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Simulation study

Assessment of the inference method
Simulation of epidemics with jump Markov processes
SIR epidemic model simulated with Gillepsie’s algorithm (1977)
SIRS with time-dependent transmission rate and demography
simulated with the τ -leap method (Cao,2005)

Accuracy of estimators
According to the population size N
Number of observations n
Parmeter values ruling the epidemic
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Simulation scheme

Choose an epidemic scenario: mechanistic model, population size,
parameters
Perform 1000 simulations of the Pure jump Markov Process associated
with this scenario.

Reference

Compute the M.L.E of the Jump Process assuming that all the
jumps are observed
Compute the Fisher information IPJM of the Pure Jump Model.
Reference: this MLE together with the associated confidence interval.

Remark: IPJM = Ib, Fisher information of continuous observation of the
diffusion.

Catherine Larédo () Inference for epidemic models December 2, 2015 3 / 1



Computation of estimators for each simulation
Choose a sampling interval ∆ and keep only the observations of the
simulation at times i∆ ( with realistic values of ∆ ≥ 1).
Compute our estimators on these discrete data (Point estimators)
Compute the theoretical confidence intervals (CIth) based on our
inference method

Joining all the 1000 simulations results
Compute the empirical confidence intervals (CIemp) based on the 1000
simulations;
Compute the average point estimators.

Remark: Only non extinct trajectories are kept;
Criterion: Final epidemic size larger than 5%S0; ⇒ Possible bias?
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SIR model
Basic reproduction number: R0 = λ

γ

Average infectious duration: d = 1
γ

Schéma de simulation:

Parameter Description Values
R0 basic reproduction number 1.5, 3
d infectious period 3, 7 days

T (1) final time of observation 20, 40, 45, 100 days
N population size 400, 1000, 10000
n number of observations 5, 10, 20, 40, 45, 100

Table: Range of parameters for the SIR model defined in Section ??. (1): T is
chosen as the time point where the corresponding deterministic trajectory passes
below the threshold of 1/100.

Observations of all the jumps → MLE and theoretical confidence interval
CIth; for ∆ = 1, Contrast estimator and CIth, ∆ = T/10
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SIR theoretical confidence ellipsoids and estimators
Population size N = 1000; R0 = 1.5, 5, d = 3, 7. Complete
Obs.;∆ = 1,∆ = T/10
Average point estimator based on the 1000 simulations for (MLE et α̂ε,n)
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Good results when varying the population size in the SIR

R0 = 1.5; d = 3 (days); T = 50 (days); ∆ = 1; 5; 10 (days) and
N = 4.102; 103; 104
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Results for small R0 and large R0

Results for a population size N = 1000, and various nb of obs. n
Correlation between parameters: increases with d ,decreases with R0,
Empirical CI: allways very tight ⇒ not shown,
Theoretical confidence intervals CIPJM and CIth for various samplings:
very close
No loss in estimation accuracy for n = 40 (1 obs/day) for large R0.

Results when varying N
Width of CI decreases with N; correlation not impacted.
Given N, confidence ellipsoids are still very close, even for small n.
N = 400 MLE biased while CE is OK.
Very noisy sample paths.
MLE optimal for "typical" realizations of the jump process.
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SIRS model with seasonal forcing

Time-dependent transmission rate (Keeling and Rohani, 2011)

To avoid extinction, immigration flow η added S → I : λ(t)
N S(I + Nη).

? µ: demography parameter; δ:immunity waning; γ(= 1/d) recovery rate;
? λ(t) = λ0(1 + λ1sin(2πt/Tper )) ⇒ New parameter R := λ0

γ .

? b(θ; t, x) =

(
−λ(t)s(i + η) + δ(1− s − i) + µ(1− s)

λ(t)s(i + η)− (γ + µ)i

)
.

ODE: dynamical system with bifurcation according to λ1

? ODE:dx
dt = b(θ; t, x).

? Before bifurcation: annual oscillations with constant amplitude.
? After bifurcation: Biennial oscillations with unequal amplitudes.
? Bifurcation diagram w.r.t. λ1.
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Dynamics of the ODE
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Parameter values chosen in the previous figure

N = 107; Tper = 365, µ = 1/(50Tper ), η = 10−6,
λ0 = 0.5, γ = 1/3 ⇒ R0 = 1.5, d = 3; δ = 1/(2× 365),
(s0, i0) = (0.7, 10−4).
Top panel: λ1 = 0.1; middle panel: λ1 = 0.1.
Bottom panel: bifurcation diagram w.r.t. λ1.
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Choice of plausible values for modeling influenza seasonal outbreaks
? Large population size: N = 107 to ensure
—> Sufficiently large "signal over noise" ratio.
—> Sufficient pool of S and I after each outbreak.
? µ = 1/50 years−1; Tper = 365 (days), η = 10−6

? R0 = 1.5, d = 3, δ = 2 ⇒ bifurcation for λ1 = 0.07;
? λ1 = 0.05 and λ1 = 0.15 (before and after bifurcation)

Numerically, these 2 scenarios have the characteristics of influenza seasonal
outbreaks.

Simulation study: 1000 simulations of these 2 scenarios
• Known parameters: µ,Tper , η.
• Unknown parameters: R, d , λ1, δ.
• Estimation of these parameters on each simulation.
• Results displayed with different projections of the 4-dimensional
theoretical ellipsoid.
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Estimation results and confidence ellipsoids for the SIRS

R = 1.5; d = 3;λ1 = 0.15, δ = 2 (days), T = 20 (years), N = 107.
Observations on [0,T ]: Complete (MLE), ∆ = 1, ∆ = 7 (days).
Average point estimator and theoretical confidence ellipsoids.
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Results for the SIRS

• Almost no correlation between parametres, except R0 and λ1
• Good accuracy of estimation for all parameters.
• Disposing one obs/day → accuracy identical to corresponding complet
obs. of the epidemic process.
• One obs/per week → still reasonably accurate estimations
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