Accessible paths on the hypercube

Éric Brunet

Laboratoire de Physique Statistique, ENS, UPMC, Paris

CIRM 2015

In collaboration with Julien Berestycki and Zhan Shi (LPMA UPMC)

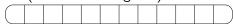
- The model we consider
- 2 Results
- Outline of proofs

• A genome with L loci (= location of genes)

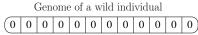
• A genome with L loci (= location of genes)

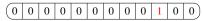
• There are two viable types (alleles) for each gene: the **wild type** (0) and the **mutated type** (1)

ullet A genome with L loci (= location of genes)

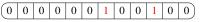


• There are two viable types (alleles) for each gene: the **wild type** (0) and the **mutated type** (1)





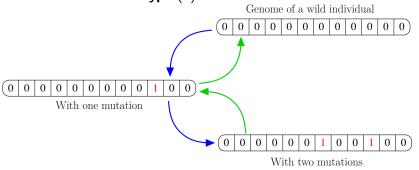
With one mutation



With two mutations

• A genome with L loci (= location of genes)

• There are two viable types (alleles) for each gene: the **wild type** (0) and the **mutated type** (1)

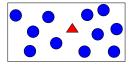


 During reproduction, when a mutation occurs, only one gene is affected.

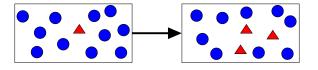
 $0 \longrightarrow 1$: forward mutation

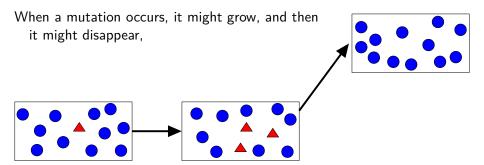
 $1 \longrightarrow 0$: backward mutation

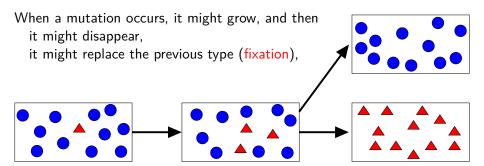
When a mutation occurs,

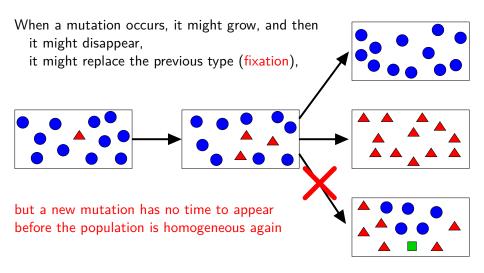


When a mutation occurs, it might grow, and then









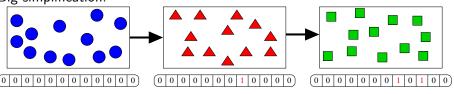
Evolutionary paths and Hypercube

Big simplification:

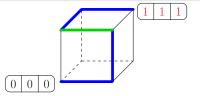
Gillespie 1983, Kauffman Levin 1987

Evolutionary paths and Hypercube

Big simplification:



$\label{eq:energy} \mbox{Evolutionary path} = \mbox{walk on the hypercube}$



 $(0 \longrightarrow 1)$: forward mutation

 $1 \longrightarrow 0$: backward mutation)

Gillespie 1983, Kauffman Levin 1987

Fitness and selection

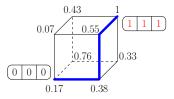
Evolutionary path = walk on the hypercube

- ullet To each of the 2^L genomes one associates a fitness value
- Assume strong selection

Fitness and selection

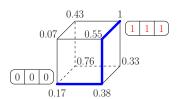
Evolutionary path = walk on the hypercube

- \bullet To each of the 2^L genomes one associates a fitness value
- Assume strong selection
- A transition (= a mutation fixates) may occur only if the fitness value increases

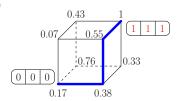


Open or accessible evolutionary path = walk on the hypercube such that fitness values increase along the walk

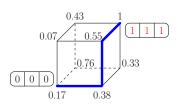
- Flat landscape: fitness value proportional to number of mutations. All forward paths are accessible.
- Rough landscape: no clear relationship between fitness value and number of mutations. Lots of local extrema, valleys and dead ends.



- Flat landscape: fitness value proportional to number of mutations. All forward paths are accessible.
- Rough landscape: no clear relationship between fitness value and number of mutations. Lots of local extrema, valleys and dead ends.



- Flat landscape: fitness value proportional to number of mutations. All forward paths are accessible.
- Rough landscape: no clear relationship between fitness value and number of mutations. Lots of local extrema, valleys and dead ends.

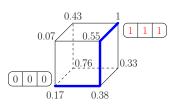


Roughest landscape of all

the House of Cards model Fitness values are independent random numbers

Kingman 1978

- Flat landscape: fitness value proportional to number of mutations. All forward paths are accessible.
- Rough landscape: no clear relationship between fitness value and number of mutations. Lots of local extrema, valleys and dead ends.



Roughest landscape of all

the House of Cards model Fitness values are independent random numbers

Kingman 1978

The question: can the population reach the fittest possible state?

- asexual population
- low mutation rate
- high selection
- House of Cards fitnesses

Is there an accessible path to the fittest site? How many are there?

- asexual population
- low mutation rate
- high selection
- House of Cards fitnesses

- Consider a *L*-hypercube.
- Each site is assigned an independent random value, its fitness.

- A path is said to be accessible if the fitness values increase along it.
- One starts from site $(0,0,0,\ldots,0)$.

Is there an accessible path to the fittest site? How many are there?

- asexual population
- low mutation rate
- high selection
- House of Cards fitnesses

- Consider a *L*-hypercube.
- Each site is assigned an independent random value, its fitness.

- A path is said to be accessible if the fitness values increase along it.
- One starts from site $(0,0,0,\ldots,0)$.

Is there an accessible path to the fittest site? How many are there?

- The answer does not depend on the (continuous) distribution
- ullet The fittest site is uniformly chosen among the 2^L sites

- asexual population
- low mutation rate
- high selection
- House of Cards fitnesses

- Consider a *L*-hypercube.
- Each site is assigned an independent random value, its fitness.

- A path is said to be accessible if the fitness values increase along it.
- One starts from site $(0,0,0,\ldots,0)$.

Is there an accessible path to the fittest site? How many are there?

- The answer does not depend on the (continuous) distribution
- ullet The fittest site is uniformly chosen among the 2^L sites

- asexual population
- low mutation rate
- high selection
- House of Cards fitnesses

- Consider a L-hypercube.
- Each site is assigned an independent random value, its fitness.
- Choose location of the fittest site; give it a fitness value 1

- A path is said to be accessible if the fitness values increase along it.
- One starts from site $(0,0,0,\ldots,0)$.

Is there an accessible path to the fittest site? How many are there?

- The answer does not depend on the (continuous) distribution
- The fittest site is uniformly chosen among the 2^L sites

- asexual population
- low mutation rate
- high selection
- House of Cards fitnesses

- Consider a *L*-hypercube.
- Each site is assigned an independent random value, its fitness.
- Choose location of the fittest site; give it a fitness value 1
- The other sites get independent uniform fitness values between 0 and 1
- A path is said to be accessible if the fitness values increase along it.
- One starts from site $(0,0,0,\ldots,0)$.

Is there an accessible path to the fittest site? How many are there?

- The answer does not depend on the (continuous) distribution
- ullet The fittest site is uniformly chosen among the 2^L sites

Results

- When one allows only forward mutations
- When one allows both forward and backward mutations

- No backward mutation, only $0 \rightarrow 1$ and never $1 \rightarrow 0$, path length is L.
- Starting from $(0,0,0,\ldots,0)$, assume fittest site is $(1,1,1,\ldots,1)$

- ullet No backward mutation, only $0 \to 1$ and never $1 \to 0$, path length is L.
- Starting from $(0,0,0,\ldots,0)$, assume fittest site is $(1,1,1,\ldots,1)$
- Total number of paths is L!

- No backward mutation, only $0 \rightarrow 1$ and never $1 \rightarrow 0$, path length is L.
- Starting from $(0,0,0,\ldots,0)$, assume fittest site is $(1,1,1,\ldots,1)$
- Total number of paths is *L*!
- Probability a given path is open is 1/L!

- ullet No backward mutation, only 0 o 1 and never 1 o 0, path length is L.
- Starting from $(0,0,0,\ldots,0)$, assume fittest site is $(1,1,1,\ldots,1)$
- Total number of paths is L!
- Probability a given path is open is 1/L!

$$\mathbb{E}(\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths}) = 1$$

But...

- No backward mutation, only $0 \to 1$ and never $1 \to 0$, path length is L.
- Starting from $(0,0,0,\ldots,0)$, assume fittest site is $(1,1,1,\ldots,1)$
- Total number of paths is L!
- Probability a given path is open is 1/L!

$$\mathbb{E}(\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths}) = 1$$

But... Conditionally on the event that starting position has given fitness x

- ullet No backward mutation, only 0 o 1 and never 1 o 0, path length is L.
- Starting from $(0,0,0,\ldots,0)$, assume fittest site is $(1,1,1,\ldots,1)$
- Total number of paths is L!
- Probability a given path is open is 1/L!

$$oxed{\mathbb{E}(\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths}) = 1}$$

But... Conditionally on the event that starting position has given fitness x

• Probability a given path is open is $(1-x)^{L-1}/(L-1)!$

- ullet No backward mutation, only 0 o 1 and never 1 o 0, path length is L.
- Starting from $(0,0,0,\ldots,0)$, assume fittest site is $(1,1,1,\ldots,1)$
- Total number of paths is L!
- Probability a given path is open is 1/L!

$$\mathbb{E}(\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths}) = 1$$

But... Conditionally on the event that starting position has given fitness x

• Probability a given path is open is $(1-x)^{L-1}/(L-1)!$

$$\mathbb{E}^{x}$$
(nb of open paths) = $L(1-x)^{L-1}$

- No backward mutation, only $0 \to 1$ and never $1 \to 0$, path length is L.
- Starting from $(0,0,0,\ldots,0)$, assume fittest site is $(1,1,1,\ldots,1)$
- Total number of paths is L!
- Probability a given path is open is 1/L!

$$\mathbb{E}(\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths}) = 1$$

But... Conditionally on the event that starting position has given fitness x

• Probability a given path is open is $(1-x)^{L-1}/(L-1)!$

$$\boxed{\mathbb{E}^{x}(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths}) = L(1-x)^{L-1}} \quad \begin{cases} \propto L & \mathsf{lf}\;x \lessapprox \frac{1}{L} \\ \propto 1 & \mathsf{lf}\;x \approx \frac{\mathsf{ln}\;L}{L} \\ \ll 1 & \mathsf{lf}\;x \gg \frac{\mathsf{ln}\;L}{L} \end{cases}$$

- ullet No backward mutation, only 0 o 1 and never 1 o 0, path length is L.
- Starting from $(0,0,0,\ldots,0)$, assume fittest site is $(1,1,1,\ldots,1)$
- Total number of paths is L!
- Probability a given path is open is 1/L!

$$\mathbb{E}(\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths}) = 1$$

But... Conditionally on the event that starting position has given fitness x

• Probability a given path is open is $(1-x)^{L-1}/(L-1)!$

$$\boxed{ \mathbb{E}^x (\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths}) = \mathit{L} (1-x)^{\mathit{L}-1} } \quad \begin{cases} \propto \mathit{L} & \mathsf{lf} \; \mathit{x} \lessapprox \frac{1}{\mathit{L}} \\ \propto 1 & \mathsf{lf} \; \mathit{x} \approx \frac{\mathsf{ln} \, \mathit{L}}{\mathit{L}} \\ \ll 1 & \mathsf{lf} \; \mathit{x} \gg \frac{\mathsf{ln} \, \mathit{L}}{\mathit{L}} \end{cases}$$

$$\mathbb{P}(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths}\neq 0) \leq \frac{\mathsf{ln}\;\! L + \mathsf{Cste}}{L}$$

Nowak Krug 2013, Hegarty Martinsson 2012

Assume fittest site is $(1, 1, 1, \dots, 1)$.

Theorem (Hegarty-Martinsson 2012)

As $L \to \infty$,

$$\mathbb{P}(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths}\neq 0)\sim \frac{\mathsf{ln}\;L}{L},$$

with a sharp transition for existence of paths around starting fitness $\frac{\ln L}{L}$

Assume fittest site is $(1, 1, 1, \ldots, 1)$.

Theorem (Hegarty-Martinsson 2012)

As $L o \infty$,

$$\mathbb{P}(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths}\neq 0)\sim \frac{\ln L}{L},$$

with a sharp transition for existence of paths around starting fitness $\frac{\ln L}{L}$

If
$$a(L) \to \infty$$
 (but, typically, $a(L) \ll \ln L$),

$$\mathbb{P}^{\frac{\ln L - a(L)}{L}} \text{(nb of open paths} \neq 0) \to 1 \qquad \left(\begin{array}{c} \text{If starting position has a fitness below} \\ (\ln L)/L \text{, there are some open paths.} \end{array} \right)$$

$$\mathbb{P}^{\frac{\ln L + a(L)}{L}} (\text{nb of open paths} \neq 0) \to 0 \qquad \left(\begin{array}{c} \text{If starting position has a fitness above} \\ (\ln L)/L, \text{ there are no open paths.} \end{array} \right)$$

Only forward mutations — summary

Assume fittest site is $(1, 1, 1, \dots, 1)$.

$$\mathbb{E}(\text{nb of open paths}) = 1 \qquad \qquad \text{(a lie: typical nb of open paths} \neq 1)$$

$$\mathbb{E}^x(\text{nb of open paths}) = L(1-x)^{L-1} \qquad \text{(truth: correct order of magnitude)}$$

$$\mathbb{P}(\text{nb of open paths} \neq 0) \sim \frac{\ln L}{L} \qquad \text{(value of } x \text{ for which } \mathbb{E}^x(\ldots) \approx 1)$$

Only forward mutations — summary

Assume fittest site is $(1, 1, 1, \ldots, 1)$.

$$\mathbb{E}(\text{nb of open paths}) = 1 \qquad \qquad \text{(a lie: typical nb of open paths} \neq 1)$$

$$\mathbb{E}^x(\text{nb of open paths}) = L(1-x)^{L-1} \qquad \text{(truth: correct order of magnitude)}$$

$$\mathbb{P}(\text{nb of open paths} \neq 0) \sim \frac{\ln L}{L} \qquad \text{(value of } x \text{ for which } \mathbb{E}^x(\ldots) \approx 1)$$

Theorem (Berestycki-Brunet-Shi 2013)

If
$$x = \frac{X}{L}$$
, as $L \to \infty$,

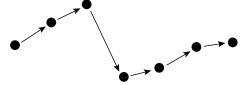
$$\frac{\text{nb of open paths}}{L} \xrightarrow{\text{in law}} e^{-X} \times \mathcal{E} \times \mathcal{E}'$$

where \mathcal{E} and \mathcal{E}' are two independent exponential numbers.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀ (

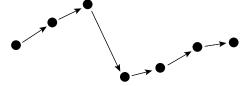
What if one allows some steps backward?

What if one allows some steps backward?



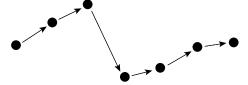
Small chance that a mutant fixates at a lower fitness

What if one allows some steps backward?

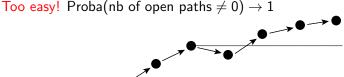


Small chance that a mutant fixates at a lower fitness Too easy! Proba(nb of open paths \neq 0) \rightarrow 1

What if one allows some steps backward?

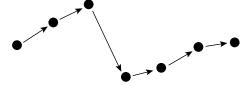


Small chance that a mutant fixates at a lower fitness

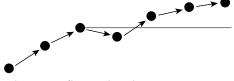


The less fit mutant does not fixate, but has time to mutate to a higher fitness

What if one allows some steps backward?



Small chance that a mutant fixates at a lower fitness Too easy! Proba(nb of open paths \neq 0) \rightarrow 1



The less fit mutant does not fixate, but has time to mutate to a higher fitness Helps a bit: Proba(nb of open paths $\neq 0$) $\sim (p+1)\frac{\ln L}{L}$ (p= number of "tunnels" allowed)

Results

- When one allows only forward mutations
- When one allows both forward and backward mutations

Results

For large L, when the location of the fittest site is at $(1, 1, 1, \ldots, 1)$

- There are no open paths is starting fitness is larger than 0.11863....
- There are open paths otherwise. (Not our result...)

For large L, when the location of the fittest site is random

- There are no open paths is starting fitness is larger than 0.27818....
- There are open paths otherwise. (Not our result...)

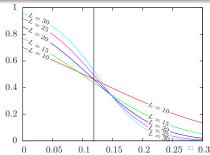
Results

For large L, when the location of the fittest site is at $(1, 1, 1, \ldots, 1)$

- There are no open paths is starting fitness is larger than 0.11863....
- There are open paths otherwise. (Not our result...)

For large L, when the location of the fittest site is random

- There are no open paths is starting fitness is larger than 0.27818....
- There are open paths otherwise. (Not our result...)



We allow paths to do $0 \to 1$ or $1 \to 0$. Assume fittest site is $(1, 1, 1, \dots, 1)$.

```
0 backstep length L
1 backstep length L+2
2 backsteps length L+4
p backsteps length L+2p
```

We allow paths to do 0 \rightarrow 1 or 1 \rightarrow 0. Assume fittest site is (1,1,1,...,1). nb of self-avoiding paths

```
0 backstep length L a_{L,0} = L!
1 backstep length L+2
2 backsteps length L+4
p backsteps length L+2p
```

We allow paths to do $0 \to 1$ or $1 \to 0$. Assume fittest site is $(1, 1, 1, \dots, 1)$. nb of self-avoiding paths

0 backstep length
$$L$$
 $a_{L,0}=L!$
1 backstep length $L+2$ $a_{L,1}=L! imes \frac{L(L-1)(L-2)}{6}$
2 backsteps length $L+4$

length
$$L+2$$

$$p$$
 backsteps length $L + 2p$

We allow paths to do 0 \rightarrow 1 or 1 \rightarrow 0. Assume fittest site is (1,1,1,...,1). nb of self-avoiding paths

0 backstep length
$$L$$
 $a_{L,0} = L!$
1 backstep length $L+2$ $a_{L,1} = L! \times \frac{L(L-1)(L-2)}{6}$
2 backsteps length $L+4$ $a_{L,2} = L! \times \frac{(L-1)(L-2)(5L^4+3L^3+34L^2-264L+180)}{360}$
 p backsteps length $L+2p$

We allow paths to do $0 \to 1$ or $1 \to 0$. Assume fittest site is $(1,1,1,\ldots,1)$. nb of self-avoiding paths

$$\begin{array}{lll} 0 \; {\rm backstep} & {\rm length} \; L & a_{L,0} = L! \\ 1 \; {\rm backstep} & {\rm length} \; L + 2 & a_{L,1} = L! \times \frac{L(L-1)(L-2)}{6} \\ 2 \; {\rm backsteps} & {\rm length} \; L + 4 & a_{L,2} = L! \times \frac{(L-1)(L-2)(5L^4 + 3L^3 + 34L^2 - 264L + 180)}{360} \\ p \; {\rm backsteps} & {\rm length} \; L + 2p & a_{L,p} \sim L! \times \frac{L^{3p}}{6^p p!} \; \; (p \; {\rm fixed}, \; L \; {\rm large}) \end{array}$$

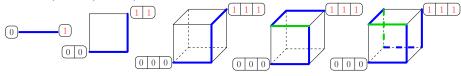
We allow paths to do 0 o 1 or 1 o 0. Assume fittest site is (1,1,1,...,1). nb of self-avoiding paths

```
\begin{array}{lll} 0 \; {\rm backstep} & {\rm length} \; L & a_{L,0} = L! \\ 1 \; {\rm backstep} & {\rm length} \; L + 2 & a_{L,1} = L! \times \frac{L(L-1)(L-2)}{6} \\ 2 \; {\rm backsteps} & {\rm length} \; L + 4 & a_{L,2} = L! \times \frac{(L-1)(L-2)(5L^4+3L^3+34L^2-264L+180)}{360} \\ p \; {\rm backsteps} & {\rm length} \; L + 2p & a_{L,p} \sim L! \times \frac{L^{3p}}{6^p p!} \; \; \left( p \; {\rm fixed}, \; L \; {\rm large} \right) \end{array}
```

$$a_L = a_{L,0} + a_{L,1} + a_{L,2} + \cdots = \text{total nb of self-avoiding paths}.$$

We allow paths to do 0 \rightarrow 1 or 1 \rightarrow 0. Assume fittest site is (1,1,1,...,1). nb of self-avoiding paths

 $a_L = a_{L,0} + a_{L,1} + a_{L,2} + \cdots = \text{total nb of self-avoiding paths}.$

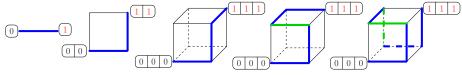


$$a_1 = 1$$
, $a_2 = 2$, $a_3 = 18$

We allow paths to do 0 \rightarrow 1 or 1 \rightarrow 0. Assume fittest site is (1,1,1,...,1). nb of self-avoiding paths

 $\begin{array}{lll} 0 \; {\rm backstep} & {\rm length} \; L & a_{L,0} = L! \\ 1 \; {\rm backstep} & {\rm length} \; L + 2 & a_{L,1} = L! \times \frac{L(L-1)(L-2)}{6} \\ 2 \; {\rm backsteps} & {\rm length} \; L + 4 & a_{L,2} = L! \times \frac{(L-1)(L-2)(5L^4 + 3L^3 + 34L^2 - 264L + 180)}{360} \\ p \; {\rm backsteps} & {\rm length} \; L + 2p & a_{L,p} \sim L! \times \frac{L^{3p}}{6P \; p!} \; \; (p \; {\rm fixed}, \; L \; {\rm large}) \\ \end{array}$

 $a_L = a_{L,0} + a_{L,1} + a_{L,2} + \cdots = \text{total nb of self-avoiding paths}.$

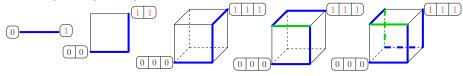


$$a_1 = 1$$
, $a_2 = 2$, $a_3 = 18$, $a_4 = 6432$, $a_5 = 18651552840$

We allow paths to do 0 \rightarrow 1 or 1 \rightarrow 0. Assume fittest site is (1,1,1,...,1). nb of self-avoiding paths

 $\begin{array}{lll} 0 \; \text{backstep} & \text{length } L & a_{L,0} = L! \\ 1 \; \text{backstep} & \text{length } L+2 & a_{L,1} = L! \times \frac{L(L-1)(L-2)}{6} \\ 2 \; \text{backsteps} & \text{length } L+4 & a_{L,2} = L! \times \frac{(L-1)(L-2)(5L^4+3L^3+34L^2-264L+180)}{360} \\ p \; \text{backsteps} & \text{length } L+2p & a_{L,p} \sim L! \times \frac{L^{3p}}{6^p p!} \; \; (p \; \text{fixed}, \; L \; \text{large}) \end{array}$

 $a_L = a_{L,0} + a_{L,1} + a_{L,2} + \cdots = \text{total nb of self-avoiding paths}.$



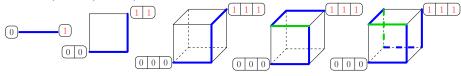
$$a_1 = 1$$
, $a_2 = 2$, $a_3 = 18$, $a_4 = 6432$, $a_5 = 18651552840$

Asymptotically, $e^{c \times 2^L} \le a_L \le e^{c' \times (\ln L) 2^L}$

We allow paths to do 0 \rightarrow 1 or 1 \rightarrow 0. Assume fittest site is (1,1,1,...,1). nb of self-avoiding paths

$$\begin{array}{lll} 0 \; \text{backstep} & \text{length } L & a_{L,0} = L! \\ 1 \; \text{backstep} & \text{length } L+2 & a_{L,1} = L! \times \frac{L(L-1)(L-2)}{6} \\ 2 \; \text{backsteps} & \text{length } L+4 & a_{L,2} = L! \times \frac{(L-1)(L-2)(5L^4+3L^3+34L^2-264L+180)}{360} \\ p \; \text{backsteps} & \text{length } L+2p & a_{L,p} \sim L! \times \frac{L^{3p}}{6^p p!} \; \; (p \; \text{fixed}, \; L \; \text{large}) \end{array}$$

 $a_L = a_{L,0} + a_{L,1} + a_{L,2} + \cdots = \text{total nb of self-avoiding paths}.$



$$a_1 = 1$$
, $a_2 = 2$, $a_3 = 18$, $a_4 = 6432$, $a_5 = 18651552840$

Asymptotically, $e^{c \times 2^L} \le a_L \le e^{c' \times (\ln L) 2^L}$

How many are open ?

16 / 36

Fittest site is $(1, 1, 1, \ldots, 1)$

$$\mathbb{E}(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths}) = \sum_{p} a_{L,p} \frac{1}{(L+2p)!}$$

But...

Fittest site is $(1,1,1,\ldots,1)$

$$\mathbb{E}(\mathsf{nb} \mathsf{ of open paths}) = \sum_{p} a_{L,p} \frac{1}{(L+2p)!}$$

But... Conditionally on the event that starting position has given fitness x

Fittest site is $(1, 1, 1, \ldots, 1)$

$$\mathbb{E}(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths}) = \sum_{p} a_{L,p} \frac{1}{(L+2p)!}$$

But... Conditionally on the event that starting position has given fitness x

$$\mathbb{E}^{\times}(\mathsf{nb} \mathsf{ of open paths}) = \sum_{p} a_{L,p} \frac{(1-x)^{L+2p-1}}{(L+2p-1)!}$$

Fittest site is $(1, 1, 1, \ldots, 1)$

$$\mathbb{E}(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths}) = \sum_{p} a_{L,p} \frac{1}{(L+2p)!}$$

But...Conditionally on the event that starting position has given fitness x

$$\mathbb{E}^{ imes}(\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths}) = \sum_{p} a_{L,p} \frac{(1-x)^{L+2p-1}}{(L+2p-1)!}$$

Theorem (Berestycki-Brunet-Shi 2013)

$$\left[\mathbb{E}^x(\mathsf{nb}\ \mathsf{of}\ \mathsf{open}\ \mathsf{paths})\right]^{1/L} \xrightarrow[L \to \infty]{} \mathsf{sinh}(1-x).$$

Corollary: if $x > \underbrace{1 - \sinh^{-1}(1)}_{0.11863}$, $\mathbb{P}^x(\text{nb of open paths} \neq 0) \to 0$.

Fittest site is
$$(1,1,1,\ldots,1)$$
: $\left[\mathbb{E}^x(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths})\right]^{\frac{1}{L}} \to \mathsf{sinh}(1-x)$
No open path if $x>x^*(1)=\underbrace{1-\mathsf{sinh}^{-1}(1)}_{0.11863...}$

Fittest site is
$$(1, 1, 1, ..., 1)$$
: $\left[\mathbb{E}^{x}(\mathsf{nb} \mathsf{ of open paths})\right]^{\frac{1}{L}} \to \mathsf{sinh}(1-x)$

No open path if
$$x > x^*(1) = \underbrace{1 - \sinh^{-1}(1)}_{0.11863...}$$

Fittest site at distance αL from $(0,0,0,\ldots,0)$:

$$\left[\mathbb{E}^x(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths})
ight]^{rac{1}{L}} o \mathsf{sinh}(1-x)^lpha\,\mathsf{cosh}(1-x)^{1-lpha}$$

No open path if $x > x^*(\alpha)$

Fittest site is
$$(1,1,1,\ldots,1)$$
: $\left[\mathbb{E}^x(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths})\right]^{\frac{1}{L}} \to \mathsf{sinh}(1-x)$

No open path if
$$x > x^*(1) = \underbrace{1 - \sinh^{-1}(1)}_{0.11863...}$$

Fittest site at distance αL from $(0,0,0,\ldots,0)$:

$$\left[\mathbb{E}^x(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths})
ight]^{rac{1}{L}} o \mathsf{sinh}(1-x)^lpha\,\mathsf{cosh}(1-x)^{1-lpha}$$

No open path if $x > x^*(\alpha)$

Fittest site is randomly chosen: $\left[\mathbb{E}^x(\text{nb of open paths})\right]^{\frac{1}{L}} \to \sqrt{\frac{\sinh(2-2x)}{2}}$

Fittest site is
$$(1,1,1,\ldots,1)$$
: $\left[\mathbb{E}^x(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths})\right]^{\frac{1}{L}}\to \mathsf{sinh}(1-x)$

No open path if
$$x > x^*(1) = \underbrace{1 - \sinh^{-1}(1)}_{0.11863...}$$

Fittest site at distance αL from $(0,0,0,\ldots,0)$:

$$\left[\mathbb{E}^{ extit{x}}(\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths})
ight]^{rac{1}{L}} o \mathsf{sinh}(1-x)^{lpha} \; \mathsf{cosh}(1-x)^{1-lpha}$$

No open path if $x > x^*(\alpha)$

Fittest site is randomly chosen:
$$\left[\mathbb{E}^x(\text{nb of open paths})\right]^{\frac{1}{L}} \to \sqrt{\frac{\sinh(2-2x)}{2}}$$

No open path if
$$x > x^*(1/2) = \underbrace{1 - \frac{1}{2} \sinh^{-1}(2)}_{0.27818...}$$

Fittest site is
$$(1,1,1,\ldots,1)$$
: $\left[\mathbb{E}^x(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths})\right]^{\frac{1}{L}} \to \mathsf{sinh}(1-x)$

No open path if
$$x > x^*(1) = \underbrace{1 - \sinh^{-1}(1)}_{0.11863...}$$

Fittest site at distance αL from $(0,0,0,\ldots,0)$:

$$\left[\mathbb{E}^x(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths})
ight]^{rac{1}{L}} o \mathsf{sinh}(1-x)^lpha \cosh(1-x)^{1-lpha}$$

No open path if $x > x^*(\alpha)$

Fittest site is randomly chosen: $\left[\mathbb{E}^x(\text{nb of open paths})\right]^{\frac{1}{L}} \to \sqrt{\frac{\sinh(2-2x)}{2}}$

No open path if
$$x > x^*(1/2) = \underbrace{1 - \frac{1}{2}\sinh^{-1}(2)}_{0.27818...}$$

Theorem (Martinsson 2015 and Li 2015)

Expectations are telling the truth. $\mathbb{P}^x(\mathsf{nb}\ \mathsf{of}\ \mathsf{open}\ \mathsf{paths} \neq 0) \to 1$ if $x < x^*$ with x^* given above. Furthermore, $\mathbb{P}(\mathsf{nb}\ \mathsf{of}\ \mathsf{open}\ \mathsf{paths} \neq 0) \to x^*$

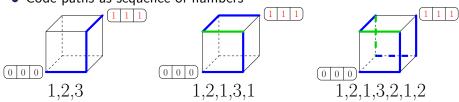
Forward and backward mutations, fittest is $(1, 1, 1, \dots, 1)$.

$$\left[\mathbb{E}^{\mathsf{x}}(\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths})\right]^{\frac{1}{L}} = \left[\sum_{p} a_{L,p} \frac{(1-x)^{L+2p-1}}{(L+2p-1)!}\right]^{\frac{1}{L}} o \mathsf{sinh}(1-x)$$

Forward and backward mutations, fittest is (1, 1, 1, ..., 1).

$$\left[\mathbb{E}^{\mathsf{x}}(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths})\right]^{\frac{1}{L}} = \left[\sum_{p} a_{L,p} \frac{(1-x)^{L+2p-1}}{(L+2p-1)!}\right]^{\frac{1}{L}} \to \mathsf{sinh}(1-x)$$

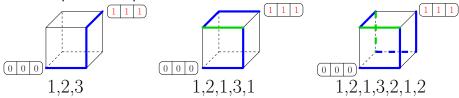
Code paths as sequence of numbers



Forward and backward mutations, fittest is (1, 1, 1, ..., 1).

$$\left[\mathbb{E}^{x}(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths})\right]^{\frac{1}{L}} = \left[\sum_{p} a_{L,p} \frac{(1-x)^{L+2p-1}}{(L+2p-1)!}\right]^{\frac{1}{L}} o \mathsf{sinh}(1-x)$$

Code paths as sequence of numbers

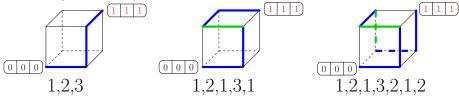


• A path in $a_{L,p}$ has a sequence of length L+2p

Forward and backward mutations, fittest is (1, 1, 1, ..., 1).

$$\left[\mathbb{E}^{\mathsf{x}}(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths})\right]^{\frac{1}{L}} = \left[\sum_{p} a_{L,p} \frac{(1-x)^{L+2p-1}}{(L+2p-1)!}\right]^{\frac{1}{L}} \to \mathsf{sinh}(1-x)$$

Code paths as sequence of numbers



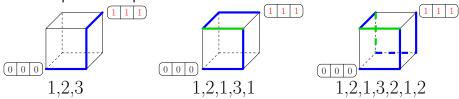
- A path in $a_{L,p}$ has a sequence of length L+2p
- A path reaches (1, 1, 1, ..., 1) if each number between 1 and L appears oddly many times in the sequence

4□ > 4□ > 4 = > 4 = > = 90

Forward and backward mutations, fittest is (1, 1, 1, ..., 1).

$$\left[\mathbb{E}^{\mathsf{x}}(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths})\right]^{\frac{1}{L}} = \left[\sum_{p} a_{L,p} \frac{(1-x)^{L+2p-1}}{(L+2p-1)!}\right]^{\frac{1}{L}} \to \mathsf{sinh}(1-x)$$

Code paths as sequence of numbers



- A path in $a_{L,p}$ has a sequence of length L + 2p
- A path reaches (1,1,1,...,1) if each number between 1 and L
 appears oddly many times in the sequence
- A path is self-avoiding if in any non-empty substring, at least one number appears oddly many times

Strategy: $m_{L,p} \leq a_{L,p} \leq M_{L,p}$

Strategy: $m_{L,p} \leq a_{L,p} \leq M_{L,p}$

• $M_{L,p}$ counts all the paths of length L+2p to $(1,1,1,\ldots,1)$, even self-intersecting ones

Strategy: $m_{L,p} \leq a_{L,p} \leq M_{L,p}$

- $M_{L,p}$ counts all the paths of length L+2p to $(1,1,1,\ldots,1)$, even self-intersecting ones
- $m_{L,p}$ counts all the paths such that L does not appear on two consecutive positions and such that if all the L are removed, what remains is in $m_{L-1,p'}$

Strategy: $m_{L,p} \leq a_{L,p} \leq M_{L,p}$

- $M_{L,p}$ counts all the paths of length L+2p to $(1,1,1,\ldots,1)$, even self-intersecting ones
- $m_{L,p}$ counts all the paths such that L does not appear on two consecutive positions and such that if all the L are removed, what remains is in $m_{L-1,p'}$

Example

$m_{3,0}$:	123	132	213	231	312	321
a _{3,0} :	123	132	213	231	312	321
$M_{3,0}$:	123	132	213	231	312	321

Strategy: $m_{L,p} \leq a_{L,p} \leq M_{L,p}$

- $M_{L,p}$ counts all the paths of length L+2p to $(1,1,1,\ldots,1)$, even self-intersecting ones
- $m_{L,p}$ counts all the paths such that L does not appear on two consecutive positions and such that if all the L are removed, what remains is in $m_{L-1,p'}$

Example

```
m_{3,0}: 123 132 213 231 312 321 a_{3,0}: 123 132 213 231 312 321 M_{3,0}: 123 132 213 231 312 321
```

```
      m_{3,1}:
      31323 32313

      a_{3,1}:
      12131 13121 21232 23212 31323 32313

      M_{3,1}:
      12131 13121 21232 23212 31323 32313 11123 12113 ...
```

Strategy: $m_{L,p} \leq a_{L,p} \leq M_{L,p}$

- $M_{L,p}$ counts all the paths of length L+2p to $(1,1,1,\ldots,1)$, even self-intersecting ones
- $m_{L,p}$ counts all the paths such that L does not appear on two consecutive positions and such that if all the L are removed, what remains is in $m_{L-1,p'}$

Example

```
m_{3,0}: 123 132 213 231 312 321 m_{3,0}: 123 132 213 231 312 321 m_{3,0}: 123 132 213 231 312 321 m_{3,1}: 31323 32313 m_{3,1}: 12131 13121 21232 23212 31323 32313 m_{3,1}: 12131 13121 21232 23212 31323 32313 11123 12113 ... m_{3,2}: m_{3,2}: 1213212 1312313 2123121 2321323 3132131 3231232 m_{3,2}: 1213212 1312313 2123121 2321323 3132131 3231232 m_{3,2}: 1213212 1312313 2123121 2321323 3132131 3231232 m_{3,2}: 1213212 1312313 2123121 2321323 3132131 3231232
```

 $(M_{3,1}=60, M_{3,2}=4920...)$

Strategy: $m_{L,p} \leq a_{L,p} \leq M_{L,p}$

The paths in $m_{L,p}$ (resp. $M_{L,p}$) have the property that if all occurrence of L is removed, what remains is in $m_{L-1,p'}$ (resp. $M_{L-1,p'}$).

Strategy: $m_{L,p} \leq a_{L,p} \leq M_{L,p}$

The paths in $m_{L,p}$ (resp. $M_{L,p}$) have the property that if all occurrence of L is removed, what remains is in $m_{L-1,p'}$ (resp. $M_{L-1,p'}$).

$$M_{L+1,p} = \sum_{q=0}^{p} {L+1+2p \choose 2q+1} M_{L,p-q},$$

Strategy: $m_{L,p} \leq a_{L,p} \leq M_{L,p}$

The paths in $m_{L,p}$ (resp. $M_{L,p}$) have the property that if all occurrence of L is removed, what remains is in $m_{L-1,p'}$ (resp. $M_{L-1,p'}$).

$$M_{L+1,p} = \sum_{q=0}^{p} \binom{L+1+2p}{2q+1} M_{L,p-q}, \quad m_{L+1,p} = \sum_{q=0}^{p} \begin{bmatrix} L+1+2p \\ 2q+1 \end{bmatrix} m_{L,p-q}$$

$$\begin{bmatrix}
N \\
P
\end{bmatrix} := \begin{pmatrix}
\text{nb of ways of choosing } P \text{ items out of } N \\
\text{without taking two consecutive items}
\end{pmatrix}$$

Strategy: $m_{L,p} \leq a_{L,p} \leq M_{L,p}$

The paths in $m_{L,p}$ (resp. $M_{L,p}$) have the property that if all occurrence of L is removed, what remains is in $m_{L-1,p'}$ (resp. $M_{L-1,p'}$).

$$M_{L+1,p} = \sum_{q=0}^{p} \binom{L+1+2p}{2q+1} M_{L,p-q}, \quad m_{L+1,p} = \sum_{q=0}^{p} \binom{L+1+2p}{2q+1} m_{L,p-q}$$

$$\begin{bmatrix} N \\ P \end{bmatrix} := \begin{pmatrix} \text{nb of ways of choosing } P \text{ items out of } N \\ \text{without taking two consecutive items} \end{pmatrix} = \begin{pmatrix} N - P + 1 \\ P \end{pmatrix}$$

Strategy: $m_{L,p} \leq a_{L,p} \leq M_{L,p}$

The paths in $m_{L,p}$ (resp. $M_{L,p}$) have the property that if all occurrence of L is removed, what remains is in $m_{L-1,p'}$ (resp. $M_{L-1,p'}$).

$$M_{L+1,p} = \sum_{q=0}^{p} \binom{L+1+2p}{2q+1} M_{L,p-q}, \quad m_{L+1,p} = \sum_{q=0}^{p} \begin{bmatrix} L+1+2p \\ 2q+1 \end{bmatrix} m_{L,p-q}$$

$$\begin{bmatrix} N \\ P \end{bmatrix} := \begin{pmatrix} \text{nb of ways of choosing } P \text{ items out of } N \\ \text{without taking two consecutive items} \end{pmatrix} = \begin{pmatrix} N - P + 1 \\ P \end{pmatrix}$$

$$G_L(X) := \sum_{p} M_{L,p} \frac{X^{L+2p}}{(L+2p)!}$$

Strategy: $m_{L,p} \leq a_{L,p} \leq M_{L,p}$

The paths in $m_{L,p}$ (resp. $M_{L,p}$) have the property that if all occurrence of L is removed, what remains is in $m_{L-1,p'}$ (resp. $M_{L-1,p'}$).

$$M_{L+1,p} = \sum_{q=0}^{p} \binom{L+1+2p}{2q+1} M_{L,p-q}, \quad m_{L+1,p} = \sum_{q=0}^{p} \begin{bmatrix} L+1+2p \\ 2q+1 \end{bmatrix} m_{L,p-q}$$

$$\begin{bmatrix} N \\ P \end{bmatrix} := \begin{pmatrix} \text{nb of ways of choosing } P \text{ items out of } N \\ \text{without taking two consecutive items} \end{pmatrix} = \begin{pmatrix} N - P + 1 \\ P \end{pmatrix}$$

$$G_L(X) := \sum_{p} M_{L,p} \frac{X^{L+2p}}{(L+2p)!} = \left[\sinh X\right]^L$$

Strategy: $m_{L,p} \leq a_{L,p} \leq M_{L,p}$

The paths in $m_{L,p}$ (resp. $M_{L,p}$) have the property that if all occurrence of L is removed, what remains is in $m_{L-1,p'}$ (resp. $M_{L-1,p'}$).

$$M_{L+1,p} = \sum_{q=0}^{p} {L+1+2p \choose 2q+1} M_{L,p-q}, \quad m_{L+1,p} = \sum_{q=0}^{p} {L+1+2p \choose 2q+1} m_{L,p-q}$$

$$\begin{bmatrix} N \\ P \end{bmatrix} := \begin{pmatrix} \mathsf{nb} \ \mathsf{of} \ \mathsf{ways} \ \mathsf{of} \ \mathsf{choosing} \ P \ \mathsf{items} \ \mathsf{out} \ \mathsf{of} \ N \\ \mathsf{without} \ \mathsf{taking} \ \mathsf{two} \ \mathsf{consecutive} \ \mathsf{items} \end{pmatrix} = \begin{pmatrix} N-P+1 \\ P \end{pmatrix}$$

$$G_L(X) := \sum_{p} M_{L,p} \frac{X^{L+2p}}{(L+2p)!} = \left[\sinh X\right]^L$$

$$\mathbb{E}^{\times}$$
 (nb of open paths) = $\sum_{p} a_{L,p} \frac{(1-x)^{L+2p-1}}{(L+2p-1)!}$

Strategy: $m_{L,p} \leq a_{L,p} \leq M_{L,p}$

The paths in $m_{L,p}$ (resp. $M_{L,p}$) have the property that if all occurrence of L is removed, what remains is in $m_{L-1,p'}$ (resp. $M_{L-1,p'}$).

$$M_{L+1,p} = \sum_{q=0}^{p} {L+1+2p \choose 2q+1} M_{L,p-q}, \quad m_{L+1,p} = \sum_{q=0}^{p} {L+1+2p \choose 2q+1} m_{L,p-q}$$

$$\begin{bmatrix} N \\ P \end{bmatrix} := \begin{pmatrix} \text{nb of ways of choosing } P \text{ items out of } N \\ \text{without taking two consecutive items} \end{pmatrix} = \begin{pmatrix} N - P + 1 \\ P \end{pmatrix}$$

$$G_L(X) := \sum_{p} M_{L,p} \frac{X^{L+2p}}{(L+2p)!} = \left[\sinh X\right]^L$$

$$\mathbb{E}^{x}(\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths}) = \sum_{p} a_{L,p} \frac{(1-x)^{L+2p-1}}{(L+2p-1)!} \leq G'_{L}(1-x)$$

$$\mathbb{E}^x(\mathsf{nb} \mathsf{ of open paths}) \leq -\partial_x[\mathsf{sinh}^L(1-x)] \xrightarrow[L \to \infty]{} \mathsf{if } x \leq 1 - \mathsf{sinh}^{-1}(1)$$

Generalization: if fittest at distance H:

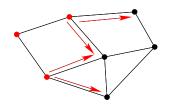
$$\mathbb{E}^{x}$$
(nb of open paths) $\leq -\partial_{x} \Big[\sinh(1-x)^{H} \cosh(1-x)^{L-H} \Big].$

$$\mathbb{E}^x(\mathsf{nb} \mathsf{ of open paths}) \leq -\partial_x[\mathsf{sinh}^L(1-x)] \xrightarrow[L \to \infty]{} \mathsf{if } x \leq 1 - \mathsf{sinh}^{-1}(1)$$

Generalization: if fittest at distance H:

$$\mathbb{E}^{x}$$
(nb of open paths) $\leq -\partial_{x} \Big[\sinh(1-x)^{H} \cosh(1-x)^{L-H} \Big].$

First passage percolation



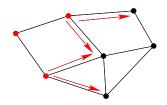
$$\mathbb{E}^x(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths}) \leq -\partial_x[\mathsf{sinh}^L(1-x)] \xrightarrow[L \to \infty]{} \quad \mathsf{if}\; x \leq 1 - \mathsf{sinh}^{-1}(1)$$

Generalization: if fittest at distance H:

$$\mathbb{E}^{x}$$
(nb of open paths) $\leq -\partial_{x} \Big[\sinh(1-x)^{H} \cosh(1-x)^{L-H} \Big].$

First passage percolation

[Time to infect
$$(1,1,\ldots)$$
] $\xrightarrow[L\to\infty]{} \sinh^{-1}(1)$



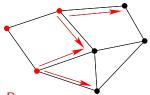
$$\mathbb{E}^x(\mathsf{nb} \mathsf{ of open paths}) \leq -\partial_x[\mathsf{sinh}^L(1-x)] \xrightarrow[L \to \infty]{} \mathsf{ if } x \leq 1 - \mathsf{sinh}^{-1}(1)$$

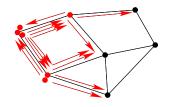
Generalization: if fittest at distance H:

$$\mathbb{E}^{x}$$
(nb of open paths) $\leq -\partial_{x} \Big[\sinh(1-x)^{H} \cosh(1-x)^{L-H} \Big].$

First passage percolation

[Time to infect
$$(1,1,\ldots)$$
] $\xrightarrow[L\to\infty]{} \sinh^{-1}(1)$





$$\mathbb{E}^x(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths}) \leq -\partial_x[\mathsf{sinh}^L(1-x)] \xrightarrow[L \to \infty]{} \quad \mathsf{if}\; x \leq 1 - \mathsf{sinh}^{-1}(1)$$

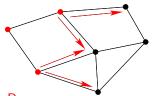
Generalization: if fittest at distance H:

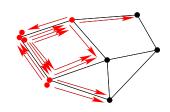
$$\mathbb{E}^{x}$$
(nb of open paths) $\leq -\partial_{x} \Big[\sinh(1-x)^{H} \cosh(1-x)^{L-H} \Big].$

First passage percolation

Hypercube started with one \bullet at $(0,0,\ldots,0)$:

[Time to infect
$$(1,1,\ldots)$$
] $\xrightarrow[L\to\infty]{} \sinh^{-1}(1)$





Branching Translation Process

$$n_t(V) = \mathbb{E}(\mathsf{nb} \ \mathsf{of} ullet \mathsf{at} \ V) \ \partial_t n_t(V) = \sum_{U \wedge V} n_t(U)$$

$$\mathbb{E}^x(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths}) \leq -\partial_x[\mathsf{sinh}^L(1-x)] \xrightarrow[L \to \infty]{} \quad \mathsf{if}\; x \leq 1 - \mathsf{sinh}^{-1}(1)$$

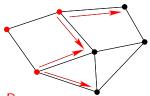
Generalization: if fittest at distance H:

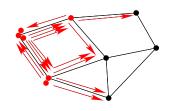
$$\mathbb{E}^{x}$$
(nb of open paths) $\leq -\partial_{x} \Big[\sinh(1-x)^{H} \cosh(1-x)^{L-H} \Big].$

First passage percolation

Hypercube started with one \bullet at $(0,0,\ldots,0)$:

[Time to infect
$$(1,1,\ldots)$$
] $\xrightarrow[L\to\infty]{} \sinh^{-1}(1)$





Branching Translation Process

$$n_t(V) = \mathbb{E}(\mathsf{nb} \mathsf{ of } \bullet \mathsf{ at } V)$$

$$\partial_t n_t(V) = \sum_{U \wedge V} n_t(U)$$

$$\mathbb{E}^x(\mathsf{nb} \mathsf{ of open paths}) \leq -\partial_x[\mathsf{sinh}^L(1-x)] \xrightarrow[L \to \infty]{} \mathsf{ if } x \leq 1 - \mathsf{sinh}^{-1}(1)$$

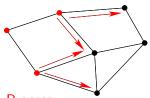
Generalization: if fittest at distance H:

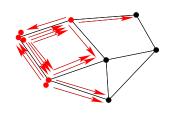
$$\mathbb{E}^{x}$$
(nb of open paths) $\leq -\partial_{x} \Big[\sinh(1-x)^{H} \cosh(1-x)^{L-H} \Big].$

First passage percolation

Hypercube started with one \bullet at $(0,0,\ldots,0)$:

[Time to infect
$$(1,1,\ldots)$$
] $\xrightarrow[L\to\infty]{} \sinh^{-1}(1)$





Branching Translation Process

$$n_t(V) = \mathbb{E}(\mathsf{nb} \mathsf{ of } \bullet \mathsf{ at } V)$$

$$\partial_t n_t(V) = \sum_{U \wedge V} n_t(U)$$

$$\partial_t n_t(H) = Hn_t(H-1) + (L-H)n_t(H+1)$$

$$\mathbb{E}^x(\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths}) \leq -\partial_x[\mathsf{sinh}^L(1-x)] \xrightarrow[L o \infty]{} \quad \mathsf{if} \; x \leq 1 - \mathsf{sinh}^{-1}(1)$$

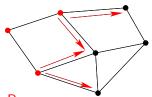
Generalization: if fittest at distance H:

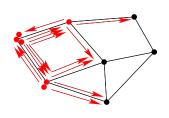
$$\mathbb{E}^{x}$$
(nb of open paths) $\leq -\partial_{x} \Big[\sinh(1-x)^{H} \cosh(1-x)^{L-H} \Big].$

First passage percolation

Hypercube started with one \bullet at $(0,0,\ldots,0)$:

[Time to infect
$$(1,1,\ldots)$$
] $\xrightarrow[L\to\infty]{} \sinh^{-1}(1)$





Branching Translation Process

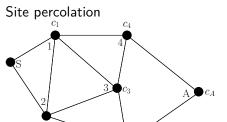
$$n_t(V) = \mathbb{E}(\mathsf{nb} \; \mathsf{of} \; ullet \; \mathsf{at} \; V)$$

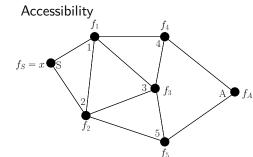
$$\partial_t n_t(V) = \sum_{U \wedge V} n_t(U)$$

$$\partial_t n_t(H) = H n_t(H-1) + (L-H) n_t(H+1)$$

$$n_t(H) = \sinh(t)^H \cosh(t)^{L-H}$$

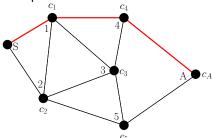
Martinsson's result for any graph





Martinsson's result for any graph

Site percolation



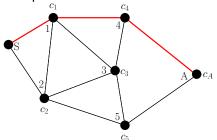
Time (or cost) = $c_1 + c_4 + c_A$ T_A =minimal time to reach A

Accessibility $f_1 \qquad f_4$ $f_5 = x \bullet S$ 2 $3 \quad f_3$ $A \quad f$

Accessible if $x < f_1 < f_4 < f_A$ A accessible iff such a path exists

Martinsson's result for any graph

Site percolation



Time (or cost) = $c_1 + c_4 + c_A$ T_A =minimal time to reach A

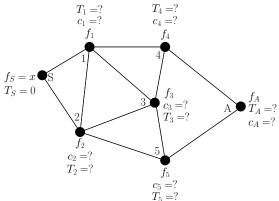
Accessibility $f_1 \qquad f_4$ $f_S = x \bullet S$ $f_2 \qquad f_3 \qquad A \bullet f_2$

Accessible if $x < f_1 < f_4 < f_A$ A accessible iff such a path exists

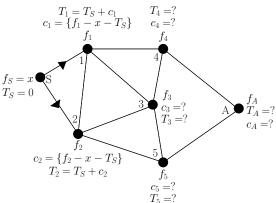
(Martinsson 2015)

$$\mathbb{P}(T_A < 1 - x) = \mathbb{P}^x(A \text{ is accessible})$$

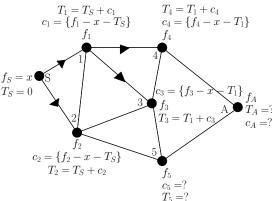
But no relation betwen the number of paths with a time smaller than 1-x and the number of accessible paths!



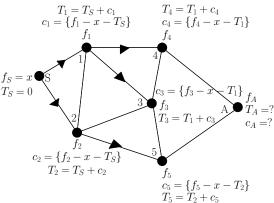
• At first, we choose the f_i



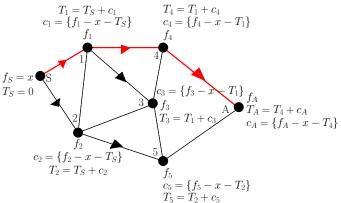
- At first, we choose the f_i
- We compute c_1 , c_2 , T_1 and T_2 . Notation: $\{\cdot\}$ = fractional part (\cdot) .



- At first, we choose the f_i
- We compute c_1 , c_2 , T_1 and T_2 . Notation: $\{\cdot\}$ = fractional part (\cdot) .
- Assume $T_1 < T_2$. We compute c_3 , c_4 , T_3 , T_4

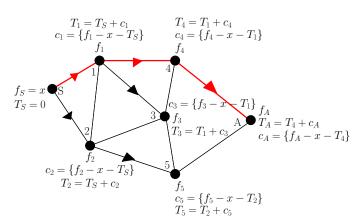


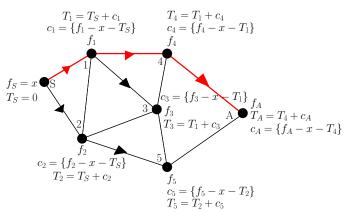
- At first, we choose the f_i
- We compute c_1 , c_2 , T_1 and T_2 . Notation: $\{\cdot\}$ = fractional part (\cdot) .
- Assume $T_1 < T_2$. We compute c_3 , c_4 , T_3 , T_4
- Assume $T_2 < T_3$ and $T_2 < T_4$. We compute c_5 and T_5



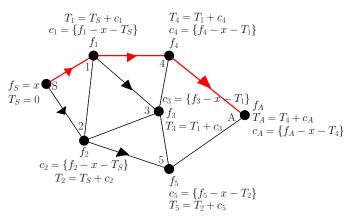
- At first, we choose the f_i
- We compute c_1 , c_2 , T_1 and T_2 . Notation: $\{\cdot\}$ = fractional part (\cdot) .
- Assume $T_1 < T_2$. We compute c_3 , c_4 , T_3 , T_4
- Assume $T_2 < T_3$ and $T_2 < T_4$. We compute c_5 and T_5
- Assume $T_4 < T_5$. We compute c_A and T_A

4D > 4A > 4B > 4B > B 900

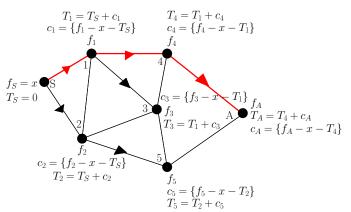




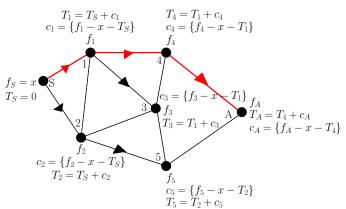
Notice that $f_i = \{x + T_i\}$ and $T_A = c_1 + c_4 + c_A$



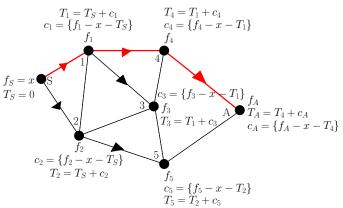
Notice that $f_i = \{x + T_i\}$ and $T_A = c_1 + c_4 + c_A$ Best path accessible if $x < \{x + c_1\} < \{x + c_1 + c_4\} < \{x + c_1 + c_4 + c_A\}$



Notice that $f_i=\{x+T_i\}$ and $T_A=c_1+c_4+c_A$ Best path accessible if $x<\{x+c_1\}<\{x+c_1+c_4\}<\{x+c_1+c_4\}$ If $T_A<1-x$, then the best path is accessible



Notice that $f_i=\{x+T_i\}$ and $T_A=c_1+c_4+c_A$ Best path accessible if $x<\{x+c_1\}<\{x+c_1+c_4\}<\{x+c_1+c_4+c_A\}$ If $T_A<1-x$, then the best path is accessible If $T_A>1-x$, then no path is accessible



Notice that $f_i = \{x + T_i\}$ and $T_A = c_1 + c_4 + c_A$ Best path accessible if $x < \{x + c_1\} < \{x + c_1 + c_4\} < \{x + c_1 + c_4 + c_A\}$ If $T_A < 1 - x$, then the best path is accessible If $T_A > 1 - x$, then no path is accessible

 $\mathbb{P}(T_{\Delta} < 1 - x)$

 $= \mathbb{P}^{x}(A \text{ is accessible})$

When only forward steps are allowed

- Forward steps only are allowed
- Fittest site is $(1,1,1,\ldots,1)$
- Starting site $(0,0,0,\ldots,0)$ has fitness x=X/L
- $L \to \infty$

$$\frac{1}{L}\left(\text{nb of open paths if starting fitness is } x = \frac{X}{L}\right) \to \mathrm{e}^{-X} \times \mathcal{E} \times \mathcal{E}'$$

with ${\mathcal E}$ and ${\mathcal E}'$ two independent exponential variables

One already knows that

• $\mathbb{E}^{\frac{X}{L}}$ (nb of open paths) = $L(1-x)^{L-1} \sim Le^{-X}$

When only forward steps are allowed

- Forward steps only are allowed
- Fittest site is $(1,1,1,\ldots,1)$
- Starting site $(0,0,0,\ldots,0)$ has fitness x=X/L
- $L \to \infty$

$$\frac{1}{L}\left(\text{nb of open paths if starting fitness is } x = \frac{X}{L}\right) \to e^{-X} \times \mathcal{E} \times \mathcal{E}'$$

with ${\mathcal E}$ and ${\mathcal E}'$ two independent exponential variables

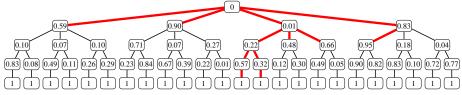
One already knows that

- $\mathbb{E}^{\frac{X}{L}}$ (nb of open paths) = $L(1-x)^{L-1} \sim Le^{-X}$
- ullet There are indeed typically $\propto L$ open paths


```
Hypercube is hard; try a tree! 1^{st} step: L choices; 2^{nd} step: L-1 choices; 3^{rd} step: L-2 choices; ...
```

Hypercube is hard; try a tree!

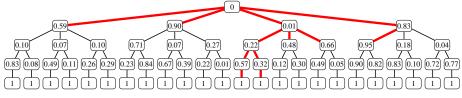
 $1^{\rm st}$ step: L choices; $2^{\rm nd}$ step: L-1 choices; $3^{\rm rd}$ step: L-2 choices; ...



$$\mathbb{E}^{\frac{X}{L}}[\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths}] = L(1-x)^{L-1} \sim Le^{-X} \quad \mathsf{same} \; \mathsf{for} \; \mathsf{tree} \; \mathsf{or} \; \mathsf{hypercube!}$$

Hypercube is hard; try a tree!

 $1^{\rm st}$ step: L choices; $2^{\rm nd}$ step: L-1 choices; $3^{\rm rd}$ step: L-2 choices; ...

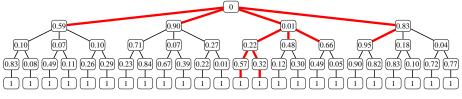


$$\mathbb{E}^{rac{X}{L}}[\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths}] = \mathit{L}(1-x)^{L-1} \sim \mathit{Le}^{-X} \;\;\;\; \mathsf{same} \; \mathsf{for} \; \mathsf{tree} \; \mathsf{or} \; \mathsf{hypercube!}$$

$$\mathbb{E}^{rac{X}{L}}[(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths})^2] \sim \left\{2L^2e^{-2X}\quad(\mathsf{tree})
ight.$$

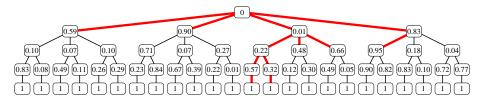
Hypercube is hard; try a tree!

 $1^{\rm st}$ step: L choices; $2^{\rm nd}$ step: L-1 choices; $3^{\rm rd}$ step: L-2 choices; ...

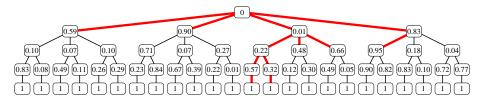


 $\mathbb{E}^{\frac{X}{L}}[\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths}] = L(1-x)^{L-1} \sim Le^{-X} \quad \mathsf{same} \; \mathsf{for} \; \mathsf{tree} \; \mathsf{or} \; \mathsf{hypercube!}$

$$\mathbb{E}^{rac{X}{L}}[(ext{nb of open paths})^2] \sim egin{cases} 2L^2e^{-2X} & (ext{tree}) \ 4L^2e^{-2X} & (ext{hypercube}) \end{cases}$$

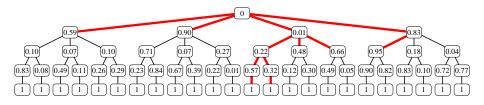


(Nb of open paths) =
$$\sum_{|\sigma|=1}$$
 (nb of open paths going through σ)



(Nb of open paths)
$$=\sum_{|\sigma|=1}$$
 (nb of open paths going through σ)

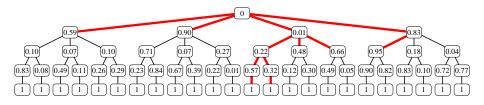
$$\mathit{G}(\lambda,x,\mathit{L}) := \mathbb{E}^{x}(e^{-\lambda(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths})})$$



(Nb of open paths) =
$$\sum_{|\sigma|=1}$$
 (nb of open paths going through σ)

$$\mathit{G}(\lambda,x,\mathit{L}) := \mathbb{E}^{x}(e^{-\lambda(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths})})$$

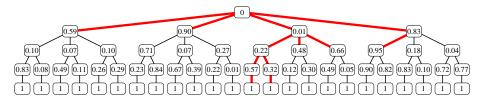
$$G(\lambda, x, L) = \begin{bmatrix} & & \\ & & \end{bmatrix}$$



(Nb of open paths)
$$=\sum_{|\sigma|=1}$$
 (nb of open paths going through σ)

$$\mathit{G}(\lambda,x,\mathit{L}) := \mathbb{E}^{x}(e^{-\lambda(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths})})$$

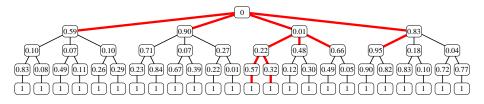
$$G(\lambda, x, L) = \left[x + \frac{1}{2}\right]^{L}$$



(Nb of open paths)
$$=\sum_{|\sigma|=1}$$
 (nb of open paths going through σ)

$$\mathit{G}(\lambda,x,\mathit{L}) := \mathbb{E}^{x}(e^{-\lambda(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths})})$$

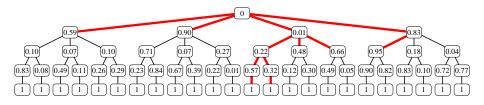
$$G(\lambda, x, L) = \left[x + \int_{x}^{1} dy \ G(\lambda, y, L - 1)\right]^{L}$$



(Nb of open paths) =
$$\sum_{|\sigma|=1}$$
 (nb of open paths going through σ)

$$\mathit{G}(\lambda,x,\mathit{L}) := \mathbb{E}^{x}(e^{-\lambda(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths})})$$

$$G(\lambda, x, L) = \left[x + \int_{x}^{1} dy \ G(\lambda, y, L - 1)\right]^{L}, \qquad G(\lambda, x, 1) = e^{-\lambda}$$



(Nb of open paths)
$$=\sum_{|\sigma|=1}$$
 (nb of open paths going through σ)

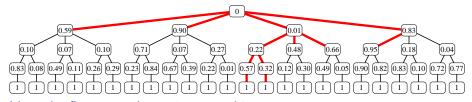
Sum of uncorrelated terms (because it is a tree), generating function

$$\mathit{G}(\lambda,x,\mathit{L}) := \mathbb{E}^{x}(e^{-\lambda(\mathsf{nb}\;\mathsf{of}\;\mathsf{open}\;\mathsf{paths})})$$

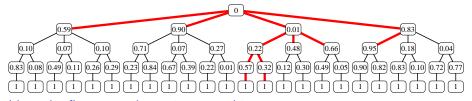
$$G(\lambda, x, L) = \left[x + \int_{x}^{1} dy \ G(\lambda, y, L - 1)\right]^{L}, \qquad G(\lambda, x, 1) = e^{-\lambda}$$

$$\lim_{L\to\infty}G\left(\frac{\mu}{L},\frac{X}{L},L\right)=?$$

(ロト 4団 ト 4 重 ト 4 重 ト 9 Q O



Idea: the first steps determine everything

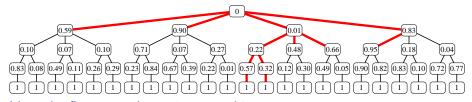


Idea: the first steps determine everything

$$\Theta = (\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths}), \qquad \Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = (\mathsf{info} \; \mathsf{up} \; \mathsf{to} \; \mathsf{level} \; k)$$

$$\Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k),$$

$$\mathcal{F}_k = (\text{info up to level } k)$$



Idea: the first steps determine everything

$$\Theta = (\mathsf{nb} \ \mathsf{of} \ \mathsf{open} \ \mathsf{paths}), \qquad \Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = (\mathsf{info} \ \mathsf{up} \ \mathsf{to} \ \mathsf{level} \ k)$$

$$\Theta_k = \sum_{|\sigma|=k} \mathbb{1}_{\{\sigma \text{ open}\}} \underbrace{(L-k)(1-x_\sigma)^{L-k-1}}_{\text{expected nb of open paths through } \sigma}$$

$$\Theta_1 = 3(1 - 0.59)^2 + 3(1 - 0.90)^2 + 3(1 - 0.01)^2 + 3(1 - 0.83)^2 = 3.5613$$

$$\Theta_2 = 2(1 - 0.22)^1 + 2(1 - 0.48)^1 + 2(1 - 0.66)^1 + 2(1 - 0.95)^1 = 3.38$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

$$\Theta = \text{(nb of open paths)}, \qquad \Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = \text{(info up to level } k)$$

Intuitively, $\Theta_k \approx \Theta$ if $Var(\Theta|\mathcal{F}_k)$ is small

$$\Theta = (\mathsf{nb} \ \mathsf{of} \ \mathsf{open} \ \mathsf{paths}), \qquad \Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = (\mathsf{info} \ \mathsf{up} \ \mathsf{to} \ \mathsf{level} \ k)$$

Intuitively, $\Theta_k \approx \Theta$ if $\mathbb{E}\big[\mathsf{Var}(\Theta|\mathcal{F}_k)\big]$ is small

$$\Theta = (\mathsf{nb} \ \mathsf{of} \ \mathsf{open} \ \mathsf{paths}), \qquad \Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = (\mathsf{info} \ \mathsf{up} \ \mathsf{to} \ \mathsf{level} \ k)$$

Intuitively, $\Theta_k \approx \Theta$ if $\mathbb{E}\big[\operatorname{Var}(\Theta|\mathcal{F}_k)\big]$ is small

$$\lim_{L \to \infty} \mathbb{P}^{\frac{X}{L}} \left[\frac{\Theta}{L} < z \right] = \lim_{k \to \infty} \lim_{L \to \infty} \mathbb{P}^{\frac{X}{L}} \left[\frac{\Theta_k}{L} < z \right]$$
 if

$$\Theta = \text{(nb of open paths)}, \qquad \Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = \text{(info up to level } k)$$

Intuitively, $\Theta_k \approx \Theta$ if $\mathbb{E}[\mathsf{Var}(\Theta|\mathcal{F}_k)]$ is small

$$\lim_{L \to \infty} \mathbb{P}^{\frac{X}{L}} \left[\frac{\Theta}{L} < z \right] = \lim_{k \to \infty} \lim_{L \to \infty} \mathbb{P}^{\frac{X}{L}} \left[\frac{\Theta_k}{L} < z \right] \text{ if } \lim_{k \to \infty} \lim_{L \to \infty} \mathbb{E}^{\frac{X}{L}} \left[\text{Var} \left[\frac{\Theta}{L} \middle| \mathcal{F}_k \right] \right] = 0$$

$$\Theta = \text{(nb of open paths)}, \qquad \Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = \text{(info up to level } k)$$

Intuitively, $\Theta_k \approx \Theta$ if $\mathbb{E}[\mathsf{Var}(\Theta|\mathcal{F}_k)]$ is small

$$\lim_{L \to \infty} \mathbb{P}^{\frac{X}{L}} \left[\frac{\Theta}{L} < z \right] = \lim_{k \to \infty} \lim_{L \to \infty} \mathbb{P}^{\frac{X}{L}} \left[\frac{\Theta_k}{L} < z \right] \text{ if } \lim_{k \to \infty} \lim_{L \to \infty} \mathbb{E}^{\frac{X}{L}} \left[\text{Var} \left[\frac{\Theta}{L} \middle| \mathcal{F}_k \right] \right] = 0$$

But (sum over pairs of paths):

$$\lim_{L \to \infty} \mathbb{E}^{\frac{X}{L}} \left[\mathsf{Var} \left[\frac{\Theta}{L} \middle| \mathcal{F}_k \right] \right] = \frac{e^{-2X}}{2^k}$$

In the $L \to \infty$, $k \to \infty$ limit, Θ/L and Θ_k/L have the same distribution

◆ロト ◆個ト ◆差ト ◆差ト 差 める○

 $\Theta =$ (nb of open paths), $\Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k =$ (info up to level k) We want to write a generating function.

$$\Theta = (\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths}), \qquad \Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = (\mathsf{info} \; \mathsf{up} \; \mathsf{to} \; \mathsf{level} \; k)$$

We want to write a generating function.

For Θ , we used

$$\Theta = \sum_{|\sigma|=1}$$
 (nb of open paths through σ)

$$\Theta = (\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths}), \qquad \Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = (\mathsf{info} \; \mathsf{up} \; \mathsf{to} \; \mathsf{level} \; k)$$

We want to write a generating function.

For Θ , we used

$$\Theta = \sum_{|\sigma|=1}$$
 (nb of open paths through σ)

Now, for Θ_k , we use

$$\Theta_k = \sum_{|\sigma|=1} \mathbb{1}_{\{x_\sigma>x\}}("\Theta_{k-1}" \text{ of the } L-1 \text{ tree rooted on } \sigma)$$

$$\Theta = (\mathsf{nb} \ \mathsf{of} \ \mathsf{open} \ \mathsf{paths}), \qquad \Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = (\mathsf{info} \ \mathsf{up} \ \mathsf{to} \ \mathsf{level} \ k)$$

We want to write a generating function.

For Θ , we used

$$\Theta = \sum_{|\sigma|=1}$$
 (nb of open paths through σ)

Now, for Θ_k , we use

$$\Theta_k = \sum_{|\sigma|=1} \mathbb{1}_{\{x_\sigma>x\}} (`\Theta_{k-1}" ext{ of the } L-1 ext{ tree rooted on } \sigma)$$

New generating function:

$$G_k(\lambda, x, L) := \mathbb{E}^x(e^{-\lambda\Theta_k})$$

$$\Theta = (\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths}), \qquad \Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = (\mathsf{info} \; \mathsf{up} \; \mathsf{to} \; \mathsf{level} \; k)$$

We want to write a generating function.

For Θ , we used

$$\Theta = \sum_{|\sigma|=1}$$
 (nb of open paths through σ)

Now, for Θ_k , we use

$$\Theta_k = \sum_{|\sigma|=1} \mathbb{1}_{\{x_\sigma>x\}}("\Theta_{k-1}" \text{ of the } L-1 \text{ tree rooted on } \sigma)$$

New generating function:

$$G_k(\lambda, x, L) := \mathbb{E}^x(e^{-\lambda\Theta_k}) = \left[x + \int_x^1 \mathrm{d}y \ G_{k-1}(\lambda, y, L-1)\right]^L$$

$$\Theta = (\mathsf{nb} \ \mathsf{of} \ \mathsf{open} \ \mathsf{paths}), \qquad \Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = (\mathsf{info} \ \mathsf{up} \ \mathsf{to} \ \mathsf{level} \ k)$$

We want to write a generating function.

For Θ , we used

$$\Theta = \sum_{|\sigma|=1}$$
 (nb of open paths through σ)

Now, for Θ_k , we use

$$\Theta_k = \sum_{|\sigma|=1} \mathbb{1}_{\{x_{\sigma}>x\}}("\Theta_{k-1}" \text{ of the } L-1 \text{ tree rooted on } \sigma)$$

New generating function:

$$G_k(\lambda, x, L) := \mathbb{E}^x (e^{-\lambda \Theta_k}) = \left[x + \int_x^1 \mathrm{d}y \ G_{k-1}(\lambda, y, L-1) \right]^L$$
$$= \left[1 - \int_x^1 \mathrm{d}y \left(1 - G_{k-1}(\lambda, y, L-1) \right) \right]^L$$

$$\Theta = (\mathsf{nb} \; \mathsf{of} \; \mathsf{open} \; \mathsf{paths}), \qquad \Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = (\mathsf{info} \; \mathsf{up} \; \mathsf{to} \; \mathsf{level} \; k)$$

We want to write a generating function.

For Θ , we used

$$\Theta = \sum_{|\sigma|=1}$$
 (nb of open paths through σ)

Now, for Θ_k , we use

$$\Theta_k = \sum_{|\sigma|=1} \mathbb{1}_{\{x_\sigma>x\}}("\Theta_{k-1}" \text{ of the } L-1 \text{ tree rooted on } \sigma)$$

New generating function:

$$G_k(\lambda, x, L) := \mathbb{E}^x (e^{-\lambda \Theta_k}) = \left[x + \int_x^1 \mathrm{d}y \, G_{k-1}(\lambda, y, L-1) \right]^L$$
$$= \left[1 - \int_x^1 \mathrm{d}y \, \left(1 - G_{k-1}(\lambda, y, L-1) \right) \right]^L$$

 $G_0(\lambda, x, L) = e^{-\lambda L(1-x)^{L-1}}$

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ト り ぬ ○ ○

$$G_k(\lambda, x, L) := \mathbb{E}^x (e^{-\lambda \Theta_k}) = \left[1 - \int_x^1 \mathrm{d}y \left(1 - G_{k-1}(\lambda, y, L-1)\right)\right]^L$$

$$G_0(\lambda, x, L) = e^{-\lambda L(1-x)^{L-1}}$$

$$G_k(\lambda, x, L) := \mathbb{E}^x \left(e^{-\lambda \Theta_k} \right) = \left[1 - \int_x^1 \mathrm{d}y \left(1 - G_{k-1}(\lambda, y, L - 1) \right) \right]^L$$

$$G_0(\lambda, x, L) = e^{-\lambda L(1-x)^{L-1}}$$

$$\begin{split} G_k\Big(\frac{\mu}{L},\frac{X}{L},L\Big) &= \mathbb{E}^{\frac{X}{L}}\big(e^{-\mu\frac{\Theta_k}{L}}\big) = \left[1 - \frac{1}{L}\int_X^L \mathrm{d}Y \left(1 - G_{k-1}\Big(\frac{\mu}{L},\frac{Y}{L},L-1\Big)\right)\right]^L \\ G_0\Big(\frac{\mu}{L},\frac{X}{L},L\Big) &= e^{-\mu\left(1 - \frac{X}{L}\right)^{L-1}} \end{split}$$

$$G_k(\lambda, x, L) := \mathbb{E}^x (e^{-\lambda \Theta_k}) = \left[1 - \int_x^1 \mathrm{d}y \left(1 - G_{k-1}(\lambda, y, L-1)\right)\right]^L$$

$$G_0(\lambda, x, L) = e^{-\lambda L(1-x)^{L-1}}$$

$$\begin{split} & G_k\Big(\frac{\mu}{L},\frac{X}{L},L\Big) = \mathbb{E}^{\frac{X}{L}}\big(e^{-\mu\frac{\Theta_k}{L}}\big) = \Big[1 - \frac{1}{L}\int_X^L \mathrm{d}Y\,\Big(1 - G_{k-1}\Big(\frac{\mu}{L},\frac{Y}{L},L-1\Big)\Big)\Big]^L \\ & G_0\Big(\frac{\mu}{L},\frac{X}{L},L\Big) = e^{-\mu\big(1 - \frac{X}{L}\big)^{L-1}} \end{split}$$

One can then prove that $F_k(\mu, X) = \lim_{L \to \infty} G_k(\frac{\mu}{L}, \frac{X}{L}, L)$ exists and

$$F_k(\mu, X) = \exp\left[-\int_X^\infty dY (1 - F_{k-1}(\mu, Y))\right], \quad F_0(\mu, X) = \exp\left(-\mu e^{-X}\right)$$

 F_k is the generating function of $\lim_{L\to\infty} \frac{\Theta_k}{L}$ when starting fron $\frac{X}{L}$.

$$\lim_{L\to\infty} \mathbb{E}^{\frac{X}{L}}(e^{-\mu\frac{\Theta_k}{L}}) = F_k(\mu, X)$$

$$G_k(\lambda, x, L) := \mathbb{E}^x (e^{-\lambda \Theta_k}) = \left[1 - \int_x^1 \mathrm{d}y \left(1 - G_{k-1}(\lambda, y, L-1)\right)\right]^L$$

$$G_0(\lambda, x, L) = e^{-\lambda L(1-x)^{L-1}}$$

$$\begin{split} G_k\Big(\frac{\mu}{L},\frac{X}{L},L\Big) &= \mathbb{E}^{\frac{X}{L}}(e^{-\mu\frac{\Theta_k}{L}}) = \Big[1 - \frac{1}{L}\int_X^L \mathrm{d}Y\,\Big(1 - G_{k-1}\Big(\frac{\mu}{L},\frac{Y}{L},L-1\Big)\Big)\Big]^L \\ G_0\Big(\frac{\mu}{L},\frac{X}{L},L\Big) &= e^{-\mu\big(1 - \frac{X}{L}\big)^{L-1}} \end{split}$$

One can then prove that $F_k(\mu, X) = \lim_{L \to \infty} G_k(\frac{\mu}{L}, \frac{X}{L}, L)$ exists and

$$F_k(\mu, X) = \exp\left[-\int_X^\infty dY (1 - F_{k-1}(\mu, Y))\right], \quad F_0(\mu, X) = \exp\left(-\mu e^{-X}\right)$$

 F_k is the generating function of $\lim_{L\to\infty} \frac{\Theta_k}{L}$ when starting fron $\frac{X}{L}$. Take $k\to\infty$:

$$\lim_{k\to\infty}\lim_{L\to\infty}\mathbb{E}^{\frac{X}{L}}(e^{-\mu\frac{\Theta_k}{L}})=\lim_{k\to\infty}F_k(\mu,X)$$

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ から(で)

$$G_k(\lambda, x, L) := \mathbb{E}^x (e^{-\lambda \Theta_k}) = \left[1 - \int_x^1 \mathrm{d}y \left(1 - G_{k-1}(\lambda, y, L-1)\right)\right]^L$$

$$G_0(\lambda, x, L) = e^{-\lambda L(1-x)^{L-1}}$$

$$\begin{split} G_k\Big(\frac{\mu}{L},\frac{X}{L},L\Big) &= \mathbb{E}^{\frac{X}{L}}(e^{-\mu\frac{\Theta_k}{L}}) = \Big[1 - \frac{1}{L}\int_X^L \mathrm{d}Y\,\Big(1 - G_{k-1}\Big(\frac{\mu}{L},\frac{Y}{L},L-1\Big)\Big)\Big]^L \\ G_0\Big(\frac{\mu}{L},\frac{X}{L},L\Big) &= e^{-\mu\big(1 - \frac{X}{L}\big)^{L-1}} \end{split}$$

One can then prove that $F_k(\mu, X) = \lim_{L \to \infty} G_k(\frac{\mu}{L}, \frac{X}{L}, L)$ exists and

$$F_k(\mu, X) = \exp\left[-\int_X^\infty dY (1 - F_{k-1}(\mu, Y))\right], \quad F_0(\mu, X) = \exp\left(-\mu e^{-X}\right)$$

 F_k is the generating function of $\lim_{L\to\infty}\frac{\Theta_k}{L}$ when starting fron $\frac{X}{L}$. Take $k\to\infty$:

$$\lim_{L\to\infty} \mathbb{E}^{\frac{X}{L}}(e^{-\mu\frac{\Theta}{L}}) = \lim_{k\to\infty} \lim_{L\to\infty} \mathbb{E}^{\frac{X}{L}}(e^{-\mu\frac{\Theta_k}{L}}) = \lim_{k\to\infty} F_k(\mu, X) = \frac{1}{1+\mu e^{-X}}$$

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

$$G_k(\lambda, x, L) := \mathbb{E}^x \left(e^{-\lambda \Theta_k} \right) = \left[1 - \int_x^1 \mathrm{d}y \left(1 - G_{k-1}(\lambda, y, L - 1) \right) \right]^L$$

$$G_0(\lambda, x, L) = e^{-\lambda L(1-x)^{L-1}}$$

$$\begin{split} G_k\Big(\frac{\mu}{L},\frac{X}{L},L\Big) &= \mathbb{E}^{\frac{X}{L}}\big(e^{-\mu\frac{\Theta_k}{L}}\big) = \Big[1 - \frac{1}{L}\int_X^L \mathrm{d}Y\,\Big(1 - G_{k-1}\Big(\frac{\mu}{L},\frac{Y}{L},L-1\Big)\Big)\Big]^L \\ G_0\Big(\frac{\mu}{L},\frac{X}{L},L\Big) &= e^{-\mu\big(1 - \frac{X}{L}\big)^{L-1}} \end{split}$$

One can then prove that $F_k(\mu, X) = \lim_{L \to \infty} G_k(\frac{\mu}{L}, \frac{X}{L}, L)$ exists and

$$F_k(\mu, X) = \exp\left[-\int_X^\infty dY (1 - F_{k-1}(\mu, Y))\right], \quad F_0(\mu, X) = \exp\left(-\mu e^{-X}\right)$$

 F_k is the generating function of $\lim_{L\to\infty} \frac{\Theta_k}{L}$ when starting fron $\frac{X}{L}$. Take $k\to\infty$:

$$\lim_{L\to\infty}\mathbb{E}^{\frac{X}{L}}(e^{-\mu\frac{\Theta}{L}})=\lim_{k\to\infty}\lim_{L\to\infty}\mathbb{E}^{\frac{X}{L}}(e^{-\mu\frac{\Theta_k}{L}})=\lim_{k\to\infty}F_k(\mu,X)=\frac{1}{1+\mu e^{-X}}$$

On the tree, starting from $x = \frac{X}{L}$, $\frac{\Theta}{L} = \frac{\ln \text{law}}{L \times \Omega} e^{-X} \times \mathcal{E}$

Same trick:

$$\Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = (\text{info in the } k \text{ first and } k \text{ last levels})$$

Same trick:

$$\Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = (\text{info in the } k \text{ first and } k \text{ last levels})$$

Again

$$\lim_{L \to \infty} \mathbb{P}^{\frac{X}{L}} \Big[\frac{\Theta}{L} < z \Big] = \lim_{k \to \infty} \lim_{L \to \infty} \mathbb{P}^{\frac{X}{L}} \Big[\frac{\Theta_k}{L} < z \Big] \text{ if } \lim_{k \to \infty} \lim_{L \to \infty} \mathbb{E}^{\frac{X}{L}} \Big[\text{Var} \left[\frac{\Theta}{L} \middle| \mathcal{F}_k \right] \Big] = 0$$

The expectation of the conditional variance can be computed and it works.

Same trick:

$$\Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = (\text{info in the } k \text{ first and } k \text{ last levels})$$

Again

$$\lim_{L \to \infty} \mathbb{P}^{\frac{X}{L}} \Big[\frac{\Theta}{L} < z \Big] = \lim_{k \to \infty} \lim_{L \to \infty} \mathbb{P}^{\frac{X}{L}} \Big[\frac{\Theta_k}{L} < z \Big] \text{ if } \lim_{k \to \infty} \lim_{L \to \infty} \mathbb{E}^{\frac{X}{L}} \Big[\text{Var} \left[\frac{\Theta}{L} \middle| \mathcal{F}_k \right] \Big] = 0$$

The expectation of the conditional variance can be computed and it works.

$$\Theta_k = \sum_{|\sigma| = k} \sum_{|\tau| = L - k} n_\sigma m_\tau \mathbb{1}_{\{\tau \text{ reachable from } \sigma\}} \mathbb{1}_{\{x_\sigma < x_\tau\}} (L - 2k) (x_\tau - x_\sigma)^{L - 2k - 1}$$

 $n_{\sigma}=$ nb of open paths from (0,...,0) to σ ; $m_{ au}=$ nb from au to (1,...,1)

Same trick:

$$\Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = (\text{info in the } k \text{ first and } k \text{ last levels})$$

Again

$$\lim_{L \to \infty} \mathbb{P}^{\frac{X}{L}} \Big[\frac{\Theta}{L} < z \Big] = \lim_{k \to \infty} \lim_{L \to \infty} \mathbb{P}^{\frac{X}{L}} \Big[\frac{\Theta_k}{L} < z \Big] \text{ if } \lim_{k \to \infty} \lim_{L \to \infty} \mathbb{E}^{\frac{X}{L}} \Big[\text{Var} \left[\frac{\Theta}{L} \middle| \mathcal{F}_k \right] \Big] = 0$$

The expectation of the conditional variance can be computed and it works.

$$\Theta_k = \sum_{|\sigma| = k} \sum_{|\tau| = L - k} n_\sigma m_\tau \mathbb{1}_{\{\tau \text{ reachable from } \sigma\}} \mathbb{1}_{\{x_\sigma < x_\tau\}} (L - 2k) (x_\tau - x_\sigma)^{L - 2k - 1}$$

 $n_{\sigma}=$ nb of open paths from (0,...,0) to σ ; $m_{ au}=$ nb from au to (1,...,1)

$$\tilde{\Theta}_k := \sum_{|\sigma|=k} \sum_{|\tau|=L-k} n_{\sigma} m_{\tau} \, L(x_{\tau} - x_{\sigma} x_{\tau})^{L-2k-1}$$

Same trick:

$$\Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = (\text{info in the } k \text{ first and } k \text{ last levels})$$

Again

$$\lim_{L \to \infty} \mathbb{P}^{\frac{X}{L}} \Big[\frac{\Theta}{L} < z \Big] = \lim_{k \to \infty} \lim_{L \to \infty} \mathbb{P}^{\frac{X}{L}} \Big[\frac{\Theta_k}{L} < z \Big] \text{ if } \lim_{k \to \infty} \lim_{L \to \infty} \mathbb{E}^{\frac{X}{L}} \Big[\text{Var} \left[\frac{\Theta}{L} \middle| \mathcal{F}_k \right] \Big] = 0$$

The expectation of the conditional variance can be computed and it works.

$$\Theta_k = \sum_{|\sigma| = k} \sum_{|\tau| = L - k} n_\sigma m_\tau \mathbb{1}_{\{\tau \text{ reachable from } \sigma\}} \mathbb{1}_{\{x_\sigma < x_\tau\}} (L - 2k) (x_\tau - x_\sigma)^{L - 2k - 1}$$

 $n_{\sigma}=$ nb of open paths from (0,...,0) to σ ; $m_{ au}=$ nb from au to (1,...,1)

$$\tilde{\Theta}_k := \sum_{|\sigma|=k} \sum_{|\tau|=L-k} n_{\sigma} m_{\tau} \, L(x_{\tau} - x_{\sigma} \mathbf{x}_{\tau})^{L-2k-1}$$

$$\tilde{\Theta}_k > \Theta_k \text{, but not that much: } \lim_{L \to \infty} \mathbb{E}^{\frac{X}{L}} \big[\frac{\Theta_k}{L} \big] = \lim_{L \to \infty} \mathbb{E}^{\frac{X}{L}} \big[\frac{\tilde{\Theta}_k}{L} \big]$$

◆ロト ◆問 ト ◆恵 ト ◆恵 ト ・恵 ・ 釣 Q ○

Same trick:

$$\Theta_k = \mathbb{E}(\Theta|\mathcal{F}_k), \qquad \mathcal{F}_k = (\text{info in the } k \text{ first and } k \text{ last levels})$$

Again

$$\lim_{L \to \infty} \mathbb{P}^{\frac{X}{L}} \Big[\frac{\Theta}{L} < z \Big] = \lim_{k \to \infty} \lim_{L \to \infty} \mathbb{P}^{\frac{X}{L}} \Big[\frac{\Theta_k}{L} < z \Big] \text{ if } \lim_{k \to \infty} \lim_{L \to \infty} \mathbb{E}^{\frac{X}{L}} \Big[\text{Var} \left[\frac{\Theta}{L} \middle| \mathcal{F}_k \right] \Big] = 0$$

The expectation of the conditional variance can be computed and it works.

$$\Theta_k = \sum_{|\sigma| = k} \sum_{|\tau| = L - k} n_\sigma m_\tau \mathbb{1}_{\{\tau \text{ reachable from } \sigma\}} \mathbb{1}_{\{x_\sigma < x_\tau\}} (L - 2k) (x_\tau - x_\sigma)^{L - 2k - 1}$$

 $n_{\sigma}=$ nb of open paths from (0,...,0) to σ ; $m_{\tau}=$ nb from τ to (1,...,1)

$$\tilde{\Theta}_k := \sum_{|\sigma|=k} \sum_{|\tau|=L-k} n_{\sigma} m_{\tau} \, L(x_{\tau} - x_{\sigma} \mathbf{x}_{\tau})^{L-2k-1}$$

$$\tilde{\Theta}_k > \Theta_k, \text{ but not that much: } \lim_{L \to \infty} \mathbb{E}^{\frac{X}{L}} \big[\frac{\Theta_k}{L} \big] = \lim_{L \to \infty} \mathbb{E}^{\frac{X}{L}} \big[\frac{\tilde{\Theta}_k}{L} \big]$$

 Θ_k/L and Θ_k/L have the same distribution for large L

$$\tilde{\Theta}_k := \sum_{|\sigma|=k} \sum_{|\tau|=L-k} n_{\sigma} m_{\tau} L (x_{\tau} - x_{\sigma} x_{\tau})^{L-2k-1}$$

$$\tilde{\Theta}_k := \sum_{|\sigma|=k} \sum_{|\tau|=L-k} n_{\sigma} m_{\tau} L (x_{\tau} - x_{\sigma} x_{\tau})^{L-2k-1}$$

$$\frac{\tilde{\Theta}_k}{L} = \left(\sum_{|\sigma|=k} n_{\sigma} (1-x_{\sigma})^{L-2k-1}\right) \left(\sum_{|\tau|=L-k} m_{\tau} (x_{\tau})^{L-2k-1}\right)$$

$$\tilde{\Theta}_k := \sum_{|\sigma|=k} \sum_{|\tau|=L-k} n_{\sigma} m_{\tau} L (x_{\tau} - x_{\sigma} x_{\tau})^{L-2k-1}$$

$$\frac{\tilde{\Theta}_k}{L} = \left(\sum_{|\sigma|=k} n_{\sigma} (1-x_{\sigma})^{L-2k-1}\right) \left(\sum_{|\tau|=L-k} m_{\tau} (x_{\tau})^{L-2k-1}\right)$$

First factor: beginning of the hypercube. Second factor: end of the hypercube. Terms are independent and symmetrical if X = 0.

$$\tilde{\Theta}_k := \sum_{|\sigma|=k} \sum_{|\tau|=L-k} n_{\sigma} m_{\tau} L (x_{\tau} - x_{\sigma} x_{\tau})^{L-2k-1}$$

$$\frac{\tilde{\Theta}_k}{L} = \left(\sum_{|\sigma|=k} n_{\sigma} (1-x_{\sigma})^{L-2k-1}\right) \left(\sum_{|\tau|=L-k} m_{\tau} (x_{\tau})^{L-2k-1}\right)$$

First factor: beginning of the hypercube. Second factor: end of the hypercube. Terms are independent and symmetrical if X=0. Last step: prove that

$$\phi_k := \sum_{|\sigma|=k} n_{\sigma} (1-x_{\sigma})^{L-2k-1} \xrightarrow[L\to\infty \text{ then } k\to\infty]{\text{in law}} e^{-X} \mathcal{E}$$

$$\tilde{\Theta}_k := \sum_{|\sigma|=k} \sum_{|\tau|=L-k} n_{\sigma} m_{\tau} L (x_{\tau} - x_{\sigma} x_{\tau})^{L-2k-1}$$

$$\frac{\tilde{\Theta}_k}{L} = \left(\sum_{|\sigma|=k} n_{\sigma} (1-x_{\sigma})^{L-2k-1}\right) \left(\sum_{|\tau|=L-k} m_{\tau} (x_{\tau})^{L-2k-1}\right)$$

First factor: beginning of the hypercube. Second factor: end of the hypercube. Terms are independent and symmetrical if X=0. Last step: prove that

$$\phi_k := \sum_{|\sigma|=k} n_{\sigma} (1-x_{\sigma})^{L-2k-1} \xrightarrow[L\to\infty \text{ then } k\to\infty]{\text{in law}} e^{-X} \mathcal{E}$$

Intuition: with k fixed and $L\to\infty$, loops become negligible, and the beginning of the hypercube looks like the beginning of the tree. So ϕ_k and $\Theta_k^{\rm tree}/L$ have the same large L distribution.

CIRM 2015

Thank you!