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Context of infectious diseases (individual infection)

Modeling scheme for individual infection
Compartmental models for describing the infection status :
(S) Susceptible; (E) Exposed/Latent ; (I) Infectious/Infected ; (R)
Removed.
Difficulty in detecting the infection status ⇒ systematically noisy data.
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Various dynamics at the ppopulation scale: (epidemics with
one outbreak or recurrent outbreaks )

Influenza like illness cases in France ( "Sentinelles" surveillance
network)
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Main important issues (1)

Determine the key parameters of the epidemic dynamics
Basic reproduction number R0 (average nb of secondary cases by one
primary case in an entirely susceptible population)
Average infectious time period d
Latency period, etc...

Based on the available data

Exact times of infection beginning and ending are not observed.
Data are collected at fixed times (daily, weekly .. data)
Temporally aggregated data.
Sampling and reporting errors
Some disease stages cannot be observed.
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Main important issues (2)

Provide a common framework for developping estimation methods
as accurate as possible given the data available
SEVERAL POSSIBLE WAYS TO OVERCOME THIS PROBLEM OF
MISSING OR INCOMPLETE DATA

1 Develop algorithms to simulate the unobserved missing data.
2 Existence of lots of computer intensive methods in this domain.
3 Difficult to use for large populations.
4 Results are often unstable.

ANOTHER CHOICE HERE

1 Consider separately the model and the available data.
2 Study the properties of the observations derived from the model
3 Investigate inference based on these properties
4 Develop algorithms fast to implement in relation with the previous step
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A simple mechanistic model for a single outbreak : SIR

S , I ,R numbers of Susceptibles, Infected, Removed.
λ: transmission rate , γ: recovery rate.

Notations and assumptions:

Closed population of size N (∀t, S(t) + I (t) + R(t) = N).
Homogeneous contacts in a well mixing population:
(S , I )→ (S − 1, I + 1) at rate S λ I

N
(S , I )→ (S , I − 1) at rate γ I

Key parameters of this epidemic model
Basic reproduction number R0 = λ

γ .

Average infectious period d = 1
γ .
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A minimal model for Ebola epidemics

Explicit and detailed model in Legrand J., Grais R.F., Boelle P.Y.
Valleron A.J. and Flahault A. (2007), Epidemiology & Infection
Impossible to estimate parameters from available data.
Due to identifiability problems.

A Minimal model for Ebola Transmission
Camacho et al. PLoS Curr, 2015;7.
SEIR model with temporal transmission rate

(S ,E , I )→ (S − 1,E + 1, I ) at rate S λ(t) I
N ,

(S ,E , I )→ (S ,E − 1, I + 1) at rate ρ E
(S ,E , I )→ (S ,E , I − 1) at rate γ I
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A mechanistic model for recurrent epidemics
SIRS model with seasonal forcing (Keeling et Rohanni, 2011 )

δ: Immunity waning rate (per year)−1,
µ (Population renewal): birth rate and death rate (per decades)−1

λ(t) = λ0(1 + λ1cos(2π t
Tper

)),

λ0 Baseline transition rate, λ1 :intensity of the seasonal effect,
Tper : period of the seasonal trend.

Important: λ1 = 0 ⇒ Damping out oscillations ⇒ need to have a temporal
forcing
Appropriate model for recurrent epidemics in very large populations
Key parameters: R0 = λ0

γ+µ , d = 1
γ ,Average waning period: 1

δTper
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Recap on some mathematical approaches

Description
p: number of health states (i.e. compartments).
Depends on the model choice for describing the epidemic dynamics.
SIR and SIRS models: p = 3.
Adding a state "Exposed/latent" ⇒ SEIR model: p = 4.
Addition of states where individuals have similar behaviour with
respect to the pathogen: age, vaccination, structured populations).

Some classical mathematical models
Pure jump Markovprocess with state space Np: Z (t).
Deterministic models satifying an ODE on Rp: x(t).
Gaussian Process with values in Rp: G (t).
Diffusion process X (t) satisfying a SDE onRp:

Links between these models?
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Pure jump p- dimensional Markov process Z (t)

Simple and natural modelling of epidemics.
Notations

Population size N ⇒ Z (t) ∈ E = {0, ..,N}p.
Jumps of Z (t): collection de functions α`(·) : E → (0,+∞), indexed
by ` ∈ E− = {−N, ..,N}p

For all x ∈ E , 0 <
∑

` α`(x) := α(x) <∞.
Pure jump Markov Process with state space de E : Z (t)

⇒ Transition rate from x → x + `: α`(x),
Q-matrix of (Z (t)): Q = (qxy , (x , y) ∈ E × E )
if y 6= x , qxy = αy−x(x), and qxx = −α(x).

? Each individual stays in state x with exponential holding time E(α(x)),
? Then, it jumps to another state according to a Markov chain with
transition kernel P(x → x + `) = α`(x)

α(x) .
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SIR , SEIR models in a closed population of size N

SIR epidemic model
∀t, S(t) + I (t) + R(t) = N ⇒ ⇒ Z (t) = (S(t), I (t)) ∈ E = {0, . . . ,N}2
and ` = (−1, 1), (0,−1)

(S , I )→ (S − 1, I + 1): α(−1,1)(S , I ) = λS I
N ,

(S , I )→ (S , I − 1): α(0,−1)(S , I ) = γI

SEIR epidemic model:(Time-dependent process)
Z (t) = (S(t),E (t), I (t)) ∈ E = {0, . . . ,N}3.

` = (−1, 1, 0), (0,−1, 1), (0, 0,−1).
(S ,E , I )→ (S − 1,E + 1, I ): α(−1,1,0)(S ,E , I ) = λ(t)S I

N ,
(S ,E , I )→ (S ,E − 1, I + 1): α(0,−1,1)(S ,E , I ) = ρI ,
(S ,E , I )→ (S ,E , I − 1): α(0,0,−1)(S ,E , I ) = ρI
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SIRS model with seasonal forcing in a closed population

⇒ Z (t) = (S(t), I (t)) ∈ E = {0, . . . ,N}2,
` = (−1, 1), (0,−1), (1, 0), (−1, 0).

(S , I )→ (S − 1, I + 1) : α(−1,1)(t; S , I ) = λ(t)S I
N ,

(S , I )→ (S , I − 1) : α(0,−1)(S , I ) = (γ + µ)I ,
(S , I )→ (S + 1, I ) : α(1,0)(S , I ) = µN + δ(N − S − I ),
(S , I )→ (S − 1, I ) : α(−1,0)(S , I ) = µS .
λ(t) = λ0(1 + λ1sin(2π t

Tper
))⇒ Time-inhomogeneous Markov process.

Remark: Simulations are easy with Gillespie’s algorithm
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Density dependent jump processes Z (t) (1)
Extension of results Ethier et Kurz (2005) to time-dependent processes.
Notations
? if y = (y1, . . . , yp) ∈ Rp, [y ] = ([y1], . . . , [yp]), with [yi ] integer part of yi .
Transposition of a vector y or a matrix M: ty , tM.
? Gradient de b(.) ∈ C (Rp,Rp): ∇b(y) = (∂bi

∂yj
(y))ij .

Framework
? Constant population size N ⇒ E = {0, ..,N}p.
? Collection α`(·) : E → (0,∞) with ` ∈ E− = {−N, ..,N}p.
? Transition rates: y → y + `: α`(y)⇒ qyz = αz−y (y).

Normalization by the size N of Z (t)

ZN(t) = Z(t)
N ⇒

State space: EN = {N−1k , k ∈ E};
ZN(t) jump process on EN with Q-matrix:
if x , y ∈ EN , y 6= x , q(N)

xy = αN(y−x)(x).
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Density dependent jump processes Z (t):(2)

Density dependent Process
Recall that the jumps ` of Z (t) belong to E− = {−N, ..,N}p.

Assumption (H):
(H1): ∀(`, y) ∈ E− × [0, 1], 1

Nα`([Ny ])→ β`(y).
(H2): ∀`, y → β`(y) ∈ C 2([0, 1]p).

Definition of the key quantities b(.) and Σ(.)

b(y) =
∑
`

`β`(y), Σ(y) =
∑
`

` t̀ β`(y).

These quantities are wel defined since the number of jumps is finite.
Note that b(y) = (bk(y), 1 ≤ k ≤ p) ∈ Rp and
Σ(y) = (Σkl (y), 1 ≤ k , l ≤ p) is a p-dimensional matrix.
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Approximations of ZN(.)

x(t) = x0 +
∫ t
0 b(x(s))ds.

Φ(t, u) solution de ∂Φ
∂t (t, u) = ∇b(x(t))Φ(t, u); Φ(u, u) = Ip.

Convergence Theorem
Assume (H1),(H2), and that ZN(0)→ x0 as N →∞.Then,
? ZN(.) converges x(.) uniformly on [0,T ],
?
√

N(ZN(t)− x(t)) converges in distribution to G (t),
? G (t) centered Gaussian process with
Cov(G (t),G (r)) =

∫ t∧r
0 Φ(t, u)Σ(x(u)) tΦ(r , u)du.

Proof: Ethier & Kurz (2005): αl ([Ny ]) ≡ βl (y); GLV (2014) for
(i) Jump rates αl (.) satisfying (H)
(ii) Time-dependent jump rates αl (t, x) with
1
Nαl (t, [Ny ])→ βl (t, y) ⇒b(t, y); Σ(t, y)
(Proof based on general limit theorems (Jacod and Shiryaev)).
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Diffusion approximation of ZN(t)

Recap: b(y) =
∑

` ` β`(y) and Σ(y) :=
∑

` `
t̀ β`(y).

Let f : Rp → R a bounded measurable and A the generator of Z (t)

A(f )(y) =
∑

` α`(y)(f (y + `)− f (y))

⇒ AN(f )(y) =
∑

` α`(Ny)(f (y + `
N )− f (y))

Euristically : Expanding the generator AN of ZN(.) = Z(t)
N .

AN(f )(y) = b(y)∇f (y) + 1
2N

∑p
i ,j=1 Σij(y) ∂2f

∂yi∂yj
(y) + o(1/N)

⇒ AN(f )(y) = BN(f )(y) + o(1/N).

Diffusion approximation of ZN(t): diffusion with generator BN

dXN(t) = b(XN(t))dt + 1√
N
σ(XN(t))dB(t),

B(t): p-dimensionnal Brownian motion et σ(.) a square root of Σ ()
σ(y) tσ(y) = Σ(y).
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Small pertubations of Dynamical systems

Freidlin & Wentzell (1978) ; Azencott (1982)

ε = 1/
√

N ⇒ XN(t) = Xε(t)

Link between the CLT for (ZN(.)) and diffusion (XN(.)

Expanding Xε(t) with respect to ε,

Xε(t) = x(t) + εg(t) + εRε(t),
where dg(t) = ∇b(x(t))g(t)dt + σ(x(t))dB(t) ; g(0) = 0,
supt≤T ‖ εRε(t) ‖→ 0 in probability as ε→ 0.

Explicit solution of this stochastic differential equation
? g(t) =

∫ t
0 Φ(t, s)σ(x(s))dB(s), where

? Φ(t, u) s.t. ∂Φ
∂t (t, u) = ∇b(x(t))Φ(t, u); Φ(u, u) = Ip.

? g(.): centered Gaussian process with same covariance matrix as G (.).
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