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@ A genome with L loci ( = location of genes)
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@ A genome with L loci ( = location of genes)
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@ There are two viable types (alleles) for each gene: the wild type (0)
and the mutated type (1)

Genome of a wild individual
(ofofofofofofoloofo[0]0)

£

(oofofofofo[o[0]o]1]0]0)

With one mutation O
(ofofofofofof1]ofo]1]0]0]

With two mutations

@ During reproduction, when a mutation occurs, only one gene is
affected.
0 — 1: forward mutation 1 — 0: backward mutation
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Low mutation rate, population not too large

When a mutation occurs,
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Low mutation rate, population not too large

When a mutation occurs, it might grow, and then
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Low mutation rate, population not too large

When a mutation occurs, it might grow, and then
it might disappear,
it might replace the previous type (fixation),
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but a new mutation has no time to appear
before the population is homogeneous again
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Evolutionary paths and Hypercube

Big simplification:
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Evolutionary paths and Hypercube
Big simplification:

e o [ 2PN AAAAA E B g
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(0]oJoJoJofooJofofoJo0) (ofoofofofo]o]1]oJo]0f0) (ofoJofoJoJofoft]o 1 o]0)

Evolutionary path = walk on the hypercube J

(0 — 1: forward mutation 1 — 0: backward mutation)

Gillespie 1983, Kauffman Levin 1987
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Fitness and selection

Evolutionary path = walk on the hypercube J

@ To each of the 2L genomes one associates a fitness value

@ Assume strong selection
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Fitness and selection

Evolutionary path = walk on the hypercube )

@ To each of the 2L genomes one associates a fitness value
@ Assume strong selection

@ A transition (= a mutation fixates) may occur only if the fitness value
increases

0.17 0.38

Open or accessible evolutionary path =
walk on the hypercube such that fitness values increase along the walk
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Choosing the fitness values

o Flat landscape: fitness value proportional to

043 1
number of mutations. All forward paths are w '
. 007,/ 0.55
accessible. 1
@ Rough landscape: no clear relationship 076§ ]0.33
between fitness value and number of 010]0)L
0.17 0.38

mutations. Lots of local extrema, valleys
and dead ends.
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Choosing the fitness values

]
0.43 1

0.07 | 0.55 |

@ Rough landscape: no clear relationship 076§ ]0.33
between fitness value and number of 0]0]0JL

mutations. Lots of local extrema, valleys
and dead ends.

. Roughest landscape of all

the House of Cards model
Fitness values are independent random numbers

Kingman 1978
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Choosing the fitness values

]
0.43 1

0.07 | 0.55 |

@ Rough landscape: no clear relationship 076§ ]0.33
between fitness value and number of 0]0]0JL

mutations. Lots of local extrema, valleys
and dead ends.

. Roughest landscape of all

the House of Cards model
Fitness values are independent random numbers

Kingman 1978

The question: can the population reach the fittest possible state? )
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Summary of the model

asexual population
low mutation rate

high selection

House of Cards fitnesses

Is there an accessible path to the fittest site 7 How many are there ? )
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Summary of the model
o Consider a L-hypercube.

@ Each site is assigned an independent

asexual population h
pop random value, its fitness.

low mutation rate

high selection

House of Cards fitnesses

@ A path is said to be accessible if the
fitness values increase along it.

@ One starts from site (0,0,0,...,0).

Is there an accessible path to the fittest site ? How many are there ? J
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Summary of the model

o Consider a L-hypercube.
@ asexual population °
© low mutation rate @ Choose location of the fittest site; give
@ high selection it a fitness value 1
@ House of Cards fitnesses

The other sites get independent uniform
fitness values between 0 and 1

A path is said to be accessible if the
fitness values increase along it.

@ One starts from site (0,0,0,...,0).

Is there an accessible path to the fittest site ? How many are there ? J

Remarks:
@ The answer does not depend on the (continuous) distribution

@ The fittest site is uniformly chosen among the 2L sites
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Results

@ When one allows only forward mutations
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Only forward mutations

@ No backward mutation, only 0 — 1 and never 1 — 0, path length is L.
e Starting from (0,0,0,...,0), assume fittest site is (1,1,1,...,1)

Nowak Krug 2013, Hegarty Martinsson.2012
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Only forward mutations

No backward mutation, only 0 — 1 and never 1 — 0, path length is L.
Starting from (0,0,0,...,0), assume fittest site is (1,1,1,...,1)
Total number of paths is L!

Probability a given path is open is 1/L!

Nowak Krug 2013, Hegarty Martinsson.2012
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E(nb of open paths) =1 ‘
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‘E(nb of open paths) =1 ‘

But... Conditionally on the event that starting position has given fitness x
o Probability a given path is open is (1 — x)-=1/(L — 1)!
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@ No backward mutation, only 0 — 1 and never 1 — 0, path length is L.
e Starting from (0,0,0,...,0), assume fittest site is (1,1,1,...,1)

@ Total number of paths is L!

e Probability a given path is open is 1/L!

‘E(nb of open paths) =1 ‘

But... Conditionally on the event that starting position has given fitness x
o Probability a given path is open is (1 — x)-=1/(L — 1)!
xL Ifxg

EX(nb of open paths) = L(1 — x)t71 ‘ x1 Ifx~nl

<1 Ifx> Ml
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Only forward mutations

@ No backward mutation, only 0 — 1 and never 1 — 0, path length is L.
e Starting from (0,0,0,...,0), assume fittest site is (1,1,1,...,1)

@ Total number of paths is L!

e Probability a given path is open is 1/L!

‘E(nb of open paths) =1 ‘

But... Conditionally on the event that starting position has given fitness x
o Probability a given path is open is (1 — x)-=1/(L — 1)!

xL Ifxgi
EX(nb of open paths) = L(1 — x)t71 ‘ x1 Ifx~ 1t
<1 Ifx> Ml
In L + Cst
P(nb of open paths # 0) < $

Nowak Krug 2013, Hegarty Martinsson.2012
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Only forward mutations
Assume fittest site is (1,1,1,...,1).

Theorem (Hegarty-Martinsson 2012)

As L — o0, Inl
P(nb of open paths # 0) ~ nT,

. In L
with a sharp transition for existence of paths around starting fitness —
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Only forward mutations
Assume fittest site is (1,1,1,...,1).

Theorem (Hegarty-Martinsson 2012)

As [ — oo,

InL
P(nb of open paths # 0) ~ nT,

. In L
with a sharp transition for existence of paths around starting fitness —

If a(L) — oo (but, typically, a(L) < In L),

In L—a(L)

If i ition h fi I
2 o i peilis 2 @) — 1 ( starting position has a fitness be ow)

(InL)/L, there are some open paths.

(InL)/L, there are no open paths.

In L+a(L) i iti h fi
]P_+L_(nb of o seiths £ ) — @ (If starting position has a fitness above)
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Only forward mutations — summary

Assume fittest site is (1,1,1,...,1).

E(nb of open paths) =1 (a lie: typical nb of open paths# 1)

EX(nb of open paths) = L(1 — x)!=1  (truth: correct order of magnitude)
In L

P(nb of open paths # 0) ~ nT (value of x for which EX(...) =~ 1)
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Only forward mutations — summary

Assume fittest site is (1,1,1,...,1).

E(nb of open paths) =1 (a lie: typical nb of open paths# 1)

EX(nb of open paths) = L(1 — x)!=1  (truth: correct order of magnitude)
In L

P(nb of open paths # 0) ~ nT (value of x for which EX(...) =~ 1)

Theorem (Berestycki-Brunet-Shi 2013)

Ifx:%,asL—H)o,

nb of open paths in jaw
L

e X xExE

where £ and £’ are two independent exponential numbers.
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Only forward mutations — an extension

What if one allows some steps backward 7
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What if one allows some steps backward 7
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Small chance that a mutant fixates at a lower fitness
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Only forward mutations — an extension

What if one allows some steps backward ? |
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Small chance that a mutant fixates at a lower fitness
Too easy! Proba(nb of open paths # 0) — 1
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o

The less fit mutant does not fixate, but has time to mutate to a higher fitness
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Only forward mutations — an extension

What if one allows some steps backward ? J

°
./'
. \ e
o—°

Small chance that a mutant fixates at a lower fitness
Too easy! Proba(nb of open paths # 0) — 1

./>.
g

®
.4

.\,L
o i

o

The less fit mutant does not fixate, but has time to mutate to a higher fitness
Helps a bit: Proba(nb of open paths # 0) ~ (p + 1)'%t
(p = number of “tunnels” allowed)
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Results
o

@ When one allows both forward and backward mutations
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Results

For large L, when the location of the fittest site is at (1,1,1,...,1)
@ There are no open paths is starting fitness is larger than 0.11863.. ..

@ There are open paths otherwise. (Not our result...)

For large L, when the location of the fittest site is random
@ There are no open paths is starting fitness is larger than 0.27818.. ..

@ There are open paths otherwise. (Not our result...)
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Paths with forward and backward mutations
We allow paths to do 0 — 1 or 1 — 0. Assume fittest site is (1,1,1,...,1).

0 backstep  length L

1 backstep  length L 42
2 backsteps length L+ 4
p backsteps length L+ 2p
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Paths with forward and backward mutations

We allow paths to do 0 — 1 or 1 — 0. Assume fittest site is (1,1,1,...,1).
nb of self-avoiding paths

0 backstep  length L aro=L!
1 backstep  length L+ 2 a1 =L'x
2 backsteps length L+4  a; > = L!IXx

L(L—1)(L—2)

(L=1)(L—2)(5L*+3L34+341%2—-264L+180)
360

p backsteps length L +2p a; , ~ LI x 6%’! (p fixed, L large)
ag =ayo+ay1+agy+--- =total nb of self-avoiding paths.
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Paths with forward and backward mutations

We allow paths to do 0 — 1 or 1 — 0. Assume fittest site is (1,1,1,...,1).
nb of self-avoiding paths

0 backstep  length L aro=L!

1 backstep  length L+ 2 a1 =L'x
L—1)(L—2)(5L%4+3L34+34L%—264L+180

2 backsteps length L+4  a;5, =Ll x ( . )(L=2)( 360 )

p backsteps length L+2p a;,~ L x 6Lp—p! (p fixed, L large)

L(L—1)(L—2)

ag =ayo+ay1+agy+--- =total nb of self-avoiding paths.
D —ALD ——0ID 41D
@—0 | ‘ ;
an R P -~
(0foTo)= 0 )= 0Jo]0)=

31:1, 82:2, a3 =18
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We allow paths to do 0 — 1 or 1 — 0. Assume fittest site is (1,1,1,...,1).
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. L L
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Paths with forward and backward mutations

We allow paths to do 0 — 1 or 1 — 0. Assume fittest site is (1,1,1,...,1).
nb of self-avoiding paths

0 backstep  length L aro=L!
1 backstep  length L+ 2 a1 =L'x

L—1)(L—2)(5L%4+3L34+34L%—264L+180
2 backsteps length L+4  a;5, =Ll x ( . )(L=2)( 360 )
p backsteps length L+2p a;,~ L x 6Lp—p! (p fixed, L large)

L(L—1)(L—2)

ag =ayo+ay1+agy+--- =total nb of self-avoiding paths.
D —ALD ——0ID 41D
O—0 | ‘ ;
an N P e
(0foTo)= 0 )= 0Jo]0)=

=1 a=2 a3=18 a3 =6432, a5= 18651552840

. L L
Asymptotically, e€¥2" < a, < ¢ *(InL)2 How many are open ?
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Paths with forward and backward mutations
Fittest site is (1,1,1,...,1)

1
E(nb of open paths) = Z apr—Fr
> (L+2p)!

But. ..
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Fittest site is (1,1,1,...,1)

1
E(nb of open paths) = Z apr—Fr
> (L+2p)!

But. .. Conditionally on the event that starting position has given fitness x

(1 )L+2p 1

f hs) TN
E*(nb of open paths) ZaLp (L+2p—1)!
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Paths with forward and backward mutations
Fittest site is (1,1,1,...,1)

1
E(nb of open paths) = Z apr—Fr
> (L+2p)!

But. .. Conditionally on the event that starting position has given fitness x

(1 )L+2p 1

f hs) TN
E*(nb of open paths) ZaLp (L+2p—1)!

Theorem (Berestycki-Brunet-Shi 2013)
1/L
[Ex(nb of open paths)} / T sinh(1 — x).
—00

Corollary: if x > 1 —sinh™%(1), P*(nb of open paths # 0) — 0
—_—
0.11863...
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Generalization
1
Fittest site is (1,1,1,...,1): [EX(nb of open paths)]t — sinh(1 — x)
No open path if x > x*(1) = 1 — sinh (1)
—_———

0.11863...
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Generalization
1
Fittest site is (1,1,1,...,1): [EX(nb of open paths)]t — sinh(1 — x)
No open path if x > x*(1) = 1 — sinh (1)
—_———

0.11863...
Fittest site at distance oL from (0,0,0,...,0):
1

[EX(nb of open paths)]t — sinh(1 — x)* cosh(1 — x)' ™
No open path if x > x*(«)
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Generalization
1
Fittest site is (1,1,1,...,1): [EX(nb of open paths)]t — sinh(1 — x)
No open path if x > x*(1) = 1 — sinh (1)
—_———

0.11863...
Fittest site at distance oL from (0,0,0,...,0):

[EX(nb of open paths)]% — sinh(1 — x)® cosh(1 — x)1@
No open path if x > x*(«)
sinh(2 — 2x)

1
Fittest site is randomly chosen: [E*(nb of open paths)|t — >
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Generalization
1
Fittest site is (1,1,1,...,1): [EX(nb of open paths)]t — sinh(1 — x)
No open path if x > x*(1) = 1 — sinh (1)
—_———

0.11863...
Fittest site at distance oL from (0,0,0,...,0):

1
[EX(nb of open paths)]t — sinh(1 — x)* cosh(1 — x)' ™
No open path if x > x*(«)

1 inh(2 — 2
Fittest site is randomly chosen: [E*(nb of open paths)|t — w

1
No open path if x > x*(1/2) =1 — Esinh_1(2)
—_—

0.27818...
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Generalization
1
Fittest site is (1,1,1,...,1): [EX(nb of open paths)]t — sinh(1 — x)
No open path if x > x*(1) = 1 — sinh (1)
—_——

0.11863...
Fittest site at distance oL from (0,0,0,...,0):

1
[EX(nb of open paths)]t — sinh(1 — x)* cosh(1 — x)' ™
No open path if x > x*(a)
sinh(2 — 2x)

1
Fittest site is randomly chosen: [E*(nb of open paths)|t — 5

1
No open path if x > x*(1/2) =1 — 5 sinh~1(2)
[ —
0.27818...

Theorem (Martinsson 2015 and Li 2015)

Expectations are telling the truth. P*(nb of open paths # 0) — 1 if
x < x* with x* given above. Furthermore, P(nb of open paths # 0) — x*
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Outline of proof
Forward and backward mutations, fittest is (1,1,1,...,1).

(1 o X)L+2p—1 %

(Crop—1) — sinh(1 — x)

[EX(nb of open paths)]% = > ap
p
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Outline of proof
Forward and backward mutations, fittest is (1,1,1,...,1).

[EX(nb of open paths)]% = Z aLp
P

@ Code paths as sequence of numbers

'

Eric Brunet (UPMC, LPS-ENS)

(1 o X)L+2p—1 %
(L+2p—1)!

.

Accessible paths on the hypercube

— sinh(1 — x)

=)
=]

CIRM 2015 21 /36



Outline of proof
Forward and backward mutations, fittest is (1,1,1,...,1).

[EX(nb of open paths)]% = > ap
P

(1 o X)L+2p—1 %
(L+2p—1)!

@ Code paths as sequence of numbers

1,2,3

'

— sinh(1 — x)

@ A pathin a; , has a sequence of length L + 2p

Eric Brunet (UPMC, LPS-ENS)

'
| |
1,2,1,3,1 121,32,1,2
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Outline of proof
Forward and backward mutations, fittest is (1,1,1,...,1).

[EX(nb of open paths)]% = Z aLp
P

(1 o X)L+2p—1 %
(L+2p—1)!

@ Code paths as sequence of numbers

onnE
1,2,3

'

— sinh(1 — x)

(D anD
QnDE= anny
12131 1213212

@ A pathin a; , has a sequence of length L + 2p

@ A path reaches (1,1,1,...,1) if each number between 1 and L
appears oddly many times in the sequence

Eric Brunet (UPMC, LPS-ENS)
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Outline of proof
Forward and backward mutations, fittest is (1,1,1,...,1).

(1 o X)L+2p—1 %

(Crop—1) — sinh(1 — x)

[EX(nb of open paths)]% = Z aLp
P

@ Code paths as sequence of numbers

(1D ; (11 ‘
,,,,,,, L
1,2,3 1,2,1,3,1 1,2,1,32.1,2

@ A pathin a; , has a sequence of length L + 2p

@ A path reaches (1,1,1,...,1) if each number between 1 and L
appears oddly many times in the sequence

@ A path is self-avoiding if in any non-empty substring, at least one
number appears oddly many times
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Outline of proof

Strategy: myp, < a p, < My,

Eric Brunet (UPMC, LPS-ENS)
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Outline of proof
Strategy: myp, < a;p < M,
e My, counts all the paths of length L +2p to (1,1,1,...,1), even
self-intersecting ones
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Outline of proof
Strategy: myp, < a;p < M,
e My, counts all the paths of length L +2p to (1,1,1,...,1), even
self-intersecting ones
@ my p, counts all the paths such that L does not appear on two
consecutive positions and such that if all the L are removed, what
remains is in my_1
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Outline of proof
Strategy: myp, < a;p < M,
e My, counts all the paths of length L +2p to (1,1,1,...,1), even
self-intersecting ones
@ my p, counts all the paths such that L does not appear on two
consecutive positions and such that if all the L are removed, what
remains is in my_1
Example
ms,0:|123 132 213 231 312 321
a3o: 123 132 213 231 312 321
Ms:1123 132 213 231 312 321
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Outline of proof
Strategy: myp, < a;p < M,
e My, counts all the paths of length L +2p to (1,1,1,...,1), even
self-intersecting ones
@ my p, counts all the paths such that L does not appear on two
consecutive positions and such that if all the L are removed, what
remains is in my_1
Example
ms,0:|123 132 213 231 312 321
a3o: 123 132 213 231 312 321
Ms:1123 132 213 231 312 321
m31: 31323 32313
a31: (12131 13121 21232 23212 31323 32313
M5 1:112131 13121 21232 23212 31323 32313 11123 12113 . ..
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Outline of proof
Strategy: myp, < a;p < M,
e My, counts all the paths of length L +2p to (1,1,1,...,1), even
self-intersecting ones
@ my p, counts all the paths such that L does not appear on two
consecutive positions and such that if all the L are removed, what
remains is in my_1

Example

m370:
3370:
M3702

123 132 213 231 312 321
123 132 213 231 312 321
123 132 213 231 312 321

m3’1:

a31:
M3712

31323 32313
12131 13121 21232 23212 31323 32313
12131 13121 21232 23212 31323 32313 11123 12113 ...

m3’2:
a372:
Ms»:

1213212 1312313 2123121 2321323 3132131 3231232

1213212 1312313 2123121 2321323 3132131 3231232 1211333 ...

(Ms1 = 60, M3, = 4920...)

Eric Brunet (UPMC, LPS-ENS) Accessible paths on the hypercube CIRM 2015
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Outline of proof
Strategy: myp, < a;p < M,

The paths in m , (resp. My ) have the property that if all occurrence of
L is removed, what remains is in m;_y y (resp. Mi_1 ).
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Outline of proof
Strategy: myp, < a;p < M,

The paths in m , (resp. My ) have the property that if all occurrence of
L is removed, what remains is in m;_y y (resp. Mi_1 ).

P
L+1+2
Miy1,p = Z ( p) Mt,p—q;

o 2g+1

(Mi41,p: length L+ 14 2p. Number L+ 1 appears 2g + 1 times (odd). Fill in the
remaining with a path in M. ,_4 of length L 4+ 2p — 2q.)
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Outline of proof
Strategy: myp, < a;p < M,

The paths in m , (resp. My ) have the property that if all occurrence of
L is removed, what remains is in m;_1  (resp. M;_1 ).

p p

L+1+2p

Mii1p = E : ( 2q+1 >ML,p—qa miy1p = E :
q=0

L+1+2p
=0 2g+1
(Mi41,p: length L+ 14 2p. Number L+ 1 appears 2g + 1 times (odd). Fill in the
remaining with a path in M. ,_4 of length L 4+ 2p — 2q.)

N (nb of ways of choosing P items out of N)
P |\ without taking two consecutive items

me p—q
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Outline of proof
Strategy: myp, < a;p < M,

The paths in m , (resp. My ) have the property that if all occurrence of
L is removed, what remains is in m;_1  (resp. M;_1 ).

p p

L+1+2p

Mii1p = E : ( 2q+1 >ML,p—qa miy1p = E :
q=0

L+1+2p
=0 2g+1
(Mi41,p: length L+ 14 2p. Number L+ 1 appears 2g + 1 times (odd). Fill in the
remaining with a path in M. ,_4 of length L 4+ 2p — 2q.)

lN] o (nb of ways of choosing P items out of N) B (N - P+ 1)
P| -

me p—q

without taking two consecutive items P
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Outline of proof
Strategy: myp, < a;p < M,

The paths in m , (resp. My ) have the property that if all occurrence of
L is removed, what remains is in m;_1  (resp. M;_1 ).

p p
L+1+2p L+1+2p
Mii1p = Z ( 2q+1 >ML,p—qa miy1p = Z

=0 2g+1
(Mi41,p: length L+ 14 2p. Number L+ 1 appears 2g + 1 times (odd). Fill in the
remaining with a path in M. ,_4 of length L 4+ 2p — 2q.)

N (nb of ways of choosing P items out of N) _(N—-P+1
P |\ without taking two consecutive items N P

me p—q
q=0

( ) Z XL+2P
G (X) := M pr—s—
> (L+2p)!

Eric Brunet (UPMC, LPS-ENS) Accessible paths on the hypercube CIRM 2015 23 /36



Outline of proof
Strategy: myp, < a;p < M,

The paths in m , (resp. My ) have the property that if all occurrence of
L is removed, what remains is in m;_1  (resp. M;_1 ).

p p
L+1+2p L+1+2p
Mii1p = Z ( 2q+1 >ML,p—qa miy1p = Z

=0 2g+1
(Mi41,p: length L+ 14 2p. Number L+ 1 appears 2g + 1 times (odd). Fill in the
remaining with a path in M. ,_4 of length L 4+ 2p — 2q.)

N (nb of ways of choosing P items out of N) _(N—-P+1
P |\ without taking two consecutive items N P

me p—q
q=0

XL+2P
GL(X) =) My,

: L
] i)~ [sinh X]
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Outline of proof
Strategy: myp, < a;p < M,

The paths in m , (resp. My ) have the property that if all occurrence of
L is removed, what remains is in m;_1 p (resp. M;_1 )

p p
L+1+2p L+1+2p
M == M _ =
L+1,p q§:0: < 2q +1 > Lp—qg> Mi+1p qzzo: 2q +1

(Mi41,p: length L+ 14 2p. Number L+ 1 appears 2g + 1 times (odd). Fill in the
remaining with a path in M. ,_4 of length L 4+ 2p — 2q.)

lN] o (nb of ways of choosing P items out of N) B (N - P+ 1)
P L . . -

me p—q

without taking two consecutive items P

XL+2P ) L
GL(X) = Z ML7pm = [Slnh X]
p

1 _ X)L+2P 1
EX(nb of open paths) = Z aLp [+ 2p 1)
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Outline of proof
Strategy: myp, < a;p < M,

The paths in m , (resp. My ) have the property that if all occurrence of
L is removed, what remains is in m;_1 p (resp. M;_1 )

p p
L+1+2p L+1+2p
M == M _ m =
L+1,p qE:O: ( 2g+ 1 > Lp—q> L+1,p q§:0: 2g+1

(Mi41,p: length L+ 14 2p. Number L+ 1 appears 2g + 1 times (odd). Fill in the
remaining with a path in M. ,_4 of length L 4+ 2p — 2q.)

lN] o (nb of ways of choosing P items out of N) B (N - P+ 1)
P L B . . -

me p—q

without taking two consecutive items P

XL+2P ) L
GL(X) = Z ML7pm = [Slnh X]
p

1 _ X)L+2P 1
E*(nb of open paths) = Z aLp T 2p=1) < Gi(1-x)
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Martinsson's result
EX(nb of open paths) < —8,[sinh(1 — x)] T if x <1 —sinh~%(1)
—00

Generalization: if fittest at distance H:
E*(nb of open paths) < —d, [sinh(l — x)" cosh(1 — X)L_H}.
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—00

Generalization: if fittest at distance H:
E*(nb of open paths) < —d, [sinh(l — x)" cosh(1 — X)L_H}.

First passage percolation i
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Martinsson's result
EX(nb of open paths) < —8,[sinh(1 — x)] T if x <1 —sinh~%(1)
—00

Generalization: if fittest at distance H:
E*(nb of open paths) < —d, [sinh(l — x)" cosh(1 — x)L_H}.

First passage percolation
Hypercube started with one e at (0,0,...,0): i
[Time to infect (1,1,...)] = sinh (1) Q’
— 00
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Martinsson's result
EX(nb of open paths) < —8,[sinh(1 — x)] T if x <1 —sinh~%(1)
—00

Generalization: if fittest at distance H:
E*(nb of open paths) < —d, [sinh(l — x)" cosh(1 — x)L_H}.

First passage percolation
Hypercube started with one e at (0,0,...,0): i
[Time to infect (1,1,...)] = sinh (1) Q’
— 00

Branching Translation Process
=N\ )
\
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Martinsson's result
EX(nb of open paths) < —8,[sinh(1 — x)] T if x <1 —sinh~%(1)
—00

Generalization: if fittest at distance H:
E*(nb of open paths) < —d, [sinh(l — x)" cosh(1 — x)L_H}.

First passage percolation
Hypercube started with one e at (0,0,...,0): i
[Time to infect (1,1,...)] = sinh (1) Q’
— 00

Branching Translation Process

P ne(V) =E(nb of e at V)
\ Oene(V) = Xyav ne(U)
\'
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—00

Generalization: if fittest at distance H:
E*(nb of open paths) < —d, [sinh(l — x)" cosh(1 — x)L_H}.

First passage percolation
Hypercube started with one e at (0,0,...,0): i
[Time to infect (1,1,...)] = sinh (1) Q’
— 00

Branching Translation Process

P ne(V) =E(nb of e at V)
\ Oene(V) = X yav ne(U)
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Martinsson's result
EX(nb of open paths) < —8,[sinh(1 — x)] T if x <1 —sinh~%(1)
—00

Generalization: if fittest at distance H:
E*(nb of open paths) < —d, [sinh(l — x)" cosh(1 — X)L_H}.

First passage percolation
Hypercube started with one e at (0,0,...,0): i
[Time to infect (1,1,...)] = sinh (1) Q’
— 00

Branching Translation Process

P ne(V) =E(nb of e at V)
\ Oene(V) = X yav ne(U)
Hypercube started with one e at (0,0,...,0):
\ 8tnt(H) = Hnt(H — 1) -+ (L — H)nt(H + 1)
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Martinsson's result
EX(nb of open paths) < —d,[sinh!(1 — x)] - if x <1 —sinh~%(1)
—00

Generalization: if fittest at distance H:
E*(nb of open paths) < —d, [sinh(l — x)" cosh(1 — X)L_H}.

First passage percolation
Hypercube started with one e at (0,0,...,0): i
[Time to infect (1,1,...)] — sinh™%(1) Q’
L—o0

Branching Translation Process

P ne(V) =E(nb of e at V)
’ Aene (V') = X yav ne(U)
Hypercube started with one e at (0,0,...,0):
\' O¢ne(H) = Hny(H — 1) + (L — H)ny(H + 1)
ne(H) = sinh(t)" cosh(t)-"
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Martinsson's result for any graph

Site percolation Accessibility
4] Cy fl f-l
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Martinsson's result for any graph

Site percolation Accessibility
@] cy

fs

G5
Time (or cost) = ¢1 + a1 + ca Accessible if x < 1 < f3 < fa
T4 =minimal time to reach A A accessible iff such a path exists
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Martinsson's result for any graph

Site percolation Accessibility
C1 Cy

ca
&
C5 f3
Time (or cost) = ¢1 + a1 + ca Accessible if x < 1 < f3 < fa
T =minimal time to reach A A accessible iff such a path exists
(Martinsson 2015)
P(Ta<1-—x) = [P*(A is accessible)

But no relation betwen the number of paths with a time smaller than

1 — x and the number of accessible paths!
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Outline of Martinsson's proof

T =7 T, =7
c =" cy ="
fi fi

fs== ‘

Ts=0 fa
Ty ="
cq ="

fo
Cy =7
=1 f5
Cy =?
R ?

@ At first, we choose th:f,-
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Outline of Martinsson's proof

Ty =Ts+c T,="
a={fi—-x—Ts} ="
f

fa
Ty =2
cy ="

fo
e ={f—x—"Ts}
Th=Ts+c fs

T, =
@ At first, we choose the f;

e We compute c1, ¢, T1 and T,. Notation: {-} = fractional part(-).
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Outline of Martinsson's proof

T, =Ts+ca Ty=T+cy
o={fi—x—Ts} ca={fi—z—T}
fi fi
fs==z
Is=0 }fA

Ty ="
cy =7

o= 1{h-z-Ts
TZZTS‘FCQ f5

Cy :?
T =7

@ At first, we choose theg)f,-'
e We compute ci, ¢, T1 and T,. Notation: {-} = fractional part(-).
@ Assume T1 < T,. We compute c3, ¢4, T3, T4
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Outline of Martinsson's proof

T, =Ts+c Ty=T+cy
o={fi—x—Ts} ca={fi—z—T}
fi fi
fs==z
Is=0 }f4

Ty ="
cy =7

Cz={f2—$—TS}
TZZTS+CQ

5

Cy, = {f3 —r — Tz}
. T5="Tr+cs
@ At first, we choose the f;

e We compute ci, ¢, T1 and T,. Notation: {-} = fractional part(-).
@ Assume T1 < T,. We compute c3, ¢4, T3, T4
@ Assume T, < T3 and To < T4. We compute ¢5 and T
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Outline of Martinsson's proof

T, =Ts+ca Ty=T+cy
q:{fl—a:—Ts} 04:{f4—I—T1}
fi fi

}fA
Ty=Ti+cy
ca={fa—xz-T,}

Cz={f2—$—TS}
TZZTS+CQ

5

Cy, = {f3 —r — Tz}
. T5="Tr+cs
At first, we choose the f;

°
e We compute ci, ¢, T1 and T,. Notation: {-} = fractional part(-).
@ Assume T1 < T,. We compute c3, ¢4, T3, T4

@ Assume T, < T3 and To < T4. We compute ¢5 and T

@ Assume T4 < Ts5. We compute ca and Ty
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Outline of Martinsson's proof

T, =Ts+ca Ty=T+cy
a={fi—x—Ts} c={fi—z—T}
fi fi

}fA
Ty=Ti+cy
ca={fa—xz-T,}

b
s ={fs —ax—To}
T5=Tr+cs
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Outline of Martinsson's proof

T, =Ts+ca Ty=T+cy
o={fi—x—Ts} ca={fi—z—T}
fi fi
fs==
Ts=0 }fA

Ty=Ti+cy
ca={fa—x-Ti}

sz{fz—.Z—TS}

T2:T5+62 f5
c={fs—z -1}
T5=Tr+cs

Notice that fi = {x 4+ T;} and Ta =c1 + ¢4 + ca
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Outline of Martinsson's proof

T, =Ts+ca Ty=T+cy
a={h—-2—Ts} co={fi—z—T}
1 fi

}fA
Ty=Ti+cy
ca={fa—xz-T,}

= {f—x—"Ts}
TQZTS‘FCQ

f5
c={fs—z -1}
T5=Tr+cs

Notice that fi = {x 4+ T;} and Ta =c1 + ¢4 + ca
Best path accessible if x < {x+ a} <{x+a+a}<{x+a+a+ca}
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Outline of Martinsson's proof

T, =Ts+ca Ty=T+cy
a={h—-2—Ts} co={fi—z—T}
1 fi

}fA
Ty=Ti+cy
ca={fa—xz-T,}

= {f—2—Ts}
TZZTS‘FCQ

f5
c={fs—z -1}
T5=Tr+cs

Notice that fi = {x 4+ T;} and Ta =c1 + ¢4 + ca

Best path accessible if x < {x+ a} <{x+a+a}<{x+a+a+ca}
If Tp <1— x, then the best path is accessible
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Outline of Martinsson's proof

T, =Ts+ca Ty=T+cy
a={h—-2—Ts} co={fi—z—T}
| fi
fs==z
Ts=0

}fA
Ty=Ti+cy
ca={fa—xz-T,}

= {f—2—Ts}
TZZTS‘FCQ

f5
c={fs—z -1}
T5=Tr+cs

Notice that fi = {x 4+ T;} and Ta =c1 + ¢4 + ca

Best path accessible if x < {x+ a} <{x+a+a}<{x+a+a+ca}
If Tp <1— x, then the best path is accessible

If To > 1 — x, then no path is accessible
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Outline of Martinsson's proof

T, =Ts+ca Ty=T+cy
q:{fl—a:—Ts} 04:{f4—I—T1}
1 fi

}fA
Ty=Ti+cy
ca={fa—xz-T,}

Cz={f2—$—TS}
TZZTS+CQ

f5
c={fs—z -1}
T5=Tr+cs

Notice that fi = {x 4+ T;} and Ta =c1 + ¢4 + ca
Best path accessible if x < {x+ a} <{x+a+a}<{x+a+a+ca}
If Tp <1— x, then the best path is accessible
If To > 1 — x, then no path is accessible
P(Ta<1-x) = P*(A is accessible)
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When only forward steps are allowed

@ Forward steps only are allowed

o Fittest site is (1,1,1,...,1)

e Starting site (0,0,0,...,0) has fitness x = X/L
o L > o0

L L

1 X
- (nb of open paths if starting fitness is x = —) e XxEXE

with £ and &’ two independent exponential variables

One already knows that
° IE)‘L((nb of open paths) = L(1 — x)l7t ~ Le™X

Eric Brunet (UPMC, LPS-ENS) Accessible paths on the hypercube

CIRM 2015

27 /36



When only forward steps are allowed

@ Forward steps only are allowed

o Fittest site is (1,1,1,...,1)

e Starting site (0,0,0,...,0) has fitness x = X/L
o L > o0

L L

1 X
- (nb of open paths if starting fitness is x = —) e XxEXE

with £ and &’ two independent exponential variables

One already knows that
° IE)'L((nb of open paths) = L(1 — x):"1 ~ Le™*
@ There are indeed typically < L open paths
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Hypercube vs Tree

Hypercube is hard; try a tree!
15t step: L choices; 2"d step: L — 1 choices; 3™ step: L — 2 choices; ...
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Hypercube vs Tree

Hypercube is hard; try a tree!

yP y

15t step: L choices; 2"d step: L — 1 choices; 3™ step: L — 2 choices; ...

5 0]
o5 083

o~ pog Toig 7 foj o272zl (49 ey [ 1y food
(0:83) (0.08) (049) 011) (0.26) (0:29) (023 084 [0.67) (0:39) (0:22) (0.02) 057 (0.32) (0.12) (0:30) 049) (0.05) (0.99) (082 083) 019 (0.7 [0.77
OO LUOOOLOLOOLDLOOLDOLAOMA

ET [nb of open paths] = L(1 — x)!™1 ~ Le™™  same for tree or hypercube!
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Hypercube vs Tree

Hypercube is hard; try a tree!

yP y

15t step: L choices; 2"d step: L — 1 choices; 3™ step: L — 2 choices; ...

5 0]
o5 083

o~ pog Toig 7 foj o272zl (49 ey [ 1y food
(0:83) (0.08) (049) 011) (0.26) (0:29) (023 084 [0.67) (0:39) (0:22) (0.02) 057 (0.32) (0.12) (0:30) 049) (0.05) (0.99) (082 083) 019 (0.7 [0.77
OO LUOOOLOLOOLDLOOLDOLAOMA

ET [nb of open paths] = L(1 — x)!™1 ~ Le™™  same for tree or hypercube!

202e72X  (tree) fo

X
L

E [(nb of open paths)?] ~
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Hypercube vs Tree

Hypercube is hard; try a tree!

yP y

15t step: L choices; 2"d step: L — 1 choices; 3™ step: L — 2 choices; ...

5 0]
o5 083

o~ pog Toig 7 foj o272zl (49 ey [ 1y food
(0:83) (0.08) (049) 011) (0.26) (0:29) (023 084 [0.67) (0:39) (0:22) (0.02) 057 (0.32) (0.12) (0:30) 049) (0.05) (0.99) (082 083) 019 (0.7 [0.77
OO LUOOOLOLOOLDLOOLDOLAOMA

ET [nb of open paths] = L(1 — x)!™1 ~ Le™™  same for tree or hypercube!

202e72X  (tree) v{
422X (hypercube)v@\

X
L

E [(nb of open paths)?] ~
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On the tree
(0
059 (0.90) o.01] .83
eo” oo on Ea 6o bz 2 09 N 6% 0B 00
653 (008 029 011 026 029 (023 0 687 039 022 o) 657 03 (32 0 049 (008 00 022 (059 019 (672 077
DOOOOOOOOOODOOOOOOOOODOLG

(Nb of open paths) = Z (nb of open paths going through o)
lo|=1
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On the tree
(0
059 (0.90) o.01] .83
eo” oo on Ea 6o bz 2 09 N 6% 0B 00
653 (008 029 011 026 029 (023 0 687 039 022 o) 657 03 (32 0 049 (008 00 022 (059 019 (672 077
DOOOOOOOOOODOOOOOOOOODOLG

(Nb of open paths) = Z (nb of open paths going through o)
lo|=1

Sum of uncorrelated terms (because it is a tree), generating function

G(Aa X, L) = EX (e_)‘(”b of open paths))
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On the tree

(0

059 (0.90) o.01] .83
eo” oo on Ea 6o bz 2 09 N 6% 0B 00
653 (008 029 011 026 029 (023 0 687 039 022 o) 657 03 (32 0 049 (008 00 022 (059 019 (672 077
DOOOOOOOOOODOOOOOOOOODOLG

(Nb of open paths) = Z (nb of open paths going through o)
lo|=1
Sum of uncorrelated terms (because it is a tree), generating function

G(Aa X, L) = EX (e_)‘(”b of open paths))

au@:[ r
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On the tree

(0

059 (0.90) o.01] .83
eo” oo on Ea 6o bz 2 09 N 6% 0B 00
653 (008 029 011 026 029 (023 0 687 039 022 o) 657 03 (32 0 049 (008 00 022 (059 019 (672 077
DOOOOOOOOOODOOOOOOOOODOLG

(Nb of open paths) = Z (nb of open paths going through o)
lo|=1
Sum of uncorrelated terms (because it is a tree), generating function

G(Aa X, L) = EX (e_)‘(”b of open paths))

qu@=p+ r
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On the tree

(0

059 (0.90) o.01] .83
eo” oo on Ea 6o bz 2 09 N 6% 0B 00
653 (008 029 011 026 029 (023 0 687 039 022 o) 657 03 (32 0 049 (008 00 022 (059 019 (672 077
DOOOOOOOOOODOOOOOOOOODOLG

(Nb of open paths) = Z (nb of open paths going through o)
lo|=1
Sum of uncorrelated terms (because it is a tree), generating function

G()\, X, L) = [EX (e—/\(nb of open paths))

G\, x,L) = [x—i— /ldy G(Ay,L— 1)}L
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On the tree

(0

059 (0.90) o.01] .83
eo” oo on Ea 6o bz 2 09 N 6% 0B 00
653 (008 029 011 026 029 (023 0 687 039 022 o) 657 03 (32 0 049 (008 00 022 (059 019 (672 077
DOOOOOOOOOODOOOOOOOOODOLG

(Nb of open paths) = Z (nb of open paths going through o)
lo|=1

Sum of uncorrelated terms (because it is a tree), generating function

G()\, X, L) = [EX (e—/\(nb of open paths))

1 L
thiﬁzh+:/dyq&y¢—lﬂ, GO\ x, 1) = e
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On the tree

(0

059 (0.90) o.01] .83
eo” oo on Ea 6o bz 2 09 N 6% 0B 00
653 (008 029 011 026 029 (023 0 687 039 022 o) 657 03 (32 0 049 (008 00 022 (059 019 (672 077
DOOOOOOOOOODOOOOOOOOODOLG

(Nb of open paths) = Z (nb of open paths going through o)
lo|=1

Sum of uncorrelated terms (because it is a tree), generating function

G()\, X, L) = [EX (e—/\(nb of open paths))

1 L
thiﬁzh+:/dyq&y¢—lﬂ, GO\ x, 1) = e

th;o G(%’ %’ L) =7

Eric Brunet (UPMC, LPS-ENS) Accessible paths on the hypercube CIRM 2015

29 / 36



On the tree, second try

=0}
059 (0.90) o.01] .83
019" o7 Toad  for"  fooj Tozj oz foag Toed [fos 15 Tood
(083 (0.08) (0.49) [011) (0:26) (029 (0:23) (084 [0:67) (039 (0:22) (0.01) [0:57) (032 (0.12) (030 (0.49) (005 [0.99) (082 [0.83) (01 (0.7 (077
EB[EYEYERIERIEIENEN]ERIEDEY ENER GBI N ED]ER G ENED]ERIED]E!
Idea: the first steps determine everything
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On the tree, second try
=0}
059 (0.90) o.01] .83
019" o7 Toad  for"  fooj Tozj oz foag Toed [fos 15 Tood
(083 (0.08) (0.49) [011) (0:26) (029 (0:23) (084 [0:67) (039 (0:22) (0.01) [0:57) (032 (0.12) (030 (0.49) (005 [0.99) (082 [0.83) (01 (0.7 (077
EB[EYEYERIERIEIENEN]ERIEDEY ENER GBI N ED]ER G ENED]ERIED]E!
Idea: the first steps determine everything

© = (nb of open paths), O = E(O]F), Fk = (info up to level k)
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On the tree, second try
0
059 (0.90) o.01] .83
e 0w bm O Gw oz bz 08 om 0% pn o
653 058 09 01) 020 09 023 034 o7 039 22 02 057 032 022 30 049) 038 b0 0= 089 o1 672 077
DOOO0OOOOODODOOLODOOODOOAG

Idea: the first steps determine everything

© = (nb of open paths), O = E(O]F), Fk = (info up to level k)

Ok = Z ]]-{cr open} (L - k)(l - XU)Likil

lo|=k

expected nb of open
paths through o

©1 = 3(1 - 0.59)2 + 3(1 — 0.90)% + 3(1 — 0.01)? + 3(1 — 0.83)% = 3.5613
©2 =2(1—0.22)! +2(1 — 0.48)! +2(1 — 0.66)* + 2(1 — 0.95)! =3.38
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On the tree, second try

© = (nb of open paths), O = E(O]F), Fi = (info up to level k)

Intuitively, ©x ~ © if  Var(©|Fy) is small
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On the tree, second try

© = (nb of open paths), O = E(O]F), Fi = (info up to level k)

Intuitively, © = © if E[Var(©|F)] is small
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On the tree, second try
© = (nb of open paths), O = E(O]F), Fi = (info up to level k)

Intuitively, © = © if E[Var(©|F)] is small

lim PT [% < z] — |im lim PT [% < z} if

L—oco k—o0 L—oo
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On the tree, second try
© = (nb of open paths), O = E(O]F), Fi = (info up to level k)

Intuitively, © = © if E[Var(©|F)] is small

— 00 L—00 k—oo L—oo

JLTOIP% [% < z] = lim lim PT [% < z} if lim lim BT [Var [%]ﬂﬂ —0

Eric Brunet (UPMC, LPS-ENS) Accessible paths on the hypercube CIRM 2015 31/36



On the tree, second try

© = (nb of open paths), O = E(O]F), Fi = (info up to level k)
Intuitively, © = © if E[Var(©|F)] is small
L—oo k—o00 L—o00 k—oco L—oo

nmpﬂ%<j]:nmnmpﬂ%$<4ﬁ|M|ME%Pmﬂ%V@}:0

But (sum over pairs of paths):

—2X

2k

L—oo

|MEﬂwﬂ%ﬂH:e

In the L — o0, k — oo limit, ©/L and ©/L have the same distribution )
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On the tree, second try

© = (nb of open paths), O = E(O|F), Fi = (info up to level k)

We want to write a generating function.
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On the tree, second try

© = (nb of open paths), Ok = E(O|Fk),

We want to write a generating function.
For ©, we used

Fi = (info up to level k)

©= Z (nb of open paths through o)
lo]=1
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On the tree, second try

© = (nb of open paths), Ok = E(O|Fk),

We want to write a generating function.
For ©, we used

Fi = (info up to level k)

©= Z (nb of open paths through o)
lo]=1

Now, for ©, we use

Oy = Z L, >x1("Ok-1" of the L — 1 tree rooted on o)
lo]=1
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On the tree, second try

© = (nb of open paths), Ok = E(O|Fx), Fi = (info up to level k)

We want to write a generating function.
For ©, we used

©= Z (nb of open paths through o)
lo]=1
Now, for ©, we use
Oy = Z L, >x1("Ok-1" of the L — 1 tree rooted on o)
lo]=1

New generating function:

Gk(>‘7X7 L) =K~ (e_)\ek)
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On the tree, second try

© = (nb of open paths), Ok = E(O|Fx), Fi = (info up to level k)

We want to write a generating function.
For ©, we used

©= Z (nb of open paths through o)
lo]=1
Now, for ©, we use
Oy = Z L, >x1("Ok-1" of the L — 1 tree rooted on o)
lo]=1

New generating function:

L
Gk()‘a)(? L) = EX(e_Aek) = |:X + f)} dy Gk—l()‘7.y7 L— 1)]
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On the tree, second try

© = (nb of open paths), Ok = E(O|Fx), Fi = (info up to level k)

We want to write a generating function.
For ©, we used

©= Z (nb of open paths through o)
lo]=1

Now, for ©, we use

Oy = Z L, >x1("Ok-1" of the L — 1 tree rooted on o)
lo]=1

New generating function:
V) 1 L
Gk()‘7X7 L) = EX(e k) = |:X+fx dy Gk—l()‘7.y7L_1)]

=[1-tdy (1= Gy, L- ”)Y
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On the tree, second try

© = (nb of open paths), Ok = E(O|Fx), Fi = (info up to level k)
We want to write a generating function.
For ©, we used
©= Z (nb of open paths through o)
lo]=1
Now, for ©, we use

Ok = Z L, >x1("Ok-1" of the L — 1 tree rooted on o)
lo]=1

New generating function:
—\0 1 L
Gk()‘7X7 L) = EX(e k) = {X—i—fx dy kal()\,}@L_]-)]

- [1 — fidy (1 — Gea(My, L — 1))}L
Go(\, x, L) = e AL1L-x)t!
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On the tree, second try

GO(A7 X, L) = e_AL(l—X)L—l

Gr(\, x, L) == EX (e %) = [1 - /Xl dy (1 — G1(Ay, L= 1))}

Eric Brunet (UPMC, LPS-ENS)
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On the tree, second try

Ge(A, x, L) 1= EX (e ®) = [1 - /1 dy (1 — Gr_1(\y, L — 1))] .

Go(\, x, L) = e A1)t x
Gk(%’ )_L<’ I—) = ]E% (e_'“gl.&) = [1 - %/XLdY (1 — Gk_l(%, %’ L — 1)):|L
(5 )= )
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On the tree, second try X ,
Ge(A, x, L) 1= EX (e ®) = [1 - / dy (1 — Gr_1(\y, L — 1))]

Go(A\, x, L) = e AL

Gk(‘z )Z L):E%(e—uef) 177/ ay (1- G 1(L I Lfl))r

L-1
'u X L) = e—#(l—%)

GO(L L
One can then prove that Fy(u, X) = Jim G (&, %, L) exists and

Fr(, X) = exp {—/XoodY (1= Fr_1(p, Y))}, Fo(u, X) = exp (— pe
X

,X)

Fy is the generating function of LIim % when starting fron 7.
—00

: X, %
lim ET (e™#T) = Fr(p, X)

L—oo
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On the tree, second try X ,
Ge(A, x, L) 1= EX (e ®) = [1 - / dy (1 — Gr_1(\y, L — 1))]

Go(A\, x, L) = e AL

Gk(‘z )Z L):E%(e—uef) 177/ ay (1- G 1(L I Lfl))r

1 X B _#(1_5)L71
Go(7. L) =elit

One can then prove that Fy(u, X) = Jim G (&, %, L) exists and
Pl X) = exp [ = [ dY (1= Fiea(u V)] Folos X) = exp (e

Fy is the generating function of LIim % when starting fron % Take k — oo:
— 00

,X)

: : X %k ,
lim lim ET(e™ T )= lim Fy(u,X)
k—o00

k—o00 L—o00
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On the tree, second try X ,
Ge(A, x, L) 1= EX (e ®) = [1 - / dy (1 — Gr_1(\y, L — 1))]

Go(A\, x, L) = e AL

Gk(‘z )Z L):E%(e—f’f) 177/ ay (1- G 1(L I Lfl))r
p X L) :e—#(l—%)u

GO(L L
One can then prove that Fy(u, X) = Jim G (&, %, L) exists and

Fr(, X) = exp {—/XOOdY (1= Fr_1(p, Y))}, Fo(u, X) = exp (— pe

Fy is the generating function of LIim % when starting fron % Take k — oo:
© 1
lim ET(e™#T) = lim lim EL(e ¥ T) = Jim Fi(n, X) = 1

L—o0 k—o00 L—o00

,X)
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On the tree, second try X ,
Ge(A, x, L) 1= EX (e ®) = [1 - / dy (1 — Gr_1(\y, L — 1))]

Go(\, x, L) = e A=

Gk(‘z )Z L):E%(e—f’f) 177/ ay (1- G 1(L I Lfl))r

L-1
'u X L) = e—#(l—%)

GO(L L
One can then prove that Fy(u, X) = Jim G (&, %, L) exists and

Fr(, X) = exp {—/XOOdY (1= Fr_1(p, Y))}, Fo(u, X) = exp (— pe

Fy is the generating function of LIim % when starting fron % Take k — oo:
— 00
1

,X)

X e X Ok
lim ET (e #7)= Ilim lim Ef(e *7)= lim F X)=——~
L—00 ( ) k—o0 L—oo ( ) k—o00 k('u’ ) 1+ ,ue—X
o .
On the tree, starting from x = % = inlaw, =Xy g
L [
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Back to the hypercube

Same trick:

Ok = E(O|Fk),

Fi = (info in the k first and k last levels)

Eric Brunet (UPMC, LPS-ENS)
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Back to the hypercube

Same trick:

O = E(O|Fk), Fk = (info in the k first and k last levels)

k—o0 L—o0 k—o0 L—o0

JLTOP% [% < z] — |im lim PT [% < z] if lim lim ET [Var [%fkﬂ ~0

The expectation of the conditional variance can be computed and it works.
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Back to the hypercube

Same trick:

O = E(O|Fk), Fk = (info in the k first and k last levels)

k—o0 L—o0

JLTOIP% [% < z] = lim JLTOIP% [% < z] if lim lim ET [Var [%fkﬂ ~0

The expectation of the conditional variance can be computed and it works.

Ok = Z Z nUmT]l{T reachable from a}]l{xa<x7—}(L_2k)(XT_XU)L_2k_1
lo|l=k |T|=L—k

ny =nb of open paths from (0, ...,0) to o; m; =nb from 7 to (1,...,1)
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Back to the hypercube

Same trick:
O = E(O|Fk), Fk = (info in the k first and k last levels)
. ox7© o ox 1Ok o X ©
im PE[7 <] = Jim Jim B[ < 2] i jim im BF | Var [ 7|7 <o
The expectation of the conditional variance can be computed and it works.
Ok = Z Z nUmT]l{T reachable from a}]l{xa<x7—}(L_2k)(XT_XU)L_2k_1
lo|l=k |T|=L—k

ny =nb of open paths from (0, ...,0) to o; m; =nb from 7 to (1,...,1)

By = Z Z nemy L(x: —XUXT)L72k71

lo|=k |r|=L—k
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Back to the hypercube

Same trick:

O = E(O|Fk), Fk = (info in the k first and k last levels)

Jim P [7 < 2] = Jim Jim P [T < 2] fim i BF [Var [ 7[5 = 0

The expectation of the conditional variance can be computed and it works.

Ok = Z Z nUmT]l{T reachable from a}]l{xa<x7.}(L 2k)( _XCT)L_2k_1
lo|l=k |T|=L—k

ny =nb of open paths from (0, ...,0) to o; m; =nb from 7 to (1,...,1)

Z Z nymy L(x, — xpx, )L 2k

lo|l=k |T|=L—k

st
I
3
&
~Ix

~|d

il

O, > Oy, but not that much: I|m E%[
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Back to the hypercube

Same trick:

O = E(O|Fk), Fk = (info in the k first and k last levels)

Jim P [7 < 2] = Jim Jim P [T < 2] fim i BF [Var [ 7[5 = 0

The expectation of the conditional variance can be computed and it works.

Ok = Z Z nUmT]l{T reachable from a}]l{xa<x7.}(L_2k)(XT_Xcr)L_2k_1
lo|l=k |T|=L—k

ny =nb of open paths from (0, ...,0) to o; m; =nb from 7 to (1,...,1)
By = Z Z nemy L(x, — x(,-xT)L*m‘*1
lo|=k |r|=L—k
= T Xro . X8
(:)k > Oy, but not that much: LILngOIEL -] = LlLToEL [5-]
©k/L and ©/L have the same distribution for large L.
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Back to the hypercube

By = Z Z nngL(xT—xng)L_m‘_1
lo|l=k |T|=L—k

Eric Brunet (UPMC, LPS-ENS)
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Back to the hypercube

By = Z Z ngm:L(x; — XUXT)L_Qk_l
lo|l=k |T|=L—k

O L—2k— L—2k—
4 = Zna(l—xa) 2k=1 Z my(x;) 2k—1

lo|=k |7|=L—k
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Back to the hypercube

By = Z Z ngm:L(x; — XUXT)L_zk_l

lo|l=k |T|=L—k

O L—2k— L—2k—
4 = Zno(l—xa) 2k=1 Z m,(x, )2kt

lo|=k |T|=L—k

First factor: beginning of the hypercube. Second factor: end of the
hypercube. Terms are independent and symmetrical if X = 0.
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Back to the hypercube

By = Z Z ngm:L(x; — XUXT)L_zk_l

lo|l=k |T|=L—k

O L—2k— L—2k—
4 = Zno(l—xa) 2k=1 Z m,(x, )2kt

lo|=k |T|=L—k

First factor: beginning of the hypercube. Second factor: end of the
hypercube. Terms are independent and symmetrical if X = 0.
Last step: prove that

. Z L—2k—1 in law -X
¢k = na(l — Xo’) —_— € 5
L—o00 then k—o0
lo|=k
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Back to the hypercube

By = Z Z ngm:L(x; — XUXT)L_Zk_l

lo|l=k |T|=L—k

—_ (Z no(l—Xg)L_zk_l) ( Z mT(XT)L_2k_1)

O
L
lo|=k |T|=L—k
First factor: beginning of the hypercube. Second factor: end of the
hypercube. Terms are independent and symmetrical if X = 0.
Last step: prove that

oK 1= Z ng(1— X(,)L_2k_1 _nlw o Xg

L— o0 then k—o0
jo|=k

Intuition: with k fixed and L — oo, loops become negligible, and the
beginning of the hypercube looks like the beginning of the tree. So ¢, and
©%¢/L have the same large L distribution.
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Eric Brunet (UPMC, LPS-ENS)

Thank you !

Accessible paths on the hypercube
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