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This is mainly based on lectures on Statistics of diffusion processes of V.
Genon-Catalot (MAPS, Université Paris-Descartes).
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Continuous observation on a finite time interval [0,T]

On the probability space :(Q, F, (F¢, t > 0),P)
d&e = b(bo; t, & )dt + o(t, &) dWe, §o =1

o(t, &) identified from this observation =
Assumption: o(t,&;) known.

(Bt) : p- dimensional Brownian motion ,
n Fo-measurable ;

0y € © compact subset of RX.

Aim: study of estimators of 6y depending on the observation
(&, t €00, T]).
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Probability distribution of a continuous time process

o Cr ={x=(x(t)):[0, T] — RP continuous},

e C1: Borelian filtration associated with the uniform topology

e Coordinate function: X; : C+ — RP, X(x) = x(t).

@ (X;): canonical process = anonical filtration: C; = o(Xs,s < t).
Diffusion process (&) on (2, F,P), d&; = b(t,&)dt + o(t, &) dWe, & = 1.
= Vw, t — &(w) is continuous [0, T] = &7 := (&(w), t € [0, T]) € Cr.
Distribution of (&, t € [0, T]) on (Ct,Cr)

° PIIU = probability distribution image of P by the r.v. 7.

@ A; borelian sets in RP, A= {x € Cr, x(t1) € Ay1,...,x(tx) € Ax),

o P((T € A) =P/ (Xy € A1, ..., Xy, € Ac}.

Wiener measure W T distribution of (B, t € [0, T] on (Ct,CT).
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Likelihood for continuously observed diffusions on [0,T]
Consider the parametric model associated to the diffusion on R

* d&; = b(ao; {t)dt + a(&)dBt, &0 = xo-

* o(x), b(0, x) known; xg known; 6 unknown = 6 € ©.

x P : distribution on (Cr,CT) of (&).

* POT distribution of & = xg + fota(fs)st

Assumptions ensuring existence, uniqueness of solutions of the SDE+..
* Additional asssumptions

Theorem

For all 8, the distributions P(,T and P{ are equivalent and

9Xt 1 [T b2, X;

Above formula: stochastic integral w.r.t. the canonical process (X;)
Under P/, fo dXs )ds is a standard Brownian motion,

Under P, [} w is a Brownian motion.
0 o2(Xs)
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Comments and extensions

e Diffusions having distinct diffusion coefficients o(x), o/(x) = P, and P,/
are singular distributions on (Cr,Cr).
e Diffusion having distinct starting point xg, x; have singular distributions.

(&:): time-dependent multidimensional diffusion s

e b(6,x) — b(h,t,x); 0%(x) — X(t,x) = o(t, x) o(t, x).

(Karatzas & Shreve for conditions ensuring existence and uniqueness of
solutions.

e On (Cr = C([0, T],RP),CT),

dP,

- 5/0 b(6; £, Xe)Z (¢, Xe)b(6, t, X;)dt).

(Liptser & Shiryaev).
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Maximum Likelihood Estimator

e Canonical statistical model: (Ct,C7), (PQTJ,H € ©) x The likelihood
function associated to the observation (& = £%):

* 0 — L1(6), with

* 0r(0) = log Ly(0) = J S dee — 3 Jy 245 de.

* M.LE. 07 st. (7(07) = sup{¢r(0 ),9 € @}.

Properties of the MLE as T — oo: no general theory.

Example : d&; = Qof(t)dt+ o(t)dB:; & =0, f,o(.) > 0.

T Fs)
T f T £ 5 o o3
o (r(0) =0 f Hehdes— % [ Lids = b7 = i fig)) . % Under Py,
Jo £Bdss T £2(s)
‘9T =0+ T (e 097- NN(GO, ) with I+ = f 2(s) ds.
0 (,T(s)d

Asymptotic behaviour as T — oo depends on /7.
* f(t) = 1,0(t) = /(1 + t?) — It = ArctanT — 7/2: MLE not
consistent.
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Ergodic diffusion processes

Diffusion on RP:

d§e = b(0,&:)dt + o(&:)dBy;

Assumptions:

o for § € ©, (&) positive recurrent diffusion process.
e Stationary distribution on RP: \(6; x)dx.
Continuous observation on [0, T] with T — oo
Assumptions ensuring that the statistical model is regular
(Ibragimov Hasminskii)

MLE: Consistent estimator 1 of 0,

VT (01 — 6o) — Nk(0,171(60))

1(0) = ((9),’J,1</_/<k)

10)j = [on (22X 02 )y~ (x)2 gg;x)x(e,x)dx

see Kutoyants (2004)
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Discrete observations on a fixed time interval [0,T]

d&r = b(t,&e)dt + o(0o; t&e)dBr, S0 = 1

b(t, x) known or unknown function, 8y unknown parameter to estimate.

Observations at times t" = iT/n,i =0,...n .
Asymptotics: T > 0 fixed and n — oo

(1) Only parameters in the diffusion coefficient can be estimated

(2) No consistent estimators for parameters in the drift.

(3) Estimation of 6y = Statistical model: Local Asymptotic Mixed Normal
(Dohnal (JAP,1987),Genon-Catalot & Jacod (1993),Gobet (2001)

0,, converges of 6 at rate NIE ﬁ(é,, —6p) : non Gaussian but Mixed
variance Gaussian law.

Remark No explicit likelihood (unknown transition densities of &;; = No
attempt to complete the sample path but use of contrast functions.
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Discrete observations on [0, T] with T — oo

(2) Discrete observations on [0, T| with sampling interval A,
dé-t = b(O[7 t, é_t)dt + O'(/B, t, ft)th, 50 =n.

Observations: (&, i =1,...n) with t; = iA,, T = nA,.
Double asymptotics indexed as n (nb of observations) — oo
A, —0and T = nA, — 0.

( )Statistical model. Observations space: ((RP)", B(RP)")).

( 3) distribution of the n-uple = P(a 3) and P(a, ) equivalent.
Likelihood: depends on the transitions of the Markov chain: untractable
Other approaches: Estimating functions, contrast functions...

@ Parameters in the drift coefficient o estimated at rate \/nA,,.

@ Parameters in the diffusion coefficient estimated at rate /n.
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Diffusion processes with small diffusion coefficient

Model: Multidimensional diffusion process on RP
dft — b(O[, gt)dt + 60’(57 gt)dBta 50 = X0-
PS L+ distribution of (£,0 < t < T) on (Cr,Cr).

Continuous observation on [0, T]
e B#[ = P;”; and P;:g, are singular
e = [ identified from the continuous observation (£;,0 <t < T).
e 3= [ or fixed o(fo, x) = o(x)
Asymptotic framework T fixed and € — 0.(Kutoyants,1980)
* Le(a) = 612 0 02(’5&)) dés — 212 OT bgg?’éj)ds = MLE &,
* €1 (& — ap) = N (0, /(o) ™Y)
/(a) = (I j(0))1<ijck = J 28 (o, x(a,5)) 1 (x(a, 5)) 22 (e, x(a, )
* x(a,t) = x0 + [y b(a, x(av, 5))ds and E(x) = o(x) o(x).
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Discrete observations on a fixed interval [0, T]|

Diffusion process on RP

dX(t) = b(a, X(t))dt + ea (5, X(t))dB(t), X(0) = xo.
Observations: {X(tx),k =0,...,n} with t, = kA; T = nA.
Two possible asymptotic frameworks

Q@ ¢ — 0 and A fixed with T = nA = Fixed nb of observations n.
@ c—0and A=A, — 0with nA, = T simultaneously. = n — co.

Results in framework (2)

o Different rates of convergence for parameters in the drift and in the
diffusion coefficient (Gloter & Sorensen, 2009).

o Estimation of « at rate ¢!, 3 at rate Vn= A;l/z.
In practice difficult to assess which framework is more appropriate =
Distinction between parameters in the drift term « and in the diffusion

term (3 necessary.
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