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1 Introduction

Mathematical modeling of epidemic spread and estimation of key parameters from data
provided much insight in the understanding of public health problems related to infectious
diseases. These models are naturally parametric models, where the present parameters
rule the evolution of the epidemics under study.

1.1 General set-up

Multidimensional continuous-time Markov jump processes (Z(t)) on Zp form a usual set-
up for modeling SIR-like epidemics. However, when facing incomplete epidemic data,
inference based on (Z(t)) is not easy to be achieved.
There are different type of situations where missing data are present. One situation
concerns Hidden Markov Models, that is, loosely speaking, a Markov process observed in
noise. It corresponds for Epidemics to the fact that the exact status of all the individuals
within a population is not observed, or that detecting the status has some noise. Another
situation comes from the fact that observations are performed at discrete times. They
can also be aggregated (e.g. number of infected per day). A third case, concerning
multidimensional processes , is that some coordinates cannot be observed in practice.
While the statistical inference for stochastic processes has a longstanding theory when
sample paths are thoroughly observed (complete data) , this is no longer true for many
cases that occur in practice. The aim of this course is to provide some tools to estimate
these parameters on the basis of available data. Discrete time Markov chains are simple
models for modeling stochastic epidemics. It is also interesting to study their inference
because all the questions that can arise in more complex models can be illustrated in this
set-up. Hence, classical results for the parametric inference for Markov chains are detailed
here.
Density-dependent epidemic processes can be approximated by diffusion processes. This
leads to new tools for studying inference for incomplete eptdemic data. We present these
diffusion approximations for classical epidemic models such as SIR, SIRS , corresponding
to single or recurrent outbreaks, or SEIR corresponding to a simplified model of Ebola
Dynamics. Then, we develop a framework for estimating the key parameters of epidemic
models based on statistics of diffusion processes approximating (Z(t)). For this, we first
introduce some classical tools used for statistics of diffusion processes. When necessary,
recap on this topic are given along these notes. Various methods are assessed on simulated
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data sets modeling SIR and SIRS epidemics and on real SIRS data.

1.2 Parametric inference

There are various methods that can be used to estimate parameters in statistical models,
that are summed up below.

- Maximum Likelihood Estimation
This entails that one can compute the likelihood of the observations. For a continuously
and completely observed process, this is generally possible, but for a discrete time ob-
servation of a continuous-time process or for other kinds of incomplete observation, it is
often not possible. This opens the whole domain of stochastic algorithms which aim at
completing the data in order to estimate parameters with Maximum Likelihood methods.
In regular statistical models, maximum likelihood estimators (MLE) are consistent and
efficient (best variance).

- Minimum Contrast Estimation or Estimating Functions
When it is difficult to use or to compute the exact likelihood, pseudo-likelihoods ( contrast
functions; approximate likelihoods,..), or pseudo -score functions (approximations of the
score function ( obtained by differentiating the likelihood with respect to parameters),
estimating functions,..) are often used. When they are well designed, these methods lead
to estimators that are consistent and converge at the right rate. They might loose the
efficiency property of MLE in regular statistical models
- Empirical Methods
This comprises all the methods that rely on limit theorems (such as the ergodic theorem)
associated with various functionals built on the observations. Moments methods and
Generalized Moment Methods belong to these empirical methods. Here estimation can
be parametric or non parametric.

2 First classical examples of Markov chains in Epi-

demics

These two examples are taken from Andersson and Britton (Stochastic Epidemic Models
and their Statistical Analysis, Lecture Notes in Statistics 151, 2000).
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2.1 Greenwood model

Consider a population of size N composed of S0 Susceptible individuals and I0 infected
at time 0 (S0 + I0 = N). Assume that the latent period equals 1. After it, susceptible
individuals can be infected with probability p (0 < p < 1). Infected individuals are
removed from the ifection chain.
Denote by Sn the number of Susceptible and In Infected at time n. Let In denote the
number of Newly infected at time n. Then, the distribution of S1 given (S0, I0) is ,
S1 = S0 − I1 where L(I1|(S0, I0) ∼ Bin(S0, p) and S1 = S0 − I1.
Similarly, assume that at time n there are Sn susceptible and In infected individuals.
Then,
In+1 ∼ Bin(Sn, p) and Sn+1 = Sn − In+1.
The process keeps going on up to the time where there is no longer Susceptible in the
population. Let Fn = σ((Si, Ii), i = 0, . . . n). Hence,

P((Sn+1, In+1) = (sn+1, in+1)/Fn) = 0 if sn+1 > sn or if in+1 + sn+1 6= sn,

= P(In+1 = sn − sn+1/Sn = sn)

= Csn−sn+1
sn psn−sn+1(1− p)sn+1

Note that in this model Fn = σ(Si, i = 0, . . . n) and that (Sn) is a Markov chain with state
space {0, N} and that the conditional distribution of Sn+1 given Fn is a Bin(Sn, (1− p))

Some relevant questions: Let us asssume that the successive numbers of susceptibles
(s0, s1, . . . , sK) have been observed. Is it possible to estimate p on the basis of these ob-
servations?
What is the duration of the epidemics (which depends on p)?

Likelihood approach
The underlying idea is that a good estimator of p is a value that yields for the successive
observations s0, s1, . . . , sK the highest probability. Denote by Pp the probability associated
with the Markov chain with parameter p. Assume that, at time 0, there is s0 susceptible
individuals. Then the likelihood associated with parameter p and observations (s0, . . . , sK)
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is, if s0 ≥ s1 · · · ≥ sN

LK(p; s0, s1, . . . , sK) = Pp(S0 = s0, . . . , SK = sK)

= Pp(S0 = s0)ΠK
n=1Pp(Sn = sn/Sn−1 = sn−1)

= Pp(S0 = s0)ΠK
n=1C

sn
sn−1

(1− p)snpsn−1−sn

= C(s0, . . . , sK)ps0−sK (1− p)
PK
n=1 sn .

The likelihood LK(p; s0, s1, . . . , sK)) is equal to 0 otherwise.
In the term C(s0, , . . . , sK), all the quantities independent of the parameter have been
gathered. They only depend on the model and the observations, and therefore have no
influence on the estimation of p.
Setting lK(p; s0, . . . , sK) = logLK(p; s0, . . . , sK) = lK(p), an elementary computation
yields that the value of p that maximizes the likelihood is

p̂K =
s0 − sK∑K
n=1 sn

.

Now, we could have considered another well-known estimator : a Conditional Least
Squares estimator. Indeed, E(Sn|Fn−1) = (1 − p)Sn−1. Therefore the CLS contrast
process is:
UK(p; s0, s1, . . . , sK)) =

∑K
n=1(Sn − E(Sn|Fn−1)2 =

∑K
n=1(Sn − (1 − p)Sn−1)2. The CLS

estimator is defined as a value p minimizing UK(p; s0, s1, . . . , sK)). This yields another
estimator

p̃K = 1−
∑K

n=1 Sn−1Sn∑K
n=1 S

2
n−1

.

A concern in Statistics is to answer the question: how do such estimators (or other ones)
behave when the observation time increases (and thus the quantity of information)?
Remarks
1. If, instead of observing (Sn), the successive number of Infecteds (In) had been available,
the inference is different since (In) is not a Markov chain.
2. In this model, the number of infected individuals at time n has no unfluence on the
number of Infected at time n+ 1, which might be unrealistic.
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2.2 Reed-Frost model

This is also a chain binomial model, which can be used to model the evolution of an
ordinary influenza in a small group of individuals.
Assume that the latent period is long with respect to a short infectious period and that
new infections occur at successive generations separated by the latent periods. Then, the
epidemics dynamics is a SIR model (Susceptible, Infected, Removed) built as follows.
Denote by (Sn, In) the number of Susceptible and Infected individuals at time n. Assume
that p is now the probability of contact between a Susceptible and Infected individual and
let q = 1− p (probability of no contact between a Susceptible and an Infected). Assume
moreover that contacts between susceptible and infecteds are independent.
Then, if the number of Susceptibles and Infected at time n is (sn, in), the probability that
a Susceptible remains Susceptible at time n+ 1 is qin ( probability of no contact with the
in infected). Therefore, the probability of infection for a Susceptible is pn = (1− qin). As
before, the distribution of In+1 given Fn is Bin(Sn, pn) and Sn+1 = Sn − In+1.
Then (Sn, In) is a Markov chain on N2 with probability transitions,

P(Sn+1 = sn+1, In+1 = in+1/Fn) = 0 if sn+1 + in+1 6= sn,

= Csn+1
sn (qin)sn+1(1− qin)sn−sn+1 .

Let us stress that, contrary to the Greenwood model, the sequence of r.v. (Sn) is no
longer Markov.
As before, the questions are how long before the end of the epidemics, what is the total
number of infected individuals during the epidemics... The related random variables are:
T = inf{n, Sn = 0}, and Z =

∑
n≥1 In. their distributions both depend on p.

Likelihood approach
Assume now that the successive numbers of Susceptibles and Infected individuals have
been observed up to time K: (s0, i0), . . . , (sK , iK) , and that at time 0, there is (s0, i0)

susceptibles and infecteds. Consider the estimation of q = 1 − p and denote Pq the
associated probability. Then, if sn + in = sn+1 for n = 0, . . . , K − 1,

LK(q; (s0, i0), . . . , (sK , iK)) = Pq((S0, I0) = (s0, i0), . . . (SK , IK) = (sK , iK))

= ΠK−1
n=0 Pq((Sn+1, In+1) = (sn+1, in+1)|(sn, in))

= ΠK
n=1C

sn+1
sn (qin)sn+1(1− qin)sn−sn+1 .
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Therefore, logLK(q) = C((sn, in)n) +
∑K−1

n=0 (sn+1in log q + (sn − sn+1)(1− qin)).

Differentiating with respect to q yields

d logLN
dq

=
N−1∑
n=0

(
sn+1in
q
− in+1inq

in−1

1− qin
) =

1

q

N−1∑
n=0

in
1− qin

(sn+1 − snqin) (1)

Hence a MLE estimator q̂N of q is a solution of the equation∑N−1
n=0

in
1−qin (sn+1 − snqin) = 0.

Its properties can be studied as the number of observations increase.
Here, a problem which often occurs in practice already appears in this simple model:The
number of both Susceptibles and Infecteds cannot be observed, but only, the number
of Infected individuals are recorded. Therefore observations consist of the sequence
{(In+1, n = 0, . . . , K − 1}.
This corresponds to the statistical problem of inference for partially observed Markov
models, in the special case of a deterministic relation between Sn and In (Sn+In = Sn−1).

3 Parametric inference for Markov chains

Discrete time Markov chains models are interesting here because all the questions that
can arise for more complex models can be illustrated in this set-up. Moreover, continuous-
time stochastic models are often observed in practice at discrete times, which often sums
up to a Markov chain model. Therefore, this allows to illustrate some classical statistical
methods for stochastic models used in epidemics.

3.1 Canonical Statistical model and Likelihood

Consider n independent identically distributed random variables (Xi, i = 1, . . . , n) de-
fined on a probability space (Ω,F ,P) with density fθ(x)dx on R, with θ is an unknown
parameter. Assume that θ ∈ Θ with Θ a subset of Rk and let θ0 denote the true value of
the parameter that we want to estimate on the basis of the observations. The canonical
statistical model associated with the observations (Xi, i = 1, . . . , n) is defined as
- the observations space i.e. (Rn,B(Rn)),
- the probability distribution of the observations, i.e. the probability distribution P n

θ0,
on

(Rn,B(Rn)) of the vector (Xi, i = 1, . . . , n).
This distribution depends on the unknown value θ0, and since it is unknown, we have

7



to consider the family of distributions P n
θ . The canonical statistical experiment is here

(Rn,B(Rn), P n
θ , θ ∈ Θ). Let us first recall some classical definitions.

Definition 1. A likelihood function is a function such that

θ → L(θ) =
dP n

θ

dµ
(Xi, i = 1, . . . , n),

where µ is a positive σ-finite measure dominating all the distributions P n
θ and (Xi, i =

1, . . . , n) is the observed sample.

The corresponding Loglikelihood is

ln(θ) = logLn(θ) =
n∑
i=1

log fθ(Xi−1, Xi). (2)

Definition 2. A Maximum Likelihood Estimator is any solution θ̂ of the equation

L(θ̂) = supθ∈Θ L(θ).

Since the r.v. (Xi) are independent, the density of P n
θ with respect to the Lebesgue

measure λ on Rn is, dPnθ
dλ

(xi, i = 1, . . . , n) = Πn
i=1fθ(xi)., and a likelihood function L(θ) =

Πn
i=1fθ(Xi).

3.2 Canonical Markov chain

Let us first introduce some notations and concepts that we use hereafter for Markov chains.
Let (Ω,F ,P) be a probability space and (E, E) a measurable space. A E-valued (discrete
time) stochastic process (Xn) is a collection of E- valued random variables. A filtration
of (Ω,F) is a non-decreasing sequence (Fn), n ≥ 0 of sub-σ fields of F . A filtered space
is a triple (Ω,F ,F), where F is a filtration. For any filtration F, we denote F∞ = ∨∞n=0Fn
the σ-field generated by F.

Definition 3. Let (E, E) and (G,G) be two measurable spaces. An unnormalized transi-
tion kernel from (E, E) to (G,G) is a function Q : E × G → [0,∞] that satisfies
(i) For all x ∈ E,Q(x, .) is a positive measure on (G,G).
(ii) For all A ∈ G„ the function x→ Q(x,A) is measurable.

If Q(x,G) = 1 for all x ∈ E, then Q is called a transition kernel.
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Consider now an E-valued stochastic process (Xn, n ≥ 0) defined on a filtered probability
space (Ω,F ,F,P).

Definition 4. The stochastic process (Xn, n ≥ 0) is a Markov chain under P, with respect
to filtration F and with transition kernel Q if for all n ≥ 0,
- Xn is Fn- measurable, and
- for all A ∈ E, P(Xn+1 ∈ A|Fn) = Q(Xn, A).
The distribution of X0 is the initial distribution and E the state space.

Some elementary exemples
Example 1: i.i.d random variables
Let (Xn), n ≥ 0 be a sequence of independent identically distributed random variables
with distribution µ, then Q(x, dy) = µ(dy) or∀B ∈ E , Q(x,B) = µ(B).
Example 2: Random walk on R.
Let ((Yn)) i.i.d sequence of random variables on R with density ν(dy) = h(y)dy, Fn =

σ(Y0, . . . , Yn) and define the Markov chain (Xn),
X0 = Y0,
X1 = X0 + Y1, and . . . Xn+1 = Xn + Yn+1.
Then E(f(Xn+1/Fn)) = E(f(Xn+1/Xn)) =

∫
f(Xn + y)h(y)dy =

∫
f(y)h(y −Xn)dy :=

Qf(Xn).
Hence the transition probability of (Xn) is Q(x, dy) = h(y − x)dy.
Example 3: Markov chain Xn+1 = φ(Xn, Yn+1)

Consider a mesurable known function φ(x, y), φ : (E ×E, E × E)→ (E, E) and let (Yn) a
sequence of i.i.d. random variables on E with distribution ν(dy). Assume that X0 ∼ µ is
independent of (Yn, n ≥ 1).
Then, the sequence of r.v. defined as: Xn+1 = φ(Xn, Yn+1) is a Markov chain on (E, E).
For x ∈ E and A ∈ E , define νx(A) := ν({y, φ(x, y) ∈ A}) ( (the image of measure ν by
φ(x, .)).
Then E(f(Xn+1)/F\) = E(f(φ(Xn, Yn+1))/Xn) =

∫
f(y)νXn(dy).

Therefore the transition probability of (Xn) is Q(x, dy) = νx(dy).
In Example 2, φ(x, y) = x+ y and νx(A) = ν(A− x).

In order to do statistics, we need to define the canonical version of (Xn). The canonical
space is the space of observations (EN, E⊗N). The coordinate process is the E- valued
stochastic process defined on the canonical space by Xn(ω) = ω(n). The canononical
space is endowed with the natural filtration FX of the coordinate process.
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Theorem 1. Let µ be a probability measure on (E, E) and Q a transition kernel on (E, E).
Then, there exists a unique probability measure on (EN, E⊗N), denoted Pµ,Q such that the
coordinate process (Xn, n ≥ 0) is a Markov chain (with respect to its natural filtration)
with initial distribution µ and transition kernel Q.

Properties
• Let A0, A1, . . . , An belong E , then
P n
µ,Q(X0 ∈ A0, . . . , Xn ∈ An) =

∫
A0
µ(dx0)

∫
A1
Q(x0, dx1) . . .

∫
An
Q(xn−1, dxn).

• If f a bounded measurable function on En+1,
P n
µ,Q(f) =

∫
En+1 f(x0, x1, . . . , xn)µ(dx0)Q(x0, dx1) . . . Q(xn−1, dxn).

Definition 5. The canonical statistical model associated with the observation (Xi, i =

0, . . . n) is defined by
- the observations space : (EN, EN),
- the probability distribution of the observations, that is the probability Pµ0,Q0 (defined in
Theorem 1) on (EN, EN) of the vector (Xi, i = 0, . . . n).

As before, this distribution depends on the unknown initial distribution µ0, and unknown
density kernel Q0(x, dy). Since there are unknown, we have to consider the family of
distributions Pµ,Q. The canonical statistical model is (EN, EN, (Pµ,Q, (µ,Q) ∈ Θ)) , with
Θ some subset of "probability measures x density kernels" on (E, E).

3.3 Likelihood process

The successive observations of (Xi) allow to estimate µ,Q. One expects that longer
observations lead to better estimators of (µ,Q).
Let λ be a positive measure on (E, E) dominating all the distributions
{µ(dy), (Q(x, dy), x ∈ E)}. Assume that µ(dy) = µ(y)λ(dy), Q(x, dy) = Q(x, y)λ(dy).
Then, if P n

µ,Q = Pµ,Q|Fn, the density of P n
µ,Q with respect to the measure λn+1 on En+1 is

dPnµ,Q
dλn+1

(xi, i = 0, . . . , n) = µ(x0)Q(x0, x1) . . . Q(xn−1, xn).

Therefore, a likelihood function is

Ln(µ,Q) = µ(X0)Q(X0, X1) . . . Q(Xn−1, Xn).
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This is called the likelihood at time n. The sequence (Ln(θ), n ∈ N) is the likelihood
process.
Example: Markov chain with finite state space E = {1, . . . , K}.
Let λ be the uniform measure on E ()λ(k) = 1 for all k ∈ E). Then,

dP n
µ,Q

dλn+1
(xi, i = 0, . . . , n) = µ(x0)Q(x0, x1) . . . Q(xn−1, xn).

Therefore, a likelihood function at time n is

µ(X0)Q(X0, X1) . . . Q(Xn−1, Xn).

3.4 Maximum likelihood estimator for Markov chains

Assume that the parameter set Θ is is a subset of Rl and that θ0 is the true value of the
parameter.

Definition 6. A family (Qθ(x, dy), θ ∈ Θ) of transition probability kernels on (E, E) →
[0, 1] is dominated by the transition kernel Q(x, dy) if
∀x ∈ E,Qθ(x, dy) = fθ(x, y)Q(x, dy), with fθ : (E × E, E × E)→ R+ measurable.

Assume that the initial distribution µ is known and let Pθ = Pµ,Qθ the distribution of the
Markov chain (Xn) with initial distribution µ and transition kernel Qθ. Then a likelihood
function is

Ln(θ) = Πn
i=1fθ(Xi−1, Xi).

A maximum likelihood estimator is defined as any solution θ̂n of

Ln(θ̂n) = sup{Ln(θ), θ ∈ Θ}.

In order to study the properties of this estimator as n→∞, we introduce some assump-
tions.
(H0): The family (Qθ(x, dy), θ ∈ Θ) is dominated by the transition kernel Q(x, dy) .
(H1): The Markov chain (Xn) with transition kernel Qθ0 is irreducible, positive recurrent
and aperiodic, with stationary measure λθ0(dx) on E.
(H2): λθ0({x,Qθ(x, .) 6= Qθ0(x, .)}) > 0.
Assumption (H0) ensures the existence of the likelihood; (H1) is analogous for Markov
chains to repetitions in a n sample of i.i.d random variables; (H2) corresponds to an
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identifiability assumption, which ensures that different parameter values lead to distinct
distributions for the observations.
Studying the properties of the MLE is two-fold: first prove the consistency of θ̂n, then
study the limit distribution. We detail euristically how these properties are obtained.
Consistency: It relies on several steps.
Step (1) : the convergence of the loglikelikelihood `n(θ) suitably normalized to a deter-
ministic limit J(θ0, θ) under Pθ0 .
Step (2) : the property that this limit has a unique global maximum at θ0.
Step (3) Since θ̂n = Argsupln(θ) and θ0 = ArgsupJ(θ0, θ), assumptions ensuring that
"lim Argsup= Argsup lim".

Step (1): Define for n ≥ 1, Yn = (Xn−1, Xn)′. Under (H0), (H1), (Yn, n ≥ 1) is a positive
recurrent Markov chain on (E×E, E ×E) with stationary distribution λθ0(dx)Qθ0(x, dy).
Applying the ergodic theorem yields that, under Pθ0 ,

1

n
ln(θ) =

1

n

n∑
i=1

log fθ(Xi−1, Xi)→
∫ ∫

E×E
log fθ(x, y)λθ0(dx)Qθ0(x, dy) a.s. (3)

Step (2): Let us set

J(θ0, θ) =

∫ ∫
E×E

log fθ(x, y)λθ0(dx)Qθ0(x, dy). (4)

Recall the definition of the Kullback-Leibler divergence between two probabilities.

Definition 7. Let P,Q be two probability distributions defined on a probability space
(Ω,A). Then the Kullback-Leibler divergence K(P,Q) of Q with respect to P is:
-if P << Q, K(P,Q) = EP (log dP

dQ
) =

∫
log dP

dQ
dP.

- K(P,Q) = +∞ otherwise.

The Kullback-Leibler divergence measures the "difference"" between two probabilities. It
satisfies
K(P,Q) ≥ 0 and K(P,Q) = 0 if and only if Q = P , P -a.s.
Rewriting equation (4) yields

J(θ0, θ) =

∫ ∫
log

fθ(x, y)

fθ0(x, y)
λθ0(dx)Qθ0(x, dy) + A(θ0),

with A(θ0) =
∫ ∫

log fθ0(x, y)λθ0(dx)Qθ0(x, dy).
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Hence, using that, under (H0), Qθ(x, dy) = fθ(x, dy)Q(x, dy) yields

J(θ0, θ) =

∫
λθ0(dx)

∫
log

Qθ(x, dy)

Qθ0(x, dy)
Qθ0(x, dy) + A(θ0) (5)

= −
∫
K(Qθ0(x, .), Qθ(x, .)) λθ0(dx) + A(θ0). (6)

Assumption (H2) ensures that θ → J(θ0, θ) possesses a unique global maximum at θ = θ0.

Step (3) relies on additional uniform integrability assumptions.

Theorem 2. Assume (H0),(H1) and (H2) and that Θ is a compact subset of Rl. Assume
moreover,
(i) ∀θ, log fθ(x, y) is integrable with respect to λθ0(dx)Qθ0(x, dy) := λθ0 ⊗Qθ0

(ii)∀(x, y) ∈ E2, θ → fθ(x, y) is continuous w.r.t. θ,
(iii) There exists a function h(x, y) integrable w.r.t. λθ0 ⊗Qθ0 and such that

∀θ, | log fθ(x, y)| ≤ h(x, y).

Then the maximum likelihood estimator θ̂n is consistent, i.e. it converges in probability
under Pθ0 to θ0 as n→∞.

3.5 A primer on MLE asymptotics

We sum up Section 12.1 of the book of Cappé, Moulines, Ryden (2005), Inference in
Hidden Markov Models.
For standard models, asymptotic properties of the MLE rely on tree basic results: a law
of large numbers for the log-likelihood `n(θ), a central limit theorem for the score function
and a law of large numbers for the observed information. this sums up,
(i) For all θ ∈ Θ, n−1`n(θ) → J(θ0, θ) Pθ0− a.s. uniformly over compacts subsets of Θ,
where `n(θ) is the log-likelihood of the parameter θ given the first n observations and
θ → J(θ0, θ) is a continuous function with a global unique maximum at θ0.
(ii) n−1/2∇θ`n(θ0) → N (0, I(θ0)) in distribution under Pθ0 , where I(θ)) is the Fisher
information matrix at θ.
(iii) limn→∞sup|θ−θ0|≤δ ‖ − 1

n
∇2
θ`n(θ)− I(θ0) ‖→ 0 as δ → 0 Pθ0− a.s.

Condition (i) ensures strong consistency of the MLE. Euristically, the argument is the
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following. The MLE θ̂n satisfies `(θ̂n) ≥ `(θ) for all θ ∈ Θ. Because J(θ0, θ) has a global
unique maximum at θ0, J(θ0, θ0)− J(θ0, θ̂n) ≥ 0. Combining the two inequalities yields

0 ≤ J(θ0, θ0)− J(θ0, θ̂n)

≤ J(θ0, θ0)− 1

n
`n(θ0) +

1

n
`n(θ0)− 1

n
`n(θ̂n) +

1

n
`n(θ̂n)− J(θ0, θ̂n)

≤ 2 sup
θ∈Θ
|J(θ0, θ)−

1

n
`n(θ)|.

Therefore, if Θ is a compact set, `(θ̂n) → J(θ0, θ0) Pθ0- a.s.as n → ∞ , which in turn
implies, as J(θ0, .) is continuous with a unique global maximum at θ0, that the MLE
converges to θ0 Pθ0- a.s. Therefore, the MLE is strongly consistent.
If consistency holds , then properties (ii) and (iii) yield asymptotic normality of the MLE.
Assuming that θ0 is an interior point of Θ and that the Fisher information I(θ0) is non
-singular, a Taylor expansion of the score function ∇θ`n at point θ0 leads, using that
∇θ`n(θ̂n) = 0

0 = ∇θ`n(θ̂n) = ∇θ`n(θ0) +
(∫ 1

0

∇2
θ(θ0 + t(θ̂n − θ0))dt

)
(θ̂n − θ0). (7)

Form this expansion, we get, using that I(θ0) is non-singular,

√
n(θ̂n − θ0) =

(
− 1

n

∫ 1

0

∇2
θ(θ0 + t(θ̂n − θ0))dt

)−1( 1√
n
∇θ`n(θ0)

)
. (8)

Using that θ̂n → θ0 Pθ0- a.s and (iii) yields that the first factor of the right hand side of
(8) converges to I(θ0)−1 Pθ0 a.s. The second factor converges in distribution under Pθ0
to N (0, I(θ0)). An application of Slutsky’s theorem yields that

√
n(θ̂n − θ0) converges

to N (0, I(θ0)−1) in distribution under Pθ0 . This is the standard result on asymptotic
normality of the MLE.

Let us specialize these results to the Markov Chain Statistical model.
Point (i) has been checked: J(θ0, θ) =

∫
K(Qθ0(x, .), Qθ(x, .)) λθ0(dx) + A(θ0).

Point (ii): ∇θ`n(θ0) =
∑n

i=1
1

fθ0 (Xi−1,Xi)
∇θfθ0(Xi−1, Xi).

Now, under Pθ0 ,
dPθ0
dP (X1, . . . , Xn) = Πn

i=1fθ0(Xi−1, Xi).
Hence, Eθ0(∇θ`n(θ0)) = Eθ0(Ln(θ0)−1∇θLn(θ0)) = EP(∇θLn(θ0)).
With appropriate assumptions, EP(∇θLn(θ0)) = ∇θEP(Ln(θ0)) = 0.
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Hence, setting vi(θ) = ∇θ`i(θ)−∇θ`i−1(θ) = fθ(Xi−1, Xi))
−1∇θfθ(Xi−1, Xi), we get

∇θ`n(θ0) =
∑n

i=1 vi(θ0) with Eθ0(vi(θ0)|Fi−1) = 0. Hence ∇θ`n(θ0)) is a centered Pθ0-
martingale, say Mn(θ0). with associated increasing process,
< M(θ0) >n=

∑n
i=1 Eθ0(vi(θ0)2|Fi−1). Applying the ergodic theorem yields that:

1

n
< M(θ0)n →

∫ ∫
1

fθ0(x, y)2
∇θfθ0(x, y)) t∇θfθ0(x, y)λθ0(x)Qθ0(x, y)dxdy := I(θ0).

Therefore the CLT for martingales yields that 1√
n
Mn(θ0) → N (0, I(θ0)) in distribution

under Pθ0 .
Similarly, another application of the ergodic theorem together with integability assump-
tions yields that
1
n
∇2
θ`n(θ0) converges Pθ0 a.s. to a deteministic limit equal to I(θ0).

3.6 Going a step further

What if, instead of the likelihood, nother process is used , e.g. the conditional least
squares method or a nother contrast procesxUn(θ)? (in essence think of Un = −`n).
Define θ̃n such that

Un(θ̃n) = inf
θ∈Θ

Un(θ).

(i) For all θ ∈ Θ, n−1`n(θ) → K(θ0, θ) in Pθ0− probability. uniformly over compacts
subsets of Θ , where θ → K(θ0, θ) is a continuous function with a global unique minimum
at θ0.
(ii) n−1/2∇θUn(θ0)→ N (0, IU(θ0)) in distribution under Pθ0 .
(iii) There exists a symmetric positive matrix JU(θ0) such that limn→∞sup|θ−θ0|≤δ ‖
− 1
n
∇2
θUn(θ)− JU(θ0) ‖→ 0 as δ → Pθ0− a.s.

Then, if JU(θ0) is non singular,
√
n(θ̃n − θ0) converges to N (0, JU(θ0)−1IU(θ0)JU(θ0)) in

distribution under Pθ0 .
Indeed, (ii) holds in the case of the MLE because ∇θ`(θ0) is a martingale under Pθ0 which
is centered and belongs to L2. For other functionals of the observations, a CLT is ob-
tained building a martingale (Mn) based on the observations. Then, if < M >n→ ∞,
under appropriate assumptions, we get (ii) and (iii) using limit theorems for martingales.

Coming back to the Conditional Least Squares method for ergodic Markov chains.
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Assume that (Xn) is a Markov chain with state space R and define

Un(θ) =
1

2

n∑
i=1

(Xi − Eθ(Xi|Xi−1)2).

Let us check successively points (i),(ii) and (iii) for Un(θ).
Point (i): We have that Eθ(Xi|Xi−1) =

∫
yQθ(Xi−1, y)dy := gθ(Xi−1).

Hence, 1
n
Un(θ)→ 1

2

∫ ∫
(y − gθ(x))2λθ0(x)Qθ0(x, y)dxdy := K(θ0, θ).

Rewriting this limit yields,
K(θ0, θ) = 1

2

∫
(gθ(x)− gθ0(x))2λθ0(x)Qθ0(x, y)dxdy + A(θ0),

with A(θ0) = 1
2

∫ ∫
(y− gθ0(x))2λθ0(x)Qθ0(x, y)dxdy. So point (1) holds under an assump-

tion that θ 6= θ0 ⇒ gθ(.), gθ0(.) are non identical functionsâĂę
Point (2): Let us study ∇θUn(θ0).
Mn(θ0) := ∇θUn(θ0) = −

∑n
i=1(Xi − gθ0(Xi−1))∇θgθ0(Xi−1).

Hence, using the definition of gθ, we get that Mn(θ0) is a centered L2 Pθ0- martingale. Its
increasing process (crochet) < M(θ0) >n is
< M(θ0) >n=

∑n
i=1 Eθ0

(
(Xi − gθ0(Xi−1))2|Xi−1

)
∇θg(Xi−1) t∇θg(Xi−1).

Let Vθ(x) denote the conditional variance of Xi given {Xi−1 = x}.
Then, < M(θ0) >n=

∑n
i=1 Vθ0(Xi−1)∇θgθ0(Xi−1) t∇θgθ0(Xi−1).

An application of the ergodic theorem yields
1
n
< M(θ0) >n→

∫
Vθ0(x)∇θ gθ0(x) t∇θ gθ0(x)λθ0(x)dx := Σ(θ0). Pθ0 a.s.

Finally, under appropriate assumptions, we can apply the central limit theorem for mar-
tingales and get that, in distribution under Pθ0 ,

1√
n
Mn → N (0,Σ(θ0).

Hence the matrix Σ(θ) = IU(θ).
Point (iii): We have to study now 1

n
∇2
θUn(θ). We have

∇2
θUn(θ) =

n∑
i=1

∇θ gθ(Xi−1) t∇θ gθ(Xi−1) + (Xi − gθ(Xi−1))∇2
θgθ(Xi−1).

Hence 1
n
∇2
θUn(θ0)→

∫
∇θ gθ0(x) t∇θ gθ0(x)λθ0(x)dx := JU(θ0).

Let us stress that, contrary to the MLE approach, we have no longer that IU(θ) = JU(θ).
Joining these results, we get that the minimum least squares estiamtor θ̃n is consistent
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asymptotically Gaussian at rate
√
n. We have just increased the asymptotic variance

which is no longer the optimal one (in other words, θ̃n is not efficient).

4 Coming back to examples

4.1 Birth and death chain

Assume that in a large infinite population, an epidemic model is described by a birth and
death chain on N describing the number of Infected individuals In at time n.
The birth and death chain associated with parameters p, q, r ∈ (0, 1) such that p+q+r = 1

is
- if k ≥ 1, P(In+1 = k + 1|In = k) = p,
P(In+1 = k − 1|In = k) = q, and P(In+1 = k|In = k) = r .
- if k = 0, P(In+1 = 1|In = 0) = p and P(In+1 = 0|In = 0) = 1− p.
(there is still some possible infection (coming for instance from the environment) even if
there is no longer infecteds).
This description corresponds for instance to an epidemic where individuals (e.g. animal
farms are infected by the environment only) and recovery is obtained by vaccination, as-
suming that only one animal can be vaccinated by time unit.

Set θ = (p, q) with (0 < p, q < 1; p + q < 1) and Θ = (0, 1)2. Let θ0 = (p0, q0) br e the
true parameter value and assume that The initial number of infected I0 = i0 is known.
Then (In) is a Markov chain on N with transition kernel,
Qθ(i, j) = pδi+1(j) + qδi−1(j) + rδi(j) if i 6= 0,
Qθ(0, j) = pδ1(j) + (1− p)δ0(j),
where δi(.) denotes the Dirac measure at point i: δi(j) = 1 if j = i, 0 if j 6= i.

This is an irreductible aperiodic Markov chain on N and if p < q, (In) is positive recurrent
with stationary distribution the geometric distribution

λθ(i) = (1− p

q
)(
p

q
)i.

Choosing the positive measure on N γ(i) = 1 for all i, we get that the distribution Pθ of
(In) satisfies,
dPnθ
dγn

(Ik, k = 1, . . . , n) =
∏n

1 Qθ(Ik−1, Ik).
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Let us define the random variables N i,j
n , which count the number of transitions from state

i to state j up to time n:

N i,j
n =

n∑
k=1

δi,j(Ik−1, Ik),

where δi,j(x, y) = 1 if (x, y) = (i, j) and 0 otherwise. Then, we get another expression for
Ln(θ),

Ln(θ) =
dP n

θ

dγn+1
(Ik, k = 1, . . . , n) = µ(I0)

∏
i,j≥0

Qθ(i, j)
N i,j
n .

Clearly, if j 6= {i− 1, i, i+ 1}, N i,j
n = 0. Hence, the loglikelihood ln(θ) satisfies

ln(θ) = (
∑
i≥0

N i,i+1
n ) log p+ (

∑
i≥1

N i,i−1
n ) log q + (

∑
i≥1

N i,i
n ) log r +N0,0

n log(1− p).

The stationary distribution of (In, In+1) is (1− p0
q0

)(p0
q0

)iQθ0(i, j). Therefore, applying the
ergodic theorem yields that, under Pθ0 :
1
n
N i,i+1
n → p0λθ0(i)⇒ 1

n

∑
i≥0N

i,i+1
n → p0 a.s.

1
n
N i,i−1
n → q0λθ0(i)⇒ 1

n

∑
i≥1N

i,i−1
n → q0 × p0

q0
= p0 a.s.

1
n
N i,i
n → r0λθ0(i)⇒ 1

n

∑
i≥1N

i,i
n →

r0p0
q0

and 1
n
N0,0
n → (1− p0

q0
)(1− p0).

Therefore, 1
n
ln(θ) converges under Pθ0 to J(θ0, θ) which is

J(θ0, θ) = p0 log p+ p0 log q + r0p0
q0

log r + (1− p0
q0

)(1− p0) log(1− p).
Using that, for i 6= 0, K(Qθ0(i, .), Qθ(i, .)) = p0 log p0

p
+ q0 log q0

q
+ r0 log r0

r
and

K(Qθ0(0, .), Qθ(0, .)) = p0 log p0
p

+(1−p0) log 1−p0
1−p , we can check that θ → J(θ0, θ) possesses

a unique global minimum at θ = θ0.
The Maximum likelihood estimator is (p̂n, q̂n) writes

p̂n = 1
n

∑
i≥0N

i,i+1
n ) and q̂n =

P
i≥1N

i,i−1
nP

i≥1N
i,i−1
n )+

P
i≥1N

i,i
n

(1− p̂n).

4.2 Model of infection in the Intensive Care Unit (ICU)

This example is taken from Chapter 4 of Diekmann, Heesterbeck, Britton (2013).
This concerns a finite population of size N (N small) but high turnover (most patients
stay only a couple of days).There are two routes for infection (colonization): endogenous
route (α mechanism) and exogenous route (β transmission). New admitted individuals
are susceptible.
Concentrating on long time intervals leads to a Markov chain description. Let us consider
the probabilities of the various compositions of the ICU in terms of Infected and suscep-
tible individuals. Assume that discharge and admission take place evey day at noon. The
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bookkeeping scheme concerns the state of the ICU immediately after discharge (12h05).
Each patient has probability 1/δ of being discharged by unit of time. For sake of clarity,
assume that the probability that both infection events occur in the same time interval is
zero.
Consider the simplest example : an ICU with two beds. It corresponds to three possible
states: state 0 ( both patients are Susceptible), state 1 (one patient is sucsceptible, one is
colonized) and 2 (both are colonized). Assume that both patients are susceptible on day
i at 12h05. The probability that both patients are susceptible at 11h55 the next day is
(e−α)2, in state 1 with probability 2e−α(1−e−α) and in state 2 with probability (1−e−α)2.
After discharge (12h05), the probability that they are
in state 2 is Q(0, 2) = (1− 1

δ
)2(1− e−α)2;

in state 1 is Q(0, 1) = 21
δ
(1− 1

δ
)2 + 2(1− 1

δ
)e−α(1− e−α),

in state 0 Q(0, 0) = (e−α)2 + 2
δ
(1− 1

δ
)e−α + (1

δ
)2(1− e−α)2.

Consider now the case that we are in state 1at 12h05 (one patient is susceptible, and the
other is colonized). At 11h55 the next day the state is 1 with probability exp(−(α + β))

and 2 with probability (1− exp(−(α + β))). Hence at 12h05 on that same day,it will be
- 2 with probability Q(1, 2) = (1− 1

δ
)2(1− exp(−(α + β)));

- 1 with probability Q(1, 1) = (1− 1
δ
) exp(−(α + β)) + 2

δ
(1− 1

δ
)(1− exp(−(α + β))),

- 0 with probability : Q(1, 0) = 1
δ

exp(−(α + β)) + 1
δ
)2(1− e−(α+β)).

Finally, if we start with two colonized patients, the situation can only change by discharge
and admission. Therefore, Q(2, 2) = (1− 1

δ
)2, Q(2, 1) = 2

δ
(1− 1

δ
) and Q(2, 0) = (1

δ
)2.

This is a positive recurrent Markov chain with transition kernel Q = Qθ depending on
θ = (α, β, δ). Observing after discharge the state (Xi, i = 0, . . . , n) of the ICU allows to
estimate θ. The loglikelihood is

ln(θ) =
n∑
k=1

logQθ(Xk−1, Xk) =
∑

i,j=0,1,2

N ij
n logQθ(i, j),

where N i,j
n =

∑n
k=1 1(Xk−1=i,Xk=j). The MLE (α̂n, β̂n, δ̂n) can be obtained by maximizing

this loglikelihood. According to the previous theorem, there are consistent.

The next problem lies in the fact that the exact status of the patients is not always known
(no systematic control). Assume for instance that each patient is tested with probability
p. Then, the observations are no longer Xn, but (Yn) which are obtained as follows:
-if Xn = 0, then Yn = 0 with probability P (0, 0) = (1 − p)2, Yn = 1 with probability
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P (0, 1) = 2p(1− p), 2 with probability P (0, 2) = p2;
-if Xn = 1, then Yn = 0 with probability P (1, 0) = p(1 − p); 1 with probability
P (1, 1) = p2 + (1− p)2; 2 with probabilility P (1, 2) = p(1− p)
- if Xn = 2, Yn = 0 with probability P (2, 0) = p2, 1 with probability P (2, 1) = 2p(1− p),
and 2 with probabilility P (2, 2) = (1− p)2.
Therefore the distribution of Yn conditionally on Xn is an explicit distribution depending
on the parameter p. Denote fp(x, y) the conditional distribution of Yn given Xn = x.
Only (Yn) is observed. Can we estimate θ and p from thes observations?

We have now to deal with a Hidden Markov Model (Xn, Yn), i.e.
(i) (Xn) is a Markov chain
(ii) The conditional distribution of Yn given {(Xi, Yi), i = 1, . . . , n− 1, Xn} only depends
on Xn.

It follows from this definition that (Yn, n ≥ 0) does not verify the Markov property.
Note that (Xn, Yn) is a Markov chain with transition kernel,

P(Xn+1 = x′, Yn+1 = y′|Xn = x, Yn = y) = P(Xn+1 = x′, Yn+1 = y′|Xn = x)

= Qθ(x, x
′)fp(x

′, y′).
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