and
the limit are continuous and monotone, it follows from an argument “à la
Dini” that it suffices to prove
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Lemma 3.7 For any s > 0,∫ s

0

1{V a,N
r =1}dr →

s

2

in probability, as N →∞.

Proof: Let ANs (resp. INs ) denote the number of local maxima (resp. min-
ima) of the process Ha,N on the interval ]0, s].We have

INs ≤ ANs ≤ INs + 1 (3.9)

and

P 1
σ2N2s ≤ ANs + INs ≤ P 1

σ2N2s + P 2
2αNs + P 3

2βNs +N
σ2

4

(
La,Ns (0) + La,Ns (a−)

)
,

where {P 1
r , P

2
r , P

3
r , r ≥ 0} are three mutually independent Poisson processes

with intensity one, which are such that:

P+
s = P 1

σ2N2s + P 2
2αNs, P−s = P 1

σ2N2s + P 3
2βNs.

We deduce from this system of inequalities, the law of large numbers for
Poisson processes, and the tightness of {La,N. (0), N ≥ 1} and {La,N. (a−), N ≥
1} that

ANs + INs
σ2N2

→ s in probability, as N →∞. (3.10)

Tightness of {La,N· (0), N ≥ 1} (resp. {La,N. (a−), N ≥ 1}) can be proved as
follows. Consider the function fN(h, v) associated to f ∈ C2(R) such that
f ′(0) = 1 and f ′(a) = 0 (resp. f’(0)=0 and f’(a)=-1). In the case f ′(0) = 1
and f ′(a) = 0, we deduce from (3.3)

La,Ns (0) = 2f(Ha,N
s ) + 2

V a,N
s

Nσ2
f ′(Ha,N

s )− 2f(0)− 2

Nσ2
f ′(0)− 4

σ2

∫ s

0

f ′′(Ha,N
r )dr

− 8

σ2

∫ s

0

f ′(Ha,N
r )(α1{V N

r =−1} − β1{V N
r =1})dr − 2M f,N

s − 2M̃ f,N
s ,

(3.11)

where M f,N and M̃ f,N are martingales such that

〈M f,N〉s =
4

σ2

∫ s

0

[f ′(Ha,N
r )]2dr, 〈M̃ f,N〉s ≤

c(f)

N
s.

Tightness of {La,N· (0), N ≥ 1} follows from these facts. A similar argument
yields the tightness of {La,N. (a−), N ≥ 1}.
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From (3.9) and (3.10) we deduce that

ANs
σ2N2

→ s

2
,

INs
σ2N2

→ s

2
in probability, as N →∞.

Now

ANs =

∫ s

0

1{V a,N

r−
=1}dP

−
r +

σ2N

4
La,N. (a−)

= (σ2N2 + 2βN)

∫ s

0

1{V a,N
r =1}dr +

∫ s

0

1{V a,N

r−
=1}dM

−
r +

σ2N

4
La,Ns (a−),

where
〈M−〉s = (σ2N2 + 2βN)s.

Consequently∫ s

0

1{V a,N
r =1}dr =

ANs
σ2N2 + 2βN

− (σ2N2 + 2βN)−1
∫ s

0

1{V a,N

r−
=1}dM

−
r −

σ2

4(σ2N + 2β)
La,Ns (a−)

→ s

2
in probability, as N →∞.

Indeed

P
(∣∣∣∣∫ s

0

1{V N
r−

=1}dM
−
r

∣∣∣∣ > εN2

)
≤
√
E(|M−

s |2)
εN2

≤
√

(σ2N2 + 2βN) s

εN2

→ 0, as N →∞.

Corollary 3.8 We have the two following convergence. For each a > 0
[ including the case a = +∞ in the case α ≤ β ],

(
Ha,N ,M1,N,a, La,N(0), La,N(a−)

)
=⇒

(
Ha,

2

σ
B,La(0), La(a−)

)
,

where B is as above, La(0) (resp. La(a−) ) denotes the local time of the
continuous semimartingale Ha at level 0 (resp. at level a− ).

Proof: It follows from the above arguments that
(
Ha,N ,M1,N,a, La,N. (0),

La,N. (a−)
)
N≥1 is tight in C([0,∞))× [D([0,∞))]3.

Morever any weak limit of M1,N,a along a subsequence equals 2
σ
B, since

< M1,N,a >s→ 4
σ2 s and the jumps of M1,N,a are equal in amplitude to 2

Nσ2 .
We now deduce from Theorem 3.5 that any weak limit of



4 GENERALIZED RAY KNIGHT THEOREM 19

(
Ha,N ,M1,N,a, La,N(0), La,N. (a−)

)
along a converging subsequence is a triple

of the form
(
Ha, 2

σ
B,K1, K2

)
, where K1 and K2 are increasing, and satisfy

Ha
s =

2(α− β)

σ2
s+

2

σ
Bs +K1

s −K2
s .

Taking the limit in (3.11) as N → ∞, and comparing the thus obtained
formula with the result of applying Itô–Tanaka’s formula to the process Ha

given by (3.8) and f ∈ C2(R) such that f(0) = 1 and f ′(a) = 0, we deduce
that K1

s = 1
2
Las(0). A similar argument yields K2

s = 1
2
Las(a

−). Now from
Theorem 5.7 in [13] the limit is unique, hence the whole sequence converges.

4 Generalized Ray Knight Theorem

In this section we give an new proof of Delmas’ generalization of the second
Ray Knight Theorem. Define L·(0) be the local time of H at level 0, and in
the subcritical case α ≤ β

τx = inf{s > 0;Ls(0) >
σ2

4
x}.

In the supercritical case, of course the construction is more complex. It
follows from Lemma 2.5 and Corollary 3.8 (see also Lemma 2.1 in [3]) that
for any 0 < a < b,

Πa,b(Hb)
(d)
= Ha, (4.1)

where Ha [resp. Hb] is Brownian motion multiplied by 2/σ, with drift 2(α−
β)s/σ2, reflected in the interval [0, a] [resp. [0, b]], see Theorem 3.5. Now
define for each a, x > 0,

τax = inf{s > 0, Las(0) >
4

σ2
x}.

It follows from (4.1) that, as in the discrete case, ∀ 0 < a < b,

{Lbτbx(t), 0 ≤ t < a, x > 0} (d)
= {Laτax (t), 0 ≤ t < a, x > 0}.

Consequently we can define the projective limit, which is a process {Lx(t), t ≥
0, x > 0} such that for each a > 0,

{Lx(t), 0 ≤ t < a, x > 0} (d)
= {Laτax (t), 0 ≤ t < a, x > 0}.

We have the (see Theorem 3.1 in Delmas [3] )
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Theorem 4.1 (Generalized Ray Knight theorem)

{Lx(t), t ≥ 0, x > 0} (d)
=

{
4

σ2
Xx
t , t ≥ 0, x > 0

}
,

where Xx is the Feller branching diffusion process, solution of the SDE

Xx
t = x+ (α− β)

∫ t

0

Xx
r dr + σ

∫ t

0

√
Xx
r dBr, t ≥ 0.

Proof: Since both sides have stationary independent increments in x, it
suffices to show that for any x > 0,

{Lx(t), t ≥ 0} (d)
=

{
4

σ2
Xx
t , t ≥ 0

}
.

Fix an arbitrary a > 0. By applying the “occupation time formula” to Ha,N ,
and Lemma 2.7, we have for any g ∈ C(R+) with support in [0, a],

4

σ2

∫ τa,Nx

0

g(Ha,N
r )dr =

∫ ∞
0

g(t)La,N
τa,Nx

(t)dt

=
4

σ2

∫ ∞
0

g(t)XN,x
t dt (4.2)

We deduce clearly from Proposition 3.1∫ ∞
0

g(t)XN,x
t dt =⇒

∫ ∞
0

g(t)Xx
t dt. (4.3)

Let us admit for a moment that as N →∞∫ τa,Nx

0

g(Ha,N
r )dr =⇒

∫ τax

0

g(Ha
r )dr (4.4)

From the occupation time formula for the continuous semi-martingale
(Ha

s , s ≥ 0), we have that

4

σ2

∫ τax

0

g(Ha
r )dr =

∫ ∞
0

g(t)Laτax (t)dt. (4.5)

We deduce from (4.2), (4.3), (4.4) and (4.5) that for any g ∈ C(R+) with
compact support in [0, a],

4

σ2

∫ ∞
0

g(t)Xx
t dt

(d)
=

∫ ∞
0

g(t)Lx(t)dt.
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In fact, this same argument can be slightly generalized, proving that for
any n, any g1, · · · , gn with compact support, we have the following equality
in distribution(

4

σ2

∫ ∞
0

g1(t)X
x
t dt, · · · ,

4

σ2

∫ ∞
0

gn(t)Xx
t dt

)
(d)
=

(∫ ∞
0

g1(t)Lx(t)dt, · · · ,
∫ ∞
0

gn(t)Lx(t)dt
)
.

Since both processes (Xx
t , t ≥ 0) and (Lx(t), t ≥ 0) are a.s. continuous, the

theorem is proved.

It remains to prove (4.4), which clearly is a consequence of (recall the
definition (2.6) of τNx )

Proposition 4.2
(Ha,N , τa,Nx ) =⇒ (Ha, τax ).

Proof: For the sake of simplifying the notations, we suppress the super-
script a. Let us define the function φ from R+ × C↑([0,+∞)) into R+ by

φ(x, y) = inf{s > 0 : y(s) >
4

σ2
x}.

For any fixed x, the function φ(x, .) is continuous in the neighborhood of a
function y which is strictly increasing at the time when it first reaches the
value x. Define

τ ′Nx := φ(x, LN. (0)).

We note that for any x > 0, s 7−→ Ls(0) is a.s. strictly increasing at time τx,
which is stopping time. The result follows from the strong Markov property,
the fact that Hτx = 0, and Lε(0) > 0, for all ε > 0. Consequently τx is a.s. a
continuous function of the trajectory L.(0), and from Corollary 3.8,

(HN , τ ′Nx ) =⇒ (H, τx).

It remains to prove that τ ′Nx − τNs −→ 0 in probability. For any y < x, for N
large enough

0 ≤ τ ′Nx − τNx ≤ τ ′Nx − τ ′Ny .

Clearly τ ′Nx − τ ′Ny =⇒ τx − τy, hence for any ε > 0,

0 ≤ lim sup
N

P
(
τ ′Nx − τNx ≥ ε

)
≤ lim sup

N
P
(
τ ′Nx − τ ′Ny ≥ ε

)
≤ P

(
τx − τy ≥ ε

)
.

The result follows, since τy → τx− as y → x, y < x, and τx− = τx a. s.
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