

Approximation of epidemic models by diffusion processes and their statistical inferencedes

Catherine Larédo 1,2

¹UR 341, MaIAGE, INRA, Jouy-en-Josas ² UMR 7599, LPMA, Université Paris Diderot

December 6, 2015

Based on Guy^{1,2}, Larédo, Vergu¹ (JMB 2014)

Context of infectious diseases (individual infection) Incubation Diseased Medical status Infectious Infectiou

pathogen

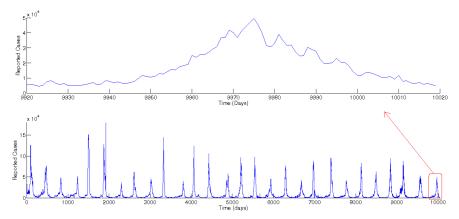
Modeling scheme for individual infection

- Compartmental models for describing the infection status :
 (S) Susceptible; (E) Exposed/Latent ; (I) Infectious/Infected ; (R) Removed.
- Difficulty in detecting the infection status \Rightarrow systematically noisy data.

Catherine Larédo ()

time of infection time since infection

Various dynamics at the ppopulation scale: (epidemics with one outbreak or recurrent outbreaks)



Influenza like illness cases in France ("Sentinelles" surveillance network)

Main important issues (1)

Determine the key parameters of the epidemic dynamics

- Basic reproduction number *R*₀ (average nb of secondary cases by one primary case in an entirely susceptible population)
- Average infectious time period d
- Latency period, etc...

Based on the available data

- Exact times of infection beginning and ending are not observed.
- Data are collected at fixed times (daily, weekly .. data)
- Temporally aggregated data.
- Sampling and reporting errors
- Some disease stages cannot be observed.

- 34

Main important issues (2)

Provide a common framework for developping estimation methods as accurate as possible given the data available SEVERAL POSSIBLE WAYS TO OVERCOME THIS PROBLEM OF MISSING OR INCOMPLETE DATA

- Oevelop algorithms to simulate the unobserved missing data.
- 2 Existence of lots of computer intensive methods in this domain.
- Oifficult to use for large populations.
- ④ Results are often unstable.

ANOTHER CHOICE HERE

- Onsider separately the model and the available data.
- Study the properties of the observations derived from the model
- Investigate inference based on these properties
- Oevelop algorithms fast to implement in relation with the previous step

э

A simple mechanistic model for a single outbreak : SIR

S, I, R numbers of Susceptibles, Infected, Removed.

 $\lambda:$ transmission rate , $\gamma:$ recovery rate.

Notations and assumptions:

- Closed population of size N ($\forall t$, S(t) + I(t) + R(t) = N).
- Homogeneous contacts in a well mixing population: $(S, I) \rightarrow (S - 1, I + 1)$ at rate $S \lambda \frac{I}{N}$ $(S, I) \rightarrow (S, I - 1)$ at rate γI

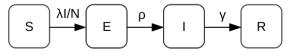
Key parameters of this epidemic model

- Basic reproduction number $R_0 = \frac{\lambda}{\gamma}$.
- Average infectious period $d = \frac{1}{\gamma}$.

A minimal model for Ebola epidemics

- Explicit and detailed model in Legrand J., Grais R.F., Boelle P.Y. Valleron A.J. and Flahault A. (2007), Epidemiology & Infection
- Impossible to estimate parameters from available data.
- Due to identifiability problems.

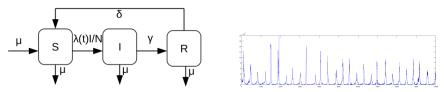
A Minimal model for Ebola Transmission Camacho et al. PLoS Curr, 2015;7. *SEIR* model with temporal transmission rate



- $(S, E, I) \rightarrow (S 1, E + 1, I)$ at rate $S \lambda(t) \frac{I}{N}$,
- (S, E, I)
 ightarrow (S, E-1, I+1) at rate ho E
- $(S, E, I) \rightarrow (S, E, I-1)$ at rate γI

э

A mechanistic model for recurrent epidemics *SIRS* model with seasonal forcing (Keeling et Rohanni, 2011)



- δ : Immunity waning rate (per year)⁻¹,
- μ (Population renewal): birth rate and death rate (per decades)⁻¹

•
$$\lambda(t) = \lambda_0 (1 + \lambda_1 \cos(2\pi \frac{t}{T_{per}})),$$

- λ_0 Baseline transition rate, λ_1 :intensity of the seasonal effect,
- T_{per} : period of the seasonal trend.

Important: $\lambda_1=0 \Rightarrow$ Damping out oscillations \Rightarrow need to have a temporal forcing

Appropriate model for recurrent epidemics in very large populations Key parameters: $R_0 = \frac{\lambda_0}{\gamma + \mu}$, $d = \frac{1}{\gamma}$, Average waning period: $\frac{1}{\delta T_{per}}$

Recap on some mathematical approaches

Description

- *p*: number of health states (i.e. compartments).
- Depends on the model choice for describing the epidemic dynamics.
- SIR and SIRS models: p = 3.
- Adding a state "Exposed/latent" \Rightarrow SEIR model: p = 4.
- Addition of states where individuals have similar behaviour with respect to the pathogen: age, vaccination, structured populations).

Some classical mathematical models

- Pure jump Markovprocess with state space \mathbb{N}^{p} : Z(t).
- Deterministic models satifying an ODE on \mathbb{R}^p : x(t).
- Gaussian Process with values in \mathbb{R}^{p} : G(t).
- Diffusion process X(t) satisfying a SDE on \mathbb{R}^p :

Links between these models?

Pure jump *p*- dimensional Markov process Z(t)

Simple and natural modelling of epidemics. Notations

- Population size $N \Rightarrow Z(t) \in E = \{0, .., N\}^{p}$.
- Jumps of Z(t): collection de functions $\alpha_{\ell}(\cdot) : E \to (0, +\infty)$, indexed by $\ell \in E^- = \{-N, .., N\}^p$

• For all
$$x \in E$$
, $0 < \sum_{\ell} \alpha_{\ell}(x) := \alpha(x) < \infty$.

Pure jump Markov Process with state space de E: Z(t)

• \Rightarrow Transition rate from $x \rightarrow x + \ell$: $\alpha_{\ell}(x)$,

• Q-matrix of
$$(Z(t))$$
: $Q = (q_{xy}, (x, y) \in E \times E)$
if $y \neq x$, $q_{xy} = \alpha_{y-x}(x)$, and $q_{xx} = -\alpha(x)$.

* Each individual stays in state x with exponential holding time $\mathcal{E}(\alpha(x))$, * Then, it jumps to another state according to a Markov chain with transition kernel $\mathbb{P}(x \to x + \ell) = \frac{\alpha_{\ell}(x)}{\alpha(x)}$.

SIR, SEIR models in a closed population of size N

SIR epidemic model $\forall t, S(t) + I(t) + R(t) = N \Rightarrow Z(t) = (S(t), I(t)) \in E = \{0, \dots, N\}^2$ and $\ell = (-1, 1), (0, -1)$

$$\begin{array}{c|c} S & \lambda I/N & I & \gamma \\ \hline S & \bullet & I \\ \hline & \bullet & R \\ \hline & (S,I) \to (S-1,I+1): \ \alpha_{(-1,1)}(S,I) = \lambda S \frac{I}{N}, \\ (S,I) \to (S,I-1): \ \alpha_{(0,-1)}(S,I) = \gamma I \\ \end{array}$$

SEIR epidemic model: (Time-dependent process) $Z(t) = (S(t), E(t), I(t)) \in E = \{0, \dots, N\}^3.$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} S \end{array} & \lambda U \\ \hline \end{array} & \begin{array}{c} S \end{array} & \begin{array}{c} \rho \end{array} & \begin{array}{c} I \end{array} & \begin{array}{c} \gamma \end{array} & \begin{array}{c} R \end{array} \\ \ell = (-1,1,0), (0,-1,1), (0,0,-1). \end{array} \\ (S,E,I) \rightarrow (S-1,E+1,I): \ \alpha_{(-1,1,0)}(S,E,I) = \lambda(t)S \ \frac{I}{N}, \\ (S,E,I) \rightarrow (S,E-1,I+1): \ \alpha_{(0,-1,1)}(S,E,I) = \rho I, \\ (S,E,I) \rightarrow (S,E,I-1): \ \alpha_{(0,0,-1)}(S,E,I) = \rho I \end{array}$$

SIRS model with seasonal forcing in a closed population $\Rightarrow Z(t) = (S(t), I(t)) \in E = \{0, \dots, N\}^2,$ $\ell = (-1, 1), (0, -1), (1, 0), (-1, 0).$



$$\begin{array}{l} (S,I) \to (S-1,I+1) : \alpha_{(-1,1)}(t;S,I) = \lambda(t)S \ \frac{I}{N}, \\ (S,I) \to (S,I-1) : \alpha_{(0,-1)}(S,I) = (\gamma+\mu)I, \\ (S,I) \to (S+1,I) : \alpha_{(1,0)}(S,I) = \mu N + \delta(N-S-I), \\ (S,I) \to (S-1,I) : \alpha_{(-1,0)}(S,I) = \mu S. \\ \lambda(t) = \lambda_0(1+\lambda_1 sin(2\pi \frac{t}{T_{per}})) \Rightarrow \text{ Time-inhomogeneous Markov process.} \end{array}$$

Remark: Simulations are easy with Gillespie's algorithm

Catherine Larédo ()

I ≡ →

12 / 17

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Density dependent jump processes Z(t) (1)

Extension of results Ethier et Kurz (2005) to time-dependent processes. Notations

★ if $y = (y_1, ..., y_p) \in \mathbb{R}^p, [y] = ([y_1], ..., [y_p])$, with $[y_i]$ integer part of y_i . Transposition of a vector y or a matrix M: ^ty, ^tM. ★ Gradient de $b(.) \in C(\mathbb{R}^p, \mathbb{R}^p)$: $\nabla b(y) = (\frac{\partial b_i}{\partial y_j}(y))_{ij}$.

Framework

- * Constant population size $N \Rightarrow E = \{0, .., N\}^p$.
- * Collection $\alpha_{\ell}(\cdot) : E \to (0, \infty)$ with $\ell \in E^{-} = \{-N, .., N\}^{p}$.
- * Transition rates: $y \to y + \ell$: $\alpha_{\ell}(y) \Rightarrow q_{yz} = \alpha_{z-y}(y)$.

Normalization by the size N of Z(t)

•
$$Z_N(t) = \frac{Z(t)}{N} \Rightarrow$$

• State space:
$$E_N = \{N^{-1}k, k \in E\};$$

• $Z_N(t)$ jump process on E_N with Q-matrix: if $x, y \in E_N, y \neq x$, $q_{xy}^{(N)} = \alpha_{N(y-x)}(x)$.

13 / 17

Density dependent jump processes Z(t):(2)

Density dependent Process Recall that the jumps ℓ of Z(t) belong to $E^- = \{-N, .., N\}^p$.

Assumption (H): (H1): $\forall (\ell, y) \in E^- \times [0, 1], \frac{1}{N} \alpha_{\ell}([Ny]) \rightarrow \beta_{\ell}(y).$ (H2): $\forall \ell, y \rightarrow \beta_{\ell}(y) \in C^2([0, 1]^p).$

Definition of the key quantities b(.) and $\Sigma(.)$

$$b(y) = \sum_{\ell} \ell \beta_{\ell}(y), \quad \Sigma(y) = \sum_{\ell} \ \ell \ ^t\!\ell \ \beta_{\ell}(y).$$

These quantities are well defined since the number of jumps is finite. Note that $b(y) = (b_k(y), 1 \le k \le p) \in \mathbb{R}^p$ and $\Sigma(y) = (\Sigma_{kl}(y), 1 \le k, l \le p)$ is a *p*-dimensional matrix.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Approximations of $Z_N(.)$

$$egin{aligned} & x(t) = x_0 + \int_0^t b(x(s)) ds. \ & \Phi(t,u) ext{ solution de } rac{\partial \Phi}{\partial t}(t,u) =
abla b(x(t)) \Phi(t,u); \ & \Phi(u,u) = I_p. \end{aligned}$$

Convergence Theorem

Assume (H1),(H2), and that
$$Z_N(0) \to x_0$$
 as $N \to \infty$. Then,
 $* Z_N(.)$ converges $x(.)$ uniformly on $[0, T]$,
 $* \sqrt{N}(Z_N(t) - x(t))$ converges in distribution to $G(t)$,
 $* G(t)$ centered Gaussian process with
 $Cov(G(t), G(r)) = \int_0^{t \wedge r} \Phi(t, u) \Sigma(x(u)) {}^t \Phi(r, u) du$.

Proof: Ethier & Kurz (2005): $\alpha_l([Ny]) \equiv \beta_l(y)$; GLV (2014) for (i) Jump rates $\alpha_l(.)$ satisfying (H) (ii) Time-dependent jump rates $\alpha_l(t, x)$ with $\frac{1}{N}\alpha_l(t, [Ny]) \rightarrow \beta_l(t, y) \Rightarrow b(t, y)$; $\Sigma(t, y)$ (Proof based on general limit theorems (Jacod and Shiryaev)).

Diffusion approximation of $Z_N(t)$

Recap: $b(y) = \sum_{\ell} \ell \ \beta_{\ell}(y)$ and $\Sigma(y) := \sum_{\ell} \ \ell^{t} \ell \beta_{\ell}(y)$. Let $f : \mathbb{R}^{p} \to \mathbb{R}$ a bounded measurable and \mathcal{A} the generator of Z(t)

•
$$\mathcal{A}(f)(y) = \sum_{\ell} \alpha_{\ell}(y)(f(y+\ell) - f(y))$$

• $\Rightarrow \mathcal{A}_{N}(f)(y) = \sum_{\ell} \alpha_{\ell}(Ny)(f(y+\frac{\ell}{N}) - f(y))$

Euristically : Expanding the generator \mathcal{A}_N of $Z_N(.) = \frac{Z(t)}{N}$. $\mathcal{A}_N(f)(y) = b(y)\nabla f(y) + \frac{1}{2N}\sum_{i,j=1}^p \Sigma_{ij}(y)\frac{\partial^2 f}{\partial y_i \partial y_j}(y) + o(1/N)$ $\Rightarrow \mathcal{A}_N(f)(y) = \mathcal{B}_N(f)(y) + o(1/N).$

Diffusion approximation of $Z_N(t)$: diffusion with generator B_N $dX_N(t) = b(X_N(t))dt + \frac{1}{\sqrt{N}}\sigma(X_N(t))dB(t),$ B(t): *p*-dimensionnal Brownian motion et $\sigma(.)$ a square root of Σ () $\sigma(y)^t \sigma(y) = \Sigma(y).$

16 / 17

Small pertubations of Dynamical systems

Freidlin & Wentzell (1978) ; Azencott (1982)

$$\epsilon = 1/\sqrt{N} \Rightarrow X_N(t) = X_\epsilon(t)$$

Link between the CLT for $(Z_N(.))$ and diffusion $(X_N(.))$

Expanding $X_{\epsilon}(t)$ with respect to ϵ ,

•
$$X_{\epsilon}(t) = x(t) + \epsilon g(t) + \epsilon R_{\epsilon}(t)$$
,

• where $dg(t) = \nabla b(x(t))g(t)dt + \sigma(x(t))dB(t)$; g(0) = 0,

• $sup_{t \leq T} \parallel \epsilon R_{\epsilon}(t) \parallel \rightarrow 0$ in probability as $\epsilon \rightarrow 0$.

Explicit solution of this stochastic differential equation $\star g(t) = \int_0^t \Phi(t, s)\sigma(x(s))dB(s)$, where $\star \Phi(t, u)$ s.t. $\frac{\partial \Phi}{\partial t}(t, u) = \nabla b(x(t))\Phi(t, u)$; $\Phi(u, u) = I_p$. $\star g(.)$: centered Gaussian process with same covariance matrix as G(.).

3. 3