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Abstract. In this article, we study an interacting particle system in the context of epidemi-
ology where the individuals (particles) are characterized by their position and infection state.
We begin with a description at the microscopic level where the displacement of individuals is
driven by mean field interactions and state-dependent diffusion, whereas the epidemiological
dynamic is described by the Poisson processes with an infection rate based on the distribution
of other nearby individuals, also of the mean-field type. Then under suitable assumptions,
a form of law of large numbers has been established to show that the associated empirical
measure to the above system converges to the law of the unique solution of a nonlinear
McKean-Vlasov equation. As a natural follow-up question, we study the fluctuation of this
stochastic system around its limit. We prove that this fluctuation process converges to a
limit process, which can be characterized as the unique solution of a linear stochastic PDE.
Unlike the existing literature using a coupling approach to prove the central limit theorem
for interacting particle systems, the key idea in the proof is to use the semigroup language
and some appropriate estimates to directly study the linearized evolution equation of the
fluctuation process in a suitable weighted Sobolev space, and follows a Hilbertian approach.
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1. Introduction

In this article, we study a spatial stochastic epidemic model based on the well-known SIR
model, where S, I and R respectively stands for the different states of an individual. These
states can vary from the compartment of Susceptible to the Infected one, and eventually to
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the compartment of Recovered (Removed) when the individual recovers from the illness (or
died). In fact, for many problems related to the spread of infectious disease in ecology and
public health, an explicit description of spatial structure is not necessary nor advantageous.
In many cases, the concept of average behavior in a large population is sufficient enough to
provide the insights and extract useful information from existing data. However, the spatial
component of many transmission systems is becoming increasingly important [34]. Recent
studies in both deterministic and stochastic epidemic models have enabled us to understand
the significance of individual displacements in a population on the persistence or extinction
of an endemic disease [5, 6, 12,28].

In our spatial model, an individual will be characterized by two features: its position and
its infection state. The state E varies in one of the types {S, I,R} = {0, 1, 2}, where we
identify S with 0, I with 1 and R with 2 in order to simplify the mathematical description. It
is also useful for the representation of the jumps between the states in the epidemic dynamic.
Meanwhile, the position is a continuous variable X ∈ Rd. The addition of spatial variables
complicates the standard homogeneous SIR model in two ways: by using an infection rate
that depends on the distribution of surrounding population and by taking into account the
individual displacements.

In fact, it is a natural tendency that an infected individual will infect a close neighbor
more often than another distant individual. While these different transmission behaviors are
averaged in a homogeneous SIR model, in our model, we use an infection rate depending on
the relative distance between individuals. The infection rate between locations x, y ∈ Rd will
be given by a function K : Rd × Rd → R+, which is assumed to be bounded and Lipschitz.
Averaging over all the infected individuals, the susceptible individual i becomes infected (in
other words its state jumps from 0 to 1) at time t at the rate

1

N

N∑
j=1

K(Xi,N
t , Xj,N

t )1{Ei,N
t =S}1{Ej,N

t =I}. (1.1)

The infectious individuals recover (in other words their state jumps from 1 to 2) at rate
γ > 0 and once an individual recovers, it becomes immune.

Each individual moves in Rd according to a diffusion σ
(
Xi,N

t , Ei,N
t

)
dBi

t which depends on
both individual’s state and position, and weakly interact with the other individuals in the
population in the mean filed type through a kernel V . In this paper, the interaction kernel V ,
the diffusion strength σ are assumed to be bounded Lipschitz continuous with respect to the
position variables. Of course, this equation has a meaning on a probability space endowed
with the requested Brownian motions (and Poisson point processes for the infectious-jump
part of the dynamic). The Lipschitz hypothesis will be very useful to build a correct theory of
existence, uniqueness to that system, and also for our results concerning the large population
limit (i.e. when N goes to infinity).

In light of the aforementioned settings, the epidemiological dynamic can be represented
using Poisson point processes jumping in {0, 1, 2}. Now we choose a probability space
(Ω,F , (Ft)t≥0,P) equipped with N independent Poisson random measures (Qi)i=1,...,N and
N Brownian motions (Bi)i=1,...,N , the position and state of the individuals will evolve in time
according to the following system:
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dXi,N

t =
1

N

N∑
j=1

V
(
Xi,N

t , Ei,N
t , Xj,N

t , Ej,N
t

)
dt+ σ

(
Xi,N

t , Ei,N
t

)
dBi

t,

Ei,N
t = Ei,N

0 +

∫
[0,t]×R+

1{
u≤ 1

N

∑
j ̸=i K

(
Xi,N

s ,Xj,N
s

)
1
(E

i,N

s−
,E

j,N

s−
)=(0,1)

+γ11(E
i,N

s−
)
}Qi(ds, du).

(1.2)

For more details concerning the origin of this model and its interest, we refer readers to
the previous paper of the authors [18].

In the study of a system composed of N particles, one of the most important objects
is empirical measure that can help us fully describe the whole dynamic. In this paper, let
us introduce the empirical measure process associated to the above system consisting of N

individuals
(
Xi,N

t , Ei,N
t ), i = 1, . . . , N defined by

t 7→ µNt =
1

N

N∑
i=1

δ
(Xi,N

t ,Ei,N
t )

,

where δ(x,e) is the Dirac measure at point (x, e) ∈ Rd × {0, 1, 2}.
Under suitable assumptions in [18], we established a conditional propagation of chaos

result (in the presence of a common noise σ0(Xi,N
t , Ei,N

t )dB0
t ), which states that condition-

ally to the common noise, the individuals are asymptotically independent and the stochastic
dynamic converges to a random nonlinear McKean-Vlasov process when the population size
tends to infinity. And as a consequence, the associated empirical measure converges to the
unique solution of a stochastic mean-field PDE driven by the common noise.

In this work, we only treat the case without the common noise. As a special case of the
results obtained in [18] (with σ0 = 0), we can also show that when N → ∞, the empirical
measure µNt converges to µt the law of the unique solution to the following nonlinear McKean-
Vlasov equation

dXt = Vµt(Xt, Et)dt+ σ(Xt, Et)dBt,

Et = E0 +

∫
[0,t]×R+

1{
u≤Kµs (Xs)10(Es− )+γ11(Es− )

}Q(ds, du),

µt = L (Xt, Et) .

(1.3)

As typical with McKean-Vlasov dynamics, the limit measure µt can also be characterized
as the unique solution of a nonlinear partial differential equation. That PDE is called the
forward Kolmogorov equation associated to the McKean-Vlasov SDE (1.3) and given by the
following equation

dµt =−Dx · (Vµtµt) dt+
1

2
tr
[
∇2

xx

(
(σσT )µt

)]
dt

+Kµt

(
1e=1 − 1e=0

)
µt(dx, 0)dt+ γ

(
1e=2 − 1e=1

)
µt(dx, 1)dt.

(1.4)

Now, as a natural follow-up question after studying the law of large numbers, the aim of
this paper is to look for a limit theorem for the fluctuation process of µNt around its limit
µt. In the previous paper, a quantitative law of large numbers is established in Wasserstein
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distance, which roughly shows that

E
[
W1

(
µNt , µt

)]
≤ C


N−1/2, d = 1,

N−1/2 logN, d = 2,

N−1/d, d ≥ 3.

(1.5)

In light of the above estimate obtained on the rate of convergence, we consider the following
fluctuation process with the N1/2 scaling:

ηNt =
√
N
(
µNt − µt

)
, t ∈ [0, T ].

Following the Hilbertian approach used in [15,23,29], we can prove a central limit theorem
for the sequence of the fluctuation processes (ηN )N≥1 in an appropriate space of distributions.
The limit process of the normalized fluctuation processes can be described as the unique
solution a linear stochastic partial differential equation driven by space-time white noises.
In order to achieve this, we regard the fluctuation process ηNt as a process taking values
in a Hilbert space, which we consider as the dual of some Sobolev space of test functions.
The regularity of that dual space corresponding to the regularity of the test functions will
be decided by the martingale term appearing in the mean field limit as well as the form of
generators in the equation.

It is worth noting that the Sobolev space used in the present paper is not the classical one
and must be refined. Indeed, it is well-known that the 1-Wasserstein distance used in (1.5) is
equivalent to its dual formulation,

W1(µ
N
t , µt) = sup

{∫
Rd×{0,1,2}

ϕ
(
µNt − µt

)
, ϕ : Rd × {0, 1, 2} → R with Lip(ϕ) ≤ 1

}
,

which apparently shows the strong dependence of the rate of convergence on the regularity
of the test functions. Therefore, to recover the right order of normalization N1/2 as classical
central limit theorem, we need to modify the regularity of the test functions. This point leads
us to study a class of the weighted Sobolev spaces with polynomial weights (see the definition
in subsection 2.1), which is well adapted to our needs. The importance of the weights will
be explained in the proof, provided that the weight satisfies suitable integrability properties.
On the other hand, we can observe that the dimension d plays a crucial role in the rate of
convergence (1.5) and it is well-known that the Sobolev embeddings depend strongly on the
dimension of the space; this will help us identify the right level of smoothness.

Let us now discuss the main differences between our results and the previous one in
the exiting literature. In fact, this kind of spatial epidemic model have been studied by
Emakoua et al. [5,12] with the same SIR epidemic dynamic but with a simpler model for the
displacement of individuals (individual’s movements follow independent Brownian motions
on a compact torus in [5], and follow independent diffusion processes in [12]), where the
mean field interactions between individuals through the kernel V are not taken into account.
This leads to the main difficulty in comparison with the previous works where we have the
presence of nonlocal terms in the evolution equation of the fluctuation process. In contrast
to the independence of individual’s movements in [5,12], these nonlocal terms are created by
mean field interactions and do not allow to obtain directly good estimates for the norm of
fluctuations in the weighted Sobolev spaces.

Concerning the Hilbertian approach used in this paper, in fact it has been already used to
prove central limit theorem in the context of interacting particle systems [15,23,29], mean field
games [11], mean field age-dependent Hawkes processes [9], neuron networks [37]. In [15,29],
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the authors developed a coupling method used in [38] and [20] with some relaxations on the
initial conditions and coefficients, aim to provide a sharper estimate on the control of the
couplings (instead of the original one of order 2),

E

[
sup
t≤T

∣∣Xi,N
t −Xi

t

∣∣4] ≤ CT

N2
, (1.6)

where (Xi), i = {1, . . . , N} are i.i.d copies of the unique solution to the limit SDE of the orig-
inal system. This estimate of order 4 requires a careful analysis when compute the covariance
between the pairs

(
Xi,N , Xi

)
and taking advantage of the independence between the particles

(Xi), i = {1, . . . , N}. In [11], Delarue et al. also used the coupling method and this estimate
of order 4 to prove the central limit theorem for the system consisting of N agents in the
context of mean field games. The main idea is to use the solution to the mean field limit to
construct an associated McKean-Vlasov interacting system of N particles that is sufficiently
close to the original system for large N , then derive the central limit theorem for the latter
from the central limit theorem for the former.

However, the main reason prevents us from applying this coupling method to prove central
limit theorem is that the authors in the aforementioned articles only work in a continuous
framework and depend strongly on the estimate of order 4 (1.6). In contrast, the individuals
in our model possess both continuous and discrete features. In the previous work [18], we have
pointed out the compulsion of using estimates of order 1 for the couplings (see in the proof of
the quantitative law of large numbers). As usual when working with jump processes, we can
not get higher rate for the moment estimates as in (1.6). Hence the standard trick used for
diffusion processes is useless in this case. To adapt with this fact, the author in [9] developed
the above coupling method for a specific mean field interacting age-dependent Hawkes process.
A refined version of the higher order estimates (1.6) is provided by estimating the coupling
in the total variation sense.

Unlike the articles listed above using a coupling method to prove the central limit the-
orem, the key idea in the proof in the present paper is to use the semigroup language and
some appropriate estimates to directly study the linearized evolution equation of the fluc-
tuation process in a suitable weighted Sobolev space. It will be shown that under some
suitable assumptions on the initial conditions and the smoothness of the coefficients, the
fluctuation processes (ηNt )N≥1 belong uniformly in N and t to the weighted Sobolev spaces

H−(1+D),2D and H−(2+2D),D. Then we prove the tightness of the pre-limit fluctuation process
in D

(
[0, T ], H−(2+2D),D

)
by using appropriate compact embeddings. We also show that the

Hilbert space H−(2+2D),D where we obtain the tightness result have the smallest regularity
order as possible in this class of Sobolev spaces with polynomial weights. Finally, we complete
the proof of convergence of the sequence (ηN )N≥1 by identifying the limit fluctuation process
η as the unique solution of a linear stochastic partial differential equation.

Organisation of the paper. In Section 2, we provide some preliminaries on the weighted
Sobolev spaces and state the main results. Section 3 is devoted to prove the tightness of the
pre-limit fluctuation process and the martingale terms appearing in the evolution equation.
In order to do this, we first establish some key estimates in dual Sobolev norms and then
taking advantage of Hilbert structure of the Sobolev spaces to prove the tightness results.
Section 4 contains the proof of the main Theorem 2.3, and we give a characterization for the
limit fluctuation process as the unique solution to a linear SPDE driven by space-time white
noises.
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2. Preliminaries and main result

2.1. Preliminaries on weighted Sobolev spaces. This section is devoted to the definitions
and some technical results related to the Sobolev spaces with polynomial weights used in this
paper. This kind of weighted Sobolev spaces was first introduced by [31], see also in [15].

Weighted Sobolev spaces. For all j ∈ N, α > 0, g ∈ Cj(Rd), we define

∥∥g∥∥
j,α

:=

∑
|k|≤j

∫
Rd

|Dkg(x)|2

(1 + |x|2)α
dx

1/2

,

where k = (k1, . . . , kd), |k| = k1 + · · ·+ kd.

Let Hj,α be the completion of the space consisting of all functions g ∈ C∞(Rd) with
compact support with respect to

∥∥.∥∥
j,α

norm. Hj,α equipped with this norm is a Hilbert

space. We denote by H−j,α its dual space.

Let Cj,α be the space of functions g with continuous partial derivatives up to order j and
satisfies

lim
|x|→∞

∣∣Dkg(x)
∣∣

1 + |x|α
= 0, ∀ |k| ≤ j.

This space is normed with ∥∥g∥∥
Cj,α =

∑
|k|≤j

sup
x∈Rd

∣∣Dkg(x)
∣∣

1 + |x|α
.

Sobolev embeddings. We recall the some continuous embeddings related to the Sobolev spaces
defined above, which are useful in some proofs in the rest of this paper. For more details, see
e.g. [1], [15].

We have

Cj,0 ↪→ Hj,α, j ≥ 0, α > d/2
(
so that

∫
Rd

1/(1 + |x|2α)dx < +∞
)
, (2.1)

Hj+m,α ↪→ Cj,α, j ≥ 0, m > d/2, α ≥ 0, (2.2)

i.e. there exists K,K ′ (that depends on m, j and α) such that∥∥g∥∥
Hj,α ≤ K

∥∥g∥∥
Cj,0 ,∥∥g∥∥

Cj,α ≤ K ′∥∥g∥∥
Hj+m,α .

Moreover, using the embedding (2.2), we can prove that

Hj+m,α ↪→c H
j,α+β, j ≥ 0, m > d/2, α ≥ 0, β > d/2, (2.3)

where ↪→c means that the embedding is compact.

We also deduce the following dual embeddings:

H−j,α ↪→ C−j,0, j ≥ 0, α > d/2, (2.4)

C−j,α ↪→ H−(j+m),α, j ≥ 0, m > d/2, α ≥ 0, (2.5)

H−j,α+β ↪→c H
−(j+m),α, j ≥ 0, m > d/2, α ≥ 0, β > d/2. (2.6)
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Hilbert structures. In some of the proofs given in the next sections, we consider an orthonormal
basis (ϕk)k≥1 of H

j,α composed of C∞ functions with compact support. The existence of such
a basis follows from the fact that the functions of class C∞ with compact support are dense
in Hj,α. Moreover, if (ϕk)k≥1 is an orthonormal basis of Hj,α and w belongs to H−j,α then
we have ∥∥w∥∥2−j,α

=
∑
k≥1

⟨w, ϕk⟩2 (2.7)

thanks to Parseval’s identity.
In the rest of this paper, to avoid the confusions, we notice that the notation (ϕk)k≥1 will

be used for the orthonormal basis of both Hj,α and its dual space H−j,α.

2.2. Main results. In this section, we rigorously describe the evolution equation of the fluc-
tuation process and state the main results. In the previous work [18], as usual by Ito’s formula
we showed that the evolution of the empirical measure process µNt satisfies the following equa-
tion:〈
µNt , ϕ

〉
=
〈
µN0 , ϕ

〉
+

∫ t

0

〈
µNs , Dxϕ · VµN

s

〉
ds+

1

2

∫ t

0

〈
µNs , tr

[
(σσT )D2

xxϕ
]〉
ds

+

∫ t

0

〈
µNs (dx, 0),KµN

s
(1e=1 − 1e=0)ϕ

〉
ds+

∫ t

0

〈
µNs (dx, 1), γ(1e=2 − 1e=1)ϕ

〉
ds

+MN
t (ϕ),

(2.8)
where MN

t (ϕ) is a martingale which converges to 0,

MN
t (ϕ) =

1

N

N∑
i=1

∫ t

0
Dxϕ(X

i,N
s , Ei,N

s )σ(Xi,N
s , Ei,N

s )dBi
s

+
1

N

N∑
i=1

∫
[0,t]×R+

(
ϕ(Xi,N

s , Ei,N
s )− ϕ(Xi,N

s , Ei,N
s− )

)
×

× 1{
u≤K

µNs
(Xi,N

s )10(E
i,N

s−
)+γ11(E

i,N

s−
)
}Q̄i(ds, du).

From equation (2.8) of the empirical measure process µNt and its mean field limit (1.4),

taking the difference and rescaling by N1/2, is not hard to obtain the evolution equation of
the fluctuation process ηNt as the following:〈
ηNt , ϕ

〉
=
〈
ηN0 , ϕ

〉
+

∫ t

0

〈
ηNs , Dxϕ · VµN

s

〉
ds+

∫ t

0

〈
µs, Dxϕ · VηNs

〉
ds+

1

2

∫ t

0

〈
ηNs , tr

[
(σσT )D2

xxϕ
]〉
ds

+

∫ t

0

〈
ηNs (dx, 0),KµN

s
(1e=1 − 1e=0)ϕ

〉
ds+

∫ t

0

〈
µs(dx, 0),KηNs

(1e=1 − 1e=0)ϕ
〉
ds

+

∫ t

0

〈
ηNs (dx, 1), γ(1e=2 − 1e=1)ϕ

〉
ds+

√
NMN

t (ϕ).

(2.9)
It is worth noting that the second and the third term in the first line on the r.h.s. are

created by linearizing the nonlinear term
〈
µNs , Dxϕ · VµN

s

〉
, whereas the two terms in the

second line are the linearization of
〈
µNs (dx, 0),KµN

s
(1e=1 − 1e=0)ϕ

〉
. In contrast to the law

of large numbers, the martingale term in (2.9) does not go to 0 when N tends to infinity.
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Instead of vanishing, the renormalized martingale
√
NMN

t is expected to converge to some
Gaussian process.

Before giving statement about the convergence, in fact the first problem one needs to
overcome is to find a suitable space in which both ηN and its limit belong. We want to prove
that the fluctuation ηNt belongs to some Sobolev space H−j,α uniformly in N and t ∈ [0, T ].
With the mention of an orthonormal basis (ϕk)k≥1 of the Sobolev space Hj,α as in (2.7), our
desire is to get the following

sup
N≥1

sup
t≤T

E

∑
k≥1

〈
ηNt , ϕk

〉2 = sup
N≥1

sup
t≤T

E
[∥∥ηNt ∥∥2−j,α

]
< +∞. (2.10)

To see the impact of regularity order of the test functions to the the estimates of the
fluctuation process ηNt in the dual spaces, let us give in the following a simple example on
the class of functions with bounded Lipschitz constant, where we can compute properly by
using the Kantorovich-Rubistein duality. Indeed, from the quantitative law of large number,
we have

E

[
sup

ϕ∈Lip(1)

∣∣〈ηNt , ϕ〉∣∣
]
=E

[
sup

ϕ∈Lip(1)

∣∣∣〈√N(µNt − µt), ϕ
〉∣∣∣]

=
√
NE

[
W1(µ

N
t , µt)

]
≤C(t)

√
NE

[
W1

(
µN0 , µ0

)]
+


1, d = 1,

logN, d = 2,

N (d−2)/2d, d ≥ 3.

 .

Since
{
(Xi,N

0 , Ei,N
0 )

}
N≥1

are i.i.d. with the initial law µ0, the classical central limit theorem

ensures at initial time that ηN0 converges in law to a limit η0, which is a Gaussian. However, the
above estimate is obviously not enough to guarantee central limit theorem for the fluctuation
process when it evolves in time, and even the uniform estimate (2.10) fails when the dimension
d is large. Therefore, in order to obtain the needed estimates and recover the right order for
convergence in central limit theorem, test functions indeed must be more regular.

Before stating the main results, let us introduce the assumptions made for the initial
condition and the coefficients throughout this paper is listed here. The Assumptions H1, H2
used to prove the key estimates used this paper. In order to state the main result on the
central limit theorem, more regularity on the coefficients will be required.

Let α ≥ 0 and D := ⌈d/2⌉ throughout the rest of this paper.

Assumption H1: supN≥1 E
[∣∣X1,N

0

∣∣4D] < +∞.

Assumption H2: The functions σ, V,K belong to class C1+D
b .

Assumption H3: The functions σ, V,K ∈ C2+2D
b .

It is shown in the following that under appropriate assumptions on the initial conditions
and the smoothness of the coefficients, the fluctuation processes (ηNt )N≥1 belong uniformly in

N and t to H−(1+D),2D.

Proposition 2.1. Under Assumptions H1, H2, for any T > 0, the fluctuation process ηNt
belongs to H−(1+D),2D uniformly in t and N , i.e.

sup
N≥1

E

[
sup
t≤T

∥∥ηNt ∥∥2−(1+D),2D

]
< +∞. (2.11)
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Then we prove the tightness of the fluctuation process ηNt in D
(
[0, T ], H−(2+2D),D

)
by

using the embeddings in subsection 2.1.

Proposition 2.2. The sequence of the laws of (ηN )N≥1 is tight in D
(
[0, T ], H−(2+2D),D

)
.

The main theorem of this paper will be stated below, where we identify the limit fluctu-
ation process η as the unique solution of a linear stochastic partial differential equation.

Theorem 2.3. Under Assumptions H1, H3, the sequence of fluctuation processes
(
ηN
)
N≥1

converges in law in D
(
[0, T ], H−(2+2D),D

)
to a process η which is the solution in H−(2+2D),D

of the following equation

⟨ηt, ϕ⟩ = ⟨η0, ϕ⟩+
∫ t

0
⟨ηs, Dxϕ · Vµs⟩ ds+

∫ t

0
⟨µs, Dxϕ · Vηs⟩ ds+

1

2

∫ t

0

〈
ηs, tr

[
(σσT )D2

xxϕ
]〉
ds

+

∫ t

0
⟨ηs(dx, 0),Kµs(1e=1 − 1e=0)ϕ⟩ ds+

∫ t

0
⟨µs(dx, 0),Kηs(1e=1 − 1e=0)ϕ⟩ ds

+

∫ t

0
⟨ηs(dx, 1), γ(1e=2 − 1e=1)ϕ⟩ ds+Wt(ϕ),

(2.12)

where Wt(ϕ) is a continuous centered Gaussian process with values in H−(2+2D),D and co-

variance is given by: For all ϕ1, ϕ2 ∈ H(2+2D),D, for any s, t ∈ [0, T ],

E [Wt(ϕ1)Ws(ϕ2)] =

∫ t∧s

0

〈
µr, σσ

TDxϕ1 ·Dxϕ2
〉
dr

+

∫ t∧s

0

〈
µs(dx, 0),Kµr(dx,1)ϕ1ϕ2

〉
dr +

∫ t∧s

0

〈
µr(dx, 1), γϕ1ϕ2

〉
dr.

(2.13)

3. Tightness

3.1. Preliminary estimates. In this section, we first prove some useful estimates which are
the technical steps in the proof of tightness and convergence in the next sections.

We first recall a fundamental result which states that the initial condition H1 propagates
finite moments uniformly in N and time t ∈ [0, T ]. The proof of this result is classical.

Lemma 3.1. For any T > 0, there exists a constant CT such that

sup
N≥1

E
[
sup
t≤T

∣∣Xi,N
t

∣∣4D] ≤ CT , ∀ 1 ≤ i ≤ N,

E
[
sup
t≤T

|Xt|4D
]
≤ CT .

Remark 3.2. By the definition of the empirical measure µNt and its limit µt, we can easily
deduce from Lemma 3.1 that

sup
N≥1

E
[
sup
t≤T

〈
µNt , | · |4D

〉 ]
≤ CT ,

E
[
sup
t≤T

〈
µt, | · |4D

〉 ]
≤ CT .
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Next, we give some useful estimates of several linear operators on Hj,α, which will be the
technical steps in the main proof. We may use it many times in the next sections.

Lemma 3.3. For any fixed α ≥ 0, j ≥ 1 + D and x, y ∈ Rd, the mappings δx,Λx,y,Ψx :
Hj,α → R, defined by

δx(ϕ) := ϕ(x); Λx,y(ϕ) := ϕ(x)− ϕ(y); Ψx(ϕ) := (div ϕ)(x)

are continuous linear forms, and we have∥∥δx∥∥−j,α
≤K(1 + |x|α),∥∥Λx,y

∥∥
−j,α

≤K(1 + |x|α + |y|α),∥∥Ψx

∥∥
−j,α

≤K(1 + |x|α).
(3.1)

Proof. We prove the first estimate by applying the embedding (2.2),

|δx(ϕ)| = |ϕ(x)| ≤
∥∥ϕ∥∥

C0,α(1 + |x|α) ≤ K
∥∥ϕ∥∥

j,α
(1 + |x|α), j ≥ D,α ≥ 0. (3.2)

Using the definition of dual norms of linear mappings, we have∥∥δx∥∥−j,α
= sup

0̸=ϕ∈Hj,α

|δx(ϕ)|∥∥ϕ∥∥
j,α

≤ K(1 + |x|α).

The estimate for Λx,y follows (3.2) since

|Λx,y(ϕ)| ≤ |ϕ(x)|+ |ϕ(y)| = |δx(ϕ)|+ |δy(ϕ)|.

A similar argument holds true for Ψx with j ≥ D + 1, α ≥ 0.
□

3.2. Decomposition of the fluctuations. In this section, we will describe the fluctuation
process (ηNt )t≥0 explicitly in terms of each epidemiological state S, I and R. On the one hand,
this turns the equation (2.9) to a system consisting of three compartments. On the other hand,
rewriting the evolution equation of fluctuation process as a system adapts to our strategy to
prove the convergence in the next section. Indeed, we will use a semigroup approach for these
linearized equations in order to prove the main estimate 2.1. For that reason, in order to make
the semigroup representation of the evolution equation (2.9) less complex, we will consider its
projections on M(Rd) for each epidemiological state separately. For more details concerning
this semigroup representation, see Section 3.5.

Let (
µS,N , µI,N , µR,N

)
=
(
1{e=0}µ

N ,1{e=1}µ
N ,1{e=2}µ

N
)
,

we regard µS,N , µI,N , µR,N as càdlàg processes taking values in the space of finite measures
on Rd, equipped with the Skorohod topology. We notice that for any t ∈ [0, T ],∫

E
µNt (de) =

∫
E

(
µS,Nt , µI,Nt , µR,N

t

)
(de).

For each e ∈ {S, I,R}, we introduce the following alternative notations

σe(·) :=σ(·, e),
V e
µ (·) :=Vµ(·, e) =

〈
V (·, e, y, f), µ(dy, df)

〉
to adapt with the measures on Rd.
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Now as usual, by using Itô’s formula we can derive the evolution equation for the empirical
measures µS,N , µI,N , µR,N . Indeed, for any function ϕ ∈ C2

b (Rd), we have the following system
which is equivalent to equation (2.8):

〈
µS,Nt , ϕ

〉
=
〈
µS,N0 , ϕ

〉
+

1

2

∫ t

0

〈
µS,Ns , tr

[
(σSσS

†
)D2

xxϕ
]〉
ds+

∫ t

0

〈
µS,Ns , Dxϕ · V S

µN
s

〉
ds

−
∫ t

0

〈
µS,Ns , ϕK

µI,N
s

〉
ds+MS,N

t (ϕ), (3.3)

〈
µI,Nt , ϕ

〉
=
〈
µI,N0 , ϕ

〉
+

1

2

∫ t

0

〈
µI,Ns , tr

[
(σIσI

†
)D2

xxϕ
]〉
ds+

∫ t

0

〈
µI,Ns , Dxϕ · V I

µN
s

〉
ds

+

∫ t

0

〈
µS,Ns , ϕK

µI,N
s

〉
ds− γ

∫ t

0

〈
µI,Ns , ϕ

〉
ds+M I,N

t (ϕ), (3.4)

〈
µR,N
t , ϕ

〉
=
〈
µR,N
0 , ϕ

〉
+

1

2

∫ t

0

〈
µR,N
s , tr

[
(σRσR

†
)D2

xxϕ
]〉
ds+

∫ t

0

〈
µR,N
s , Dxϕ · VµN

s

〉
ds

+ γ

∫ t

0

〈
µI,Ns , ϕ

〉
ds+MR,N

t (ϕ), (3.5)

where for each e ∈ {S, I,R}, the quantity M e,N
t is a local martingale represented by

M e,N
t (ϕ) =

1

N

N∑
i=1

∫ t

0
1{Ei,N

s =e}Dxϕ(X
i,N
s )σe(Xi,N

s )dBi
s

+
1

N

N∑
i=1

∫
[0,t]×R+

(
1e(E

i,N
s )− 1e(E

i,N
s− )

)
ϕ(Xi,N

s )×

× 1{
u≤K

µ
I,N
s

(Xi,N
s )10(E

i,N

s−
)+γ11(E

i,N

s−
)
}Q̄i(ds, du).

We know that these local martingles converge to 0 as N → ∞, and the Law of Large
Number result established in the previous article [18] ensures the convergence of the triple(
µS,N , µI,N , µR,N

)
∈
(
D
(
[0, T ],M(Rd)

))3
towards

(
µS , µI , µR

)
∈
(
C
(
[0, T ],M(Rd)

))3
, which

is the unique solution of the limit system of (3.3)-(3.5).

Now, if we consider for each epidemiological state the fluctuation process around its mean
field limit, namely

(
ηS,N , ηI,N , ηR,N

)
=
(√
N(µS,N − µS),

√
N(µI,N − µI),

√
N(µR,N − µR)

)
,

then equation (2.9) will become the following system:
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〈
ηS,Nt , ϕ

〉
=
〈
ηS,N0 , ϕ

〉
+

∫ t

0

〈
ηS,Ns , LS,N

s (ϕ)
〉
ds+

∫ t

0

〈
ηNs , ⟨µSs , Dxϕ · V S⟩

〉
ds

−
∫ t

0

〈
ηI,Ns , ⟨µSs , ϕK⟩

〉
ds+ M̃S,N

t (ϕ), (3.6)

〈
ηI,Nt , ϕ

〉
=
〈
ηI,N0 , ϕ

〉
+

∫ t

0

〈
ηI,Ns , LI,N

s (ϕ)
〉
ds+

∫ t

0

〈
ηNs , ⟨µIs, Dxϕ · V I⟩

〉
ds

+

∫ t

0

〈
ηS,Ns , ϕK

µI,N
s

〉
ds+ M̃ I,N

t (ϕ), (3.7)

〈
ηR,N
t , ϕ

〉
=
〈
ηR,N
0 , ϕ

〉
+

∫ t

0

〈
ηR,N
s , LR,N

s (ϕ)
〉
ds+

∫ t

0

〈
ηNs , ⟨µRs , Dxϕ · V R⟩

〉
ds

+ γ

∫ t

0

〈
ηI,Ns , ϕ

〉
ds+ M̃R,N

t (ϕ), (3.8)

where the differential operators LS,N , LI,N , LR,N are defined by

LS,N
s (ϕ) =

1

2
tr
[
(σSσS

†
)D2

xxϕ
]
+Dxϕ · V S

µN
s
− ϕK

µI,N
s
, (3.9)

LI,N
s (ϕ) =

1

2
tr
[
(σIσI

†
)D2

xxϕ
]
+Dxϕ · V I

µN
s
+ ⟨µSs , ϕK⟩ − γϕ, (3.10)

LR,N
s (ϕ) =

1

2
tr
[
(σRσR

†
)D2

xxϕ
]
+Dxϕ · V R

µN
s
, (3.11)

and the martingale terms M̃ e,N
t =

√
NM e,N

t for e ∈ {S, I,R}.

Remark 3.4. The first term in the definition of differential operators LS,N , LI,N , LR,N

emerge naturally after renormalizing the difference between the original system (3.3)-(3.5)
and its limit (there is no linearization here), whereas the other terms represent a part of the
linearized terms and the epidemic dynamic.

We also notice that ∫
E
ηN (de) =

∫
E

(
ηS,N + ηI,N + ηR,N

)
(de).

Remark 3.5. We consider the above system as a semimartingale representation of ηS,N ,
ηI,N , ηR,N and regard M̃S,N , M̃ I,N , M̃R,N as distributions acting on test functions. More
specifically, in the next sections, we will show that they are the distributions in H−(2+2D),D.

Nevertheless, instead of using the usual notion for the dual product of M̃ e,N
t and function ϕ,

we always write M̃ e,N
t (ϕ) to avoid the abuse of notion ⟨·, ·⟩, e.g. when compute the quadratic

variations as in (3.12) below.

Before going on, let us present a heuristic description how the limit of the martingale

terms should look like. For e ∈ {S, I,R} and any ϕ ∈ C2
b (Rd), M̃ e,N

t (ϕ) is a real valued
martingale with the quadratic variation given by
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〈
M̃S,N (ϕ)

〉
t
=

1

N

N∑
i=1

∫ t

0
10(E

i,N
s )

(
Dxϕ(X

i,N
s )σS(Xi,N

s )
)2
ds

+
1

N

N∑
i=1

∫ t

0
10(E

i,N
s )ϕ(Xi,N

s )2K
µI,N
s

(Xi,N
s )ds,

=

∫ t

0

〈
µS,Ns ,

(
Dxϕσ

S
)2〉

ds+

∫ t

0

〈
µS,Ns , ϕ2K

µI,N
s

〉
ds, (3.12)

〈
M̃ I,N (ϕ)

〉
t
=

1

N

N∑
i=1

∫ t

0
11(E

i,N
s )

(
Dxϕ(X

i,N
s )σI(Xi,N

s )
)2
ds

+
1

N

N∑
i=1

∫ t

0
10(E

i,N
s )ϕ(Xi,N

s )2K
µI,N
s

(Xi,N
s ) +

1

N

N∑
i=1

∫ t

0
γ11(E

i,N
s )ϕ(Xi,N

s )2ds,

=

∫ t

0

〈
µI,Ns ,

(
Dxϕσ

I
)2〉

ds+

∫ t

0

〈
µS,Ns , ϕ2K

µI,N
s

〉
ds+

∫ t

0

〈
µI,Ns , γϕ2

〉
ds, (3.13)

〈
M̃R,N (ϕ)

〉
t
=

1

N

N∑
i=1

∫ t

0
12(E

i,N
s )

(
Dxϕ(X

i,N
s )σR(Xi,N

s )
)2
ds

+
1

N

N∑
i=1

∫ t

0
γ11(E

i,N
s )ϕ(Xi,N

s )2ds,

=

∫ t

0

〈
µR,N
s ,

(
Dxϕσ

R
)2〉

ds+

∫ t

0

〈
µI,Ns , γϕ2

〉
ds. (3.14)

By the Law of Large Number, we can deduce the convergence of the above quadratic vari-
ation processes. In the limit, these processes are determined by the limit measures µS , µI , µR

which replace µS,N , µI,N , µR,N in equations (3.12)-(3.14). Since the limit processes M̃S , M̃ I ,

M̃R are continuous martingales with the deterministic quadratic variations, they are charac-
terized by the Gaussian processes determined as in (4.1)-(4.3).

3.3. Main estimates in dual spaces. We first establish some estimates for the fluctuations
ηS,N , ηI,N , ηR,N and the martingales M̃S,N , M̃ I,N , M̃R,N with norms in the dual Sobolev
spaces H−(1+D),2D and H−(2+2D),D. In our framework, even though the jumps are bounded,
the position variables take value in Rd so the use of weighted Sobolev spaces is necessary. The
weights and regularity index of that Sobolev spaces will be identified in the proof and related
to the order of moment estimates acquired on the position of individuals.

Proposition 3.6. Under Assumptions H1, H2, for any T > 0 and for each e ∈ {0, 1, 2},
the process M̃ e,N

t is a H−(1+D),2D-valued martingale and satisfies

sup
N≥1

E

[
sup
t≤T

∥∥M̃ e,N
t

∥∥2
−(1+D),2D

]
< +∞. (3.15)

Proof. We give proof for the case of M̃S,N
t . The estimates for M̃ I,N

t , M̃R,N
t can be obtained

by the similar arguments.
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Let (ϕk)k≥1 be a complete orthonormal basis of H1+D,2D. It suffices to show that

sup
N≥1

∑
k≥1

E

[
sup
t≤T

(
M̃S,N

t (ϕk)
)2]

< +∞. (3.16)

Using Doob’s inequality and the boundedness of σ,K, we deduce that∑
k≥1

E

[
sup
t≤T

(
M̃S,N

t (ϕk)
)2] ≤C

∑
k≥1

E
[(
M̃S,N

T (ϕk)
)2]

≤C
∑
k≥1

E
[∫ T

0

〈
µS,N ,

(
Dxϕkσ

S
)2〉

ds

]

+ C
∑
k≥1

E
[∫ T

0

〈
µS,N , ϕ2kKµI,N

s

〉
ds

]

≤C
∑
k≥1

E
[∫ T

0

〈
µS,N ,

(
div ϕk

)2〉
ds

]

+ C
∑
k≥1

E
[∫ T

0

〈
µS,N , ϕ2k

〉
ds

]
.

On the other hand, we have

r.h.s =C
∑
k≥1

∫ T

0
E

[
1

N

N∑
i=1

1{Ei,N
s =0}

(
div ϕk(X

i,N
s )

)2]
ds

+ C
∑
k≥1

∫ T

0
E

[
1

N

N∑
i=1

1{Ei,N
s =0}ϕ

2
k(X

i,N
s )

]
ds

≤C
∑
k≥1

∫ T

0
E
[(

div ϕk(X
1,N
s )

)2]
ds+ C

∑
k≥1

∫ T

0
E
[
ϕ2k(X

1,N
s )

]
ds.

Now using the definition of the linear mappings Ψx, δx in Lemma 3.3, the above inequality
can be rewritten as follows∑

k≥1

E

[
sup
t≤T

(
M̃S,N

t (ϕk)
)2] ≤CE

[∫ T

0

∥∥Ψ
X1,N

s

∥∥2
−(1+D),2D

ds

]

+ CE
[∫ T

0

∥∥δ
X1,N

s

∥∥2
−(1+D),2D

ds

]
.

Finally, we combine Lemma 3.3 and Lemma 3.1 to conclude that

sup
N≥1

E

[
sup
t≤T

∥∥M̃S,N
t

∥∥2
−(1+D),2D

]
≤ sup

N≥1

∑
k≥1

E

[
sup
t≤T

(
M̃S,N

t (ϕk)
)2]

≤C sup
N≥1

E

[
sup
t≤T

(
1 + |X1,N

t |4D
)]

< +∞.

□
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Proposition 3.7. Under Assumptions H1, H2, for any T > 0, for each e ∈ {0, 1, 2} and

for every N , the operator Le,N
t is a linear continuous mapping from H2+2D,D into H1+D,2D

and we have for all ϕ ∈ H2+2D,D,∥∥Le,N
t (ϕ)

∥∥
1+D,2D

≤ CT

∥∥ϕ∥∥
2+2D,D

, (3.17)

where the constant CT does not depend on N and the randomness.

Proof. Recall that

LS,N
s (ϕ) =

1

2
tr
[
(σSσS

†
)D2

xxϕ
]
+Dxϕ · V S

µN
s
− ϕK

µI,N
s
.

Since σS , V,K ∈ C1+D
b (Rd), we easily deduce that∥∥LS,N

s (ϕ)
∥∥
1+D,2D

≤
∥∥ϕ∥∥

3+D,2D
≤ C

∥∥ϕ∥∥
2+2D,D

, (3.18)

where the inequality on the r.h.s follows by the embedding (2.3) and since D ≥ 1.

The same argument holds for LR,N
s (ϕ).

In the representation of LI,N
s (ϕ), there is an extra term

〈
µSs , ϕK

〉
, which reduces the

regularity of the test functions. To treat this tricky term, we start by using the fact that all
the derivatives of K up to order 1 +D are bounded, we can differentiate under the integral
sign w.r.t. variable y and obtain the following

∥∥ 〈µSs , ϕK〉 ∥∥21+D,2D
=

1+D∑
|k|=0

∫
Rd

∣∣∣Dk
y

〈
µSs , ϕK(·, y)

〉∣∣2
1 + |y|4D

dy

≤C
∫
Rd

∣∣ 〈µSs , ϕ〉 ∣∣2
1 + |y|4D

dy

≤C
∫
Rd

|ϕ(x)|2µSs (dx)
∫
Rd

1

1 + |y|4D
dy.

Using Lemma 3.3, we have

|ϕ(x)|2 =|δx(ϕ)|2

≤∥δx∥2−(2+2D),D∥ϕ∥
2
(2+2D),D

≤C
(
1 + |x|2D

)
∥ϕ∥2(2+2D),D

Thus we deduce that∥∥ 〈µSs , ϕK〉 ∥∥21+D,2D
≤C
∥∥ϕ∥∥2

2+2D,D

∫
Rd

(
1 + |x|2D

)
µSs (dx)

∫
Rd

1

1 + |y|4D
dy

≤C
∥∥ϕ∥∥2

2+2D,D
,

where we obtain the last inequality by the fact that 4D > d (thus
∫
Rd dy/(1 + |y|4D)) and µSs

has finite moments of order 2D (by Lemma 3.1). Again, we can observe in the above proof
the necessity of weights in Sobolev spaces. □

Remark 3.8. In the system (3.6)-(3.8), it remains the terms
∫ t
0

〈
ηNs , ⟨µes, Dxϕ · V e⟩

〉
ds, e ∈

{S, I,R}, which are not involved in the integrals
∫ t
0

〈
ηe,Ns , Le,N

s

〉
ds. In fact, these terms are

created when we linearize the transport terms in (3.3)-(3.5). The functions ⟨µes, Dxϕ ·V e⟩, e ∈
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{S, I,R}, they all tested to the distribution ηNs . Following the lines in the proof of Proposition
3.7, we can obtain similar estimates for these functions∥∥ ⟨µes, Dxϕ · V e⟩

∥∥
1+D,2D

≤ C
∥∥ϕ∥∥

2+2D,D
, e ∈ {S, I,R}.

Proposition 3.9. Under Assumptions H1, H2, for any T > 0 and for each e ∈ {0, 1, 2},
the fluctuation process ηe,Nt belongs to H−(1+D),2D uniformly in t and N , i.e.

sup
N≥1

E

[
sup
t≤T

∥∥ηe,Nt

∥∥2
−(1+D),2D

]
< +∞. (3.19)

The proof of Proposition 3.9 will be postponed to Section 3.5.

Remark 3.10. We have in the following some important remarks:

• We have
∥∥ ·∥∥−(2+2D),D

≤ C
∥∥ ·∥∥−(1+D),2D

by the dual embedding (2.6). Now combining

with Proposition 3.6 and Proposition 3.9, we can also ensures that for e ∈ {S, I,R},
ηe,Nt and M̃ e,N

t belong to H−(2+2D),D, i.e.

sup
N≥1

E

[
sup
t≤T

∥∥ηe,Nt

∥∥2
−(2+2D),D

]
<+∞,

sup
N≥1

E

[
sup
t≤T

∥∥M̃ e,N
t

∥∥2
−(2+2D),D

]
<+∞.

In particular, at the initial time, we have supN≥1 E
[∥∥ηe,N0

∥∥2
−(2+2D),D

]
< +∞ under

the Assumptions H1, H2.

• As a consequence of Proposition 3.7, we also have the following statement for the
adjoint operators: For e ∈ {S, I,R}, for every u ∈ H−(1+D),2D,∥∥Le,N

t

∗
u
∥∥2
−(2+2D),D

≤CT

∥∥u∥∥2−(1+D),2D
. (3.20)

With the above remark, we can consider the decomposition (3.6)-(3.8) as the following

adjoint system in H−(2+2D),D

ηS,Nt =ηS,N0 +

∫ t

0
LS,N
s

∗
ηS,Ns ds−

∫ t

0
div
(
µSs V

S
ηNs

)
ds−

∫ t

0
µSsKηI,Ns

ds+ M̃S,N
t , (3.21)

ηI,Nt =ηI,N0 +

∫ t

0
LI,N
s

∗
ηI,Ns ds−

∫ t

0
div
(
µIsV

I
ηNs

)
ds+

∫ t

0
µS,Ns K

µI,N
s
ds+ M̃ I,N

t , (3.22)

ηR,N
t =ηR,N

0 +

∫ t

0
LR,N
s

∗
ηR,N
s ds−

∫ t

0
div
(
µRs V

R
ηNs

)
ds+ γ

∫ t

0
µSsKηI,Ns

ds+ M̃R,N
t . (3.23)

3.4. Tightness results. In the following, we discuss about the benefit of Hilbert structure
of the Sobolev spaces used in this present paper when proving the tightness results. Let us
state here the Aldous tightness criterion for Hilbert space valued stochastic processes.
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Aldous’s criterion. [2] LetH be a separable Hilbert space. A sequence of processes (XN )N≥1

in D(R+, H) defined on the respective filtered probability spaces (ΩN ,FN , (FN
t )t≥0,PN ) is

tight if it satisfies both the two following conditions:
(A1): For every t ≥ 0 and ε > 0, there exists a compact set K ⊂ H such that

sup
N≥1

PN
(
XN

t /∈ K
)
≤ ε,

(A2): For every ε, ε2 > 0 and θ ≥ 0, there exists δ0 > 0 and an integer N0 such that for
all (FN

t )t≥0-stopping time τN ≤ θ,

sup
N≥N0

sup
δ≤δ0

PN
(∥∥XN

τN+δ −XN
τN

∥∥
H

≥ ε
)
≤ ε2.

To check the Aldous criterion, we will use another version of the first condition where
(A1) is replaced by the condition (A′

1) stated below:

(A′
1): There exists a Hilbert space H0 such that H0 ↪→c H and, for all t ≥ 0,

sup
N≥1

EN [
∥∥XN

t

∥∥2
H0

] < +∞,

where the notation ↪→c means that the embedding is compact and EN denotes the expectation
associated with the probability PN .

But the fact that (A1) is implied by (A′
1). Indeed, since the embedding is compact, the

closed balls in H0 are compact in H. Combining with the Markov inequality, (A1) is satisfied.

Theorem 3.11. The sequences of the laws of (M̃S,N )N≥1, (M̃
I,N )N≥1, (M̃

R,N )N≥1 are tight

in D
(
[0, T ], H−(2+2D),D

)
.

Proof. We will only check the two conditions in Aldous’s criterion for M̃S,N , the same can be
justified for M̃ I,N and M̃R,N .

Thanks to Proposition 3.6, Condition (A1) is satisfied with H0 = H−(1+D),2D and H =

H−(2+2D),D since the embedding H−(1+D),2D ↪→ H−(2+2D),D is compact.
Condition (A2) is obtained as soon as it holds for the trace of the process ≪ M̃S,N ≫t,

where ≪ M̃S,N ≫t is the Doob-Meyer process associated with the martingale (M̃S,N
t )t≥0

and satisfies the following: For any t > 0, ≪ M̃S,N ≫t is a linear continuous mapping from
H1+D,2D to H−(1+D),2D defined for all ϕ, ψ in H1+D,2D by〈

≪ M̃S,N ≫t(ϕ), ψ
〉
=

∫ t

0

〈
µS,Ns ,

(
Dxϕσ

S
)(
Dxψσ

S
)〉
ds+

∫ t

0

〈
µS,Ns , ϕψK

µI,N
s

〉
ds.

(See e.g. Rebolledo’s theorem in [22])
Let T, ε, ε2 > 0 and let τN ≤ T be a stopping time. For a complete orthonormal basis

(ϕk)k≥1 in H2+2D,D, we have

sup
N≥N0

sup
δ≤δ0

P
( ∣∣∣tr≪ M̃S,N ≫τN+δ − tr≪ M̃S,N ≫τN

∣∣∣ > ε

)

≤ 1

ε
sup

N≥N0

sup
δ≤δ0

E

∑
k≥1

〈
≪ M̃S,N ≫τN+δ(ϕk), ϕk

〉
−
〈
≪ M̃S,N ≫τN (ϕk)ϕk

〉
≤ C

ε
sup

N≥N0

sup
δ≤δ0

E
[∫ τN+δ

τN

〈
µS,Ns ,

∥∥Ψx

∥∥2
−(2+2D),D

+
∥∥δx∥∥2−(2+2D),D

〉
ds

]
.



18 M. HAURAY, E. PARDOUX, Y. V. VUONG

At this step, we again use Lemma 3.3 and Lemma 3.1 to bound the r.h.s.,

r.h.s. ≤ C

ε
sup

N≥N0

sup
δ≤δ0

E
[∫ τN+δ

τN

〈
µS,Ns ,

∥∥Ψx

∥∥2
−(1+D),2D

+
∥∥δx∥∥2−(1+D),2D

〉
ds

]

≤ C

ε
sup

N≥N0

sup
δ≤δ0

E

[∫ τN+δ

τN

1

N

N∑
i=1

(
1 +

∣∣Xi,N
s

∣∣4D) ds]

≤ Cδ0
ε

sup
N≥N0

E

[
sup
s≤T

(
1 +

∣∣X1,N
s

∣∣4D)] ≤ ε2,

when δ0 is small enough. And thus, both the two conditions for tightness are fulfilled. □

Theorem 3.12. The sequences of the laws of (ηS,N )N≥1, (η
I,N )N≥1, (η

R,N )N≥1 are tight in

D
(
[0, T ], H−(2+2D),D

)
.

Proof. Proposition 3.9 implies that condition (A1) is satisfied with H0 = H−(1+D),2D and H =

H−(2+2D),D. Thanks to Rebolledo’s Theorem and proof of Theorem 3.11 for the martingale
terms, condition (A2) for the sequences (ηe,N )N≥1, e ∈ {S, I,R} are satisfied as soon as they

are satisfied for the drift terms. We will check for the integrals
∫ t
0 L

e,N
s

∗(
ηS,Ns , ηI,Ns , ηR,N

s

)
ds,

e ∈ S, I,R, the remaining terms in the adjoint equations (3.21)-(3.23) can be done in the
similar way.

We now give a proof for instance to ηS,N . Let T, ε > 0 and let τN ≤ T be a stopping time.
By using Chebyshev’s inequality, one can deduce that

P

(∥∥∥∥∫ τN+δ

0
LS,N
s

∗
ηS,Ns ds−

∫ τN

0
LS,N
s

∗
ηS,Ns ds

∥∥∥∥
−(2+2D),D

≥ ε

)

≤ 1

ε2
E

[∥∥∥∥∫ τN+δ

τN

LS,N
s

∗
ηS,Ns ds

∥∥∥∥2
−(2+2D),D

]

≤ δ

ε2
E
[∫ τN+δ

τN

∥∥LS,N
s

∗
ηS,Ns

∥∥2
−(2+2D),D

ds

]
.

Let (ϕk)k≥1 be a complete orthonormal system in H2+2D,D, we have∥∥LS,N
s

∗
ηS,Ns

∥∥2
−(2+2D),D

=
∑
k≥1

〈
ηS,Ns , LS,N

s (ϕk)
〉2
.

Thus, using Propposition 3.7 we obtain

r.h.s. ≤ δ

ε2
E

∫ τN+δ

τN

∑
k≥1

〈
ηS,Ns , LS,N

s (ϕk)
〉2
ds


≤ Cδ

ε2
E
[∫ τN+δ

τN

∥∥ηS,Ns

∥∥2
−(1+D),2D

]
≤ Cδ2

ε2
E

[
sup
s≤T

∥∥ηS,Ns

∥∥2
−(1+D),2D

]
.



CENTRAL LIMIT THEOREM FOR A SPATIAL STOCHASTIC EPIDEMIC 19

Now thanks to Proposition 3.9, the last expectation is finite and hence, we can find δ0 > 0
such that the condition (A2) is satisfied. The proof for tightness of the laws of (ηS,N )N≥1 in

D
(
[0, T ], H−(2+2D),D

)
is completed.

□

3.5. Proof of Proposition 3.9. In this section, we study a semigroup representation of the
evolution equation of the fluctuation processes ηS,N , ηI,N , ηR,N . First, we establish some
useful estimates in weighted Sobolev norms related to the regularity of those semigroups, and
estimates for the stochastic convolution with these semigroups. All results obtained in this
section are devoted to prove Proposition 3.9 in Section 3.3.

For each epidemiological state e ∈ {S, I,R}, we denote by
(
T e
t

)
t∈[0,T ]

the semigroup

generated by the second order differential operator Ae := 1
2 tr[(σ

eσe†)D2
xx] on the weighted

Sobolev space Hj,α. First, we show in the following the adjoint equations under the action of
these semigroups.

Lemma 3.13. For t ∈ [0, T ], the processes ηS,N , ηI,N , ηR,N satisfy the following system:

ηS,Nt =T S
t

∗
ηS,N0 −

∫ t

0
T S
t−s

∗
div
(
ηS,Ns V S

µN
s

)
ds−

∫ t

0
T S
t−s

∗
div
(
µSs V

S
ηNs

)
ds

−
∫ t

0
T S
t−s

∗(
ηS,Ns K

µI,N
s

)
ds−

∫ t

0
T S
t−s

∗(
µSsKηI,Ns

)
ds+

∫ t

0
T S
t−s

∗
dM̃S,N

s , (3.24)

ηI,Nt =T I
t
∗
ηI,N0 −

∫ t

0
T I
t−s

∗
div
(
ηI,Ns V I

µN
s

)
ds−

∫ t

0
T I
t−s

∗
div
(
µIsV

I
ηNs

)
ds

+

∫ t

0
T I
t−s

∗(
ηS,Ns K

µI,N
s

)
ds+

∫ t

0
T I
t−s

∗(
µSsKηI,Ns

)
ds− γ

∫ t

0
T I
t−s

∗
ηI,Ns ds

+

∫ t

0
T I
t−s

∗
dM̃ I,N

s , (3.25)

ηR,N
t =T R

t
∗
ηR,N
0 −

∫ t

0
T R
t−s

∗
div
(
ηR,N
s V R

µN
s

)
ds−

∫ t

0
T R
t−s

∗
div
(
µRs V

R
ηNs

)
ds

+ γ

∫ t

0
T R
t−s

∗
ηI,Ns ds+

∫ t

0
T R
t−s

∗
dM̃R,N

s . (3.26)

Proof. First, we fix t ∈ [0, T ] and ϕ ∈ C2
(
Rd
)
. Appling Itô’s formula to the test function

ψ(s, x) = (T S
t−sϕ)(x), and notice that for all x ∈ Rd, the mapping s 7→ (T S

t−sϕ)(x) is differen-
tiable and

d

ds
T S
t−s(A

Sϕ)(x) = −AS(T S
t−sϕ)(x),

we can derive the following equation similar to (3.6),〈
ηS,Nt , ϕ

〉
=
〈
ηS,N0 , T S

t ϕ
〉
+

∫ t

0

〈
ηS,Ns , Dx(T S

t−sϕ) · V S
µN
s

〉
ds+

∫ t

0

〈
ηNs , ⟨µSs , Dx(T S

t−sϕ) · V S⟩
〉
ds

−
∫ t

0

〈
ηS,Ns , (T S

t−sϕ)KµI,N
s

〉
ds−

∫ t

0

〈
ηI,Ns , ⟨µSs , (T S

t−sϕ)K⟩
〉
ds+

∫ t

0
dM̃S,N

s (T S
t−sϕ).

□

Before going on, we will need some estimates on the semigroups (T e
t−s)e∈{S,I,R} in weighted

Sobolev spaces Hk,α, which is stated in the following proposition [19].
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We consider A the second order differential operator given in the divergence form by

Aϕ = −
d∑

i,j=1

∂xi

(
aij(x)∂xjϕ

)
,

where the coefficients aij are symmetric, smooth enough (will be precised) and satisfy the
uniform ellipticity condition, i.e.

d∑
i,j=1

aij(x)ξiξj ≥ λ|ξ|2, ∀x, ξ ∈ Rd,

for some positive constant λ. With the above definition, the operator A is a self-adjoint and
positive. Let (Tt)t≤T be the semigroup generated by A on L2(Rd).

Proposition 3.14. Let k ≥ 0 and assume that aij ∈ C2k+1
b (Rd). Let (Tt)t≥0 be the semi-

group generated by A. For any T ≥ 0, there exists a constant CT > 0 depends only on
T, d, k, ∥a∥H2k+1,α such that for any t ∈ [0, T ], the following holds true

(1)

∥Ttϕ∥Hk,α ≤ CT ∥ϕ∥Hk,α . (3.27)

(2)

∥∇xTtϕ∥Hk,α ≤ CT

(
1 +

1√
t

)
∥ϕ∥Hk,α . (3.28)

Regarding the stochastic convolutions with the semigroups in the system (3.24)-(3.24), we
also have some first bounds as follows.

Proposition 3.15. For 0 < t ≤ T , there exists a positive constant CT such that

E

[∥∥∥∥∫ t

0
T S
t−s

∗
dM̃S,N

s

∥∥∥∥2
−(1+D),2D

]
≤CT , (3.29)

E

[∥∥∥∥∫ t

0
T I
t−s

∗
dM̃ I,N

s

∥∥∥∥2
−(1+D),2D

]
≤CT , (3.30)

E

[∥∥∥∥∫ t

0
T R
t−s

∗
dM̃R,N

s

∥∥∥∥2
−(1+D),2D

]
≤CT . (3.31)

Proof. Let (ϕk)k≥1 be a complete orthonormal system in H1+D,2D, we can also using the

expression of T S
t−s

∗
dM̃S,N

s in H−(1+D),2D via this basis, namely

E

[∥∥∥∥∫ t

0
T S
t−s

∗
dM̃S,N

s

∥∥∥∥2
−(1+D),2D

]
= E

[∫ t

0

∑
k≥1

〈
dM̃S,N

s , T S
t−sϕk

〉2
ds

]
and then have the same estimates follows the lines in the proof of Proposition 3.6. □

But the above bounds are not exactly what we want. We expect to have an uniformly
in time estimate for the stochastic convolutions with the semigroups by exploiting the inde-
pendence of the noising terms. Indeed, we can observe that if these terms do not involve
a convolution with the semigroups (T e

t−s)e∈{S,I,R}, then it would be a martingale and we
can apply the maximal inequalities for a standard martingale, for instance, the Burkholder-
Davis-Gundy inequality and obtain the desired bound. On the other hand, even though the
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convolution with the semigroups (T e
t−s)e∈{S,I,R} destroys the martingale property, it is still

closely related to maximal inequalities by the following lemma: (See Theorem 2.1 in [25])

Lemma 3.16. Let
(
H, ∥·∥H

)
be a separable Hilbert space and Tt be a semigroup acting on H.

We assume the exponential growth condition on Tt, ∥Tt∥L(H) ≤ eαt for some positive constant

α. Then, there exists a constant C > 0 such that for any H-valued locally square integrable
càdlàg martingale Mt,

E

[
sup

0≤t≤T

∥∥∥∥∫ t

0
St−sdMs

∥∥∥∥2
H

]
≤ Ce4αTE

[∥∥MT

∥∥2
H

]
.

In [17], the authors give a generalization for this maximal inequality with p-th moment
(0 < p <∞) of stochastic convolution integrals.

Proof of Proposition 3.9. Using the expression in (3.24), we have∥∥ηS,Nt

∥∥
−(1+D),2D

≤
∥∥T S

t
∗
ηS,N0

∥∥
−(1+D),2D

+

∫ t

0

∥∥T S
t−s

∗
div
(
ηS,Ns V S

µN
s

)∥∥
−(1+D),2D

ds

+

∫ t

0

∥∥T S
t−s

∗
div
(
µSs V

S
ηNs

)∥∥
−(1+D),2D

ds+

∫ t

0

∥∥T S
t−s

∗(
ηS,Ns K

µI,N
s

)∥∥
−(1+D),2D

ds

+

∫ t

0

∥∥T S
t−s

∗(
µSsKηI,Ns

)∥∥
−(1+D),2D

ds+

∥∥∥∥∫ t

0
T S
t−s

∗
dM̃S,N

s

∥∥∥∥
−(1+D),2D

.

Let (ϕk)k≥1 be a complete orthonormal system in H1+D,2D and again using the Parseval’s
identity, we can treat the first order terms in the r.h.s. (which are created by the mean field
interaction in the displacement of the individuals) by applying Proposition 3.14.

Let us consider the linear mappings Φ1, Φ2 defined from H1+D,2D to R given by

Φ1(ϕk) =
〈
ηS,Ns , Dx(T S

t−sϕk) · V S
µN
s

〉
,

Φ2(ϕk) =
〈
µSs , Dx(T S

t−sϕk) · V S
ηNs

⟩
〉

Using the second inequality in Proposition 3.14, we have∣∣Φ1(ϕk)
∣∣ =∣∣〈ηS,Ns , Dx(T S

t−sϕk) · V S
µN
s

〉∣∣
≤C
∥∥ηS,Ns

∥∥
−(1+D),2D

∥∥Dx(T S
t−sϕk) · V S

µN
s

∥∥
1+D,2D

≤C
∥∥ηS,Ns

∥∥
−(1+D),2D

∥∥div(T S
t−sϕk)

∥∥
1+D,2D

≤ CT√
t− s

∥∥ηS,Ns

∥∥
−(1+D),2D

∥∥ϕk∥∥1+D,2D
.

Notice that to obtain the third line, we used the assumption that V ∈ C1+D
b (Rd × Rd). Now

by the similar way, we also have∣∣Φ2(ϕk)
∣∣ ≤ CT√

t− s

∥∥µSs ∥∥−(1+D),2D

∥∥ϕk∥∥1+D,2D
,

and using the continuous embedding from P(Rd) into H−(1+D),2D, we obtain∣∣Φ2(ϕk)
∣∣ ≤ CT√

t− s

∥∥ϕk∥∥1+D,2D
.
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Hence we deduce that∫ t

0

∥∥T S
t−s

∗
div
(
ηS,Ns V S

µN
s

)∥∥
−(1+D),2D

ds+

∫ t

0

∥∥T S
t−s

∗
div
(
µSs V

S
ηNs

)∥∥
−(1+D),2D

ds

≤
∫ t

0

CT√
t− s

∥∥ηS,Ns

∥∥
−(1+D),2D

ds+

∫ t

0

CT√
t− s

ds.

(3.32)

For the two terms created by the jumping part, using the first statement in Proposition
3.14 we also obtain the following bounds∫ t

0

∥∥T S
t−s

∗(
ηS,Ns K

µI,N
s

)∥∥
−(1+D),2D

ds+

∫ t

0

∥∥T S
t−s

∗(
µSsKηI,Ns

)∥∥
−(1+D),2D

ds

≤
∫ t

0
CT

∥∥ηS,Ns

∥∥
−(1+D),2D

ds+

∫ t

0
CT

∥∥µSs ∥∥−(1+D),2D
ds

≤
∫ t

0
CT

∥∥ηS,Ns

∥∥
−(1+D),2D

ds+ CT .

(3.33)

To treat the last term, we use Lemma 3.16 and Jensen’s inequality and Proposition 3.6
to deduce the following

E

[
sup
t≤T

∥∥∥∥∫ t

0
T S
t−s

∗
dM̃S,N

s

∥∥∥∥
−(1+D),2D

]
≤E

[
sup
t≤T

∥∥∥∥∫ t

0
T S
t−s

∗
dM̃S,N

s

∥∥∥∥2
−(1+D),2D

]1/2
≤CTE

[∥∥M̃S,N
T

∥∥2
−(1+D),2D

]1/2
<+∞.

(3.34)

Summing up (3.32)-(3.34), we conclude that

E
[
sup
s≤t

∥∥ηS,Ns

∥∥
−(1+D),2D

]
≤CTE

[∥∥ηS,N0

∥∥
−(1+D),2D

]
+

∫ t

0

CT√
t− s

E
[∥∥ηS,Ns

∥∥
−(1+D),2D

]
ds

+

∫ t

0
CTE

[∥∥ηS,Ns

∥∥
−(1+D),2D

]
ds+ CT .

The similar arguments give us the estimates uniformly in time for ηS,Nt and ηS,Nt , namely

E
[
sup
s≤t

∥∥ηI,Ns

∥∥
−(1+D),2D

]
≤CTE

[∥∥ηI,N0

∥∥
−(1+D),2D

]
+

∫ t

0

CT√
t− s

E
[∥∥ηI,Ns

∥∥
−(1+D),2D

]
ds

+

∫ t

0
CTE

[∥∥ηS,Ns

∥∥
−(1+D),2D

+
∥∥ηI,Nt

∥∥
−(1+D),2D

]
ds+ CT ,

E
[
sup
s≤t

∥∥ηR,N
s

∥∥
−(1+D),2D

]
≤CTE

[∥∥ηR,N
0

∥∥
−(1+D),2D

]
+

∫ t

0

CT√
t− s

E
[∥∥ηR,N

s

∥∥
−(1+D),2D

]
ds

+

∫ t

0
CTE

[∥∥ηI,Ns

∥∥
−(1+D),2D

]
ds+ CT .

Now combining all the above inequalities and let

φ(t) = E
[
sup
s≤t

(∥∥ηS,Nt

∥∥
−(1+D),2D

+
∥∥ηI,Nt

∥∥
−(1+D),2D

+
∥∥ηR,N

t

∥∥
−(1+D),2D

)]
,
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we obtain the following estimate

φ(t) ≤CTφ(0) + CT

∫ t

0

(
1 +

1√
t− s

)
φ(s)ds+ CT . (3.35)

Iterating (3.35) we deduce that

φ(t) ≤
(
CTφ(0) + CT

)
+
(
CTφ(0) + CT

)
CT

∫ t

0

(
1 +

1√
t− s

)
ds

+ C2
T

∫ t

0

∫ s

0

(
1 +

1√
t− s

)(
1 +

1√
s− r

)
φ(r)drds

≤
(
CTφ(0) + CT

)(
1 + CT

(
T + 2

√
T
))

+ C2
T

∫ s

0
φ(r)

∫ t

0

(
1 +

1√
t− s

)(
1 +

1√
s− r

)
dsdr,

(3.36)

where we interchanged the order in the integral in the second line.
Now for r < s < t, we have∫ t

r

(
1 +

1√
t− s

)(
1 +

1√
s− r

)
ds =

∫ t

r

(
1 +

1√
t− s

+
1√
s− r

+
1√

t− s
√
s− r

)
ds

≤T + 2
√
T +

∫ t

r

ds√
t− s

√
s− r

.

(3.37)

By the change of variables u = s− r, v = t− r we have∫ t

r

ds√
t− s

√
s− r

=

∫ v

0

du√
u
√
v − u

≤
∫ v/2

0

du√
u
√
v − u

+

∫ v

v/2

du√
u
√
v − u

≤ 1√
v/2

∫ v/2

0

du√
u
+

1√
v/2

∫ v

v/2

du√
v − u

≤4.

(3.38)

Finally, we combine the inequalities (3.36), (3.37) and (3.38) to obtain an estimate in type
of Gronwall’s lemma, and using Remark 3.10 for the boundedness at the initial time, we
complete the proof of Proposition 3.9. □

4. Characterization of the limit

The aim of this section is to prove convergence of the sequence of fluctuation processes
(ηN )N≥1, where the limit fluctuation processes η is the unique solution of a system of SPDEs
driven by four inputs: an initial condition and three noises created by the martingale terms

M̃S,N
t , M̃ I,N

t , M̃R,N
t . In Section 4.1 and 4.2, we first identify all the terms appearing in the

limiting equation. In the last section, we show that this SPDEs uniquely characterizes the
limit law, and hence complete the proof of the convergence in law of (ηN )N≥1 to η.
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4.1. Convergence of
(
M̃S,N , M̃ I,N , M̃R,N

)
N≥1

. Before stating the convergence result of the

martingale terms, let us introduce the definition of Gaussian white noises.

Definition 4.1. A random distribution W defined on a probability space (Ω,F ,P) is called
a Gaussian white noise on Rd if the mapping φ 7→ ⟨W, φ⟩ is linear and continuous from
L2
(
Rd
)
into L2(Ω), and for any φ ∈ L2

(
Rd
)
, ⟨W, φ⟩ is a generalized centered Gaussian

process satisfying

E [⟨W, φ⟩ ⟨W, ϕ⟩] = ⟨φ, ϕ⟩L2 , ∀ φ, ϕ ∈ L2(Rd).

Here ⟨·, ·⟩L2 denotes a scalar product on L2
(
Rd
)
.

Space-time white noise is a Gaussian white noise on R+ × Rd.

Proposition 4.2. The sequence
(
M̃S,N , M̃ I,N , M̃R,N

)
N≥1

converges in law in
(
D
(
R+, H

−(2+2D),D
))3

towards the Gaussian process
(
MS ,MI ,MR

)
∈
(
C
(
R+, H

−(2+2D),D
))3

given by: for all

φ,ψ, ϕ ∈ H2+2D,D,

〈
MS

t , φ
〉
=

∫ t

0

∫
Rd

√
fS(r, x)Dxφ(x)σ

S(x)W1(dr, dx)

−
∫ t

0

∫
Rd

√
fS(r, x)

∫
Rd

fI(r, y)K(x, y)dyφ(x)W2(dr, dx), (4.1)

〈
MI

t , ψ
〉
=

∫ t

0

∫
Rd

√
fI(r, x)Dxψ(x)σ

I(x)W1(dr, dx)

+

∫ t

0

∫
Rd

√
fS(r, x)

∫
Rd

fI(r, y)K(x, y)dyψ(x)W2(dr, dx)

−
∫ t

0

∫
Rd

ψ(x)
√
γfI(r, x)W3(dr, dx), (4.2)

〈
MR

t , ϕ
〉
=

∫ t

0

∫
Rd

√
fR(r, x)Dxϕ(x)σ

R(x)W1(dr, dx)

+

∫ t

0

∫
Rd

ϕ(x)
√
γfI(r, x)W3(dr, dx), (4.3)

where W1,W2,W3 are independent standard space-time white noises.

Proof. We have proved that the sequence
(
M̃S,N , M̃S,N , M̃S,N

)
N≥1

is tight in
(
D
(
R+, H

−(2+2D),D
))3

,

and hence according to Prokhorov’s Theorem, there exists a subsequence (still denoted by(
M̃S,N , M̃S,N , M̃S,N

)
N≥1

), which converges in law in
(
D
(
R+, H

−(2+2D),D
))3

towards
(
MS ,MI ,MR

)
.

For all ϕ1, ϕ2, ϕ3 ∈ H2+2D,D, by Lemma 5.1, we know that MS(ϕ1),MI(ϕ2),MR(ϕ3) are
continuous martingales and thus for any a1, a2, a3 ∈ R, a1MS(ϕ1) + a2MI(ϕ2) + a3MR(ϕ3)
is also a continuous martingale. Now, we will show that the centered, continuous martingale(
MS(ϕ1),MI(ϕ2),MR(ϕ3)

)
is a Gaussian process and satisfies (4.1)-(4.3).

Indeed, let us identify the limit. The LLN result implies that
(
µS,N , µI,N , µR,N

)
converges

in
(
D
(
[0, T ],M(Rd)

))3
towards

(
µS , µI , µR

)
, which is the unique solution of the limit system
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of (3.3)-(3.5), and we have〈
MS(ϕ)

〉
t
=

∫ t

0

〈
µSs ,

(
Dxϕσ

S
)2〉

ds+

∫ t

0

〈
µSs , ϕ

2KµI
s

〉
ds,

〈
MI(ϕ)

〉
t
=

∫ t

0

〈
µIs,
(
Dxϕσ

I
)2〉

ds+

∫ t

0

〈
µSs , ϕ

2KµI
s

〉
ds+

∫ t

0

〈
µIs, γϕ

2
〉
ds,

〈
MR(ϕ)

〉
t
=

∫ t

0

〈
µRs ,

(
Dxϕσ

R
)2〉

ds+

∫ t

0

〈
µIs, γϕ

2
〉
ds.

It turns out that
〈
a1MS(ϕ1) + a2MI(ϕ2) + a3MR(ϕ3)

〉
t
is a continuous martingale with a

deterministic quadratic variation, so it is characterized as a Gaussian process determined by
(4.1)-(4.3), where the densities are given by Lemma 5.2. □

4.2. Convergence of
(
ηS,N , ηI,N , ηR,N

)
N≥1

. We now prove the convergence of
(
ηS,N , ηI,N , ηR,N

)
N≥1

and give a characterization of the limit processes as solution of an equation in H−(4+2D),D.
We consider the Hilbert semimartingale decomposition (3.21)-(3.23) of

(
ηS,N , ηI,N , ηR,N

)
, and

we will find a semimartingale decomposition for the limit values, denoted by
(
ηS , ηI , ηR

)
. The

difficulty is to close this limit decomposition, i.e. to find a good space in which to immerse
the limit process and which allows to give a sense to the limit drift terms. We have seen that
the processes ηS,N , ηI,N , ηR,N belong uniformly to H−(1+D),2D and are tight in H−(2+2D),D.
We also know that the limit processes ηS , ηI , ηR are in H−(2+2D),D. But to identify the limit
in the drift terms, we need to work in a large space that is H−(4+2D),D. And this will be
possible if we assume more regularity on the coefficients σ and b.

We now introduce the following limit operators LS
s , L

I
s, L

R
s of the linear operators LS,N ,

LI,N , LR,N , defined by

LS
s (ϕ) =

1

2
tr
[
(σSσS

†
)D2

xxϕ
]
+Dxϕ · V S

µs
− ϕKµI

s
, (4.4)

LI
s(ϕ) =

1

2
tr
[
(σIσI

†
)D2

xxϕ
]
+Dxϕ · V I

µs
+ ⟨µSs , ϕK⟩ − γϕ, (4.5)

LR
s (ϕ) =

1

2
tr
[
(σRσR

†
)D2

xxϕ
]
+Dxϕ · V R

µs
. (4.6)

Under the Assumption H3, and follows the lines in the proof of Proposition 3.7, we can
also prove the following lemma.

Lemma 4.3. For e ∈ {S, I,R}, for every N and any t ≤ T , the operators Le
s, L

e,N
s :

H4+2D,D → H2+2D,D are linear, continuous and satisfies∥∥Le,N
t (ϕ)

∥∥
2+2D,D

≤CT

∥∥ϕ∥∥
4+2D,D

, (4.7)∥∥Le
t (ϕ)

∥∥
2+2D,D

≤CT

∥∥ϕ∥∥
4+2D,D

. (4.8)

where the constant CT does not depend on N and the randomness.

Now, by the trivial embeddingH−(2+2D),D ↪→H−(4+2D),D, the sequence
(
ηS,N , ηI,N , ηR,N

)
N≥1

also converges to
(
ηS , ηI , ηR

)
in
(
C
(
[0, T ], H−(4+2D),D

))3
and we have the following Theorem.

Theorem 4.4. Under Assumptions H1, H3, the sequence of processes
(
ηS,N , ηI,N , ηR,N

)
N≥1

converges in law in
(
D
(
[0, T ], H−(2+2D),D

))3
to a process

(
ηS , ηI , ηR

)
which is the solution

in H−(2+2D),D of the following equation
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ηSt − ηS0 −
∫ t

0
LS
s
∗
ηSs ds+

∫ t

0
div
(
µSs V

S
ηSs +ηIs+ηRs

)
ds+

∫ t

0
µSsKηIs

ds = MS
t , (4.9)

ηIt − ηI0 −
∫ t

0
LI
s
∗
ηIsds+

∫ t

0
div
(
µIsV

I
ηSs +ηIs+ηRs

)
ds−

∫ t

0
µSsKµI

s
ds = MI

t , (4.10)

ηRt − ηR0 −
∫ t

0
LR
s
∗
ηRs ds+

∫ t

0
div
(
µRs V

R
ηSs +ηIs+ηRs

)
ds− γ

∫ t

0
µSsKηIs

ds = MR
t , (4.11)

where MS
t ,MI

t ,MR
t are the Gaussian processes defined in Proposition 4.2.

Proof. Since the sequence of the martingale terms
(
M̃S,N , M̃S,N , M̃S,N

)
N≥1

converges in law

in
(
D
(
R+, H

−(2+2D),D
))3

to the Gaussian vector process
(
MS ,MI ,MR

)
defined in Theorem

4.2, thus to prove that the limit processes satisfies the system (4.9)-(4.11), it suffices to show
that

ηS,Nt − ηS,N0 −
∫ t

0
LS,N
s

∗
ηS,Ns ds+

∫ t

0
div
(
µSs V

S
ηNs

)
ds+

∫ t

0
µSsKηI,Ns

ds,

ηI,Nt − ηI,N0 −
∫ t

0
LI,N
s

∗
ηI,Ns ds+

∫ t

0
div
(
µIsV

I
ηNs

)
ds−

∫ t

0
µS,Ns K

µI,N
s
ds,

ηR,N
t − ηR,N

0 −
∫ t

0
LR,N
s

∗
ηR,N
s ds+

∫ t

0
div
(
µRs V

R
ηNs

)
ds− γ

∫ t

0
µSsKηI,Ns

ds

converges in law to

ηSt − ηS0 −
∫ t

0
LS
s
∗
ηSs ds+

∫ t

0
div
(
µSs V

S
ηSs +ηIs+ηRs

)
ds+

∫ t

0
µSsKηIs

ds,

ηIt − ηI0 −
∫ t

0
LI
s
∗
ηIsds+

∫ t

0
div
(
µIsV

I
ηSs +ηIs+ηRs

)
ds−

∫ t

0
µSsKµI

s
ds,

ηRt − ηR0 −
∫ t

0
LR
s
∗
ηRs ds+

∫ t

0
div
(
µRs V

R
ηSs +ηIs+ηRs

)
ds− γ

∫ t

0
µSsKηIs

ds,

when N tends to ∞. By Lemma 4.3, the integrals
∫ t
0 L

S
s
∗
ηSs ds,

∫ t
0 L

I
s
∗
ηIsds,

∫ t
0 L

R
s
∗
ηRs ds and

the remaining drift terms make sense in H−(4+2D),D. Now, for any ϕ ∈ H−(4+2D),D, let us

introduce linear vector function F ϕ =
(
FS,ϕ, F I,ϕ, FR,ϕ

)
from

(
D
(
[0, T ], H−(2+2D),D

))3
into
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R3 defined by

FS,ϕ
t (u) =

〈
ut, ϕ

〉
−
〈
u0, ϕ

〉
−
∫ t

0

〈
us, L

S
s (ϕ)

〉
ds

−
∫ t

0

〈
(us + vs + ws), ⟨µSs , Dxϕ · V S⟩

〉
ds+

∫ t

0

〈
vs, ⟨µSs , ϕK⟩

〉
ds,

F I,ϕ
t (v) =

〈
vt, ϕ

〉
−
〈
v0, ϕ

〉
−
∫ t

0

〈
vs, L

I
s(ϕ)

〉
ds

−
∫ t

0

〈
(us + vs + ws), ⟨µIs, Dxϕ · V I⟩

〉
ds−

∫ t

0

〈
us, ϕKµI

s

〉
ds,

FR,ϕ
t (w) =

〈
wt, ϕ

〉
−
〈
w0, ϕ

〉
−
∫ t

0

〈
ws, L

R
s (ϕ)

〉
ds

−
∫ t

0

〈
(us + vs + ws), ⟨µRs , Dxϕ · V R⟩

〉
ds− γ

∫ t

0

〈
vs, ϕ

〉
ds.

The function F ϕ is continuous and thus, the sequence
(
F ϕ(ηS,N , ηI,N , ηR,N )

)
N≥1

con-

verges in law to
(
F ϕ(ηS , ηI , ηR)

)
since the sequence

(
ηS,N , ηI,N , ηR,N

)
N≥1

converges in law

to
(
ηS , ηI , ηR

)
by the tightness result 3.12.

Now it remains to show that
∫ t
0

〈
ηS,Ns , LS,N

s (ϕ)−LS
s (ϕ)

〉
ds (and the analogues for ηI,Ns , ηR,N

s )

tends to 0 when N tends to ∞. We will prove that it tends to 0 in L1. Indeed, by Cauchy-
Schwartz’s inequality, we deduce that

E
[ ∫ t

0

∣∣〈ηS,Ns , LS,N
s (ϕ)− LS

s (ϕ)
〉∣∣ ds]

≤E
[∫ t

0

∥∥ηS,Ns

∥∥
−(2+2D,D)2

∥∥LS,N
s (ϕ)− LS

s (ϕ)
∥∥2
2+2D,D

ds

]
≤
∫ t

0
E
[∥∥ηS,Ns

∥∥2
−(2+2D,D)

]1/2
E
[∥∥LS,N

s (ϕ)− LS
s (ϕ)

∥∥2
2+2D,D

]1/2
ds

≤C
∫ t

0
E
[∥∥LS,N

s (ϕ)− LS
s (ϕ)

∥∥2
2+2D,D

]1/2
ds,

where we used Proposition 3.9 and Remark 3.10 to obtain the last inequality.
Following the lines in the proof of Proposition 3.7 and the LLN result µe,N → µe, e ∈

{S, I,R}, we can also prove that
∥∥LS,N

s (ϕ)− LS
s (ϕ)

∥∥
2+2D,D

tends to 0 as N tends to ∞, and

thus complete the proof.

Noticing that to compute
∥∥LS,N

s (ϕ) − LS
s (ϕ)

∥∥
2+2D,D

, we used the additional assumption

on σ, V,K, and once we compute for the term 1
2 tr

[
(σeσe†)D2

xxϕ
]
in LS,N

s (ϕ), LS
s (ϕ), it will

produce the regularity order 4+2D instead of 2+2D as in (3.18). Thus, the equations (4.9)-

(4.11) are regarded as the equations in the space H−(4+2D),D, while ηS , ηI , ηR are known to

take values in the smaller space H−(2+2D),D. □

In order to complete the proof of convergence of the sequence
(
ηS,N , ηI,N , ηR,N

)
N≥1

, it

remains to prove uniqueness of the solution to the system (4.9)-(4.11).

Proposition 4.5. For any initial condition ηS0 , η
I
0 , η

R
0 with values in H−(2+2D),D, the system

(4.9)-(4.11) has at most one solution with paths in
(
D
(
[0, T ], H−(2+2D),D

))3
.
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Since the equations (4.9)-(4.11) are linear, it follows directly from the classical theory of
linear stochastic PDEs that system (4.9)-(4.11) has at most one solution.

5. Appendix

Lemma 5.1. The limit process
(
MS ,MI ,MR

)
of the sequence

(
M̃S,N , M̃S,N , M̃S,N

)
N≥1

belong a.s. to
(
C
(
R+, H

−(2+2D),D
))3

.

Lemma 5.2. There exists
(
fS , f I , fR

)
∈ L∞

loc

(
R+,

(
L1
(
Rd
)3))

as the densities of
(
µS , µI , µR

)
such that

fSt (x) =f
S
0 (x) +

1

2

∫ t

0
tr
[
(σSσS

†
)D2

xxf
S
s (x)

]
ds

+

∫ t

0
div

(
fSs (x)

∫
Rd

V S(x, y)
(
fSs (y) + f Is (y) + fRs (y)

)
dy

)
ds

−
∫ t

0
fSs (x)

∫
Rd

K(x, y)f Is (y)dyds,

f It (x) =f
I
0 (x) +

1

2

∫ t

0
tr
[
(σIσI

†
)D2

xxf
I
s (x)

]
ds

+

∫ t

0
div

(
f Is (x)

∫
Rd

V I(x, y)
(
fSs (y) + f Is (y) + fRs (y)

)
dy

)
ds

+

∫ t

0
fSs (x)

∫
Rd

K(x, y)f Is (y)dyds− γ

∫ t

0
f Is ds,

fRt (x) =fR0 (x) +
1

2

∫ t

0
tr
[
(σRσR

†
)D2

xxf
R
s (x)

]
ds

+

∫ t

0
div

(
fRs (x)

∫
Rd

V R(x, y)
(
fSs (y) + f Is (y) + fRs (y)

)
dy

)
ds

+ γ

∫ t

0
f Is ds.
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