

Approximation of epidemic models by diffusion processes and their statistical inferencedes

Catherine Larédo 1,2

¹UR 341, MIA, INRA, Jouy-en-Josas
 ² UMR 7599, LPMA, Université Paris Diderot

December 2, 2015

TALK 3-Part1, CIMPA 2015
A primer on statistical inference for diffusion processes

This is mainly based on lectures on Statistics of diffusion processes of V. Genon-Catalot (MAP5, Université Paris-Descartes).

Continuous observation on a finite time interval [0,T]

On the probability space $:(\Omega,\mathcal{F},(\mathcal{F}_t,t\geq 0),\mathbb{P})$

$$d\xi_t = b(\theta_0; t, \xi_t)dt + \sigma(t, \xi_t)dW_t, \xi_0 = \eta$$

 $\sigma(t,\xi_t)$ identified from this observation \Rightarrow

Assumption: $\sigma(t, \xi_t)$ known.

 (B_t) : p- dimensional Brownian motion,

 $\eta \ \mathcal{F}_0$ -measurable ;

 $\theta_0 \in \Theta$ compact subset of \mathbb{R}^k .

Aim: study of estimators of θ_0 depending on the observation $(\xi_t, t \in [0, T])$.

Probability distribution of a continuous time process

- $C_T = \{x = (x(t)) : [0, T] \rightarrow \mathbb{R}^p \text{ continuous}\},$
- ullet $\mathcal{C}_{\mathcal{T}}$: Borelian filtration associated with the uniform topology
- Coordinate function: $X_t: C_T \to \mathbb{R}^p, \ X_t(x) = x(t).$
- (X_t) : canonical process \Rightarrow anonical filtration: $C_t = \sigma(X_s, s \le t)$.

Diffusion process (ξ_t) on $(\Omega, \mathcal{F}, \mathbb{P})$, $d\xi_t = b(t, \xi_t)dt + \sigma(t, \xi_t)dW_t$, $\xi_0 = \eta$. $\Rightarrow \forall \omega, t \to \xi_t(\omega)$ is continuous $[0, T] \Rightarrow \xi^T := (\xi_t(\omega), t \in [0, T]) \in C_T$.

Distribution of $(\xi_t, t \in [0, T])$ on (C_T, C_T)

- $P_{b,\sigma}^T$ = probability distribution image of \mathbb{P} by the r.v. ξ^T .
- A_i borelian sets in \mathbb{R}^p , $A = \{x \in C_T, x(t_1) \in A_1, \dots, x(t_k) \in A_k\}$,
- $\mathbb{P}(\xi^T \in A) = P_b^T(X_{t_1} \in A_1, \dots, X_{t_k} \in A_k).$

Wiener measure W^T : distribution of $(B_t, t \in [0, T] \text{ on } (C_T, C_T)$.

4 D > 4 D > 4 E > 4 E > E 990

Likelihood for continuously observed diffusions on [0,T]

Consider the parametric model associated to the diffusion on $\ensuremath{\mathbb{R}}$

$$\star d\xi_t = b(\theta_0; \xi_t)dt + \sigma(\xi_t)dB_t, \xi_0 = x_0.$$

- $\star \sigma(x), b(\theta, x)$ known; x_0 known; θ unknown $\Rightarrow \theta \in \Theta$.
- $\star P_{\theta}^{T}$: distribution on (C_{T}, C_{T}) of (ξ_{t}) .
- * P_0^T distribution of $\xi_t = x_0 + \int_0^t \sigma(\xi_s) dB_s$

Assumptions ensuring existence, uniqueness of solutions of the SDE+..

* Additional asssumptions

Theorem

For all θ , the distributions P_{θ}^{T} and P_{0}^{T} are equivalent and

$$\frac{dP_{\theta}^T}{dP_0^T}(X) = \exp\left[\int_0^T \frac{b(\theta, X_t)}{\sigma^2(X_t)} dX_t - \frac{1}{2} \int_0^T \frac{b^2(\theta, X_t)}{\sigma^2(X_t)} dt\right].$$

Above formula: stochastic integral w.r.t. the canonical process (X_t) Under P_0^T , $\int_0^t \frac{dX_s}{\sigma^2(X_s)} ds$ is a standard Brownian motion,

Under P_{θ}^T , $\int_0^t \frac{dX_s - b(\theta, X_s)ds}{\sigma^2(X_s)}$ is a Brownian motion.

Comments and extensions

- Diffusions having distinct diffusion coefficients $\sigma(x)$, $\sigma'(x) \Rightarrow P_{\sigma}$ and $P_{\sigma'}$ are singular distributions on (C_T, C_T) .
- Diffusion having distinct starting point x_0, x'_0 have singular distributions.

 (ξ_t) : time-dependent multidimensional diffusion process

- $b(\theta, x) \to b(\theta, t, x)$; $\sigma^2(x) \to \Sigma(t, x) = \sigma(t, x)^t \sigma(t, x)$. (Karatzas & Shreve for conditions ensuring existence and uniqueness of solutions.
- On $(C_T = C([0, T], \mathbb{R}^p), C_T)$,

$$\frac{dP_{\theta}^{T}}{dP_{0}^{T}}(X) = exp(\int_{0}^{T} \Sigma^{-1}(t, X_{t})b(\theta; t, X_{t})dX_{t} - \frac{1}{2} \int_{0}^{T} {}^{t}b(\theta; t, X_{t})\Sigma^{-1}(t, X_{t})b(\theta, t, X_{t})dt).$$

(Liptser & Shiryaev).

Maximum Likelihood Estimator

- Canonical statistical model: $(C_T, C_T), (P_{\theta, \sigma}^T, \theta \in \Theta) \star \text{The likelihood}$ function associated to the observation $(\xi_t = \xi_t^{\theta_0})$:
- $\star \theta \rightarrow L_T(\theta)$, with

$$\star \ell_T(\theta) = \log L_T(\theta) = \int_0^T \frac{b(\theta, \xi_t)}{\sigma^2(\xi_t)} d\xi_t - \frac{1}{2} \int_0^T \frac{b^2(\theta, \xi_t)}{\sigma^2(\xi_t)} dt.$$

* M.L.E. $\hat{\theta}_T$ s.t. $\ell_T(\hat{\theta}_T) = \sup\{\ell_T(\theta), \theta \in \Theta\}.$

Properties of the MLE as $T \to \infty$: no general theory.

Example : $d\xi_t = \theta_0 f(t) dt + \sigma(t) dB_t$; $\xi_0 = 0$, $f, \sigma(\underline{t}) > 0$.

$$\bullet \ \ell_T(\theta) = \theta \int_0^T \frac{f(s)}{\sigma^2(s)} d\xi_s - \frac{\theta^2}{2} \int_0^T \frac{f^2(s)}{\sigma^2(s)} ds \Rightarrow \hat{\theta}_T = \frac{\int_0^T \frac{f(s)}{\sigma^2(s)} d\xi_s}{\int_0^T \frac{f^2(s)}{\sigma^2(s)} ds}. \star \text{ Under } P_{\theta_0},$$

$$\hat{\theta}_{\mathcal{T}} = \theta_0 + \frac{\int_0^T \frac{f(s)}{\sigma(s)} dB_s}{\int_0^T \frac{f^2(s)}{\sigma^2(s)} ds} \Rightarrow \hat{\theta}_{\mathcal{T}} \sim \mathcal{N}(\theta_0, I_{\mathcal{T}}^{-1}) \text{ with } I_{\mathcal{T}} = \int_0^T \frac{f^2(s)}{\sigma^2(s)} ds.$$

Asymptotic behaviour as $T \to \infty$ depends on I_T .

*
$$f(t) = 1, \sigma(t) = \sqrt(1 + t^2) \rightarrow I_T = ArctanT \rightarrow \pi/2$$
: MLE not consistent.

Ergodic diffusion processes

Diffusion on \mathbb{R}^{p} .

$$d\xi_t = b(\theta, \xi_t)dt + \sigma(\xi_t)dB_t;$$

Assumptions:

- for $\theta \in \Theta$, (ξ_t) positive recurrent diffusion process.
- Stationary distribution on \mathbb{R}^p : $\lambda(\theta; x) dx$.

Continuous observation on [0, T] with $T \to \infty$

Assumptions ensuring that the statistical model is regular (Ibragimov Hasminskii)

MLE: Consistent estimator $\hat{\theta}_{T}$ of θ_{0} . $\sqrt{T}(\hat{\theta}_T - \theta_0) \rightarrow \mathcal{N}_k(0, I^{-1}(\theta_0))$ $I(\theta) = (I(\theta)_{i,j}, 1 \le i, j \le k)$,

$$I(\theta)_{i,j} = \int_{\mathbb{R}^p} t \frac{\partial b(\theta, x)}{\partial \theta_i} \sum_{i=1}^{p-1} (x) \frac{\partial b(\theta, x)}{\partial \theta_j} \lambda(\theta, x) dx$$
see Kutovants (2004)

see Kutoyants (2004)

Discrete observations on a fixed time interval [0,T]

$$d\xi_t = b(t, \xi_t)dt + \sigma(\theta_0; t\xi_t)dB_t, \xi_0 = \eta$$

b(t,x) known or unknown function, θ_0 unknown parameter to estimate.

Observations at times
$$t_i^n=iT/n, i=0,\dots n$$
 . Asymptotics: $T>0$ fixed and $n\to\infty$

- (1) Only parameters in the diffusion coefficient can be estimated
- (2) No consistent estimators for parameters in the drift.
- (3) Estimation of $\theta_0 \Rightarrow$ Statistical model: Local Asymptotic Mixed Normal (Dohnal (JAP,1987), Genon-Catalot & Jacod (1993), Gobet (2001) $\hat{\theta}_n$ converges of θ_0 at rate \sqrt{n} ; $\sqrt{n}(\hat{\theta}_n \theta_0)$: non Gaussian but Mixed variance Gaussian law.

Remark No explicit likelihood (unknown transition densities of ξ_t ; \Rightarrow No attempt to complete the sample path but use of contrast functions.

4□ ト 4個 ト 4 種 ト 4 種 ト 種 9 9 0 0

Discrete observations on [0, T] with $T \to \infty$

- (2) Discrete observations on [0,T] with sampling interval Δ_n $d\xi_t = b(\alpha,t,\xi_t)dt + \sigma(\beta,t,\xi_t)dW_t, \xi_0 = \eta.$ Observations: $(\xi_{t_i},i=1,\ldots n)$ with $t_i=i\Delta_n, T=n\Delta_n.$ Double asymptotics indexed as n (nb of observations) $\to \infty$ $\Delta_n \to 0$ and $T=n\Delta_n \to \infty.$
- (3) Statistical model. Observations space: $((\mathbb{R}^p)^n, \mathcal{B}(\mathbb{R}^p)^n)$. $P^n_{(\alpha,\beta)}$ distribution of the n-uple $\Rightarrow P^n_{(\alpha,\beta)}$ and $P^n_{(\alpha',\beta')}$ equivalent. Likelihood: depends on the transitions of the Markov chain: untractable Other approaches: Estimating functions, contrast functions...
 - Parameters in the drift coefficient α estimated at rate $\sqrt{n\Delta_n}$.
 - Parameters in the diffusion coefficient estimated at rate \sqrt{n} .

Diffusion processes with small diffusion coefficient

Model: Multidimensional diffusion process on \mathbb{R}^p

$$d\xi_t = b(\alpha, \xi_t)dt + \epsilon \sigma(\beta, \xi_t)dB_t, \xi_0 = x_0.$$

$$P_{\alpha, \beta}^{\epsilon, T}: \text{ distribution of } (\xi_t, 0 \le t \le T) \text{ on } (C_T, C_T).$$

Continuous observation on [0, T]

- $\beta \neq \beta' \Rightarrow P_{\alpha,\beta}^{\epsilon,T}$ and $P_{\alpha,\beta'}^{\epsilon,T}$ are singular
- $\Rightarrow \beta$ identified from the continuous observation $(\xi_t, 0 \le t \le T)$.
- $\beta = \beta_0$ or fixed $\sigma(\beta_0, x) = \sigma(x)$

Asymptotic framework: T fixed and $\epsilon \rightarrow 0$.(Kutoyants,1980)

$$\star \ \ell_{\epsilon}(\alpha) = \frac{1}{\epsilon^2} \int_0^T \frac{b(\alpha, \xi_s)}{\sigma^2(\xi_s)} d\xi_s - \frac{1}{2\epsilon^2} \int_0^T \frac{b^2(\alpha, \xi_s)}{\sigma^2(\xi_s)} ds \Rightarrow \ \mathsf{MLE} \ \hat{\alpha}_{\epsilon}$$

$$\star \epsilon^{-1} (\hat{\alpha}_{\epsilon} - \alpha_0) \to \mathcal{N} (0, I(\alpha_0)^{-1})$$

$$I(\alpha) = (I_{i,j}(\alpha))_{1 \leq i,j \leq k} = \int_0^T \frac{t}{\partial \alpha_i} (\alpha, x(\alpha, s)) \Sigma^{-1}(x(\alpha, s)) \frac{\partial b}{\partial \alpha_j} (\alpha, x(\alpha, s))$$

*
$$x(\alpha, t) = x_0 + \int_0^t b(\alpha, x(\alpha, s)) ds$$
 and $\Sigma(x) = \sigma(x)^t \sigma(x)$.

Discrete observations on a fixed interval [0, T]

Diffusion process on \mathbb{R}^p

$$dX(t) = b(\alpha, X(t))dt + \epsilon\sigma(\beta, X(t))dB(t), X(0) = x_0.$$

Observations: $\{X(t_k), k = 0, ..., n\}$ with $t_k = k\Delta$; $T = n\Delta$.

Two possible asymptotic frameworks

- **1** $\epsilon \to 0$ and Δ fixed with $T = n\Delta \Rightarrow$ Fixed nb of observations n.
- ② $\epsilon \to 0$ and $\Delta = \Delta_n \to 0$ with $n\Delta_n = T$ simultaneously. $\Rightarrow n \to \infty$.

Results in framework (2)

- Different rates of convergence for parameters in the drift and in the diffusion coefficient (Gloter & Sorensen, 2009).
- Estimation of α at rate ϵ^{-1} , β at rate $\sqrt{n} = \Delta_n^{-1/2}$.

In practice difficult to assess which framework is more appropriate \Rightarrow Distinction between parameters in the drift term α and in the diffusion term β necessary.