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Context of infectious diseases (individual infection)
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Modeling scheme for individual infection

@ Compartmental models for describing the infection status :
(S) Susceptible; (E) Exposed/Latent ; (1) Infectious/Infected ; (R)
Removed.

@ Difficulty in detecting the infection status = systematically noisy data.
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Various dynamics at the ppopulation scale: (epidemics with
one outbreak or recurrent outbreaks )
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Influenza like illness cases in France ( "Sentinelles" surveillance

network)
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Main important issues (1)

Determine the key parameters of the epidemic dynamics

@ Basic reproduction number Ry (average nb of secondary cases by one
primary case in an entirely susceptible population)

@ Average infectious time period d
@ Latency period, etc...

Based on the available data

Exact times of infection beginning and ending are not observed.
Data are collected at fixed times (daily, weekly .. data)
Temporally aggregated data.

Sampling and reporting errors

Some disease stages cannot be observed.
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Main important issues (2)

Provide a common framework for developping estimation methods
as accurate as possible given the data available
SEVERAL POSSIBLE WAYS TO OVERCOME THIS PROBLEM OF
MISSING OR INCOMPLETE DATA

@ Develop algorithms to simulate the unobserved missing data.

@ Existence of lots of computer intensive methods in this domain.

© Difficult to use for large populations.

@ Results are often unstable.

ANOTHER CHOICE HERE
@ Consider separately the model and the available data.
@ Study the properties of the observations derived from the model
© Investigate inference based on these properties

@ Develop algorithms fast to implement in relation with the previous step
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A simple mechanistic model for a single outbreak : SIR

AN
e

S, 1, R numbers of Susceptibles, Infected, Removed.
A: transmission rate , y: recovery rate.

Notations and assumptions:

o Closed population of size N (Vt, S(t) + /(t) + R(t) = N).

@ Homogeneous contacts in a well mixing population:
(S,/) = (S—1,/+1)atrate S A &
(5,1) = (S, —1) at rate v /

Key parameters of this epidemic model

@ Basic reproduction number Ry = %

@ Average infectious period d = "ly
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A minimal model for Ebola epidemics

@ Explicit and detailed model in Legrand J., Grais R.F., Boelle P.Y.

Valleron A.J. and Flahault A. (2007), Epidemiology & Infection
@ Impossible to estimate parameters from available data.
@ Due to identifiability problems.
A Minimal model for Ebola Transmission

Camacho et al. PLoS Curr, 2015;7.
SEIR model with temporal transmission rate

AI/N P y
S E

o (S,E,)—=(S—1,E+1,/)at rateS)\(t)ﬁ
o (SE,I)—(S,E—1,/+1)atratep E
e (S,E,I)—(S,E,l —1)atratey /
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A mechanistic model for recurrent epidemics
SIRS model with seasonal forcing (Keeling et Rohanni, 2011 )

§: Immunity waning rate (per year)™?!,

w1 (Population renewal): birth rate and death rate (per decades)™?
A(t) = Mo(1 + )\1COS(27Ti)),

Ao Baseline transition rate, A; :intensity of the seasonal effect,

Tper: period of the seasonal trend.

Important: A\; = 0 = Damping out oscillations = need to have a temporal
forcing
Appropriate model for recurrent epidemics in very large populations

Key parameters: Ry = W d=1 Average waning period: 57-1 —
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Recap on some mathematical approaches

Description
@ p: number of health states (i.e. compartments).
@ Depends on the model choice for describing the epidemic dynamics.
@ SIR and SIRS models: p = 3.
e Adding a state "Exposed/latent" = SEIR model: p = 4.
°

Addition of states where individuals have similar behaviour with
respect to the pathogen: age, vaccination, structured populations).

Some classical mathematical models
@ Pure jump Markovprocess with state space NP: Z(t).
@ Deterministic models satifying an ODE on RP: x(t).

@ Gaussian Process with values in RP:

o Diffusion process X(t) satisfying a SDE onRP:

Links between these models?
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Pure jump p- dimensional Markov process Z(t)

Simple and natural modelling of epidemics.
Notations
e Population size N = Z(t) € E ={0,.., N}P.
@ Jumps of Z(t): collection de functions ay(-) : E — (0, +00), indexed
by te E- ={—N,.,N}P
e Forall xe E, 0 <, a(x) = a(x) < oo.
Pure jump Markov Process with state space de E: Z(t)
e = Transition rate from x — x + £: ay(x),
e Q-matrix of (Z(t)): Q = (gxy,(x,y) € E X E)
if y # X, gy = ay—x(x), and g = —a(x).
* Each individual stays in state x with exponential holding time £(a(x)),

* Then, it jumps to another state according to a Markov chain with

transition kernel P(x — x 4+ ¢) = O;f((;?.
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SIR, SEIR models in a closed population of size N

SIR epidemic model
vt, S(t) + (t) +R(t)=N= = Z(t) = (S(t),I(t)) € E={0,...,N}?
and ¢ = (—1,1),(0,—1)

AUN v (S.1)—=(S-1,1+1) (S, 1) =AS
DR e

SEIR epidemic model:(Time-dependent process)
Z(t) = (S( E(t),l(t)) €cE={0,...,N}3.

U,
17 70) (O -1 1) (0707_1)'

(S E, I) ( -1,E+1, /) Q(-1,1,0) (S,E, ) (t)S
(S,E,I) (5 E—]. I+1) OZ(O 11)(5 E, )
(S, E,/) (S E/ ) (0’07 1)(5 E /)

=~
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SIRS model with seasonal forcing in a closed population

= Z(t) = (S(t),I(t)) € E={0,..., N},
¢ =(-1,1),(0, ~1),(1,0), (—1,0).

(S.1) = (

(57/) - (S7l - 1) : a(O,—l)(57 l) = (’Y‘i‘ﬂ)/:

(S$;1) = (S+1,1):ape)(S, 1) =pN+(N—-5-1),

($;1) = (S—=1,1): a10)(S,1) = uS.

A(t) = Xo(1+ Alsin(27rﬁ)) = Time-inhomogeneous Markov process.

Remark: Simulations are easy with Gillespie's algorithm
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Density dependent jump processes Z(t) (1)

Extension of results Ethier et Kurz (2005) to time-dependent processes.
Notations

*xify =(y1,...,¥p) € RP [y] = (bl,- .-, [vp]) with [y;] integer part of y;.
Transposition of a vector y or a matrix M: Yy, M.

* Gradient de b(.) € C(RP,RP): Vh(y) = (g‘;; (¥))i-

Framework

* Constant population size N = E = {0, .., N}”.

* Collection ay(-) : E — (0,00) with £ € E~ = {—N, .., N}P.
* Transition rates: y — y 4+ £: oy(y) = qyz = az—y(y).

Normalization by the size N of Z(t)

o Zy(t) = £t =

o State space: Ey = {N~1k, k € E};

e Zy(t) jump process on Ep with Q-matrix:
if X,y € En.y # x, %) = angy— ().
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Density dependent jump processes Z(t):(2)

Density dependent Process
Recall that the jumps ¢ of Z(t) belong to E~ = {—N, .., N}*.

Assumption (H):
(H1): V(¢ y) € E- x[0,1], gau([Ny]) — Be(y)-
(H2): V¢, y — Be(y) € C?([0,1]P).

Definition of the key quantities b(.) and X(.)

bly) =D 8uly), E(y) =Y €% Buly).
V4 V4

These quantities are wel defined since the number of jumps is finite.
Note that b(y) = (bk(y),1 < k < p) € RP and
Y(y) = (Zu(y),1 < k,I < p) is a p-dimensional matrix.
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Approximations of Zy(.)

x(t) = x0 + Jg b( X(S))
®(t, u) solution de 2 g8 (t, u) Vb(x(t))®(t, u); ®(u,u) = I,.

Convergence Theorem

Assume (H1),(H2), and that Zy(0) — xo as N — co.Then,
* Zp/(.) converges x(.) uniformly on [0, T],

* V/N(Zn(t) — x(t)) converges in distribution to G(t),

* G(t) centered Gaussian process with

Cov(G(t), G(r)) = [ &(t, u) X (x(u)) ‘B(r, u)du.

Proof: Ethier & Kurz (2005): ay([Ny]) = Bi(y); GLV (2014) for
(i) Jump rates «(.) satisfying (H)

(i) Time-dependent jump rates «;(t, x) with

naut, [INy]) = Bi(t,y) =b(t,y): Z(t,y)

(Proof based on general limit theorems (Jacod and Shiryaev)).
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Diffusion approximation of Zy(t)

Recap: b(y) =>",€ Be(y) and Z(y) := >, £Bu(y).
Let £ : RP — R a bounded measurable and A the generator of Z(t)
A(F)y) = 2 () (F(y +€) — £(y))
o = An(F)(y) = el Ny)(F(y + 1) — f(¥))

Euristically : Expanding the generator Ap of ZN( ) =

An(f)(y) = b(y)VE(y )+ 5N Z,,J 1 u()’)ay,ay (y) +o(1/N)
= An(f)(y) = Bu(f)(y) + o(1/N).

Diffusion approximation of Zy(t): diffusion with generator By

dXi(t) = b(Xn(t))dt + <o(Xn(t))dB(t),
B(t): p-dimensionnal Brownian motion et o(.) a square root of ¥ ()

a(y) o(y) = Z(y).
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Small pertubations of Dynamical systems
Freidlin & Wentzell (1978) ; Azencott (1982)

e =1/VN = Xy(t) = X(t)

Link between the CLT for (Zn(.)) and diffusion (Xu(.)
Expanding X.(t) with respect to e,
o X (t) =x(t)+ eg(t) + eRe(t),
e where dg(t) = Vb(x(t))g(t)dt + o(x(t))dB(t) ; g(0) =0,
o supi<T || €Re(t) ||— 0 in probability as ¢ — 0.

Epr|C|t solution of this stochastic differential equation
= [o ®(t,s)o(x(s))dB(s), where
* CD(t u) s.t. %T(t u) = Vb(x(t))P(t, u); ®(u,u) = Ip.
* g(.): centered Gaussian process with same covariance matrix as G(.).
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Approximation of epidemic models by diffusion processes
and their statistical inferences
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Continuous observation on a finite time interval [0,T]

On the probability space :(Q, F, (F¢, t > 0),P)
d&e = b(bo; t, & )dt + o(t, &) dWe, §o =1

o(t, &) identified from this observation =
Assumption: o(t,&;) known.

(Bt) : p- dimensional Brownian motion ,
n Fo-measurable ;

0y € © compact subset of RX.

Aim: study of estimators of 6y depending on the observation
(&, t €00, T]).
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Probability distribution of a continuous time process

o Cr ={x=(x(t)): [0, T] — RP continuous},

e C1: Borelian filtration associated with the uniform topology

e Coordinate function: X; : C+ — RP, X(x) = x(t).

@ (X;): canonical process = anonical filtration: C; = o(Xs,s < t).
Diffusion process (&) on (2, F,P), d&; = b(t,&)dt + o(t, &) dWe, & = 1.
= Vw, t — &(w) is continuous [0, T] = &7 := (&(w), t € [0, T]) € Cr.
Distribution of (&, t € [0, T]) on (Ct,Cr)

° PIIU = probability distribution image of P by the r.v. 7.

@ A; borelian sets in RP, A= {x € Cr, x(t1) € Ay1,...,x(tx) € Ax),

o P((T € A) =P/ (Xy € A1, ..., Xy, € Ac}.

Wiener measure W T distribution of (B, t € [0, T] on (Ct,CT).
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Likelihood for continuously observed diffusions on [0,T]
Consider the parametric model associated to the diffusion on R

* d&; = b(ao; {t)dt + a(&)dBt, &0 = xo-

* o(x), b(0, x) known; xg known; 6 unknown = 6 € ©.

x P : distribution on (Cr,CT) of (&).

* POT distribution of & = xg + fota(fs)st

Assumptions ensuring existence, uniqueness of solutions of the SDE+..
* Additional asssumptions

Theorem

For all 8, the distributions P(,T and P{ are equivalent and

9Xt 1 [T b2, X;

Above formula: stochastic integral w.r.t. the canonical process (X;)
Under P/, fo dXs )ds is a standard Brownian motion,

Under P, [} w is a Brownian motion.
0 o2(Xs)
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Comments and extensions

e Diffusions having distinct diffusion coefficients o(x), o/(x) = P, and P,/
are singular distributions on (Cr,Cr).
e Diffusion having distinct starting point xg, x; have singular distributions.

(&:): time-dependent multidimensional diffusion s

e b(6,x) — b(h,t,x); 0%(x) — X(t,x) = o(t, x) o(t, x).

(Karatzas & Shreve for conditions ensuring existence and uniqueness of
solutions.

e On (Cr = C([0, T],RP),CT),

dP,

- 5/0 b(6; £, Xe)Z (¢, Xe)b(6, t, X;)dt).

(Liptser & Shiryaev).
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Catherine Larédo () Inference for epidemic models

Maximum Likelihood Estimator

e Canonical statistical model: (Ct,C7), (PQTJ,H € ©) x The likelihood

function associated to the observation (& = £%):
* 0 — LT(O), with
* t7(0) = log L1(0) = [, 20 de, — 1 [T "Ug‘(’ég) dt.

* M.LE. 07 st. (7(07) = sup{¢r(0 ),9 € @}.

Properties of the MLE as T — oo: no general theory.

Example : d&; = Qof(t)dt+ o(t)dB:; & =0, f,o(.) > 0.
T Fs)
s ET - QIOT afz((ss dfs 2 OT ; %3 ds = é\T fOTUf22(ss)) - x Under Peo'
fo 02(5)
Jo £Bdss T £2(s)
(9T—90+ T (e 097- NN(GO, )Wlth /T—f 2(s) ds.
0 22(s)

Asymptotic behaviour as T — oo depends on /7.
* f(t) = 1,0(t) = /(1 + t?) — It = ArctanT — 7/2: MLE not
consistent.

December 6, 2015
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Ergodic diffusion processes

Diffusion on RP:

d§e = b(0,&:)dt + o(&:)dBy;

Assumptions:

o for § € ©, (&) positive recurrent diffusion process.
e Stationary distribution on RP: \(6; x)dx.
Continuous observation on [0, T] with T — oo
Assumptions ensuring that the statistical model is regular
(Ibragimov Hasminskii)

MLE: Consistent estimator 1 of 0,

VT (01 — 6o) — Nk(0,171(60))

1(0) = ((9),’J,1</_/<k)

10)j = [on (22X 02 )y~ (x)2 gg;x)x(e,x)dx

see Kutoyants (2004)
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Discrete observations on a fixed time interval [0,T]

d&r = b(t,&e)dt + o(0o; t&e)dBr, S0 = 1

b(t, x) known or unknown function, 8y unknown parameter to estimate.

Observations at times t" = iT/n,i =0,...n .
Asymptotics: T > 0 fixed and n — oo

(1) Only parameters in the diffusion coefficient can be estimated

(2) No consistent estimators for parameters in the drift.

(3) Estimation of 6y = Statistical model: Local Asymptotic Mixed Normal
(Dohnal (JAP,1987),Genon-Catalot & Jacod (1993),Gobet (2001)

0,, converges of 6 at rate NIE ﬁ(é,, —6p) : non Gaussian but Mixed
variance Gaussian law.

Remark No explicit likelihood (unknown transition densities of &;; = No
attempt to complete the sample path but use of contrast functions.
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Discrete observations on [0, T] with T — oo

(2) Discrete observations on [0, T| with sampling interval A,
dé-t = b(O[7 t, é_t)dt + O'(/B, t, ft)th, 50 =n.

Observations: (&, i =1,...n) with t; = iA,, T = nA,.
Double asymptotics indexed as n (nb of observations) — oo
A, —0and T = nA, — 0.

( )Statistical model. Observations space: ((RP)", B(RP)")).

( 3) distribution of the n-uple = P(a 3) and P(a, ) equivalent.
Likelihood: depends on the transitions of the Markov chain: untractable
Other approaches: Estimating functions, contrast functions...

@ Parameters in the drift coefficient o estimated at rate \/nA,,.

@ Parameters in the diffusion coefficient estimated at rate /n.
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Diffusion processes with small diffusion coefficient

Model: Multidimensional diffusion process on RP
dft — b(O[, gt)dt + 60’(57 gt)dBta 50 = X0-
PS L+ distribution of (£,0 < t < T) on (Cr,Cr).

Continuous observation on [0, T]
e B#[ = P;”; and P;:g, are singular
e = [ identified from the continuous observation (£;,0 <t < T).
e 3= [ or fixed o(fo, x) = o(x)
Asymptotic framework T fixed and € — 0.(Kutoyants,1980)
* Le(a) = 612 0 02(’5&)) dés — 212 OT bgg?’éj)ds = MLE &,
* €1 (& — ap) = N (0, /(o) ™Y)
/(a) = (I j(0))1<ijck = J 28 (o, x(a,5)) 1 (x(a, 5)) 22 (e, x(a, )
* x(a,t) = x0 + [y b(a, x(av, 5))ds and E(x) = o(x) o(x).
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Discrete observations on a fixed interval [0, T]|

Diffusion process on RP

dX(t) = b(a, X(t))dt + ea (5, X(t))dB(t), X(0) = xo.
Observations: {X(tx),k =0,...,n} with t, = kA; T = nA.
Two possible asymptotic frameworks

Q@ ¢ — 0 and A fixed with T = nA = Fixed nb of observations n.
@ c—0and A=A, — 0with nA, = T simultaneously. = n — co.

Results in framework (2)

o Different rates of convergence for parameters in the drift and in the
diffusion coefficient (Gloter & Sorensen, 2009).

o Estimation of « at rate ¢!, 3 at rate Vn= A;l/z.
In practice difficult to assess which framework is more appropriate =
Distinction between parameters in the drift term « and in the diffusion

term (3 necessary.
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Back to Epidemics in a close population of size N

Some characteristics of epidemic data
— 1

° =
nb of observations ns.t. n << N and A > 1 (1 to 7 days).

(small parameter present in the diffusion term).

°
e Framework (1) € — 0, A fixed (n finite) more appropriate.

@ Choice of a statistical framework:

@ Depends more on the relative magnitudes of T, A, N than on their
accurate values.

Interest in studying estimation in both frameworks.

Data might change = Asymptotic framework A = A, — 0 also
appropriate:

Available data can become more frequent.

Study over a long time period for recurrent outbreaks.
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Recap for the three epidemic models

e SIR diffusion approximation on R?:

by(s, i) = (A;A_sfy I.) and oy(s, i) = (_% \%)

e SEIR with temporal transmission rate : diffusion on R3

—A(t)si VA(t)si 0 0
b(0;s,e, i) = ()\(t)si - pe) and oy(t; x) ( A(t)si  /pe 0 )
pe — i 0 —/pe Vi
e SIRS model with seasonal forcing: A(t) = \o(1 + Aisin(27 % )
o (boa(tis, i)\ [(—=A(t)si+0(1—s—i)+pu(l—s
bo(t: s,7) = (bgg(t; s, i)> - ( A(t)si — (7 + p)i >
s (/\(t)si+5(1—s— i)+ pu(l+s) —\(t)si )
N —\(t)si At)si+ (y+n)i)
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Discrete observations with fixed sampling interval A on [0, T]

dX(t) = b(a, X(t))dt + ea (B, X(t))dB(t), X(0) = xo: diffusion sur RP.

Observations: X" := (X(tx); tx = kA, 0 < k < n) with T = nA.

No time -dependence in the drift and diffusion terms; X(0) = xp known.
e X(t) Markov process with transition probabilities :

pe(x,y) = B(X(t +5) = y/X(s) = x)

= (X(tx), k > 0) Markov chain with state space RP and transition

kernel Qa(x,dy) = pa(x,y)dy

These transition kernels depend on b(«, x) and eo(.)

— pa(x,y) = pa(a, B x,y)

No analytic expression = untractable likelihood

impossible to use in practice.
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Discrete observations on a finite time interval

Use an estimation function (or contrast) derived from the Euler scheme:
Euler scheme associated with (X(t))

X(tk) = X(tk-1) + Ab(X(tk-1)) + VDo (X (tx-1)) 17

with (nx) ~ N(0,1) i.i.d random variables.

= Markov chain model with explicit transition kernels

pe.a(@, B; x, y)dy ~ N(Ab(a; x)), € AZ(6; x))-
Contrast process:

Uea (a, B; (X (1)) Z/og (det(Vi(8))) +
k=1
Bi(a) = X(tx) — X(tk—1) — Ab(ev, X(tk-1)),
Vi(8) = (8, X (tx-1)) = (8, X (tx-1)) ‘o(8, X (tk-1))
Pb A fixed: The Euler scheme is not a good approximation of (X(t)).
Pb 2:A = A, — 0: € and A, are linked in this approach.

AtBk(O‘)V H(8)Bi(a).
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Choosing estimating functions

Other approach

e Use another approximation for the sample paths of X(t)

e Base the estimation method on this approximation.

e Theorem (Ventsell &Freidlin, 1977, Small pertubations of dynamical
systems)

X (t) = x(a; t) + eg(a, B; t) + eR(t).
* x(a; .) satisfies %(t) = b(a; x(t))dt; x(0) = xo
x g(a, Bit) = [3 ®(a; t,s)a(B, x(a; s))dB(s):
* O(a; t,u) %i:(t, u) = Vb(o; x(o; t))®(t, u); ®(u,u) = I,.
* supe<T || €Re(t) ||— 0 in probability as € — 0,
(Extension of Genon-Catalot (1990))
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Estimation functions

We have that X(tx) ~ Y(tx) with Y(t) = x(a; t) + eg(a, 5; t).
A noteworthy property of g

o g, B ti) = D(; ti, tk_1)g (v, B; ti—1) + VA Zi
e 7, = fti’:l &(a; ty, s)o(5; x(«; s))dB(s)
o (Zk,k=1,...,n) independent RP Gaussian r.v. with covariance
o S, B) = [ ®(aite, s)X(5; x(s 5)) (i ty, 5)ds
Define the function RP — RP

x — By(a; x) = x(o; tr) + (e tr, te—1)(x — x(a, t—1)).

Z = ﬁ(Y(tk) - Bk(a, Y(tk_l)).
(Y(tk), k > 0) Markov chain with explicit transition kernel

Pe.n(a, B;x,y)dy ~ Np(Bi(e; x), 2ASk(av, B) ).
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Parametric inference for fixed sampling interval

Asymptotic framework
e —0,and T, A fixed : = finite nb n of observations;

Only parameters in the drift can be consistently estimated

Ex:Brownian motion with drift: dX(t) = adt + ¢3dB(t); X(0) = 0.

o (X(tx) — X(tx—1),k=1,...niid N(aA,e3A).
@ Explicit likelihood — Explicit M.L.E.
o & =), B2 = £a X1 (U — M)
o Under P50 Qe = g + eﬁo@,
32 = B3, U2 — 15Uy where (Uy) iid. N(0,1).
o & — ag and e (& — ag) ~ N(0,53/T).
o [ fixed random variable independent of e,
o Eopp0(5%) = B3(1 —1/n) # B3: biased estimator.
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Inference for fixed sampling interval A

dX(t) = b(a, X(t))dt + ea (5, X(t))dB(t), X(0) = xo: diffusion on RP.

e Parameter 3 in o(/3,x) cannot be consistently estimated.
@ Only « in the drift term b(c, x) can be estimated.

@ Diffusion approximations of epidemic models: 3 = a.

Two-stage approach in framework (1)
Estimation of parameter v assuming (3 unknown.
Use of 5 = a to improve the estimator.

First step (General case):
Estimation of a: Approximate Conditional Least Squares

Ue(a,ﬂ,X(”)) =
EzAZ — Bi(a; X(tk-1))) (X(tx) — Bila; X(tx-1)))-
where Bk(a x) = x(a; tx) + P(a; tk, te—1)(x — x(, tk_1)).
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Diffusion approximation of epidemic models: 0 = a,e =

Sk(OZ, 6) = fttZ:l (D(O(; tk, S)Z(,B, X(Oé; S)) fq)(a; ty, S)dS
Contrast Process .,

Uea (o X(M) = 3 "log(det(S(, ) +
k=1

1
VN

Q;AZ (X(te) = Bilas X(tx-1))) Sy (v, @) (X (1) = Brl s X(tk-1)))-
k=1

a. such that U, a(&e, X(M) = inf{U. a(a, X("), a0 € O}.

Three conditions to check as € — 0

(1) U a(a, B, X(M) — Ka(ag, a) P, a-s. uniformly on ©

K (ayp, cv) continuous deterministic + unique global minimum at g

(2) eVaUea(ao) = N(0, Ja(ap)) in distribution under P,

(3) There exists a non-singular matrix /a () such that
lims_olime—gsup{|| V2 Ue(a) — Ia(ao) ||, || @ — ap |[< 6} =0 P, ass.
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Checking conditions (1)-(3)

Condition (1): ensures consistency of é

Assumption: a, o’ € ©,a # o = x(a, ty) # x(/, t) for some k.
Condition (2): ﬁ(X(tk) — By (aw, X(tk—1))): approximately Gaussian
= eV, Ue,A(Oéo) — N(O, JA(Odo)) with

JA(ao) =A 27:1 tDk(ao)Sk(ao)_le(ao) where

Dk(a) = %(VQX(O(, tk) — ¢(a; ty, tkfl)VX(Oé, tkfl))

Condition (3) 62V§ UE(OZ()) — /A(ao), with /A(ao) = JA(ao).
Assumption: Ja(cag) non singular.

Result: ¢ (& — ag) — N(O, /Xl(ao))

Remark: Approximate Conditional Least Squares
Ia(ao, Bo) = AT "Di(0)Sk(ao), Bo) Di(avo);
In(a0) = A1 "Dy(ag) Di(eo)

e (& — ag) = N(0, 15" (a0)Ja(@0)/x *(@0))
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Inference for small sampling interval A = A, —
dX(t) = b(a; t, X(t))dt +eo(5; t, X(t))dB(t), X(0) = xo: diffusion on RP.
Asymptotics: € — 0, A = A, — 0 with T = nA,, fixed;
A = T/n = Notation (¢, A) = (€, n).
o Bi(a;x) = x(a; ty) + P(av; t, t—1)(x — x(a, ty—1))
e Si(a,B) = ti‘:l d(a; ty, s)X(6; s, x(; 5)) "D(a; ty, s)ds

e Since A, — 0,54(a, B) ~ X(B, tk—1, Xe,_,)- S,f ~ X8, Xep_,) =

n

Uen(a, 3; X(M) = " (log(det(X(8, Xy,_,) +
k=1

62% (X (tk) — Br(os X(tk—1)))ZH(8; X (tk—1)(X(tx) — Br(a; X(tk—1)))-

Estimators:(&e,n,ﬁeﬂn) such that

Uen(Gesns Be,ns XU) = inf{Uqn (e, B; (X(M)) , (o, B) € O}
e G e A 56



Checking additional conditions

(@): Uen(a, B; X)) = K(ag, a, ) a.s. under Pao.3, @s € = 0,n — o0,
K(.): Deterministic continuous, unique minimum at « for all 3

(b) Uniform convergence of (a) for all 3.

(c) Uniform bound in Pg,-probability for € 7(e,n — ).

(d): Additional condition

(o, B) = (fOT db (a; t, x(a, )XY t, x(a, t))%’j(a; t, x(a, t))dt)
<f0 Tr( 32 -3 )%)(ﬁ, t, x(a, t))dt)k

i

Theorem
Under P¢

0,00

D). 2 i)
(\/ﬁ (IBE,n - ﬁO) n—00,e—0 N 07 0 lg_l(a07ﬁ0)
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Additional conditions

The function K is equal to

K(ao, . 8) = fy T(ao, ;)T 71(8, x(w, £))T (a0, a; t)dt with
Mg, a; t) =

b(ao; t,x(aw, t)) — bla; t, x(c, t)) — Vib(a; t, x (v, t))(x(avo, t) — x(, t)).

Additional condition on U:

Let V(Ot()7 ﬁo, ﬁ)(t) = Z_l(ﬂ, t, X(Oéo, t))Z(ﬁo, tX(Oéo, t)) K/((,Yo, Bo, ﬁ) =
LT Tr(V((0, Bo, B)(2)))dt — L [T logdetV (v, Bo, B)(t))dt — p.
|%(U6,,,(0Az5,n,ﬁ) — Ue.n(@e.n, Bo)) — K' (w0, Bo, 8))] — 0 uniformly w.r.t. 3.
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Assessment of estimators on simulated and real data set

Based on Guy, Laredo, Vergu, JMB, 2015 and JSFDS (2016)
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Simulation study

Assessment of the inference method
@ Simulation of epidemics with jump Markov processes
@ SIR epidemic model simulated with Gillepsie's algorithm (1977)

@ SIRS with time-dependent transmission rate and demography
simulated with the 7-leap method (Cao0,2005)

Accuracy of estimators
@ According to the population size N
@ Number of observations n

@ Parmeter values ruling the epidemic
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Simulation scheme

@ Choose an epidemic scenario: mechanistic model, population size,
parameters

@ Perform 1000 simulations of the Pure jump Markov Process associated
with this scenario.

Reference

@ Compute the M.L.E of the Jump Process assuming that all the
jumps are observed
o Compute the Fisher information Ip y of the Pure Jump Model.

e Reference: this MLE together with the associated confidence interval.

Remark: /pjp = I, Fisher information of continuous observation of the
diffusion.
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Computation of estimators for each simulation

@ Choose a sampling interval A and keep only the observations of the
simulation at times /A ( with realistic values of A > 1).

e Compute our estimators on these discrete data (Point estimators)

o Compute the theoretical confidence intervals (Cl;y,) based on our
inference method

Joining all the 1000 simulations results

o Compute the empirical confidence intervals (Clemp) based on the 1000
simulations;

@ Compute the average point estimators.

Remark: Only non extinct trajectories are kept;
Criterion: Final epidemic size larger than 5%S0; = Possible bias?
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SIR model

Basic reproduction number: Ry = %

Average infectious duration: d = %
Schéma de simulation:

Parameter | Description Values
Ro basic reproduction number | 1.5, 3
d infectious period 3, 7 days
T final time of observation 20, 40, 45, 100 days
N population size 400, 1000, 10000
n number of observations 5, 10, 20, 40, 45, 100

Table: Range of parameters for the SIR model defined in Section ?22. ): T is
chosen as the time point where the corresponding deterministic trajectory passes
below the threshold of 1/100.

Observations of all the jumps — MLE and theoretical confidence interval
Clip; for A =1, Contrast estimator and Cly,, A = T/10
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SIR theoretical confidence ellipsoids and estimators

Population size N = 1000; Ry = 1.5,5, d = 3,7. Complete
Obs;A =1A=T/10
Average point estimator based on the 1000 simulations for (MLE et & )

7h—

6.56—

25—

1.3 15 18 43 45 B L 55
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Good results when varying the population size in the SIR
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N=10000

N S400 N, 1000 N, =To000

Ry =1.5; d = 3 (days); T =50 (days); A =1,5;10 (days) and
N = 4.10% 10% 10*
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Results for small Ry and large Ry

Results for a population size N = 1000, and various nb of obs. n
o Correlation between parameters: increases with d,decreases with Ry,
@ Empirical Cl: allways very tight = not shown,

@ Theoretical confidence intervals Clpjy and Cly, for various samplings:
very close

@ No loss in estimation accuracy for n = 40 (1 obs/day) for large Ry.

Results when varying N

Width of Cl decreases with N; correlation not impacted.

Given N, confidence ellipsoids are still very close, even for small n.
N = 400 MLE biased while CE is OK.

Very noisy sample paths.

MLE optimal for "typical" realizations of the jump process.
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SIRS model with seasonal forcing

Time-dependent transmission rate (Keeling and Rohani, 2011)
To avoid extinction, immigration flow 1 added S — /: #5(/ + Nn).
* p: demography parameter; §:immunity waning; (= 1/d) recovery rate;

* A(t) = Xo(1 + Aisin(27t/ Tper)) = New parameter R :=

e (MO )+ 3L s— )+ (1)
o(6:£.x) ( AO)s(i 1) — (7 + )i )

ODE: dynamical system with bifurcation according to \;

* ODE:% = b(6; t, x).

* Before bifurcation: annual oscillations with constant amplitude.
* After bifurcation: Biennial oscillations with unequal amplitudes.
* Bifurcation diagram w.r.t. A;.
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Dynamics of the ODE
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Parameter values chosen in the previous figure

N = 107; Tper = 365, 1 = 1/(50 Tper ), = 107°,

M =05~v=1/3=Ry=15d=3;0=1/(2x 365),
(s0,i0) = (0.7,107%).

Top panel: A1 = 0.1; middle panel: A\; = 0.1.

Bottom panel: bifurcation diagram w.r.t. Aj.
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Choice of plausible values for modeling influenza seasonal outbreaks
x Large population size: N = 107 to ensure

—> Sufficiently large "signal over noise" ratio.

—> Sufficient pool of S and /| after each outbreak.

* 1 = 1/50 years™1; Tpe, = 365 (days), n = 107°

* R0O=1.5, d =3, § =2 = bifurcation for \; = 0.07;

* A1 = 0.05 and A\; = 0.15 (before and after bifurcation)

Numerically, these 2 scenarios have the characteristics of influenza seasonal
outbreaks.

Simulation study: 1000 simulations of these 2 scenarios

e Known parameters: u, Tper, 7.

e Unknown parameters: R, d, A1, 0.

e Estimation of these parameters on each simulation.

e Results displayed with different projections of the 4-dimensional
theoretical ellipsoid.
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Estimation results and confidence ellipsoids for the SIRS
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R =15;d =3;)\; =0.15,6 = 2 (days), T = 20 (years), N = 10’.
Observations on [0, T]: Complete (MLE), A =1, A =7 (days).
Average point estimator and theoretical confidence ellipsoids.
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Results for the SIRS

e Almost no correlation between parametres, except Ry and Aq
e Good accuracy of estimation for all parameters.

e Disposing one obs/day — accuracy identical to corresponding complet
obs. of the epidemic process.

e One obs/per week — still reasonably accurate estimations
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