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Abstract

We study the bijection betwen binary Galton Watson trees in con-
tinuous time and their exploration process, both in the sub- and in the
supercritical cases. We then take the limit over renormalized quanti-
ties, as the size of the population tends to infinity. We thus deduce
Delmas’ generalization of a well–known Ray–Knight theorem.

Introduction

There are various forms of bijection between an exploration (or height) pro-
cess and a random binary tree. Here we describe such a bijection, and prove
that a certain law on the exploration paths is in bijection with the law of
a continuous time subcritical binary Galton–Watson random tree. The re-
sult in the critical case has been first established by Le Gall [5], and in the
subcritical case by Pitman, Winkel [7], see also Geiger, Kersting [3], Lam-
bert [6], where the exploration processes are jump processes, while ours is
continuous. We believe that our proof is simpler than the above proofs. It
uses only a rather elementary property of the Poisson process (see Lemma
2.2). Moreover we consider the supercritical case, which is new. Inspired by
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the work of Delmas [1], we note that in the super critical case, the random
tree killed t time a > 0 is in bijection with the exploration process reflected
below a. One can define a unique local time process, which describes the
local times of all the reflected exploration processes, and has the same law
as the supercritical Galton Watson process.

We next renormalize our Galton Watson tree and height process, and take
the weak limit, thus giving a rigourous proof of Delmas’ extension of a well–
known Ray–Knight theorem. The classical version of this theorem establishes
the identity in law between the local time of reflected Brownian motion at
the time when the local time at 0 reaches x, and all levels, and a Feller
critical branching diffusion. The same result holds in the subcritical (resp.
supercritical) case, Brownian motion being replaced by Brownian motion
with drift (in the supercritical case, reflection below an arbitrary level, as
above, is requested).

Note that associating an exploration process to a continuous branching
process allows us to describe genealogies of the population sampled at times
0, h, 2h, . . . from the embeded excursions above levels 0, h, 2h, . . . of the ex-
ploration process, while those genealogies cannot be read from the branching
diffusion itself, see figure 5 at the end of the paper. The exploration process
contains the information of the tree, not only of the process of population
sizes.

The paper is organized as follows. Section 1 is devoted to the description
of the bijection between height curves and binary trees (without introducing
probabilities). Section 2 presents the equivalence of laws of height processes
and Galton Watson trees in the subritical case. Section 3 describes analogous
results in the supercritical case. Section 4 presents the results of convergence
of both the population process and the height process, in the limit of large
populations. Finally section 5 deduces the generalized Ray–Knight theorem
from our convergences and the results at the discrete level.

1 Preliminaries

We denote by Hp,m the set of piecewise linear functions H : s 7→ H(s) from
[0, Tm] into R+ with alternating derivatives p and −p, which starts from (0,0)
with slope p, is reflected whenever it hits zero, and is stopped at the time
Tm of its m–th return to zero, which is assumed to be finite. We shall write
Hp for Hp,1.

We also denote by T the set of finite rooted binary trees which are defined
as follows: an ancestor is born at time 0. Until he eventually dies, he gives
birth successively to an arbitrary number of offsprings. The same happens
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to each of his offsprings, and the offsprings of his offsprings, etc... until
eventually the population dies out. We denote by Fm the set of forests
which are the union m elements of T .

There is a well known bijection between binary trees and exploration
processes. Under the curve representing an element H ∈ Hp, we can draw a
tree as follows. The height hlfmax of the most left local maximum1 of H is
the lifetime of the ancestor and the heigh hlowmin of the lowest non zero local
minimum is the time of the birth of the first offspring of the ancestor. If
there is no such local minimum, the ancestor dies before giving birth to any
offspring. ‘ We draw a horizontal line at level hlowmin. H has two excursions
above hlowmin. The left one is used to represent the fate of the ancestor and
of the rest of his progeny. The right one is used to represent the fate of his
first offspring and of the progeny of the later. Continuing until there is no
further local minimum to explore, we define clearly a bijection Φp from Hp

into T . Repeating the same procedure, we define a bijection between Hp,m

and Tm.
We now define probability measures on Hp (resp. Hp,m) and T (resp.

Tm).
Let 0 < µ ≤ λ be two parameters. We define a stochastic process whose

trajectories belong toHp as follows. Let {Uk, k ≥ 1} and {Vk, k ≥ 1} be two
mutually independent sequences of i.i.d exponential random variables with
parameter λ and µ respectively. We define Zk = Uk − Vk, k ≥ 1. Pλ,µ is the
law of the random element of Hp, which is such that the height of the first
local maximum is Uk, that of the first local minimum is (Z1)

+. If Z1 = 0, the
process is stopped. Otherwise, the height of the second local maximum is
Z1 +U2, the height of the second local minimum is (Z1 +Z2)

+, etc. Because
µ < λ, the process returns to zero a.s in finite time. The random trajectory
which we have constructed is an excursion above zero. We define similarly a
law on Hp,m as the concatenation of m i. i. d. such excursions.

To the same pair of parameters (λ, µ), we associate the subcritical binary
Galton Watson tree (i. e. random element of T ) as follows. The lifetime
of each individual is exponential with parameter λ, and during its lifetime,
independently of it, each individual gives birth to offsprings according to a
rate µ Poisson process. The behaviours of the various individuals are i. i. d.
This defines a probability measure Qλ,µ on T . We use the same notation to
denote the law on Fm of m i. i d. random trees with Qλ,µ as their common
law.

1We assume that this minimum is unique, as will be a.s the case in the probabilistic
model below
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Figure 1: Bijection between binary trees and exploration processes
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2 Subcritical case

The aim of this section is to prove that Pλ,µΦ−1
p = Qλ,µ.

Let us establish some preliminary results which will be useful in the se-
quel.

2.1 Preliminary results

Let (Tk)k≥0 be a Poisson point process on R+ with intensity µ. For any t > 0,
we define the random variable

Rt = sup
k≥0
{Tk;Tk ≤ t}.

Lemma 2.1 Let M be a non negative random variable independent of {Tk, k ≥
0} and define

RM = sup
k≥0
{Tk;Tk ≤M} .

Then M − RM
(d)
= V ∧M where V and M are independent, V has an expo-

nential distribution with parameter µ.

Proof. Let f : R → R continuous and bounded. It is well knowed that for
any t > 0, the law of t−Rt is the same that of V ∧ t, where V w E(µ).

E (f(M −RM)) =

∫
E (f(M −RM)|M = t) dPM(dt)

=

∫
E (f(t−Rt)) PM(dt)

=

∫
E (f(V ∧ t)) PM(dt)

=

∫ ∫
(f(v ∧ t)) PV (dv)PM(dt)

= E (f(V ∧M)) ,

with V whith is independent of M , since it is a function of (Tk)k≥0.

Lemma 2.2 Let (Tk)k≥0 be a Poisson point process on R+ with intensity µ.
M a positive random variable which is independent of (Tk)k≥0. Consider the
integer valued random variable K such that TK = RM and a second Poisson
point process (T ′k)k≥0 with intensity µ, which is jointly independent of the

first and of M . Then
(
T k
)
k≥0

defined by:

T k =

{
Tk if k < K
TK + T ′k−K+1 if k ≥ K



2 SUBCRITICAL CASE 6

is a Poisson point process on R+ with intensity µ which is independent of
RM .

Proof: Let (Nt, t ≥ 0),
(
N t, t ≥ 0

)
and (N ′t , t ≥ 0)) be the counting pro-

cesses associated to T , T and T ′.
For any n ≥ 1, 0 < t1 < · · · < tn and k1, . . . , kn ∈ N∗, we intend to evaluate

ξt = P
(
N t1 = k1, . . . , N tn = kn|RM = t

)
.

It suffices to treat the case: ∃ i such that 2 ≤ i ≤ n and ti−1 < t < ti.

ξt = P
(
Nt1 = k1, Nt2 = k2, · · · , Nti−1

= ki−1, Nt +N ′ti−t = ki, · · · , Nt +N ′tn−t = kn
)

= P

(
Nt1 = k1, Nt2 −Nt1 = k2 − k1, · · · , Nti−1

−Nti−2
= ki−1 − ki−2, Nt −Nti−1

+N ′ti−t = ki − ki−1, N
′
ti+1−t −N ′ti−t = ki+1 − ki, · · · , N ′tn−t −N ′tn−1−t = kn − kn−1

)

= e−µtn
n∏
i=1

(µ(ti − ti−1))
ki−ki−1

(ki − ki−1)!

Therefore T is a Poisson process with intensity µ and it is independent of
RM since ξt does not depend upon t.

We are now in a position to prove our main result.

2.2 Main result

Theorem 2.3
Qλ,µ = Pλ,µΦ−1

p .

The theorem says that the tree associated to the exploration process {Hs, s ≥
0} is a N-valued continuous binary tree with death rate λ and birth rate µ,
and vice versa.
Proof: A binary tree with birth rate µ and death rate λ can be described
as follows: Each individual gives birth to offsprings according to a Poisson
process of intensity µ, and dies at an exponential time of parameter λ, inde-
pendent of the birth times. The individuals will be numbered: ` = 1, 2, ....
1 is the ancestor of the whole family. The subsequent individuals will be
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Figure 2: Another view at binary Galton Watson trees
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identified below. We will show that there is way to explore this tree with
an exploration process whose law is pricisely Pλ,µ. We introduce the family
(T `k , k ≥ 0, ` ≥ 1) of mutually independent of Poisson processes . For any
` ≥ 1, the process T `k describes the times of birth of the offsprings of the
individual `. We define U` to be the lifetime of individual `.

• Step 1: We start from the initial time t = 0 and climb up to the
level M1 of height U1, where U1 follows E(λ). We go down from M1

until we find the most recent point of the Poisson process (T 1
k ) which

gives the moments of birth of the offsprings of individual 1. So we
have descended from a height of V1 ∧M1, where V1 follows E(µ) and
is independent of M1(see 2.1 ). This moment corresponds to a level
m1 = M1 − V1 ∧M1.
if m1 = 0, we stop, else

• Step 2: We give the label 2 to this last offspring of the individual 1,

born at the time m1. Let us define (T
2

k) by:

T
2

k =

{
T 1
k if k < K1

T 1
K1

+ T 2
k−K1+1 otherwise

where K1 is such that T 1
K1

= m1.

Thanks to Lemma 2, (T
2

k) is a Poisson process with intensity µ on R+,
which is independent of m1 and in fact also of (U1, V1).

Starting form m1, the exploration process climb up to level M2 =
m1 +U2, where U2 follows E(λ) and is independent of (U1, V1). Starting
from level M2, we go down a height M2 ∧V2 where V2 follows E(µ) and
independent of (U2, U1, V1), to find the most recent point of the Poisson

process (T
2

k). At this moment we are at the level m2 = M2 − V2 ∧M2.
If m2 = 0 we stop. Otherwise we continue.
Suppose we have made `− 1 steps and m`−1 > 0, ` ≥ 3.

• Step ` We start from m`−1 found in T
`−1

, which is the birthtime of

individual ` . More precisely m`−1=T
`−1

K`−1
= sup{T `−1

k ;T
`−1

k ≤ M`−1}.
We set M` = m`−1 + U`, which corresponds to the time of death of
individual `, where U` ∼ E(λ) and is independent of Ui, Vi, i = 1, ...k−1.
We now define

T
`

k =

{
T
`−1

k if k < K`−1

T
`−1

K`−1
+ T `k−K`−1+1 otherwise
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Then (T
`

k) is a Poisson point process with intensity µ on R+ and is
independent of (m1,M1, · · · ,M`−1,m`−1). Coming down from level M`,
we wait a time V` ∧M` to find the most recent point of the Poisson

process (T
`

j). Consequently the next level is m` = M`−Vk ∧M`, where
V` ∼ E(µ) and is independent of Ui, i = 1...` and Vi, i = 1...`− 1.

Since we are in the (sub)critical case, zero is reached a.s after a finite number
of iterations. It is clear that the random variables Mi and mi determine fully
the law Qλ,µ of the binary tree and they have both the same joint distribution
as the levels of the successive local minimas and maximas of the process
{Hs, s ≥ 0} under Pλ,µ, and the joint distribution of the nodes (including
the leaves) of the binary (λ, µ) tree.

2.3 A discrete Ray–Knight theorem

Consider the exploration process {Ht, t ≥ 0} defined above which is reflected
at zero and stopped at the first moment it reaches zero for the m-th time.
To this process we can associate a forest of m binary trees of birth rate µ
and death rate λ which all start with a single individual at the initial time
t = 0. Consider the branching process in continuous time (Zm

t )t≥0 giving
the number of offsprings alive at time t of the m ancestors born at time 0.
Every individual in this population, independently of the others, lives during
a exponential time with parameter λ and gives birth to offsprings according
to a Poisson process of intensity µ.

We now choose the slopes of the piecewise linear process H to be ±2 (i.
e. p = 2). We define the local time accumulated by H at level t up to time
s:

Ls(t) =
4

σ2
lim
ε↓0

1

ε

∫ s

0

1{t≤Hr<t+ε}dr. (2.1)

Ls(t) equals to 4/σ2 times the number of pairs of branches of H which cross
the level t between times 0 and s. Note that a local minimum at level t
counts for two crossings, while a local maximum at level t counts for none.
We have the ”occupation time formula”: for any integrable function g,

4

σ2

∫ s

0

g(Hr)dr =

∫ ∞
0

g(r)Ls(r)dr.

Let

τm = inf

{
s > 0 : Ls(0) >

4m

σ2

}
.

(σ2/4)Lτm(t) count the number of individuals of the forest of m trees which
are alive up to time t, since a pair of branches of the exploration process
corresponds to one individual in the tree. Then we have:
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Lemma 2.4

{Lτm(t), t ≥ 0, m ≥ 1} ≡
{

4

σ2
Zm
t , t ≥ 0, m ≥ 1

}
.

2.4 Renormalization

In this section we make a renormalization. We choose m = [Nx] for some
x > 0. Let

(
ZN
t

)
t≥0

the branching process which describes the population

size of the [Nx] binary trees with birth rate µN = σ2

2
N + α and death rate

λN = σ2

2
N + δ, where 0 < α < δ. We set

XN,x
t =

ZN
t

N
.

In particular we have that XN,x
0 = [Nx]

N
−→ x when N −→ +∞.

Let HN be the exploration process associated to ZN defined in the same
way as previously, but with slopes ±2N , and λ, µ are remplaced by λN and
µN . We define also LNs (t), the local time accumulated by HN at level t up
to time s, as

LNs (t) =
4

σ2
lim
ε↓0

1

ε

∫ s

0

1{t≤HN
r <t+ε}dr

LNs (t) equals to 4/Nσ2 times the number of pairs of branches of HN which
cross the level t between times 0 and s. Let

τNx = inf

{
s > 0 : LNs (0) >

4

σ2

[Nx]

N

}
. (2.2)

We have again :

Lemma 2.5{
LNτN

x
(t), t ≥ 0, x > 0

}
≡
{

4

σ2
XN,x
t , t ≥ 0, x > 0

}
.

3 Supercritical case

3.1 A reflected exploration process

We consider again the process {Ht, t ≥ 0} defined in section 1, but this time
in the case µ > λ. This process does not come back to zero a.s. For each
level a > 0, we consider the height process {Ha

t , t ≥ 0} reflected at level a
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by adding the rule that whenever the process reaches the level a, it stops and
starts immediately going down with slope −p. Again the process stops when
first going back to zero. The reflected process comes back to zero almost
surely. Indeed we have

P
(
reaching zero during an arbitrary descent

) ≥ P
(
Vi > a

)
= exp(−µa).

Note An the event ”does not reach zero during the n first descents”. We have
clearly

P(An) ≤ (1− exp(−µa))n,

which goes to zero as n −→∞. Hence the result.
For each a > 0, and any pair (λ, µ) of positive numbers, denote by Pλ,µ,a

the law of the process Ha. Define Qλ,µ,a to be the law of the (λ, µ) Galton–
Watson tree, killed at time t = a (i. e. all individuals alive at time a− are
killed at time a). An easy adaptation of the proof of Theorem 2.3 yields

Proposition 3.1 For any a, λ, µ > 0,

Qλ,µ,a = Pλ,µ,aΦ−1
p .

3.2 A Ray–Knight representation

For any b > a > 0, we now define the application Πa,b which maps trajectories
from Hp with values in [0, b] into trajectories with values in [0, a].

Let ρ : R 7→ R be a function such that:

ρ(0) = 0;
dρ

ds
= 1{Hb>a}(s)

We define
Πa,b(Hb)(s) = Hb

s−ρ(s)

Lemma 3.2

Πa,b(Hb)
(d)
= Ha

Proof: It is in fact sufficient to show that the conditinal law of the level
of the first local minimum of Hb after crossing the level a downwards, given
the past of Hb, is the same as the conditional law of the level of the first
local minimum of Ha after a reflexion at level a, given the past of Ha. This
identity follows readily from the ”lack of memory” of the exponential law.
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We now consider the case p = 2. For each a > 0, m ≥ 1, define the
stopping time

τam = inf{s > 0; Las(0) >
4

σ2
m},

where La. (0) is the local time of the process Ha at level 0. τ bm is defined
similary in term of Lb. (0). Thanks to Lemma 3.2 we have for any b > a > 0,
m ≥ 0:

(Lbτb
m

(t), 0 ≤ t ≤ a)
(d)
= (Laτa

m
(t), 0 ≤ t ≤ a),

and Las(t) are (resp. Lbs(t)) the local time associed to Ha (resp. Hb) at level
t up to time s.

It follows that, for each m ≥ 1, we can define the process {Lm(t), t ≥ 0},
which is such that for each a > 0,

{Lm(t), 0 ≤ t ≤ a} (d)
= {Laτa

m
(t), 0 ≤ t ≤ a}.

We have the following Ray–Knight type statement

Lemma 3.3

{Lm(t), t ≥ 0,m ≥ 1} (d)
=

{
4

σ2
Zm
t , t ≥ 0,m ≥ 0

}
.

Proof: It suffice to show that for any a ≥ 0, m ≥ 1

{Lm(t), 0 ≤ t ≤ a} (d)
= {Zm

t , 0 ≤ t ≤ a}.

But

{Lm(t), 0 ≤ t ≤ a} (d)
= {Laτa

m
(t), 0 ≤ t ≤ a} = {Zm,a

t , 0 ≤ t ≤ a},

and

{Zm
t , 0 ≤ t ≤ a} (d)

= {Zm,a
t , 0 ≤ t ≤ a}.

Hence the result.

3.3 Renormalization

Following the same approach as in the subcritical case, we consider the explo-
ration process {HN,a

t , t ≥ 0} defined above which is reflected in the interval
[0, a] and stopped at the first moment it reaches zero for the m-th time, where
m = [Nx], N ∈ N∗ and some x > 0, and remplace respectively λ and µ by
λN and µN . Like the process HN , the process HN,a has slopes ±2N .
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To this exploration process HN,a, we associate the forest of m trees killed at
time a. We consider the branching process {ZN

s 1{s≤a}, s ≥ 0} which gives
the population’s size of these m binary trees, killed at time a. We consider
also the local time LN,as (t) of the process HN,a defined as above. For each
a > 0, define the stopping time

τN,ax = inf{s > 0; LN,as (0) >
4

σ2

[Nx]

N
}. (3.1)

Again we can define a process {LNx (t), t ≥ 0} which is such that for each
a > 0,

{LNx (t), 0 ≤ t ≤ a} (d)
= {LN,a

τN,a
x

(t), 0 ≤ t ≤ a}.
We have the

Lemma 3.4

{LNx (t), t ≥ 0, x ≥ 0} (d)
=

{
4

σ2
XN,x
t , t ≥ 0, x ≥ 0

}
.

4 Weak convergence

4.1 Tightness criteria in D

Consider a sequence {Xn
t , t ≥ 0}n≥1 of one–dimensional semimartingales,

which is such that for each n ≥ 1,

Xn
t = Xn

0 +

∫ t

0

ϕn(Xn
s )ds+Mn

t , 0 ≤ t ≤ T ;

〈Mn〉t =

∫ t

0

ψn(Xn
s )ds, t ≥ 0;

where for eah n ≥ 1, Mn
· is a locally square–integrable martingale, ϕn and

ψn are Borel measurable functions from R into R and R+ respectively. Most
of the next statement follows readily from Corollary 2.3.3 in Joffe, Métivier
[4], while the last part follows from Theorem III.10.2 in Ethier, Kurtz [2].

Proposition 4.1 A sufficient condition for the sequence {Xn
t , t ≥ 0}n≥1 to

be tight in D([0,∞)) is that both

the sequence of r.v.’s {Xn
0 , n ≥ 1} is tight; (4.1)

and for each T > 0, some p > 1,

the sequence of r. v.’s {
∫ T

0

[|ϕn(Xn
t )|+ ψn(Xn

t )]pdt, n ≥ 1} is tight. (4.2)
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If moreover, for any T > 0, as n→∞,

sup
0≤t≤T

|Mn
t −Mn

t−| → 0 in probability,

then any limit X of a converging subsequence of the original sequence {Xn}n≥1

is a. s. continuous.

4.2 Tightness and convergence of XNx

The continuous time Galton–Watson process {XN,x
t , t ≥ 0} is a Markov

process with values in the set EN := {k/N, k ≥ 1} with generator AN given
by

ANf(x) = Nx

(
N
σ2

2
+ α

)[
f

(
x+

1

N

)
− f(x)

]
+Nx

(
N
σ2

2
+ β

)[
f

(
x− 1

N

)
− f(x)

]
,

for any f : EN → R, x ∈ EN . Consequently for any f ∈ C(R),

M f,N
t := f(XN,x

t )− f(XN,x
0 )−

∫ t

0

ANf(XN,x
s )ds (4.3)

is a local martingale. Applying successively the above formula to the cases
f(x) = x and f(x) = x2, we get that

XN,x
t = XN,x

0 +

∫ t

0

(α− β)XN,x
r dr +M

(1),N
t , (4.4)(

XN,x
t

)2

=
(
XN,x

0

)2

+ 2(α− β)

∫ t

0

(XN,x
r )2dr +

(
σ2 +

α + β

N

)∫ t

0

XN,x
r dr +M

(2),N
t ,

(4.5)

where {M (1),N
t , t ≥ 0} and {M (2),N

t , t ≥ 0} are local martingales. It follows
from (4.4) and (4.5) that

〈M (1),N〉t =

(
σ2 +

α + β

N

)∫ t

0

XN,x
r dr. (4.6)

We now prove

Lemma 4.2 Asume that supN≥1 E
[
(XN,x

0 )2
]
<∞. Then for any T > 0,

sup
N≥1

sup
0≤t≤T

E
[(
XN,x
t

)2
]
<∞.
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An immediate Corollary of this Lemma is that {M (1),N
t } and {M (2),N

t } are
in fact martingales.
Proof: Let τn = inf{t > 0, |M (2)

t | > n}. We deduce from (4.5) that with

C =
1

2

(
σ2 + α + β

)
, C ′ = 2(α− β) +

1

2

(
σ2 + α + β

)
,

E
[
(XN,x

t∧τn)2
]
≤ E

[
(XN,x

0 )2
]

+ CT + C ′
∫ t

0

(XN,x
s∧τn)2ds,

hence the result from Gronwall’s and Fatou’s Lemma.

It now follows from Proposition 4.1, (4.4), (4.6), Lemma 4.2 and the fact
that that XN,x

0 → x {XN,x}N≥1 is tight in D([0,+∞)).
Standard arguments starting from (4.3) now allow us to deduce

Proposition 4.3 Since XN,x
0 → x as N → ∞, XN,x ⇒ Xx as N → ∞,

where Xx is the unique solution of the following Feller diffusion with logistic
growth

Xx
t = x+ (α− β)

∫ t

0

Xx
r dr + σ

∫ t

0

√
Xx
r dBr, t ≥ 0.

Tightness of HN(resp {HN,a
s , s ≥ 0})

Consider now the exploration process {HN
s , s ≥ 0}(resp {HN,a

s , s ≥ 0}) of
the forest of trees representing the population {ZN

t , t ≥ 0}(resp {ZN,a
t , t ≥

0}). Let {V N
s , s ≥ 0} be the {−1, 1}–valued process which is such that a.

e.: In the first case (subcritical)

dHN
s

ds
= 2NV N

s , (4.7)

and in the second case
dHN,a

s

ds
= 2NV N,a

s . (4.8)

The R+×{−1, 1}–valued process {(HN
s , V

N
s ), s ≥ 0} (resp {(HN,a

s , V N,a
s ), s ≥

0}) is a Markov process. This process solves a martingale problem, in a sense
which we now make precise. In fact we can write the following SDE for this
pair in both cases. We have HN

0 = HN,a
0 = 0, V N

0 = V N,a
0 = 1, and

dHN
s

ds
= 2NV N

s ,

dV N
s = 21{V N

s−
=−1}dP

+
s − 21{V N

s−
=+1}dP

−
s +

Nσ2

2
dLNs (0);
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and

dHN,a
s

ds
= 2NV N,a

s ,

dV N,a
s = 21{V N,a

s−
=−1}dP

+
s − 21{V N,a

s−
=1}dP

−
s +

Nσ2

2
dLN,as (0)− Nσ2

2
dLN,as (a−),

where {P+
s , s ≥ 0} and {P−s , s ≥ 0} are two mutually independent Poisson

processes, with the intensity resp.

σ2N2 + 2αN and σ2N2 + 2βN.

Here LN,as (0) and LN,as (a−) denote respectively the number of visits to 0
and a by the process HN,a up to time s, multiplied by 4/Nσ2 (see (2.1)).
These two terms in the expression of V N,a stand for the reflection of HN,a

above 0 and below a. Note that our definition of LN,a make the mapping
t −→ LN,as (t) right continuous. Hence LN,as (t) = 0 for t ≥ a, while LN,as (a−) =
limn→∞ L

N,a
s (a − 1

n
) > 0 if HN,a has reached the level a by time s. We now

write a martingale problem satisfied by the process {(HN
s , V

N
s ), s ≥ 0}(resp

{(HN,a
s , V N,a

s ), s ≥ 0}). We are not interested in writing it for arbitrary
functions of the two variables (h, v), but rather for specific functions, which
will be convenient for taking the limit as N → ∞. Note that the process
{V N

s , s ≥ 0} oscillates faster and faster as N grows, and that in the limit
some averaging takes place. We thus implement the so called “perturbed test
function” method used in stochastic averaging, see e. g. Ethier, Kurtz [2].

For f ∈ C2(R), let

fN(h, v) = f(h) +
v

Nσ2
f ′(h),

ANfN(h, v) =
2

σ2
f ′′(h) + 1{v=−1}

4α

σ2
f ′(h)− 1{v=+1}

4β

σ2
f ′(h).

It is easily seen that whenever f ∈ C2(R),

M f,N
s := fN(HN

s , V
N
s )− fN(0, 1)−

∫ s

0

ANfN(HN
r , V

N
r )dr − f ′(0)

2
LNs (0)

(
resp. M f,N,a

s := fN(HN,a
s , V N,a

s )− fN(0, 1)−
∫ s

0

ANfN(HN,a
r , V N,a

r )dr

− f ′(0)

2
LNs (0) +

f ′(a)

2
LNs (a−)

)
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is a local martingale.
If we assume moreover that f ′(0) ≥ 0 (resp. f ′(0) ≥ 0 and f ′(a) ≤ 0),

then

M̃ f,N
s := fN(HN

s , V
N
s )− fN(0, 1)−

∫ s

0

ANfN(HN
r , V

N
r )dr(

resp. M̃ f,N,a
s := fN(HN,a

s , V N
s )− fN(0, 1)−

∫ s

0

ANfN(HN
r , V

N
r )dr

)
is a local sub–martingale.

(4.9)

If we choose successively f(h) = h and f(h) = h2, we deduce that there exist
two local martingales {M1,N

s , s ≥ 0} and {M2,N
s , s ≥ 0}(resp. {M1,N,a

s , s ≥
0} and {M2,N,a

s , s ≥ 0}) such that

HN
s +

V N
s

Nσ2
=

1

Nσ2
+

4α

σ2

∫ s

0

1{V N
r =−1}dr − 4β

σ2

∫ s

0

1{V N
r =+1}dr

+
1

2

[
LNs (0)− LN0+(0)

]
+M1,N

s (4.10)

(
HN
s

)2
+

2

Nσ2
HN
s V

N
s =

4

σ2
s+

8α

σ2

∫ s

0

1{V N
r =−1}H

N
r dr

− 8β

σ2

∫ s

0

1{V N
r =+1}H

N
r dr +M2,N

s . (4.11)

resp.

HN,a
s +

V N,a
s

Nσ2
=

1

Nσ2
+

4α

σ2

∫ s

0

1{V N,a
r =−1}dr −

4β

σ2

∫ s

0

1{V N,a
r =+1}dr

+
1

2

[
LN,as (0)− LN,a0+ (0)

]
− 1

2
LN,as (a−) +M1,N,a

s

(HN,a
s )2 +

2

Nσ2
HN,a
s V N,a

s =
4

σ2
s+

8α

σ2

∫ s

0

1{V N,a
r =−1}H

N,a
r dr

− 8β

σ2

∫ s

0

1{V N,a
r =+1}H

N,a
r dr − aLN,as (a−) +M2,N,a

s .
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We deduce from the above computations in both cases that

[M1,N ]s =
4

N2σ4

∑
r≤s

(
1{V N

r−
=−1}∆P

+
r + 1{V N

r−
=1}∆P

−
r

)
,

〈M1,N〉s =
4

σ2
s+

8α

Nσ4

∫ s

0

1{V N
r =−1}dr +

8β

Nσ4

∫ s

0

1{V N
r =1}dr

〈M1,N,a〉s =
4

σ2
s+

8α

Nσ4

∫ s

0

1{V N,a
r =−1}dr +

8β

Nσ4

∫ s

0

1{V N,a
r =1}dr

It follows immediately from this formula that {M1,N
s , s ≥ 0} (resp.{M1,N,a

s , s ≥
0}) is in fact a martingale. One difficulty which we want to get rid of is the

local time term(s) in the expression for HN
s + V N

s

Nσ2 (resp. HN,a
s + V N,a

s

Nσ2 ), which
introduces some additional complication for checking tightness. For that
sake, we consider a new pair of processes (GN ,WN) (resp. (GN,a,WN,a)),
which is R× {−1, 1}–valued and satisfies:
in the subcritical case

GN
s = 2N

∫ s

0

WN
r dr,

WN
s = 1 + 2

∫ s

0

sign(GN
r )1{WN

r−
=−sign(GN

r )}dP
+
r − 2

∫ s

0

sign(GN
r )1{WN

r−
=sign(GN

r )}dP
−
r ;

in the supercritical case (with the additional reflection at level a)

GN,a
s = 2N

∫ s

0

WN,a
r dr,

WN,a
s = 1 +

∑
i∈Z

{
2

∫ s

0

1{ai≤GN,a
r ≤(i+1)a}(−1)i1{WN,a

r−
=−(−1)i}dP

+
r

− 2

∫ s

0

1{ai≤GN,a
r ≤(i+1)a}(−1)i1{WN,a

r−
=−(−1)i}dP

−
r

}

with the same P+ and P− as above. We claim that in the subcritical case

(HN , V N) ≡ (|GN |, sign(GN)WN)

and in the supercritical case

HN,a = lim
k→∞

Φk(G
N)

and
V N =

∑
i∈Z

(−1)i1{ai≤GN≤(i+1)a}W
N ,
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where

Φk = ψk ◦ · · · ◦ ψ1

and for every j, the mapping ψj from R into R is defined by:

ψj(x) =

{ |x|, if j is odd;
a− |x− a|, if j is even.

Clearly tightness of {GN} (resp. {GN,a} will imply that of {HN} (resp
{HN,a}), since

∀s, t |HN
s −HN

t | ≤ |GN
s −GN

t |
resp.∀s, t |HN,a

s −HN,a
t | ≤ |GN,a

s −GN,a
t |.

Now we have in the first case

GN
s +

WN
s

Nσ2
=

1

Nσ2
+

4α

σ2

∫ s

0

sign(GN
r )1{WN

r =−sign(GN
r )}dr

− 4β

σ2

∫ s

0

sign(GN
r )1{WN

r =sign(GN
r )}dr + M̃1,N

s (4.12)

〈M̃1,N〉s =
4

σ2
s+

8α

Nσ4

∫ s

0

1{WN
r =−sign(GN

r )}dr +
8β

Nσ4

∫ s

0

1{WN
r =sign(GN

r )}dr.

(4.13)

Similarly we have in the supercritical case with the reflection at level a:

GN,a
s +

WN,a
s

Nσ2
=

1

Nσ2
+

4α

σ2

∑
i∈Z

∫ s

0

1{ai≤GN,a
r ≤(i+1)a}(−1)i1{WN,a

r−
=−(−1)i}dr

− 4β

σ2

∑
i∈Z

∫ s

0

1{ai≤GN,a
r ≤(i+1)a}(−1)i1{WN,a

r−
=(−1)i}dr + M̃1,N

s

(4.14)

〈M̃1,N〉s =
4

σ2
s+

8α

Nσ4

∑
i∈Z

∫ s

0

1{ai≤GN,a
r ≤(i+1)a}1{WN,a

r−
=−(−1)i}dr

+
8β

Nσ4

∑
i∈Z

∫ s

0

1{ai≤GN,a
r ≤(i+1)a}1{WN,a

r−
=(−1)i}dr. (4.15)

Tightness of {GN}N≥1 (resp. {GN,a}N≥1) in D([0,∞)), hence in C([0,∞)),
follows immediately from (4.12), (4.13) (resp (4.14), (4.15)) and Proposition
4.1. We deduce the

Lemma 4.4 The sequence {HN , s ≥ 0}N≥1 is tight in C([0,∞)).
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4.3 Weak convergence of HN

Let us state our convergence results.

Theorem 4.5 HN ⇒ H in C([0,∞)) as N →∞, where {Hs, s ≥ 0} is the
unique solution of the submartingale problem:
∀ f ∈ C2(R) such that f ′(0) ≥ 0, the process

M̃ f
t := f(Ht)− f(0) +

∫ t

0

Af(Hr)dr

is a local submartingale where

Af(h) =
2(α− β)

σ2
f ′(h) +

2

σ
f ′′(h)

In other words, H is the unique weak solution of the reflected SDE

Hs =
2(α− β)

σ2
s+

2

σ
Bs +

1

2
Ls(0), (4.16)

where Ls(0) denotes the local time at level 0 accumulated by the process H
up to time s. In other words, the process H equals the process

2(α− β)

σ2
s+

2

σ
Bs

reflected at 0.

Theorem 4.6 For any a > 0, HN,a ⇒ Ha in C([0,∞)) as N → ∞, where
{Ha

s , s ≥ 0} is the unique solution of the submartingale problem:
∀ f ∈ C2(R) such that f ′(0) ≥ 0 and f ′(a) ≤ 0, the process

M̃ f
t := f(Ha

t )− f(0) +

∫ t

0

Af(Ha
r )dr

is a local submartingale where

Af(h) =
2(α− β)

σ2
f ′(h) +

2

σ
f ′′(h)

In other words, H is the unique weak solution of the reflected SDE

Ha
s =

2(α− β)

σ2
s+

2

σ
Bs +

1

2
Las(0)− 1

2
Las(a

−),

where Ls(0) and Ls(a
−) denote respectively the local time at level 0 and a−

accumulated by the process Ha up to time s. In other words, the process Ha

equals the process
2(α− β)

σ2
s+

2

σ
Bs

reflected in [0, a].
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The relation between submartingales problem and reflected SDE and the
weak convergence, is exposed in Stroock-Varadhan[9]. Let us prove theorem
4.5. The proof of theorem 4.6 is analogous.
Proof: From Lemma 4.4, we can extract a subsequence, still denoted as an
abuse {HN}, such that

HN ⇒ H in D([0,∞)).

From (4.9), we know that for all N ≥ 1, f ∈ C2(R) satisfying f ′(0) ≥ 0,

M f,N
s := f(HN

s ) +
1

Nσ2
V N
s f

′(HN
s )− f(0)− 1

Nσ2
f ′(0)− 2

σ2

∫ s

0

f ′′(HN
r )dr

− 4

σ2

∫ s

0

[
α1{V N

r =−1} − β1{V N
r =1}

]
f ′(HN

r )dr

is a submartingale. Let us admit for a moment the Lemma :

Lemma 4.7 If XN,x ⇒ X as N →∞ in C([0,+∞)), then for all s > 0,∫ s

0

1{V N
r =1}X

N,x
r dr ⇒ 1

2

∫ s

0

Xrdr,

∫ s

0

1{V N
r =−1}X

N,x
r dr ⇒ 1

2

∫ s

0

Xrdr.

It then follows that for all f ∈ C2(R) satisfying f ′(0) ≥ 0,

M f
s := f(Hs)− f(0)− 2

σ2

∫ s

0

[α− β]f ′(Hr)dr − 2

σ2

∫ s

0

f ′′(Hr)dr

is a submartingale, which establishes the result, since this submartingale
problem has a unique solution, which is the Brownian motion with drift
reflected at level 0 described in the statement of the Theorem, see Stroock,
Varadhan [9].

Proof of Lemma 4.7: It is an easy exercise to check that the mapping

Φ : C([0,+∞))× C↑([0,+∞))→ C([0,+∞))

defined by

Φ(x, y)(t) =

∫ t

0

x(s)dy(s),

where C↑([0,+∞)) denotes the set of increasing continuous functions from
[0,∞) into R, and the three spaces are equipped with the topology of locally
uniform convergence, is continuous. Consequently it suffices to prove that
locally uniformly in s > 0, ∫ s

0

1{V N
r =1}dr → s

2
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in probability, as N → ∞. In fact since both the sequence of processes and
the limit are continuous and monotone, it follows from an argument “à la
Dini” that it suffices to prove the

Lemma 4.8 For any s > 0,∫ s

0

1{V N
r =1}dr → s

2

in probability, as N →∞.

Proof: Let ANs (resp. INs ) denote the number of local maxima (resp. min-
ima) of the process HN on the interval [0, s].We have

INs ≤ ANs ≤ INs + 1 (4.17)

and
P 1
σ2N2s ≤ ANs + INs ≤ P 1

σ2N2s + P 2
2αNs + P 3

2βNs +NLNs (0),

where {P 1
r , P

2
r , P

3
r , r ≥ 0} are three mutually independent Poisson processes

with intensity one. We deduce from this system of inequalities that

ANs + INs
σ2N2

→ s in probability, as N →∞.

Indeed, we deduce from Proposition 4.1 that both HN and M1,N are tight,
hence from (4.10) LNs (0) is tight, and LNs (0)/N −→ 0 in probability as N −→
∞. Hence from (4.17)

ANs
σ2N2

→ s

2
,

INs
σ2N2

→ s

2
in probability, as N →∞.

Now

ANs =

∫ s

0

1{V N
r−

=1}dP
−
r

= (σ2N2 + 2βN)

∫ s

0

1{V N
r =1}dr +

∫ s

0

1{V N
r−

=1}dM
−
r ,

where
〈M−〉s = (σ2N2 + 2βN)s.

Consequently∫ s

0

1{V N
r =1}dr =

ANs
σ2N2 + 2βN

− (σ2N2 + 2βN)−1

∫ s

0

1{V N
r−

=1}dM
−
r

→ s

2
in probability, as n→∞.



4 WEAK CONVERGENCE 23

Indeed

P
(∣∣∣∣∫ s

0

1{V N
r−

=1}dM
−
r

∣∣∣∣ > εN2

)
≤
√

E(|M−
s |2)

εN2

≤
√

(σ2N2 + 2βN) s

εN2

→ 0, as n→∞.

Corollary 4.9

(
HN ,M1,N , LN(0)

)
=⇒

(
H,

2

σ
B,L(0)

)
,

where B is a standard Brownian motion and L(0) is the local time of H, and
for each a > 0,

(
HN,a,M1,N,a, LN,a(0), LN,a(a−)

)
=⇒

(
Ha,

2

σ
B,La(0), La(a−)

)
,

where B is as above, La(0) [resp. La(a−)] denotes the local time of the
continuous semimartingale Ha at level 0 [resp. at level a−; it is the limit
of the local time at levels a− 1/n as n→∞].

Proof: We prove the first part only. As already noted in the proof of
Lemma 4.5,

(
HN ,M1,N , L.(0)

)
N≤1

is tight in C([0,∞))× [D([0,∞))]2.

Morever any weak limit of M1,N along a subsequence equals 2
σ
B. We

deduce from (4.10) that any weak limit of
(
HN ,M1,N , LN(0)

)
along a sub-

sequence is a triple of the form
(
H, 2

σ
B,K

)
satisfying

Hs =
2(α− β)

σ2
s+

2

σ
Bs +

1

2
Ks.

Comparing with (4.16), we deduce that

K =
1

2
L(0).

Now the limit is unique, hence the whole sequence converges.
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5 Generalized Ray Knight Theorem

In this section we give an new proof of Delmas’ generalization of the Ray
Knight Theorem. Define L·(0) the local time of H at level 0, and in the
subcritical case α ≤ β

τx = inf{s > 0;Ls(0) >
4

σ2
x}.

In the supercritical case, of course the construction is more complex. It
follows from Lemma 3.2 and Corollary 4.9 that for any 0 < a < b,

Πa,b(Hb)
(d)
= Ha, (5.1)

where Ha [resp. Hb] is now Brownian motion multiplied by 2/σ, with drift
2(α − β)s/σ2, reflected in the interval [0, a] [resp. [0, b]], see Theorem 4.6.
Note that (5.1) is Lemma 2.1 in [1].

Now define for each a, x > 0,

τax = inf{s > 0, Las(0) >
4

σ2
x}.

It follows from (5.1) that, as in the discrete case, ∀0 < a < b,

{Lbτb
x
(t), 0 ≤ t ≤ a} (d)

= {Laτa
x
(t), 0 ≤ t ≤ a}.

Consequently for each x > 0, we can define a process{Lx(t), t ≥ 0} which is
such that for each a > 0,

{Lx(t), 0 ≤ t ≤ a} (d)
= {Laτa

x
(t), 0 ≤ t ≤ a}.

In the subcritical case, we use the same notation Lx(t) for the quantity Lτx(t).
We have the (see Theorem 3.1 in Delmas [1])

Theorem 5.1 (Generalized Ray Knight theorem)

{Lx(t), t ≥ 0, x > 0} (d)
=

{
4

σ2
Xx
t , t ≥ 0 x > 0

}
,

where Xx is the Feller branching diffusion process, solution of the SDE

Xx
t = x+ (α− β)

∫ t

0

Xx
r dr + σ

∫ t

0

√
Xx
r dBr, t ≥ 0.
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Proof: Since both sides have stationary independent increments in x, it
suffices to show that for any x > 0,

{Lx(t), t ≥ 0} (d)
=

{
4

σ2
Xx
t , t ≥ 0

}
.

We treat the supercritical case only. The subcritical case is similar but
simpler. Fix an arbitrary a > 0. By applying the ”occupation time formula”
to HN,a, and Lemma 3.4, we have for any g ∈ C(R+) with support in [0, a],

4

σ2

∫ τN,a
x

0

g(HN,a
r )dr =

∫ ∞
0

g(t)LN,a
τN,a
x

(t)dt

=
4

σ2

∫ ∞
0

g(t)XN,x
t dt (5.2)

We deduce clearly from Proposition 4.3∫ ∞
0

g(t)XN,x
t dt =⇒

∫ ∞
0

g(t)Xx
t dt. (5.3)

Let us admit for a moment that as N →∞∫ τN,a
x

0

g(HN,a
r )dr =⇒

∫ τa
x

0

g(Ha
r )dr (5.4)

From the occupation time formula for the continuous semi-martingale
(Ha

s , s ≥ 0), we have that

4

σ2

∫ τa
x

0

g(Ha
r )dr =

∫ ∞
0

g(t)Laτa
x
(t)dt. (5.5)

We deduce from (5.2), (5.3), (5.4) and (5.5) that for any g ∈ C(R+) with
compact in [0, a],

4

σ2

∫ τa
x

0

g(Ha
r )dr =

∫ ∞
0

g(t)Lx(t)dt,

from which the result follows.

It remains to prove (5.4), which clearly is a consequence of (recall the
definition (3.1) of τN,ax )

Proposition 5.2 For any a > 0, as N →∞,

(HN,a, τN,ax ) =⇒ (Ha, τax ).
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Proof: For the sake of simplifying the notations, we suppress the super-
script a. Let us define the function φ from R+ × C↑([0,+∞)) into R+ by

φ(x, y) = inf{s > 0 : y(s) >
4

σ2
x}.

For any fixed x, the function φ(x, .) is continuous in the neighborhood of a
function y which is strictly increasing at the time when it first reaches the
value x. Define

τ ′Nx := φ(x, LN. (0)).

We note that for any x > 0, s 7−→ Ls(0) is a.s. strictly increasing at time τx.
Indeed τx− τx− > 0 iff ex 6= δ (with the notation of Definition XII.2.1 in [8]),
where e = {ex, x ≥ 0} is the excursion process of the reflected Brownian
motion with drift H. The claimed property follows from the fact that e is a
Poisson process, hence for each x > 0, P(ex 6= δ) = 0. Consequently τx is a.
s. a continuous function of the trajectory L.(0), and from Corollary 4.9,

(HN , τ ′Nx ) =⇒ (H, τx).

It remains to prove that τ ′Nx − τNs −→ 0 in probability. For any y < x, for N
large enough

0 ≤ τ ′Nx − τNx ≤ τ ′Nx − τ ′Ny .

Clearly τ ′Nx − τ ′Ny =⇒ τx − τy, hence for any ε > 0,

0 ≤ lim sup
N

P
(
τ ′Nx − τNx ≥ ε

) ≤ lim sup
N

P
(
τ ′Nx − τ ′Ny ≥ ε

) ≤ P
(
τx − τy ≥ ε

)
.

The result follows, since τy → τx− as y → x, y < x, and τx− = τx a. s.
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