A stochastic individual-based model for immunotherapy of cancer

Loren Coquille

_

Joint work with

Martina Baar, Anton Bovier, Hannah Mayer (IAM Bonn) Michael Hölzel, Meri Rogava, Thomas Tüting (UniKlinik Bonn)

Institute for Applied Mathematics - Bonn

CIRM, Marseille - June 15, 2015

Plan

- Biological motivations
- Adaptative dynamics
 - The model
 - State of the art
- Only switches: Relapse caused by stochastic fluctuations
 - Therapy with 1 type of T-cell
 - Biological parameters
 - Therapy with 2 types of T-cells
- Only mutations: Early mutation induced by the therapy
- Mutations and switches: Polymorphic Evolution Sequence
- Conclusion

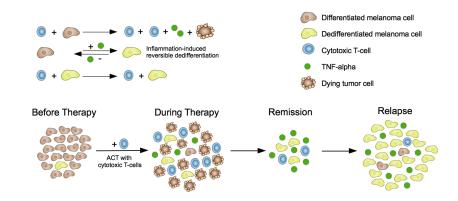
Plan

- Biological motivations
- Adaptative dynamics
 - The model
 - State of the art
- 3 Only switches: Relapse caused by stochastic fluctuations
 - Therapy with 1 type of T-cell
 - Biological parameters
 - Therapy with 2 types of T-cells
- Only mutations: Early mutation induced by the therapy
- Mutations and switches: Polymorphic Evolution Sequence
- 6 Conclusion

Experiment on melanoma (UniKlinik Bonn)

Injection of T-cells able to kill a specific type of melanoma.

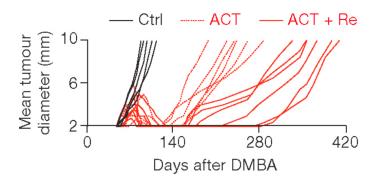
The treatment induces an **inflammation**, to which the melanoma react by changing their phenotype (markers disappear on their surface, "switch"). The T-cells cannot kill them any more, the tumor continues to grow.



Without therapy: exponential growth of the tumor.

With therapy: relapse after 140 days.

With therapy and restimulation: late relapse.



Plan

- Biological motivations
- Adaptative dynamics
 - The model
 - State of the art
- Only switches: Relapse caused by stochastic fluctuations
 - Therapy with 1 type of T-cell
 - Biological parameters
 - Therapy with 2 types of T-cells
- Only mutations: Early mutation induced by the therapy
- Mutations and switches: Polymorphic Evolution Sequence
- Conclusion

Individual-based model

- Cancer cells (melanoma): each cell is characterized by a genotype and a phenotype. Each can reproduce, die, mutate (repr. with genotypic change) or switch (change its phenotype) at prescribed rates.
- Immune cells (T-cells): Each cell can reproduce, die, or kill a cancer cell of prescribed type (which produces a chemical messenger) at prescribed rates.
- Chemical messenger (TNF $-\alpha$): Each particle can die at a prescribed rate. Its presence influences the ability of a fixed type of cancer cell to switch.

Trait space and measure:

$$\mathcal{X} = \mathcal{G} \times \mathcal{P} \sqcup \mathcal{Z} \sqcup \mathcal{W} = \{g_1, \dots, g_{|\mathcal{G}|}\} \times \{p_1, \dots, p_{|\mathcal{P}|}\} \sqcup \{z_1, \dots, z_{|\mathcal{Z}|}\} \sqcup w$$
$$n = (n_{(g_1, p_1)}, \dots, n_{(g_{|\mathcal{G}|}, p_{|\mathcal{P}|})}, n_{z_1}, \dots, n_{z_{|\mathcal{Z}|}}, n_w)$$

The stochastic model converges, in the limit of large populations, towards the solution this dynamical system with **logistic**, **predator-prey**, **switch**:

$$\begin{cases} \dot{\mathfrak{n}}_{x} &= \mathfrak{n}_{x} \Big(b_{x} - d_{x} - c_{xx} \cdot \mathfrak{n}_{x} - c_{xy} \cdot \mathfrak{n}_{y} \Big) + s \cdot \mathfrak{n}_{y} - s_{w} \cdot \mathfrak{n}_{w} \mathfrak{n}_{x} - t_{xz} \cdot \mathfrak{n}_{z_{x}} \mathfrak{n}_{x} \\ \dot{\mathfrak{n}}_{y} &= \mathfrak{n}_{y} \Big(b_{y} - d_{y} - c_{yy} \cdot \mathfrak{n}_{y} - c_{yx} \cdot \mathfrak{n}_{x} \Big) - s \cdot \mathfrak{n}_{y} + s_{w} \cdot \mathfrak{n}_{w} \mathfrak{n}_{x} \\ \dot{\mathfrak{n}}_{z_{x}} &= - d_{zx} \cdot \mathfrak{n}_{z_{x}} + b_{zx} \cdot \mathfrak{n}_{z_{x}} \mathfrak{n}_{x} \\ \dot{\mathfrak{n}}_{w} &= - d_{w} \cdot \mathfrak{n}_{w} + \ell_{x} \cdot t_{xz} \cdot \mathfrak{n}_{x} \mathfrak{n}_{z_{x}} \end{cases}$$

Event	Rates for x	Rates for y	for z	for w
(Re)production	b_{x}	b_y	$b_{zx}n_x$	
Natural death	$d_{x}+c_{xx}n_{x}+c_{xy}n_{y}$	$d_y + c_{yy} n_x + c_{yx} n_y$	d _{zx}	d_w
Therapy death	$t_{xz}n_{z_x}$	0		
Switch	$s_w n_w$	S		

Deterministically, a number ℓ_w of TNF- α particles are produced when z kills x.

State of the art for the BPDL model

In general \mathcal{X} continuous. Measure $\nu_t = \sum_{i=1}^{N_t} \delta_{x_i}$. Markov process on the space of positive measures.

Event	Rate
Clonal reproduction	$(1-p(x))\cdot b(x)$
Reproduction with mutation	$m(x, dy) \cdot p(x) \cdot b(x)$
Death	$d(x) + \int_{\mathcal{X}} c(x,y) \nu(dy)$

State of the art for the BPDL model

In general \mathcal{X} continuous. Measure $\nu_t = \frac{1}{K} \sum_{i=1}^{N_t} \delta_{x_i}$. Markov process on the space of positive measures.

Event	Rate
Clonal reproduction	$(1-\mu p(x))\cdot b(x)$
Reproduction with mutation	$m(x, dy) \cdot \mu p(x) \cdot b(x)$
Death	$d(x) + \int_{\mathcal{X}} \frac{c(x,y)}{K} \nu(dy)$

Limit of large populations and rare mutations

$$K \to \infty$$

$$\mu
ightarrow 0$$

Scalings and time scales

- $K \to \infty$, μ fixed, $T < \infty$: Law of large numbers, deterministic limit [Fournier, Méléard, 2004]
- $K \to \infty$, $\mu \to 0$, $T < \infty$: Law of large numbers, deterministic limit without mutations.
- $K \to \infty$, $\mu \to 0$, $T \sim \log(1/\mu)$: Deterministic jump process [Bovier, Wang, 2012]
- $(K, \mu) \rightarrow (\infty, 0)$ t.q. $\frac{1}{\mu K} \gg \log K$, $T \sim \frac{1}{\mu K}$: Random jump process [Champagnat, Méléard, 2009, 2010] Trait Substitution Sequence Polymorphic Evolution Sequence

Scalings and time scales

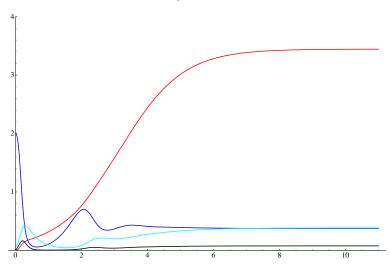
- $K \to \infty$, μ fixed, $T < \infty$: Law of large numbers, deterministic limit [Fournier, Méléard, 2004] limit dynamical systems (with switch) are not classified
- $K \to \infty$, $\mu \to 0$, $T < \infty$: Law of large numbers, deterministic limit without mutations.
- $K \to \infty$, $\mu \to 0$, $T \sim \log(1/\mu)$: Deterministic jump process [Bovier, Wang, 2012]
- $(K,\mu) \to (\infty,0)$ t.q. $\frac{1}{\mu K} \gg \log K$, $T \sim \frac{1}{\mu K}$: Random jump process [Champagnat, Méléard, 2009, 2010] Trait Substitution Sequence Polymorphic Evolution Sequence

Plan

- Biological motivations
- Adaptative dynamics
 - The model
 - State of the art
- Only switches: Relapse caused by stochastic fluctuations
 - Therapy with 1 type of T-cell
 - Biological parameters
 - Therapy with 2 types of T-cells
- 4 Only mutations: Early mutation induced by the therapy
- 6 Mutations and switches: Polymorphic Evolution Sequence
- 6 Conclusion

Solution of the determinisitic system

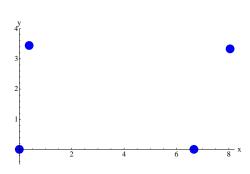
Legend : Melanoma x, melanoma y, T-cells, TNF- α



4 fixed points in the positive quadrant

With reasonable parameters we have :

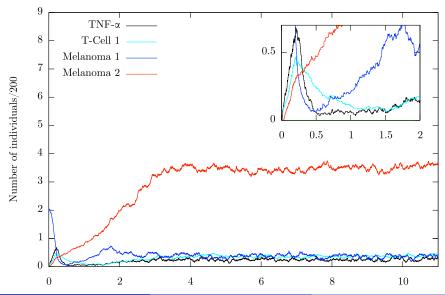
Pxyz	Pxy0
P000	(Px00)



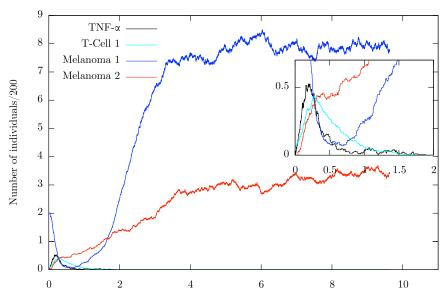
Pxyz is stable.

Pxy0 is stable on the invariant sub-space $\{n_z = 0\}$.

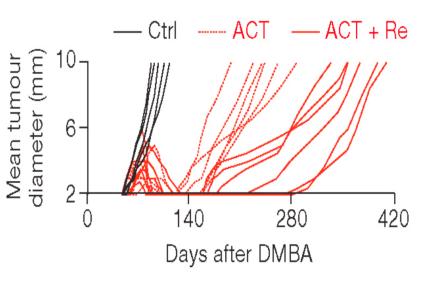
Relapse towards Pxyz, (K = 200)



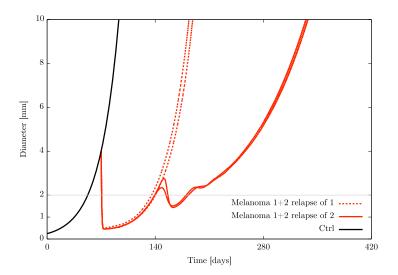
Relapse towards Pxy0 due to the death of z



Adjustment of parameters: data



Adjustment of parameters : simulations ($K = 10^5$)



Therapy with 1 types of T-cells

$$\begin{cases} \dot{\mathfrak{n}}_{x} &= \mathfrak{n}_{x} \left(b_{x} - d_{x} - c_{xx} \cdot \mathfrak{n}_{x} - c_{xy} \cdot \mathfrak{n}_{y} \right) - t_{xz} \cdot \mathfrak{n}_{zx} \mathfrak{n}_{x} + s \cdot \mathfrak{n}_{y} - s_{w} \cdot \mathfrak{n}_{w} \mathfrak{n}_{x} \\ \dot{\mathfrak{n}}_{y} &= \mathfrak{n}_{y} \left(b_{y} - d_{y} - c_{yy} \cdot \mathfrak{n}_{y} - c_{yx} \cdot \mathfrak{n}_{x} \right) \\ \dot{\mathfrak{n}}_{z_{x}} &= - d_{zx} \cdot \mathfrak{n}_{z_{x}} + b_{zx} \cdot \mathfrak{n}_{z_{x}} \mathfrak{n}_{x} \\ \dot{\mathfrak{n}}_{w} &= - d_{w} \cdot \mathfrak{n}_{w} + \ell_{x} \cdot t_{xz} \cdot \mathfrak{n}_{x} \mathfrak{n}_{z_{x}} \end{cases}$$

Event	Rates for x	Rates for y
Reproduction	b_{x}	b_y
Natural death	$d_{x}+c_{xx}n_{x}+c_{xy}n_{y}$	$d_y + c_{yy} n_x + c_{yx} n_y$
Death due to therapy	$t_{xz}n_{z_x}$	0
Switch	$s_w n_w$	S

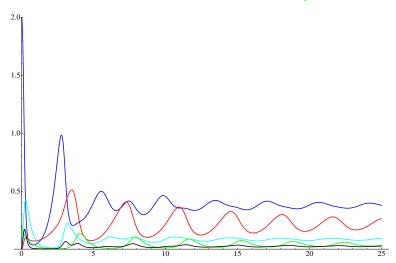
Therapy with 2 types of T-cells

$$\begin{cases} \dot{\mathfrak{n}}_{x} &= \mathfrak{n}_{x} \Big(b_{x} - d_{x} - c_{xx} \cdot \mathfrak{n}_{x} - c_{xy} \cdot \mathfrak{n}_{y} \Big) - t_{xz} \cdot \mathfrak{n}_{zx} \mathfrak{n}_{x} + s \cdot \mathfrak{n}_{y} - s_{w} \cdot \mathfrak{n}_{w} \mathfrak{n}_{x} \\ \dot{\mathfrak{n}}_{y} &= \mathfrak{n}_{y} \Big(b_{y} - d_{y} - c_{yy} \cdot \mathfrak{n}_{y} - c_{yx} \cdot \mathfrak{n}_{x} \Big) - t_{yz} \cdot \mathfrak{n}_{zy} \mathfrak{n}_{y} - s \cdot \mathfrak{n}_{y} + s_{w} \cdot \mathfrak{n}_{w} \mathfrak{n}_{x} \\ \dot{\mathfrak{n}}_{zx} &= - d_{zx} \cdot \mathfrak{n}_{zx} + b_{zx} \cdot \mathfrak{n}_{zx} \mathfrak{n}_{x} \\ \dot{\mathfrak{n}}_{zy} &= - d_{zy} \cdot \mathfrak{n}_{zy} + b_{zy} \cdot \mathfrak{n}_{zy} \mathfrak{n}_{y} \\ \dot{\mathfrak{n}}_{w} &= - d_{w} \cdot \mathfrak{n}_{w} + \ell_{x} \cdot t_{xz} \cdot \mathfrak{n}_{x} \mathfrak{n}_{zx} + \ell_{y} \cdot t_{yz} \cdot \mathfrak{n}_{y} \mathfrak{n}_{zy} \end{cases}$$

Event	Rates for x	Rates for y
Reproduction	b_{x}	b_y
Natural death	$d_{x}+c_{xx}n_{x}+c_{xy}n_{y}$	$d_y + c_{yy} n_x + c_{yx} n_y$
Death due to therapy	$t_{xz}n_{z_x}$	$t_{yz}n_{z_y}$
Switch	$s_w n_w$	S

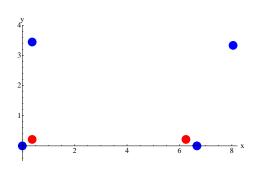
Solution of the deterministic limit

Legend : Melanoma x, melanoma y, T-cell z_x , T-cell z_y , TNF- α



6 fixed points in the positive quadrant

$Pxyz_x0$	Pxy00
$Pxyz_xz_y$	Pxy0z _y
P0000	(Px000)

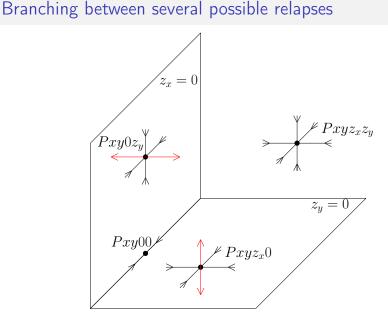


 $Pxyz_xz_y$ is stable.

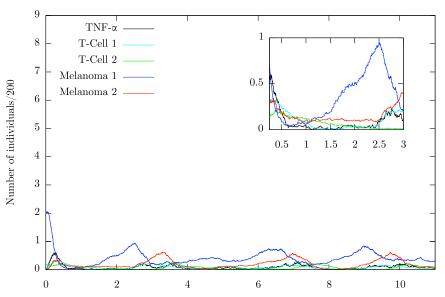
 $Pxyz_x0$ is stable in the invariant subspace $\{n_{z_y}=0\}$ $Pxy0z_v$ is stable in the invariant subspace $\{n_{z_v}=0\}$

Pxy00 is stable in the invariant subspace $\{n_{z_x} = 0\} \cap \{n_{z_y} = 0\}$

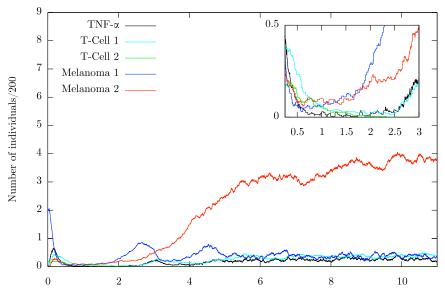
Loren Coquille (IAM-Bonn)



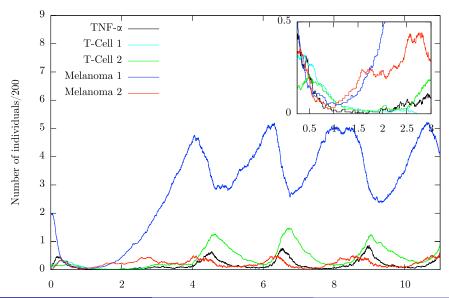
Stochastic system close to the deterministic system



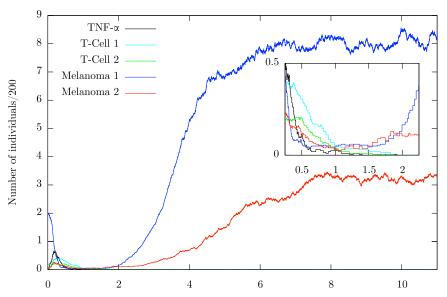
Relapse towards $Pxyz_x0$ caused by the death of z_y



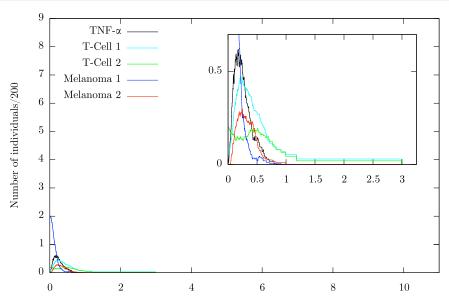
Relapse towards $Pxy0z_v$ caused by the death of z_x



Relapse towards Pxy00 caused by the death of z_x and z_y



Cure! (*P*0000)



Plan

- Biological motivations
- Adaptative dynamics
 - The model
 - State of the art
- Only switches: Relapse caused by stochastic fluctuations
 - Therapy with 1 type of T-cell
 - Biological parameters
 - Therapy with 2 types of T-cells
- Only mutations: Early mutation induced by the therapy
- 6 Mutations and switches : Polymorphic Evolution Sequence
- 6 Conclusion

BPDL + therapy with usual competition

Event	Rates for x
Clonal reproduction	$(1-\mu)b(x)$
Mutation towards y	$\mu b(x)$
Natural death	$d(x) + c(x,x)n_x + c(x,y)n_y$
Death due to therapy	$t(z,x)n_z$

BPDL + therapy with birth-reducing competition

Event	Rates for x
Clonal reproduction	$(1-\mu)\lfloor b(x)-c(x,x)n_x-c(x,y)n_y\rfloor_+$
Mutation towards y	$\mu \lfloor b(x) - c(x,x)n_x - c(x,y)n_y \rfloor_+$
Natural death	$d(x) + \lfloor b(x) - c(x,x)n_x - c(x,y)n_y \rfloor_{-}$
Death due to therapy	$t(z,x)n_z$

BPDL + therapy with birth-reducing competition

Event	Rates for y
Clonal reproduction	$\lfloor b(y)-c(y,y)n_y-c(y,x)n_x\rfloor_+$
Mutation towards x	0
Natural death	$d(y) + \lfloor b(y) - c(y, y)n_y - c(y, x)n_x \rfloor_{-}$
Death due to therapy	0

Event	Rates for z
Reproduction	$b(z,x)n_x$
Death	d(z)

No switch \Rightarrow The chemical messenger (TNF- α) has a trivial role : $\dot{n}_w = 0$

Limiting determinisitic system

When $(K, \mu) \to (\infty, 0)$ such that

$$\mu \cdot K \to \alpha > 0$$

then μ disappears from the deterministic system on the time scale $T<\infty$.

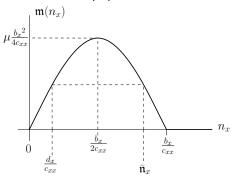
$$\begin{cases} \dot{\mathfrak{n}}_{x} &= \mathfrak{n}_{x} \left(b_{x} - d_{x} - c_{xx} \cdot \mathfrak{n}_{x} - c_{xy} \cdot \mathfrak{n}_{y} \right) - t_{xz} \cdot \mathfrak{n}_{z_{x}} \mathfrak{n}_{x} \\ \dot{\mathfrak{n}}_{y} &= \mathfrak{n}_{y} \left(b_{y} - d_{y} - c_{yy} \cdot \mathfrak{n}_{y} - c_{yx} \cdot \mathfrak{n}_{x} \right) \\ \dot{\mathfrak{n}}_{z_{x}} &= - d_{zx} \cdot \mathfrak{n}_{z_{x}} + b_{zx} \cdot \mathfrak{n}_{z_{x}} \mathfrak{n}_{x} \end{cases}$$

The deterministic system doesn't "see" the difference between death enhancing and birth-reducing competition.

With birth-reducing competition

Let $n(0) = (n_x(0), 0, 0)$, then the initial mutation rate is quadratic in the population n_x :

$$\mathfrak{m}(n_{x}) := \mu \left\lfloor b_{x} - c_{xx} n_{x} \right\rfloor_{+} n_{x}$$

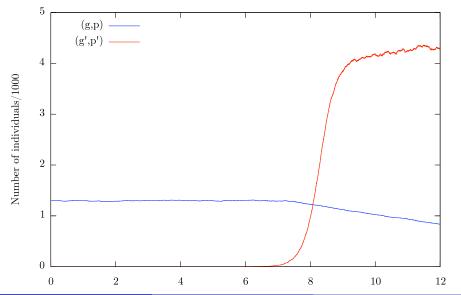


 $\bar{\mathfrak{n}}_x := \frac{b_x - d_x}{c_{xx}}$ is the equilibrium of the initial x population.

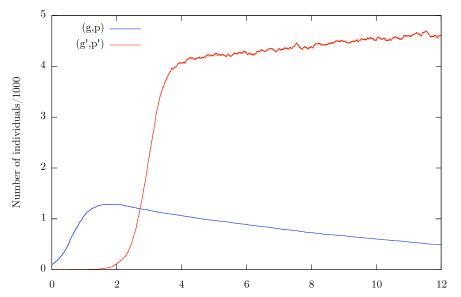
A smaller population can have a higher mutation rate.

Note $\mathfrak{m}(n_x) = O(\mu K)$.

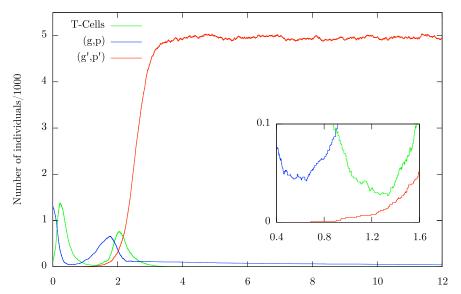
Without treatment and $n_x(0) \simeq \bar{\mathfrak{n}}_x$



Without treatment and $n_x(0)$ small



With treatment



Plan

- Biological motivations
- 2 Adaptative dynamics
 - The model
 - State of the art
- 3 Only switches: Relapse caused by stochastic fluctuations
 - Therapy with 1 type of T-cell
 - Biological parameters
 - Therapy with 2 types of T-cells
- 4 Only mutations: Early mutation induced by the therapy
- 5 Mutations and switches : Polymorphic Evolution Sequence
- 6 Conclusion

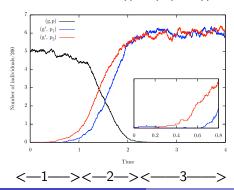
Two time scales

Rares mutations in the genotype space \mathcal{G} :

$$(K,\mu) o (\infty,0)$$
 such that $\frac{1}{\mu K} \gg \log K$

Fast switches in the phenotype space \mathcal{P} :

$$s((g,p),(g,p')) = O(1) \quad \forall p,p' \in \mathcal{P}$$



Step 1 : branching approx, $O(\log(K))$

Step 2 : approx with det.syst., O(1)

Step 3: branching approx, $O(\log(K))$

Invasion fitness?

For the BPDL model:

$$f(x,M) = b(x) - d(x) - \sum_{y \in M} c(x,y)\overline{\mathfrak{n}}_y.$$

is the growth rate of a single individual with trait $x \notin M$ in the presence of the equilibrium population \bar{n} on M.

- f(x, M) > 0: positive probability for the mutant (uniformly in K) to grow to a population of size O(K);
- f(x, M) < 0: the mutant population dies out with probability tending to one (as $K \to \infty$) before this happens.

We need to generalize this notion to the case when fast phenotypic switches are present.

Consider an initial population of genotype g (associated with ℓ different phenotypes p_1, \ldots, p_ℓ) which is able to mutate at rate μ to another genotype g', associated with k different phenotypes p'_1, \ldots, p'_k .

Consider as initial condition $n(0) = (n_{(g,p_1)}(0), \dots, n_{(g,p_\ell)}(0))$ a stable fixed point, $\bar{\mathfrak{n}}$, of the following system:

$$\dot{\mathfrak{n}}_{(g,p_i)} = \mathfrak{n}_{(g,p_i)} \left(b_i - d_i - \sum_{j=1}^\ell c_{ij} \mathfrak{n}_{(g,p_j)} - \sum_{j=1}^\ell s_{ij} \right) + \sum_{j=1}^\ell s_{ji} \mathfrak{n}_{(g,p_j)}.$$

As long as the mutant population has less than ϵK individuals (with $\epsilon \ll 1$), the mutant population $(g', p'_1), \ldots, (g', p'_k)$ is well approximated by a k-type branching process with rates:

$$\left. \begin{array}{ll} p_i' \to p_i' p_i' & \text{with rate} \quad b_i' \\ p_i' \to \varnothing & \text{with rate} \quad d_i' + \sum_{l=1}^\ell c_{il} \bar{\mathfrak{n}}_l \\ p_i' \to p_i' & \text{with rate} \quad s_{ii}' \end{array} \right\} \quad \text{ for } i,j \in \{1,\ldots,k\}.$$

Multi-type branching processes have been analysed by Kesten/Stigum and Atreya/Ney. Their behavior are classified in terms of the matrix A, given by

$$A = \begin{pmatrix} f_1 & s'_{12} & \dots & s'_{1k} \\ s'_{21} & f_2 & & \vdots \\ \vdots & & \ddots & \\ s'_{k1} & \dots & & f_k \end{pmatrix}$$

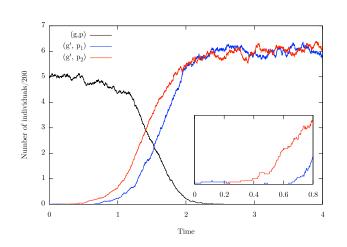
where

$$f_i := b'_i - d'_i - \sum_{l=1}^{\ell} c_{il} \cdot \bar{\mathfrak{n}}_l - \sum_{j=1}^{k} s'_{ij}.$$

The multi-type process is super-critical, if and only if the largest eigenvalue, $\lambda_1 = \lambda_1(A) > 0$. It is thus the appropriate generalization of the invasion fitness:

$$F(g',g) := \lambda_1(A).$$

Example: Resonance



$$s_{12} = s_{21} = 2$$

 $f_1 = f_2 = -1$
 $F(g',g) = \lambda_1 = 1$
 $\tilde{F}(g,g') = -1$

Plan

- Biological motivations
- Adaptative dynamics
 - The model
 - State of the art
- 3 Only switches: Relapse caused by stochastic fluctuations
 - Therapy with 1 type of T-cell
 - Biological parameters
 - Therapy with 2 types of T-cells
- Only mutations: Early mutation induced by the therapy
- Mutations and switches: Polymorphic Evolution Sequence
- Conclusion

Still a lot to understand...

Biologically:

- measure precise parameters appearing in the model
- check predictions (e.g. therapy with 2 types of T-cells)
- etc.

Mathematically:

- How do the transition probabilities between different relapses scale with K?
- What happens if the deterministic system has limit cycles?
- How does the birth-reducing competition affect the mutation probability in presence of treatment?
- etc.

Thanks!