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Abstract. We study a stochastic spatial epidemic model where the N individuals carry two
features: a position and an infection state, interact and move in Rd. In this Markovian model,
the evolution of the infection states are described with the help of the Poisson Point Processes
, whereas the displacement of the individuals are driven by mean field advection, a (state
dependence) diffusion and also a common noise, so that the spatial dynamic is a random process.
We prove that when the number N of individual goes to infinity, the conditional propagation of
chaos holds : conditionally to the common noise, the individuals are asymptotically independent
and the stochastic dynamic converges to a ”random” nonlinear McKean-Vlasov process. As a
consequence, the associated empirical measure converges to a measure, which is solution of a
stochastic mean-field PDE driven by the common noise.

Key Words. Stochastic epidemic model, spatial epidemic model, conditional propagation of
chaos, mean field limit.

1. Introduction

Epidemic models have been studied for a long while, in both deterministic and stochastic
settings. In this paper, we study a spatial model based on the famous SIR model, the letter S,
I and R standing for the different states of an individual which can pass from the compartment
of ”Susceptible” to the ”Infected” one and eventually to the compartment of ”Recovered” when
the individual recovers from the illness. In our spatial model, an individual will be characterized
by:

• Its state E ∈ {S, I,R} = {0, 1, 2}, since we will identify S with 0, I with 1 and R with
2 in order to simplify the mathematical description,
• Its position, a continuous variable X ∈ Rd. Typically, d = 1, 2 for the propagation of

epidemics1.

So the individual phase space is Π := Rd × {0, 1, 2}. We consider a community of N

individuals, denoting by Zi,Nt =
(
Xi,N
t , Ei,Nt ), i = 1, . . . , N , the position and state of the ith

individual at time t > 0. The full vector (Zi,Nt )i≤N belongs to the full phase space ΠN =
RdN × {0, 1, 2}N .

The introduction of spatial variables will complicate the standard homogeneous SIR model
in two directions: by using an infection rate that depends on the position of the individuals, and
by taking into account the individual displacements.

An infection rate depending on the position. It is quite clear that in realistic situation,
an infected individual will infect a close neighbor with a higher rate than an individual living
far away. While these different behaviors are averaged in a homogeneous SIR model, in spatial
models we use an infection rate depending on the positions. The infection rate between locations
x and y ∈ Rd will be given by a function K : Rd×Rd → R+, that we will assume to be bounded

1but the case d = 3 is also considered in quite similar models in chemistry for the microscopical description of
chemical reactions, see [19].
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and Lipschitz. Averaging over all the infected individuals, the susceptible individual i becomes
infected (in other words its state jumps from 0 to 1) at time t at the rate

1

N

N∑
j=1

K(Xi,N
t , Xj,N

t )1{Ei,Nt =S}1{Ej,Nt =I}. (1.1)

What could be the form of a realistic function K? For several sedentary species, it could
be reasonable to think that the individuals could only infect their close neighbors, and use a
compactly supported and constant kernel, of the form

K(x, y) =
β

cdr
d
0

1|x−y|≤r0 ,

where r0 is the size of the ”territory” of the individuals, and cd is the volume of the unit ball,
and β is the infection rate.

For the propagation of an epidemic among a human population, it is possible to incorporate
in K effects due to the human mobility, which has become a subject of intensive research in the
past decades. Most popular models for the human mobility are the so-called gravity model [10]
which state that the total number of travel between two cities is inversely proportional to the
inverse of the square of the distance between them2, and the radiation model [23], which state
that the same number depends also on the distribution of population between the two locations.
The gravity model naturally leads in our case in the use of a function K of the form

K(x, y) =
c

d2 + |x− y|2
,

with c, d ∈ R+ two constants to be fitted with the observations. According to the study [21],
that choice is in a good accordance with the observed data on the spread of the Covid epidemic
in France in 2020. We refer to [2] for the description of other mobility functions and the study
of their relevance in (discrete) spatial epidemic model. To be complete, we also mention a recent
study [22] that deduces from the observations a quite general law in urban mobility and that
could lead to a general kernel, not only depending on the relative distance between x and y, but
also on the attractivity of the different locations. The choice of an adapted kernel is clearly a
relevant question, which is still a subject under investigation, and here we will consider a general
kernel, depending on the two positions.

Recovery rate. The infectious individuals recover (in other words their state jumps from 1
to 2) at rate γ > 0 independently of everything else (of the other individuals, the number of
infected and the respective positions of the individuals,...) and once an individual recovers, it
can not become infected anymore.

Movements of individuals. In order to study the propagation of epidemics among non seden-
tary species, we will take into account some kind of displacements of the individuals. In our
model, each individual moves in Rd according to

• A mean field interaction (with all the others individuals),
• Independent diffusions,
• A random drift (or diffusion), common to all the individuals.

So the evolution of the position Xi,N
t of the ith individual satisfies the following equation

dXi,N
t =

1

N

N∑
j=1

V
(
Xi,N
t , Ei,Nt , Xj,N

t , Ej,Nt

)
dt+ σ

(
Xi,N
t , Ei,Nt

)
dBi

t + σ0

(
Xi,N
t , Ei,Nt

)
dB0

t , (1.2)

2Some versions allow to fit the power of the distance rather than using the power 2, or even to replace it by a
more general function of the distance.
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where the interaction kernel V , the diffusion strength σ and the strength σ0 of the random drift-
diffusion all depend on the individual’s state and position, and are bounded Lipschitz continuous
with respect to the position variables. Of course, this equation has a meaning on a probability
space endowed with the requested Brownian motions (and Poisson Point Processes for the jump-
infectious part of the dynamic, as will be introduced below). The Lipschitz hypothesis will be
very useful to build a correct theory of existence, uniqueness to that system, and also for our
results concerning the large population limit (i.e. when N goes to infinity).

Before going on, let us discuss a bit the possible application of that kind of dynamics, and
the particular choice of diffusion, mean-field and common drift-diffusion that could be relevant.

Mean-field interactions are commonly chosen in order to describe swarming of flocking be-
havior of some species, see for instance [6]. Such phenomena occur on time scales shorter than
the one of epidemic propagation. We choose to use it in order to illustrate that our model is
compatible with the introduction of a kind of collective interaction.

The common drift term is here written in a quite simple form. It could probably be gener-
alized to a more general random drift without diffusion which is probably the most interesting
case) like in [9] of the form

∞∑
k=1

σk(X
i,N
t , Ei,Nt )dB0,k

t ,

with divergence-free σk, which is a quite general way to describe homogeneous random drift3.
The individual diffusion term is quite common to model the displacement of individuals.

Modeling it with the help of a standard diffusion is a first step, that is probably not very
realistic, since individuals usually do not have a Markovian behavior. One more realistic model
among human population is for instance the EPR model (Exploration and Preferential Return)
introduced in [24].

We stress out the fact that the diffusion strength depends on the infectious state of the
individuals is quite interesting for the application. We could think of the propagation of a rabies
epidemic, where the disease affects the displacement behavior of the individuals. But also in the
case of epidemics in human population, as the individuals are exchangeable, we may study the
case where the susceptible population is at rest, while the infectious individuals follow a diffusion
in order to model the dispersion of the epidemic. In that case, the classical diffusion could be
an interesting choice, even if some more realistic models should probably include Lévy flights
and also be non Markovian, as suggested by the study of banknote diffusion in a population [5].

1.1. The model. In view of the above settings, a description of the epidemiological dynamic
with the help of Poisson Point Processes, see Definition 6.1, is suitable. If we choose a probability
space equipped with N independent Poisson Point Processes (P i)i=1,...,N and N + 1 Brownian
motions, the position and state of the individuals will evolve according to the following dynamics:

dXi,N
t =

1

N

N∑
j=1

V
(
Xi,N
t , Ei,Nt , Xj,N

t , Ej,Nt
)
dt+ σ

(
Xi,N
t , Ei,Nt

)
dBi

t + σ0

(
Xi,N
t , Ei,Nt

)
dB0

t ,

Ei,Nt = Ei,N0 + P i
(∫ t

0

{ 1

N

∑
j 6=i

K
(
Xi,N
s , Xj,N

s

)
1

(Ei,N
s−

,Ej,N
s−

)=(0,1)
+ γ1

Ei,N
s−

=1

}
ds

)
.

(1.3)

Recall that the processes Ei,Nt take values in {0, 1, 2}, since S has been identified with 0, I with
1 and R with 2.

3It is shown in [9] that under the divergence free hypothesis, the Ito and Stratonovich formulation are equivalent,
so that we have the right to call it random drift here.
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This model is inspired by the previous work [3] where the case without common random
drift and mean-field interaction is treated, and results about the Law of Large Number and the
Central Limit Theorem are obtained. Here we will generalize the Law of Large Number result.

Let us also mention some previous works in other related contexts where a common noise
affects all individuals : interacting particle systems with a common random drift [9], mean field
games [7], [8].

An important concept in studing the mean field limit of the interacting particle system is
the propagation of chaos [15,25], which roughly states that when the number of particles tends
to infinity, the chaotic character of the initial distribution propagates through the system at
any time. In the present model, the individuals always keep track of the common noise B0

t

so it is impossible to expect the asymptotically independence at the limit. Nevertheless, it is
reasonable to expect that the individuals become asymptotically independent conditionally on
the information generated by the common noise. The objective of this paper is to establish
the conditional propagation of chaos of the N individuals process towards a random nonlinear
(or McKean-Vlasov) process defined later. This also implies the convergence of the empirical
measure process

t 7→ µNt =
1

N

N∑
i=1

δ
(Xi,N

t ,Ei,Nt )
,

which is a random process with value in P(Π) := P
(
Rd × {0, 1, 2}

)
, the set of probabilities on

Π. The proof will follow a standard coupling method introduced by McKean in [20].

1.2. The existing literature and the novelty of our result. The idea of our paper was
inspired originally mostly by the two papers [3] and [9]. Here we detail the novelties and
improvements in our work with respect to these two references.

Our first inspiring paper [3] was written by A. Emakoua, S. Bowong and the third author.
They studied a spatial epidemic model which is similar to ours but a bit simpler, without

• the common stochastic case (with our notation σ0 = 0) ,
• interaction among the individuals (with our notation V = 0).

In their model, the positions of the individuals are independent Brownian motions. In that
quite simpler setting, their main result is a Central Limit Theorem (CLT) in the limit of a large
number of individuals. The proof of the CLT result is delicate and technical, and relies of course
on a Law of Large Number (LLN) result, much simpler to prove. In our present article we focus
on the LLN result, and improve it in two directions:

• We prove it in a more general (and realistic) situation,
• We obtain quantitative estimates: in Wasserstein distance rather than a qualitative result

stating the weak convergence.

Remark that the stronger CLT result of [3] also gives as a byproduct of the order of convergence
in the LLN, but not for the Wasserstein distance as we obtain. We also mention that the proof
of a CLT in our setting will be the object of a future work.

Our second inspiring article was written by M. Coghi and F. Flandoli [9]. In that work, the
authors prove a conditional propagation of chaos result for an interacting particle system where
the particles (having only a position parameter and no distinct types) are subject to individual
and common noises. With our formalism, there are two main differences:

• There is no internal state E: so the dynamical equation in their model is very similar to
the first equation in (1.3), used with functions V, σ, σ0 independent of E.
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• They used a quite general (smooth enough) cylindrical Brownian motion with quite
general (smooth) correlation function. That noise could be written as a infinite series of

the form dW (s, x) =
∑

k σ
k(x)dB0,k

s , where (B0,k
s )s≥0 are standard Brownian motions

and (σk)k≥0 a family of smooth enough functions. Their common noises are “richer” and
more realistic than ours since we use only one standard Brownian motion to define ours.
But it seems reasonable to expect that our result extend to the more realistic situation
studied in [9].

If we restrict our result to the case where the movement does not depend upon the internal
state (V ,σ,σ0 independent of E) so that we can study the dynamics of the position only, and
if we use only our simpler type of common noise in [9], then both results are very similar. We
both provide the same quantitative estimate of conditional propagation of chaos in Wasserstein
distance of order one. The only difference is in the constants appearing in the estimates. But
even if the results are similar, there are still two differences that we would like to emphasize.

The first difference is that the use of Wasserstein distance of order one is motivated in [9] by
the willingness to use the standard tool in the field, in order to compare with previous results.
But in their setting, the use of the Wasserstein distance of order two, which is defined with a
quadratic cost and thus behave much better than the order one distance with respect to the
diffusion, would have simplified the proof. In our model, the use of the order one Wasserstein
distance is mandatory in order to treat the Poissonian part of the epidemiological dynamics.
See the Remark 3.2 for a more detailed explanation of that point.

Our proof contains a simplification that could be used also in the work by M. Coghi and
F. Flandoli. In order to control the evolution of the Wasserstein distance of order one under
diffusion, they used a short time estimate that allows them to iterate in order to get the desired
estimate on arbitrary finite time, the iteration step being a bit technical. We perform a more
careful analysis of the evolution of the same quantity and get directly an estimate valid for an
arbitrary finite time, without any iteration step. See Remark 3.1 in Section 3 for a more precise
description of the improvement.

Organisation of the paper. We present the model state our main results in Section 2. The
next sections are devoted to the proof of the main results. Section 3 is devoted to the proof
of Theorem 2.5 and to a result on the propagation of moments. Section 4 is devoted to the
proof of Theorem 2.6 and some discussions on the uniqueness of solutions to the mean field limit
equation. Section 5 contains the proof of Theorem 2.7 and Corollary 2.8.

2. Preliminaries and main results

2.1. Notations.
Basic notations.

• Variables denoted by x or y (also with capital letters) denotes a spatial position in Rd,
• Variables denoted by e (resp. E) or f (resp. F ) denotes an epidemiological status in
{0, 1, 2},
• Variables denoted by a z (resp. Z) denotes a pair (x, e) of a position and an epidemio-

logical status.

The underlying space. Throughout this paper, we keep assuming that the independent noises

(Bi)i=1,...,N and (P i)i=1,...,N are constructed on a probability space (Ω̃, F̃ , P̃) and the common
noise B0 is constructed on another space (Ω0,F0,P0). We now define the product structure

(Ω,F , (Ft)t≥0,P), where Ω = Ω̃×Ω0, (F ,P) is the completion of (F̃ ⊗F0, P̃⊗P0), and (Ft)t≥0

is the complete right continuous version of (F̃t ⊗F0
t )t≥0. With this construction, if we consider
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Z a Π-valued random variable on (Ω,F ,P) then the conditional law of Z given F0, denoted by
L(Z|F0), is a P(Π)-valued random variable defined on (Ω0,F0,P0).

A more compact formulation of the system (1.3). With the convenient notations

V i,N
s :=

1

N

∑
j 6=i

V (Xi,N
s , Ei,Ns , Xj,N

s , Ej,Ns ), Ki,N
s :=

1

N

∑
j 6=i

K(Xi,N
s , Xj,N

s )1
Ej,N
s−

=1
,

the system (1.3) becomes dXi,N
t = V i,N

t dt+ σ
(
Xi,N
t , Ei,Nt

)
dBi

t + σ0

(
Xi,N
t , Ei,Nt

)
dB0

t ,

Ei,Nt = Ei,N0 + P i
(∫ t

0

{
Ki,N
s 1

Ei,N
s−

=0
+ γ1

Ei,N
s−

=1

}
ds

)
.

(2.1)

Poisson Random Measure rather than Poisson Point Process. The counting processes
describing the evolution of the type of each individual used in (2.1) can be rewritten with the
help of independent standard Poisson Random Measures (Qi)i=1,...,N on R+×R+ (see Definition
6.2 in the Appendix):

Ei,Nt = Ei,N0 +

∫
[0,t]×R+

1{
u≤Ki,N

s 10(Ei,N
s−

)+γ11(Ei,N
s−

)
}Qi(ds, du),

In fact the integral quantity in the r.h.s. has the same law (trajectorialy) as the stochastic term
in the r.h.s in the second line of (2.1). So the system of equations (2.1) can be rewritten as
follows  dXi,N

t = V i,N
s dt+ σ

(
Xi,N
t , Ei,Nt

)
dBi

t + σ0

(
Xi,N
t , Ei,Nt

)
dB0

t ,

Ei,Nt = Ei,N0 +

∫
[0,t]×R+

1{
u≤Ki,N

s 10(Ei,N
s−

)+γ11(Ei,N
s−

)
}Qi(ds, du).

(2.2)

Even if these Poisson Random Measures (Qi)i=1,...,N may seem less simple to handle than
the Poisson Point Processes (P i)i=1,...,N , it will be of a great help in the sequel when we couple
processes. Thanks to these Poisson Random Measures, we will use a true parallel coupling, in
the sense that we will construct coupled processes that jump very often exactly at the same
time. It is not possible to construct the same coupling by using Poisson Point Processes. In the
latter case, our coupled processes would jump at close times but not exactly at the same times.
This has an important consequence: we will be able to obtain estimates of sup norms without
allowing for small change in time as it is usual in the Skorohod topology. This simplifies a lot
the proofs and allow us to give quantitative convergence results.

Proposition 2.1. Strong existence and uniqueness holds for both system (1.3) and system (2.2).
More precisely, given a probability space endowed with the appropriate Brownian motions and
Poisson Point Processes in the case of system (1.3) (or Poisson Random Measures in the case
of system (2.2)), there exists a unique solution to the system (1.3) and (2.2).

Moreover, solutions to (1.3) or (2.2) constructed on possibly different probability spaces have
the same law.

The proof of Proposition 2.1 relies on standard argument since all the coefficients appearing
in the equation are smooth enough. We refer for instance to [16, Theorem 9.1].
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Wasserstein distance. We now introduce the Wasserstein distance together with its variants
which are the main tools in the estimates for the convergence of the empirical measures through-
out this paper.

For p ≥ 1, denote by Pp(Π) the set of probability measures µ on Π with finite p-th order
moment, i.e. satisfying

∫
Π |z|

pµ(dx, de) <∞. For µ and ν in Pp(Π), we define the p-Wasserstein
distance by

W p
p (µ, ν) = inf

{∫
Π×Π
|z − z′|pm(dz, dz′) : m ∈ Pp(Π×Π) with marginals µ and ν

}
.

It can also be reformulated using random variables as follows,

W p
p (µ, ν) = inf

{
E|Z − Z ′|p| (Z,Z ′) r.v. s.t. L(Z) = µ and L(Z ′) = ν

}
.

This distance induces the topology of weak convergence of measures together with the con-
vergence of all moments of order up to p. When p = 1, the 1-Wasserstein distance is equivalent
to the bounded Lipschitz distance

W1(µ, ν) = sup

{∫
Π
φ(x)µ(dx)−

∫
Π
φ(x)ν(dx) : φ : Π→ R with Lip(φ) ≤ 1

}
.

Traditionally, to deal with the diffusion terms in the equation, it seems convenient to use
the 2-Wasserstein distance. But in this work, we have some compelling reasons to use the 1-
Wasserstein distance rather than other order p (with p > 1) due to the estimates for the jumps
on the epidemiological states.

2.2. Conditional propagation of chaos. In our setting, individuals are always linked through
the common noise so there is no way to expect any full independence in the limit. However, we
expect the conditional independence, given common noise. That is why we need a conditional
version of chaoticity. We will reconsider some definitions and basic properties in the classical
theory of mean field analysis of interacting particle systems, then adapt them to a frame with the
presence of a common environmental noise. Before stating properly the conditional chaoticity, we
need a definition of conditional exchangeability. First, recall that a sequence of random variables
is said to be exchangeable if its joint distribution is invariant under any finite permutation.

Definition 2.2. A sequence of N random variables
(
(Zi,N )i≤N

)
N∈N is said to be exchangeable

conditionally on F0 if, for any permutation σ of {1, . . . , N},

P0 − a.s. , L
((
Zσ(i),N

)
i≤N |F

0
)

= L
((
Zi,N

)
i≤N |F

0
)
.

Definition 2.3. Let µ be a F0-measurable random probability measure on Π or on C([0, T ],Π).
The sequence

(
(Zi,N )i≤N

)
N∈N of conditionally exchangeable random variables is called µ-chaotic

if it satisfies any of three following equivalent properties :

(i) P0 − a.s. , ∀ k ∈ N, L
(
(Z1,N , . . . , Zk,N )|F0

) L−−−−→
N→∞

µ⊗k,

(ii) P0 − a.s. , L
(
(Z1,N , Z2,N )|F0

) L−−−−→
N→∞

µ⊗2,

(iii) P0 − a.s. , µN =
1

N

N∑
i=1

δZi,N
L−−−−→

N→∞
µ.

The above definition is an adaptation of the classical one from [25] (See also [15] for a
quantified version). Apparently, the conditional exchangeability is the key property in that
definition. We will rely on this assumption in order to prove the equivalence of the three
properties in Definition 2.3. The proof is in the Appendix 6.2.
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Under the assumption that initially the individuals are conditionally exchangeable, and
thanks to the unique solvability of system (1.3), the conditional exchangeability property persists
in time. Indeed, we state that property in the following lemma.

Lemma 2.4. The conditional exchangeability assumption holds trajectorially, i.e.

P0 − a.s., ∀σ ∈ ΣN , L
((
Zσ(i),N

)
i≤N

)
= L

((
Zi,N

)
i≤N

)
.

where ΣN denote the set of permutations of {1, . . . , N}.
In particular, at any time t, for all φ ∈ Cb

(
ΠN
)
,

E
[
φ
(
Z1,N
t , . . . , ZN,Nt

)
|F0
t

]
= E

[
φ
(
Z
σ(1),N
t , . . . , Z

σ(N),N
t

)
|F0
t

]
.

The proof of Lemma 2.4 can be found in the Appendix 6.3.

2.3. Main results. Before introducing the exact limit of the stochastic interacting system (1.3),
let us present a heuristic derivation of how the limit should look like.

The individuals are driven by independent diffusions, a drift term, jump terms with mean-
field rate, and a common diffusion. So they will soon be strongly correlated by the action of the
common diffusion. A possible limit towards a mean-field equation is necessarily random, due to
that common noise.

We can reasonably assume that the individuals will remain almost conditionally independent
along the dynamics. In fact, the influence of one individual on another one in the mean field

terms 1
N

∑
j V (Y i,N

t , Y j,N
t ) and 1

N

∑
jK(Xi,N

t , Xj,N
t ) is of order 1

N and we can expect that it
will remain small. So we can reasonably expect that in the limit N →∞, and conditionally to
the common noise, the individual i becomes independent from the other ones, and follows an
equation similar to (1.3), with the mean field terms replaced by conditional (w.r.t. the common
noise) expectations.

In the sequel, we will show that this formal argument leads at least to the right limit. The
main result of this paper show that the sequence (X1,N , . . . , XN,N )N∈N is in fact X-chaotic,
where X is a process solution to the following non-linear jumping SDE (or McKean-Vlasov
jump diffusion process),

dXt = Vµt(Xt, Et)dt+ σ(Xt, Et)dBt + σ0(Xt, Et)dB
0
t ,

Et = E0 + P

(∫ t

0

(
Kµs(Xs)1Es−=0 + γ1Es−=1

)
ds

)
,

µt = L
(
(Xt, Et)|F0

t

)
,

(2.3)

where µt is the conditional law of (Xt, Et) given F0
t , and the notations Vµ : Π → Rd and

Kµ : Rd → Rd are defined as follows,

Vµ(x, e) =

∫
Π
V
(
x, e, y, f

)
µ(dy, df),

Kµ(x) =

∫
Π
11(e)K(x, y)µ(dy, de).

(2.4)

First, we state a theorem about the well-posedness of this stochastic system. It is in fact
necessary to have a well-posed limit SDE if we want to state a result of convergence when the
number of individuals tends to infinity.

Theorem 2.5. (i) (Strong existence) Given the filtered probability space (Ω,F , (Ft)t≥0,P). Un-
der the Lipschitz continuous assumptions on the kernels K,V and the coefficients σ, σ0, there
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exists a solution Zt := (Xt, Et) to the SDE (2.3) associated to any given F0-measurable initial
condition Z0 = (X0, E0).

(ii) (Strong stability) If (X1
t , E

1
t ), (X2

t , E
2
t ) are two solutions to (2.3) built on the same

probability space with the same driving noises, then for any t ≥ 0, one has the following stability
estimate

E

[
sup

0≤s≤t

∣∣(X1
s , E

1
s )− (X2

s , E
2
s )
∣∣] ≤ C(t)E

[ ∣∣(X1
0 , E

1
0)− (X2

0 , E
2
0)
∣∣ ].

The derivation of macroscopic equations from microscopic models is a classical topic in the
study of interacting particle systems in statistical physics. For this epidemic interacting system,
we introduce the Kolmogorov forward equation associated to the nonlinear SDE (2.3), which is
the following nonlinear SPDE, where for each t ≥ 0, µt is a random probability on Π:

dµt = −∂x · (Vµtµt) dt+
1

2
Tr
[
∇2
xx

(
(σσT + σ0σ

T
0 )µt

)]
dt− ∂x · (σ0µt) dB

0
t +

(
ΓIt + ΓRt

)
dt,

(2.5)
where

ΓIt (x, e) = Kµt(x)µt(x, 0)
(
1e=1 − 1e=0

)
,

ΓRt (x, e) = γµt(x, 1)
(
1e=2 − 1e=1

)
.

In fact, looking in details at the above equation, we recognize the first term in the r.h.s. as
the drift term created by the drift coefficient in (2.3), the second as the diffusion term linked
to the individual Brownian motions, the third (with a part of the second one) is the random
drift term linked to the common Brownian motion, and the last two Γ terms are related to the
jumps between the three different states. We will justify this relation rigorously by the following
proposition.

Proposition 2.6. Assume that X is a solution of equation (2.3), again under the assumption
of Theorem 2.5. Then the collection (µt)t≥0 of its marginal laws solves the above SPDE (2.5).

In the applications, it is worth to show explicitly the evolution of the empirical measure on
each state of the epidemic. We can represent the function V :

(
Rd×{0, 1, 2})2 → Rd as a matrix(

Vi,j
)
i,j∈{0,1,2} where its entries are functions defined on Rd×Rd, and introduce the matrix A[µ]

which describes for the epidemiological interactions,

A[µ] :=

−Kµ 0 0
Kµ −γ 0
0 γ 0

 .

If we write µt as

µt = t
(
µt1e=0, µt1e=1, µt1e=2

)
= t
(
µSt , µ

I
t , µ

R
t

)
,

then the above equation (2.5) rewrites

dµt = −∂x · (Vµtµt) dt+
1

2
Tr
[
∇2
xx

(
(σσT + σ0σ

T
0 )µt

)]
dt− ∂x · (µtσ0) dB0

t +A[µt]µtdt, (2.6)

where the differential operators act on each component of µt.

The results about the conditional propagation of chaos. Back to the epidemic dynamic
system (1.3), our goal is to prove that this system converges in an appropriate sense to the
McKean-Vlasov SDE (2.3). For that purpose, we will need to extend the classical results of
propagation of chaos to the conditional one.

Following a standard strategy, we will couple the interacting system to an auxiliary system,
made of N i.i.d. copies of the limit SDE, constructed on the same probability space with the
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same initial conditions (or at least properly coupled initial conditions) and the same driving
random process as for the interacting system.

Then, the estimates used in the proof of the stability result of Theorem 2.5 together with
some previously known bound (in Wasserstein sense) on the speed of convergence in the empirical
law of large number [12] adapted to the case of conditionally independent random variables in
Appendix 6.4 will allow us to establish the following quantitative result about the conditional
propagation of chaos for the interacting system of N individuals.

On the same probability space (Ω,F , (Ft)t≥0,P) introduced before, for each i ∈ {1, . . . , N},
we denote by Z̄i = (X̄i

t , Ē
i
t) the strong solution to the McKean-Vlasov jump-diffusion SDE

similar to (2.3) but for (independent) driving random processes Bi, P i instead of B,P and
subjects to the initial conditions

{
(X̄i

0, Ē
i
0)
}

1≤i≤N . Note that by Theorem 2.5, for each i, that

SDE has a unique solution and obviously the conditional law L
(
(X̄i

t , Ē
i
t)
∣∣F0

t

)
is the probability

measure µt which solves (2.5).

Theorem 2.7. Assume that the initial conditions {(Xi,N
0 , Ei,N0 )}, {(X̄i

0, Ē
i
0)}, i = 1, . . . , N are

conditionally exchangeable, and have a finite moment of order q for some q > 2. Then, there
exists a constant C(t) such that, for all i ∈ {1, . . . , N},

E

[
sup

0≤s≤t

∣∣Xi,N
s − X̄i

s

∣∣+ |Ei,Ns − Ēis|
]
≤ C(t)

(
E
[
|Xi,N

0 − X̄i
0|+ |E

i,N
0 − Ēi0|

]
+ αd(N)

)
,

where αd(N) = N−1/2 if d = 1, αd(N) = N−1/2 log(N) if d = 2, and αd(N) = N−1/d if d ≥ 3.

This result is trajectorial. If we only care about the evolution of the empirical measure, then
we could get a simpler result expressed in terms of empirical measures only.

Corollary 2.8. Suppose that the random measure µ0 has a finite moment of order q for some
q > 2, and that K,V ,σ,σ0 are Lipschitz continuous (as in Theorem 2.5). Then for all t > 0,
there exists a constant C(t) such that

E
[
W1

(
µNt , µt

)]
≤ C(t)

(
E
[
W1

(
µN0 , µ0

)]
+ αd(N)

)
,

where αd(N) = N−1/2 if d = 1, αd(N) = N−1/2 log(N) if d = 2, and αd(N) = N−1/d if d ≥ 3.

3. Proof of theorem 2.5 : Well-posedness of the nonlinear SDE

Proof of ii). We first establish a stability estimate for the solutions of the system (2.3) which is
the main estimate for the rest of this paper.

Let (X1
t , E

1
t ), (X2

t , E
2
t ) be two solutions to the SDE (2.3) and µ1

t , µ
2
t respectively be condi-

tional law of (X1
t , E

1
t ), (X2

t , E
2
t ) given F0

t .
We have

X1
t −X2

t =X1
0 −X2

0 +

∫ t

0

(
Vµ1s(X

1
s , E

1
s )− Vµ2s(X

2
s , E

2
s )
)
ds

+

∫ t

0

(
σ(X1

s , E
1
s )− σ(X2

s , E
2
s )
)
dBs +

∫ t

0

(
σ0(X1

s , E
1
s )− σ0(X2

s , E
2
s )
)
dB0

s ,

E1
t − E2

t =E1
0 − E2

0 +

∫
[0,t]×R+

1{
u≤K

µ1s
(X1

s )10(E1
s )+γ11(E1

s )
}Q(ds, du)

−
∫

[0,t]×R+

1{
u≤K

µ2s
(X2

s )10(E2
s )+γ11(E2

s )
}Q(ds, du),
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which leads to

sup
0≤s≤t

∣∣X1
s −X2

s

∣∣ ≤ |X1
0 −X2

0 |+ sup
0≤s≤t

∣∣∣∣∫ s

0

(
Vµ1r(X

1
r , E

1
r )− Vµ2r(X

2
r , E

2
r )
)
dr

∣∣∣∣
+ sup

0≤s≤t

∣∣∣∣∫ s

0
(σ(X1

r , E
1
r )− σ(X2

r , E
2
r ))dBr

∣∣∣∣
+ sup

0≤s≤t

∣∣∣∣∫ s

0
(σ0(X1

r , E
1
r )− σ0(X2

r , E
2
r ))dB0

r

∣∣∣∣
and

sup
0≤s≤t

|E1
s − E2

s | ≤
∣∣E1

0 − E2
0

∣∣+ sup
0≤s≤t

∫
[0,s]×R+

∣∣1{u≤α1
r} − 1{u≤α2

r}
∣∣Q(dr, du),

where

α1
r :=

(
Kµ1r

(X1
r )10(E1

r ) + γ11(E1
r )
)
,

α2
r :=

(
Kµ2r

(X2
r )10(E2

r ) + γ11(E2
r )
)
.

We now take the expectation on both sides and our goal is to establish locally uniform in
time bounds for the displacement and the jump between the pairs (X1

t , E
1
t ), (X2

t , E
2
t ). For any

s ≤ t, we denote by ms an arbitrary coupling of
(
µ1
s, µ

2
s

)
on Π×Π.

Step 1. First, we will give a bound for the drift term in the displacement.

E

[
sup

0≤s≤t

∣∣∣∣∫ s

0

(
Vµ1r(X

1
r , E

1
r )− Vµ2r(X

2
r , E

2
r )
)
dr

∣∣∣∣
]

≤E
[∫ t

0

∣∣Vµ1s(X1
s , E

1
s )− Vµ2s(X

2
s , E

2
s )
∣∣ ds]

=E

[∫ t

0

∣∣∣∣∫
Π×Π

(
V
(
X1
s , E

1
s , x, e

)
− V

(
X2
s , E

2
s , y, f

))
ms(dx, de, dy, df)

∣∣∣∣ ds]
≤LV

∫ t

0
E

[
|X1

s −X2
s |+ |E1

s − E2
s |+

∫
Π×Π

(
|x− y|+ |e− f |

)
ms(dx, de, dy, df)

]
ds.

To treat the diffusion terms, we apply the Burkholder–Davis–Gundy inequality and use the
Lipschitz continuity of the coefficients σ, σ0

E

[
sup

0≤s≤t

∣∣∣∣∫ s

0

(
σ(X1

r , E
1
r )− σ(X2

r , E
2
r )
)
dBr

∣∣∣∣+ sup
0≤s≤t

∣∣∣∣∫ s

0

(
σ0(X1

r , E
1
r )− σ0(X2

r , E
2
r )
)
dB0

r

∣∣∣∣
]

≤ C1(Lσ + Lσ0)E

[(∫ t

0

(
|X1

s −X2
s |+ |E1

s − E2
s |
)2
ds

)1/2
]
.

Remark 3.1. At this point, a typical difficulty arises where there is no way to remove the powers
or simplify the terms. One possibility is to take the supremum in time inside the integral and
bound it first on a small enough time interval as in [9] or [11]. Once we have an estimate on
a small time interval, the proof is done by iterating over the remain intervals. Nevertheless, in
this paper we will make a slight modification by controlling the quantities inside the integral in
order to obtain directly an estimate on an arbitrary time interval.
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Indeed, one has

C1(Lσ + Lσ0)E

[(∫ t

0

(
|X1

s −X2
s |+ |E1

s − E2
s |
)2
ds

)1/2
]

≤E

[
C1(Lσ + Lσ0)

(
sup

0≤s≤t

(
|X1

s −X2
s |+ |E1

s − E2
s |
))1/2(∫ t

0

(
|X1

s −X2
s |+ |E1

s − E2
s |
)
ds

)1/2
]

≤1

2
E

[
sup

0≤s≤t

(
|X1

s −X2
s |+ |E1

s − E2
s |
)]

+
C2

1 (Lσ + Lσ0)2

2

∫ t

0
E
[
|X1

s −X2
s |+ |E1

s − E2
s |
]
ds.

Now summing up all the above terms on both sides, we obtain an appropriate estimate for the
displacements

E

[
sup

0≤s≤t

∣∣X1
s −X2

s

∣∣] ≤E [|X1
0 −X2

0 |
]

+
1

2
E

[
sup

0≤s≤t

(
|X1

s −X2
s |+ |E1

s − E2
s |
)]

+

(
LV +

C2
1 (Lσ + Lσ0)2

2

)∫ t

0
E
[
|X1

s −X2
s |+ |E1

s − E2
s |
]
ds

+ LV

∫ t

0
E

[∫
Π×Π

(
|x− y|+ |e− f |

)
ms(dx, de, dy, df)

]
ds.

(3.1)

Step 2. For the Poisson part with the jumps on the epidemiological states, it could be easier to
deal with the supremum in time. Indeed, notice that∣∣1u≤α1

r
− 1u≤α2

r

∣∣ = 1u∈[α1
r∧α2

r,α
1
r∨α2

r]

and

α1
r ∨ α2

r − α1
r ∧ α2

r = |α1
r − α2

r |.

Using the above identities, we obtain the following estimate

E

[
sup

0≤s≤t

∫
[0,s]×R+

∣∣1{u≤α1
r} − 1{u≤α2

r}
∣∣Q(dr, du)

]
≤E

[∫
[0,t]×R+

1{u∈[α1
s∧α2

s,α
1
s∨α2

s]}Q(ds, du)

]

=E

[∫ t

0

∣∣∣(Kµ2r
(X2

r )10(E2
r ) + γ11(E2

r )
)
−
(
Kµ1r

(X1
r )10(E1

r ) + γ11(E1
r )
)∣∣∣dr]

≤E
[∫ t

0

∣∣Kµ1s
(X1

s )10(E1
s )−Kµ2s

(X2
s )10(E2

s )
∣∣ ds]+ γE

[∫ t

0

∣∣11(E1
s )− 11(E2

s )
∣∣ ds]

=I1 + I2.

Remark 3.2. In the first inequality, we can see that no matter the initial degree of the integrand
is, we always end with 1u∈[α1

r∧α2
r,α

1
r∨α2

r]
. This is usual when dealing with the Poisson processes.

Hence, the following estimates will keep that of order 1 and it is impossible to recover the initial
order to get an inequality in type of the Gronwall lemma in the end. Therefore, this crucial point
forces us to use the 1-Wasserstein distance instead of the other orders in the proof, even though
it may be less simple to treat the diffusion terms as above.
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Since the intensity of the jump processes also depends on the mean field terms, in order to
treat the first term, we will use the same coupling ms as introduced previously. One has:

I1 =E

[∫ t

0

∣∣Kµ1s
(X1

s )10(E1
s )−Kµ2s

(X2
s )10(E2

s )
∣∣ ds]

=E

[∫ t

0

∣∣∣∣∫
Π
K(X1

s , x)10(E1
s )11(e)µ1

s(dx, de)−
∫

Π
K(X2

s , y)10(E2
s )11(f)µ2

s(dy, df)

∣∣∣∣ ds]
≤E

[∫ t

0

∣∣∣∣∫
Π×Π

(
K(X1

s , x)−K(X2
s , y)

)
10(E1

s )11(e)ms(dx, de, dy, df)

∣∣∣∣ ds]
+ E

[∫ t

0

∣∣∣∣∫
Π×Π

K(X2
s , y)

(
10(E1

s )11(e)− 10(E2
s )11(f)

)
ms(dx, de, dy, df)

∣∣∣∣ ds]
≤LK

∫ t

0
E

[
|X1

s −X2
s |+

∫
Π×Π
|x− y|ms(dx, de, dy, df)

]
ds

+ ‖K‖∞
∫ t

0
E

[
|E1

s − E2
s |+

∫
Π×Π
|e− f |ms(dx, de, dy, df)

]
ds,

where to obtain the last inequality, we used the fact that |1k(e)−1k(f)| ≤ |e−f |, for k ∈ {0, 1, 2}.
The same observation leads to

I2 = γE

[∫ t

0

∣∣11(E1
s )− 11(E2

s )
∣∣ ds] ≤ γ ∫ t

0
E
[∣∣E1

s − E2
s

∣∣] ds.
Summing up the above terms, we obtain the following estimate for the changes between the
epidemiological states

E

[
sup

0≤s≤t
|E1

s − E2
s |
]
≤E

∣∣E1
0 − E2

0

∣∣+ LK

∫ t

0
E
[
|X1

s −X2
s |
]
ds

+
(
γ + ‖K‖∞

) ∫ t

0
E
[
|E1

s − E2
s |
]
ds

+ LK

∫ t

0
E

[∫
Π×Π
|x− y|ms(dx, de, dy, df)

]
ds

+ ‖K‖∞
∫ t

0
E

[∫
Π×Π
|e− f |ms(dx, de, dy, df)

]
ds.

(3.2)

Step 3. We combine (3.1) and (3.2) to finally deduce

1

2
E

[
sup

0≤s≤t

∣∣X1
s −X2

s

∣∣+ |E1
s − E2

s |
]

≤E
[
|X1

0 −X2
0 |+ |E1

0 − E2
0 |
]

+

(
LV +

C2
1 (Lσ + Lσ0)2

2
+ LK

)∫ t

0
E
[
|X1

s −X2
s |
]
ds

+

(
LV +

C2
1 (Lσ + Lσ0)2

2
+ γ + ‖K‖∞

)∫ t

0
E
[
|E1

s − E2
s |
]
ds

+ (LV + LK)

∫ t

0
E

[∫
Π×Π
|x− y|ms(dx, de, dy, df)

]
ds

+ (LV + ‖K‖∞)

∫ t

0
E

[∫
Π×Π
|e− f |ms(dx, de, dy, df)

]
ds.
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Since ms is the conditional law of the pair
(
(X1

s , E
1
s ), (X2

s , E
2
s )
)

given F0, we can simplify the
last two terms and deduce the following bound

E

[
sup

0≤s≤t

∣∣X1
s −X2

s

∣∣+ |E1
s − E2

s |
]

≤2E
[
|X1

0 −X2
0 |+ |E1

0 − E2
0 |
]

+ C

∫ t

0
E
[
|X1

s −X2
s |+ |E1

s − E2
s |
]
ds,

(3.3)

where C = max
{(

4LV + 4LK + C2
1 (Lσ + Lσ0)2

)
,
(
4LV + 4‖K‖∞ + 2γ + C2

1 (Lσ + Lσ0)2
)}

.

Finally, we use the Gronwall lemma to get the stability estimate

E

[
sup

0≤s≤t

∣∣X1
s −X2

s

∣∣+ |E1
s − E2

s |
]
≤ 2eCtE

[
|X1

0 −X2
0 |+ |E1

0 − E2
0 |
]
. (3.4)

Proof of i). To prove the existence of a solution to equation (2.3), we will use a fixed point
theorem. We consider Θ the space consisting of Π-valued F-progressively measurable càdlàg
processes Z = (Zt)t∈[0,T ] on [0, T ] equipped with the norm

‖Z‖Θ = E
[

sup
0≤t≤T

|Zt|
]
<∞.

Notice that Z = (X,E) is a mixed process, where X is continuous and E is a càdlàg process.
With the norm defined above, (Θ, ‖ · ‖Θ) is a Banach space.

Now we fix Z1 = (X1, E1) and Z2 = (X2, E2) in Θ and define a mapping Φ : Θ 7→ Θ which
maps (X,E) 7→ (Y, F ) respectively via the following stochastic integrations:

∀ t ∈ [0, T ], Yt =X0 +

∫ t

0
Vµs(Xs, Es)ds+

∫ t

0
σ(Xs, Es)dBs +

∫ t

0
σ0(Xs, Es)dB

0
s ,

Ft =E0 +

∫
[0,t]×R+

1{u≤{Kµs (Xs)10(Es)+γ11(Es)}Q(ds, du).

We can show that if (X,E) ∈ Θ, then (Y, F ) = Φ(X,E) ∈ Θ as well by using the
Burkholder–Davis–Gundy inequality and a similar estimate as in the proof of Proposition 3.5.

If for i = 1, 2, (Y i, F i) = Φ(Xi, Ei), then by the same calculations those lead to the main
estimate (3.3), we obtain

E

[
sup

0≤s≤t
|Y 1
s − Y 2

s |+ |F 1
s − F 2

s |
]

≤ 1

2
E

[
sup

0≤s≤t
|X1

s −X2
s |+ |E1

s − E2
s |
]

+ C

∫ t

0
E
[
|X1

s −X2
s |+ |E1

s − E2
s |
]
ds.

(3.5)

In other words, one has

‖Φ(Z1)− Φ(Z2)‖Θ ≤
(

1

2
+ C

∫ T

0
dt1

)
‖Z1 − Z2‖Θ.
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It follows that

‖Φ2(Z1)− Φ2(Z2)‖Θ ≤
1

2
‖Φ(Z1)− Φ(Z2)‖Θ + C

∫ T

0
E
[
|Φ(Z1)t1 − Φ(Z2)t1 |

]
dt1

≤1

2

(
1

2
+ C

∫ T

0
dt1

)
‖Z1 − Z2‖Θ + C

∫ T

0

(
1

2
+ C

∫ t1

0
dt2

)
‖Z1 − Z2‖Θdt1

=

[(
1

2

)2

+ 2

(
1

2

)
C

∫ T

0
dt1 + C2

∫ T

0
dt1

∫ t1

0
dt2

]
‖Z1 − Z2‖Θ

and in general,

‖Φk(Z1)− Φk(Z2)‖Θ ≤
1

2
‖Φk−1(Z1)− Φk−1(Z2)‖Θ + C

∫ T

0
E
[
|Φk−1(Z1)t1 − Φk−1(Z2)t1 |

]
dt1

≤ · · ·

≤
[(

1

2

)k
+

(
k

k − 1

)(
1

2

)k−1

C

∫ T

0
dt1 + . . .

+

(
k

1

)(
1

2

)
Ck−1

∫ T

0
dt1· · ·

∫ tk−2

0
dtk−1

+ Ck
∫ T

0
dt1· · ·

∫ tk−2

0
dtk−1

∫ tk−1

0
dtk

]
‖Z1 − Z2‖Θ.

We obtain the last bound by iterating k times the inequality (3.5). Therefore, we conclude that
for any k ∈ N,

‖Φk(Z1)− Φk(Z2)‖Θ ≤
k∑
j=0

k!

j!(k − j)!
1

2k−j
(CT )j

j!
‖Z1 − Z2‖Θ.

In the next step, we will show that

k∑
j=0

k!

j!(k − j)!
1

2k−j
(CT )j

j!

k→∞−−−→ 0, (3.6)

and this will imply that for k large enough, Φk is a contraction on Θ. Therefore, Φ has a unique
fixed point.

Now, to complete the proof, we will show that the above sum (3.6) vanishes in the limit
k →∞. We will use the following observations:

Let M > 2CT be large enough such that for all j > M , one has j! > M j . First we can
handle the remaining part of the above sum for large k,

k∑
j=M+1

k!

j!(k − j)!
1

2k−j
(CT )j

j!
<

k∑
j=M+1

k!

j!(k − j)!
1

2k−j
(CT )j

M j

<

k∑
j=0

k!

j!(k − j)!
1

2k−j
(CT )j

M j

=

(
1

2
+
CT

M

)k
k→∞−−−→ 0.
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For the first M + 1 terms, we bound the sum as follows

M∑
j=0

k!

j!(k − j)!
1

2k−j
(CT )j

j!
=

M∑
j=0

k(k − 1) . . . (k − j + 1)

2k
(2CT )j

(j!)2

<

M∑
j=0

kj

2k
(2CT )j

(j!)2

<
(M + 1)kM

2k
max

0≤j≤M

{
(2CT )j

(j!)2

}
k→∞−−−→ 0.

�

Remark 3.3. In the above proof, once we coupled two processes, we used the representation
of the jumps by the Poisson Random Measures instead of the Poisson Point Processes. Even
though the two representations are the same in law, the law of the couplings in these two cases
are very different and the use of the Poisson Random Measures here plays an important role.
With the Poisson Random Measures, most of the jumps of the coupling are done at the same
time, which allows us to obtain the estimates locally uniformly in time, whereas the same does
not hold for the Poisson Point Processes, which would involve the Skorohod topology instead of
the uniform topology.

Remark 3.4. With the bound (3.5), we can always find an appropriate contraction. Indeed, to
generalize the argument, let us introduce the following norm

‖Z‖∞,λ = sup
0≤t

{
e−λtE

[(
sup
s≤t
|Zs|

)]}
<∞.

By (3.5), the mapping Φ satisfies

E

[
sup

0≤s≤t
|Φ(Z)s|

]
≤ 1

2
E

[
sup

0≤s≤t
|Zs|

]
+ C

∫ t

0
|Zs| ds.

Using the norm that defined above, we have

E

[
sup

0≤s≤t
|Φ(Z)s|

]
≤ 1

2
E

[
sup

0≤s≤t
|Zs|

]
+ C

∫ t

0
|Zs| ds

≤ ‖Z‖∞,λ
(

1

2
eλt + C

∫ t

0
eλs ds

)
≤ ‖Z‖∞,λ

(
1

2
+
C

λ

)
eλt.

So that

‖Φ(Z)‖∞,λ ≤
(

1

2
+
C

λ

)
‖Z‖∞,λ,

and this is a contraction if λ > 2C.

With the assumptions that the kernels and coefficients of the McKean-Vlasov equation are
bounded, we have the propagation of moments up to a finite time T .

Proposition 3.5. Assume that the initial law µ0 has a finite moment of order q with q ≥ 1.
For all t ≤ T , the moment of order q of µt is also finite.
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Proof. The proof is straightforward. First, notice that the state e is always bounded by 2, so
we do not need to estimate any moment involving e. On the other hand,

E

[∫
Π
|x|qµt(dx, de)

]
= E

[
E
[
|Xt|q|F0

]]
= E [|Xt|q] .

One has,

E[|Xt|q] ≤CqE[|X0|q] + CqE

[ ∣∣∣∣∫ t

0
Vµs(Xs, Es)ds

∣∣∣∣q
]

+ CqE

[ ∣∣∣∣∫ t

0
σ(Xs, Es)dBs

∣∣∣∣q
]

+ CqE

[ ∣∣∣∣∫ t

0
σ0(Xs, Es)dB

0
s

∣∣∣∣q
]

≤CqE[|X0|q] + CqE

[∫ t

0

∫
Π
|V (Xs, Es, x, e)|q µs(dx, de)ds

]
+ CqE

[(∫ t

0
|σ(Xs, Es)|2 ds

)q/2]
+ CqE

[(∫ t

0
|σ0(Xs, Es)|2 ds

)q/2]
≤CqE[|X0|q] + C(q, V, σ, σ0)T,

where the last inequality follows from by the boundedness of V, σ, σ0.
�

4. The non linear PDE

The empirical measure of the interacting system converges to the conditional law of the
unique solution of the limit SDE (2.3), which is also the solution of the stochastic PDE (2.5).
We will give a proof of Proposition 2.6, which shows the connection between the SPDE (2.5)
and the nonlinear jumping SDE (2.3).

Proof of Proposition 2.6. Let φ ∈ C2
b (Π) and use Ito’s formula to expand

φ(Xt,Et)− φ(X0, E0)

=

∫ t

0
∂xφ(Xs, Es)dXs +

1

2

∫ t

0
Tr
[
∂2
xxφ(Xs, Es)d 〈X〉s

]
+

∫
[0,t]×R+

(
φ(Xs, Es)− φ(Xs, Es−)

)
1{

u≤Kµs (Xs)10(Es− )+γ11(Es− )
}Q(ds, du)

=I1 + I2 + I3.

We now take the conditional expectation on the information generated up to time t by the
common noise B0 for each term above and notice that the conditional law of φ(Xt, Et) given F 0

t

is the random variable 〈µt, φ〉.

E
[
I1|F0

t

]
=E

[∫ t

0
∂xφ(Xs, Es)Vµs(Xs, Es)ds

∣∣∣∣ F0
t

]
+ E

[∫ t

0
∂xφ(Xs, Es)σ(Xs, Es)dB

i
s

∣∣∣∣ F0
t

]
+ E

[∫ t

0
∂xφ(Xs, Es)σ0(Xs, Es)dB

0
s

∣∣∣∣ F0
t

]
=

∫ t

0

∫
Π
∂xφ(x, e)Vµs(x, e)µs(dx, de)ds+

∫ t

0

∫
Π
∂xφ(x, e)σ0(x, e)µs(dx, de)dB

0
s .

In the last equality, the change of integrations w.r.t F0
t follows a kind of Fubini’s theorem for

conditional expectation and stochastic integral. Indeed, we first consider the simple predictable
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processes then apply the tower property since F0
t ⊂ Fσ(Xt)∨Fσ(Et), and the pull out property of

conditional expectation, and at the end passing to limit the approximations by the dominated

convergence theorem. That means, for Zt a
(
F0
t ∨ F

1,...,N
t

)
-predictable process, the following

holds:

E

[∫ t

0
ZsdB

i
s|F0

t

]
= 0,

E

[∫ t

0
ZsdB

0
s |F0

t

]
=

∫ t

0
E
[
Zs|F0

s

]
dB0

s ,

E

[∫ t

0
Zsds|F0

t

]
=

∫ t

0
E
[
Zs|F0

t

]
ds =

∫ t

0
E
[
Zs|F0

s

]
ds.

where in the last inquality, we used the fact that F0
t = F0

s ∨ σ
{
B0
r −B0

s , s ≤ r ≤ t
}

and

σ
{
B0
r −B0

s , s ≤ r ≤ t
}
⊥⊥Zs.

For the quadratic variation term we also have

E
[
I2|F0

]
=E

[
1

2

∫ t

0
Tr
[
∂2
xxφ(Xs, Es)

(
σσT (Xs, Es) + σ0σ

T
0 (Xs, Es)

)]
ds

∣∣∣∣ F0
t

]
=

1

2

∫ t

0

∫
Π

Tr
[
∂2
xxφ(x, e)

(
σσT + σ0σ

T
0

)
(x, e)µs(dx, de)

]
ds.

For the last term, since the counting process has a compensator∫ s

0

(
Kµr(Xr)1Er−=0 + γ1Er−=1

)
dr,

and the integrand (φ(Xs, Es)− φ(Xs, Es−)) is left-continuous and therefore predictable, then the
expectation of I3 is equal to the conditional expectation of the integration w.r.t the compensator.

E
[
I3|F0

t

]
=E

[∫
[0,t]×R+

(
φ(Xs, Es)− φ(Xs, Es−)

)
1{

u≤Kµs (Xs)10(Es− )+γ11(Es− )
}Q(ds, du)|F0

]

=E

[∫ t

0

(
φ(Xs, Es)− φ(Xs, Es−)

)(
Kµs(Xs)10(Es−) + γ11(Es−)

)
ds|F0

]
=

∫ t

0

∫
Π

(
φ(x, e+ 1)− φ(x, e)

)
Kµs(x)1e=0µs(dx, de)ds

+

∫ t

0

∫
Π

(
φ(x, e+ 1)− φ(x, e)

)
γ1e=1µs(dx, de)ds.

Combining all the above terms, we deduce the weak form of the SPDE (2.5)

d 〈φ, µt〉 = 〈Vµt · ∂xφ, µt〉 dt+
1

2

〈
Tr
[(

(σσT + σ0σ
T
0 )
)
∂2
xxφ
]
, µt
〉
dt+ 〈σ0 · ∂xφ, µt〉 dB0

t

+ 〈Kµt(1e=1 − 1e=0)φ, µt(dx, 0)〉 dt+ 〈γ(1e=2 − 1e=1)φ, µt(dx, 1)〉 .

�

Remark 4.1. The question of uniqueness of solutions to the above nonlinear SPDE is inter-
esting, and of course related to the uniqueness of solution to the McKean-Vlasov jump-diffusion
process (2.3). We can point out a strategy to prove the uniqueness of solutions to the nonlinear
SPDE (2.5) in the class of measure-valued solutions relies on the uniqueness result proved for
solution of the nonlinear SDE (2.3), and also the uniqueness of solutions to a corresponding
linear SPDE (which is unknown so far).
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We discuss here a sketch of that strategy. Indeed, we start with a solution µ to the SPDE (2.5)
and freeze the coefficients of that SPDE by setting a(t, x) = Kµt(x), b(t, x) = Vµt(x). We obtain
a linear SPDE, with smooth coefficients (precisely the smoothness),

dνt = −∂x · (bνt) dt+
1

2
Tr
[
∇2
xx

(
(σσT + σ0σ

T
0 )νt

)]
dt− ∂x · (σ0νt) dB

0
t

+ a
(
1e=1 − 1e=0

)
νt(dx, 0)dt+ γ

(
1e=2 − 1e=1

)
νt(dx, 1)dt.

(4.1)

Obviously µ solves the linear version (4.1) with coefficients a, b. If that equation has at most
one solution in the class of finite measures, so that µ is the unique solution in that class to the
linear SPDE (4.1).

We next consider an underlying the linear version of the McKean-Vlasov SDE with jumps
(2.3), which conditional law (at fixed time) is a solution to linear SPDE (4.1) :

dXt = b(Xt, Et)dt+ σ(Xt, Et)dBt + σ0(Xt, Et)dB
0
t ,

Et = E0 + P

(∫ t

0

(
a(Xs)1Es−=0 + γ1Es−=1

)
ds

)
,

µt = L
(
(Xt, Et)|F0

t

)
.

(4.2)

Let Ω be a probability space which is rich enough to define the Brownian motions B, B0

and the Poisson Point Process P , independent of each others, and also a r.v. Z0 which is a
F0-measurable random variable such that L(Z0) = µ0. Using standard results in the field of
SDEs, we could define a process Z : [0, T ]× Ω→ Π that is a Ft-adapted solution to linear SDE
(4.2) (with coefficients a, b). Using Itô’s formula, we know that L

(
Z|F0

)
is also a solution to

equation (4.1). Now assuming the uniqueness of solutions to the linear SPDE (4.1) in the class
of finite measures, we can conclude that for any t ≥ 0, P0 − a.s, µt = L

(
Zt|F0

)
.

But this implies that the above process Z is a solution to the limit jumping SDE (2.3). So,
if we start from a second solution ν to the SPDE (2.5), with the same initial condition ν0 = µ0.
Then, repeating the above argument, we can construct on the same probability space Ω a process
Z ′ solution to (2.3), such that νt = L

(
Z ′t|F0

)
for any t ≥ 0.

Now by Theorem (2.5) which states that the uniqueness of processes solution to equation
(2.3) constructed on the same probability space. This means that in fact Z = Z ′ almost surely,
and this implies that P0 − a.s, µ = ν.

5. Law of large numbers and propagation of chaos

In this section, we provide a quantitative estimates for the convergence of the empirical
measure of the epidemic dynamic system to the conditional law given F0 of the unique solution
of the mean field limit.

We now introduce the auxiliary system as described before, which is made of independent
copies of the limit SDE driven by independent noises (Bi)i=1,...,N instead of B, independent
Poisson Random Measures (Qi)i=1,...,N instead of Q namely

Xi
t = Xi

0 +

∫ t

0
Vµs(X

i
s, E

i
s)ds+

∫ t

0
σ(Xi

s, E
i
s)dB

i
s +

∫ t

0
σ0(Xi

s, E
i
s)dB

0
s ,

Eit = Ei0 +

∫
[0,t]×R+

1{
u≤Kµs (Xi

s)10(Ei
s−

)+γ11(Ei
s−

)
}Qi(ds, du),

µt = L
(
(Xi

t , E
i
t)|F0

t

)
.

(5.1)

Recall that we denote by Z̄i = (X̄i
t , Ē

i
t)1≤i≤N the unique solution to that system with the initial

conditions
{

(X̄i
0, Ē

i
0)
}

1≤i≤N .
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5.1. Control the distance between the original system and an auxiliary system. We
can first perform a stability type estimate for the distance between the trajectories of the original
system (1.3) and the system of i.i.d. agents (5.1).

Proof of Theorem 2.7. The first part of the proof is a slight modification of the proof for the
stability of the solution to the SDE (2.3). Indeed, we can establish an estimate similar to (3.1)
for the difference between the pairs

{
(Xi,N , Ei,N ), (X̄i, Ēi)

}
, i = 1, . . . , N , in the path space

D([0, T ],Π) endowed with the supremum in time distance. First, it is not hard to handle the
diffusion terms imitating the proof of Theorem 2.5, the difference only arise at the two mean-field
terms: the drift term and the jump term related to infection. Recall that conditionally on F0,
the laws of the individuals remain the same and L

((
X̄i
t , Ē

i
t

)
|F0
t

)
= µt for all i ∈ {1, . . . , N}.

We treat the drift terms first. Since the choice of the coupling ms in the proof of Theorem
2.5 is arbitrary, at the last inequality we can obtain an appropriate bound due to the definition
of the 1-Wassertein metric

E

[
sup

0≤s≤t

∣∣∣∣∫ s

0

1

N

N∑
j=1

V
(
Xi,N
r , Ei,Nr , Xj,N

r , Ej,Nr
)
dr −

∫ s

0
Vµr(X̄

i
r, Ē

i
r) dr

∣∣∣∣
]

≤ E
[∫ t

0

∣∣∣VµNs (Xi,N
s , Ei,Ns )− Vµs(X̄i

s, Ē
i
s)
∣∣∣ ds]

≤ C
∫ t

0
E
[
|Xi,N

s − X̄i
s|+ |Ei,Ns − Ēis|+W1

(
µNs , µs

) ]
ds.

For the mean-field term related to the jump, we use the same coupling and apply the same
argument. To be more precise, one has

E

[
sup

0≤s≤t

∫
[0,s]×R+

∣∣∣∣1{u≤Ki,N
r 10(Ei,N

r−
)+γ11(Ei,N

r−
)
} − 1{

u≤Kµr (X̄i
r−

)10(Ēi
r−

)+γ11(Ēi
r−

)
}∣∣∣∣Q(dr, du)

]

≤ E
[∫ t

0

∣∣(Ki,N
s 10(Ei,Ns ) + γ11(Ei,Ns )

)
−
(
Kµs(X̄

i
s)10(Ēis) + γ11(Ēis)

)∣∣ ds]
≤ E

[∫ t

0

∣∣Ki,N
s 10(Ei,Ns )−Kµr(X̄

i
s)10(Ēis)

∣∣ ds]+ γE

[∫ t

0

∣∣11(Ei,Ns )− 11(Ēis)
∣∣ ds]

= I1 + I2.

We first treat I1 which contains the mean-field term Ki,N
s :

I1 =E

[∫ t

0

∣∣∣∣∫
Π
K(Xi,N

s , x)10(Ei,Ns )11(e)µNs (dx, de)−
∫

Π
K(X̄i

s, y)10(Ēis)11(f)µs(dy, df)

∣∣∣∣ ds]
≤C

∫ t

0
E
[
|Xi,N

s − X̄i
s|+ |Ei,Ns − Ēis|+W1

(
µNs , µs

) ]
ds.

The remaining terms are treated similarly as in the proof of Theorem 2.5. Combining them we
can deduce the following bound:

E

[
sup

0≤s≤t

∣∣Xi,N
s − X̄i

s

∣∣+ |Ei,Ns − Ēis|
]

≤ 2E
[
|Xi,N

0 − X̄i
0|+ |E

i,N
0 − Ēi0|

]
+ C

∫ t

0
E
[
|Xi,N

s − X̄i
s|+ |Ei,Ns − Ēis|+W1

(
µNs , µs

) ]
ds.
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On the other hand, one has

E
[
W1

(
µNs , µs

)]
=E

[
W1

(
1

N

N∑
i=1

δ
Zi,Ns

, µs

)]

≤E

[
W1

(
1

N

N∑
i=1

δ
Zi,Ns

,
1

N

N∑
i=1

δZ̄is

)]
+ E

[
W1

(
1

N

N∑
i=1

δZ̄is , µs

)]

≤ 1

N

N∑
i=1

E
[
|Xi,N

s − X̄i
s|+ |Ei,Ns − Ēis|

]
+ E

[
W1

(
1

N

N∑
i=1

δZ̄is , µs

)]
.

(5.2)

From this and the fact that (Zi,N , Z̄i), i = 1, . . . , N are identically distributed, we have the
following

E

[
sup

0≤s≤t

∣∣Xi,N
s − X̄i

s

∣∣+ |Ei,Ns − Ēis|
]

≤2E
[
|Xi,N

0 − X̄i
0|+ |E

i,N
0 − Ēi0|

]
+ C

∫ t

0
E

[
|Xi,N

s − X̄i
s|+ |Ei,Ns − Ēis|+W1

(
1

N

N∑
i=1

δZ̄is , µs

)]
ds.

Now applying the Gronwall lemma, we deduce that

E

[
sup

0≤s≤t

∣∣Xi,N
s − X̄i

s

∣∣+ |Ei,Ns − Ēis|
]

≤ eCt
(

2E
[
|Xi,N

0 − X̄i
0|+ |E

i,N
0 − Ēi0|

]
+

∫ t

0
E

[
W1

(
1

N

N∑
i=1

δZ̄is , µs

)]
ds

)
.

Since conditionally upon F0, {Z̄it = (X̄i
t , Ē

i
t)}i=1,...,N are N i.i.d.r.v., by the Glivenko-Cantelli

theorem, their empirical measure converges a.s to µt. So the second term in the r.h.s. in the
above bound goes to 0. Moreover, if E

[
|Zit |q

]
< ∞ for some q > 2, it is possible to give a

rate of convergence measured in the Wasserstein distance. Indeed, we are able to adapt to the
conditional case the crucial result obtained by Fournier-Guillin [12]. See Proposition 6.3 in the
Appendix for a precise statement.

Hence by Propositions 6.3 and 3.5, we can deduce the desired stability estimate

E

[
sup

0≤s≤t

∣∣Xi,N
s − X̄i

s

∣∣+ |Ei,Ns − Ēis|
]
≤ C(t)

(
E
[
|Xi,N

0 − X̄i
0|+ |E

i,N
0 − Ēi0|

]
+ αd(N)

)
, (5.3)

with αd(N) as defined in the statement of Theorem 2.7. �

As a consequence, at any time t, we can give a quantitative estimate of convergence of
the empirical measure of the original system towards its expected limit µt, measured in the
Wasserstein distance.

5.2. Proof of Corollary 2.8.
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Proof. Combining (5.2) and (5.3), we obtain

E
[
W1

(
µNs , µs

)]
≤ 1

N

N∑
i=1

E
[
|Xi,N

s − X̄i
s|+ |Ei,Ns − Ēis|

]
+ E

[
W1

(
1

N

N∑
i=1

δZ̄is , µs

)]

≤C(t)

(
E

[
1

N

N∑
i=1

|Xi,N
0 − X̄i

0|+ |E
i,N
0 − Ēi0|

]
+ αd(N)

)
.

Thanks to the exchangeability and a coupling result, see for instance [13, Proposition A.1]
or [15, Proposition 2.14], we have the right to choose the initial conditions of the coupling such
that, almost surely,

W1

(
µN0 , µ̄

N
0

)
=

1

N

N∑
i=1

|Xi,N
0 − X̄i

0|+ |E
i,N
0 − Ēi0|,

which allows us to deduce

E
[
W1

(
µNt , µt

)]
≤C(t)

(
E
[
W1

(
µN0 , µ̄

N
0

)]
+ αd(N)

)
≤C(t)

(
E
[
W1

(
µN0 , µ0

)]
+ E

[
W1

(
µ̄N0 , µ0

)]
+ αd(N)

)
≤C(t)

(
E
[
W1

(
µN0 , µ0

)]
+ αd(N)

)
,

where we allow the constant to change from line to line, and use the quantitative bound for
W1

(
µ̄N0 , µ0

)
for the last inequality. �

6. Appendix

6.1. Definitions of Poisson Point Process and Poisson Random Measure.

Definition 6.1. An N-valued process (Pt)t≥0 is said to be a standard Poisson Point Process if
P0 = 0, its increments over disjoint intervals are independent, and for 0 ≤ s ≤ t, Pt−Ps follows
the Poi(t− s) distribution. This implies in particular that all the jumps of Pt have size 1.

Definition 6.2. A measure Q on R2
+ is said to be a standard Poisson Random Measure if it is a

sum of Dirac measures located at countably many points of R2
+, in such a way that the numbers

of those points in disjoint Borel sets are mutually independent, and the number of points in a
Borel subset A ⊂ R2

+ follows the Poi(µ(A)) distribution, where µ denotes the Lebesgue measure
on R2

+.

The mean measure of a standard Poisson Random Measure is the Lebesgue measure. Non
standard Poisson Random Measures can have more general mean measures. The same is true
for non standard Poisson Point Processes.

6.2. Proof of the equivalences in Definition 2.3.

Proof. (i)⇒ (ii) is obvious.
(ii)⇒ (iii). Taking any φ ∈ Cb(Π),

E

[〈
µN − µ, φ

〉2
∣∣∣∣F0

]
=

1

N2

N∑
i,j=1

E
[
φ(Zi,N )φ(Zj,N )|F0

]
− 2

N

N∑
i=1

E
[
φ(Zi,N ) 〈µ, φ〉 |F0

]
+ E

[
〈µ, φ〉2

∣∣F0
]
.
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Using the conditional exchangeability we rewrite the r.h.s. as

1

N
E
[
φ(Z1,N )2 | F0

]
+
N − 1

N
E
[
φ(Z1,N )φ(Z2,N ) | F0

]
− 2 〈µ, φ〉E

[
φ(Z1,N )

∣∣∣F0
]

+ 〈µ, φ〉2 ,

which tends to 0 by (ii). Therefore,

E
[〈
µN , φ

〉
| F0

]
→ 〈µ, φ〉 .

Since µ is F0-measurable and the above statement is true for any bounded continuous φ, we
conclude that µN converges weakly to µ P0-a.s.

(iii)⇒ (i). We consider only the case k = 2 of that implication, but the general case k ≥ 2
could be handled in a similar way.

Let φ1, φ2 ∈ Cb(Π). We will prove the convergence in law of (Z1,N , Z2,N ) using only functions
of the form φ(z1, z2) = φ1(z1)φ2(z2), whose linear combinations are dense in Cp(Π

2). By the
triangular inequality, one has∣∣∣∣E[φ1(Z1,N )φ2(Z2,N )

∣∣∣F0
]
− 〈µ, φ1〉 〈µ, φ2〉

∣∣∣∣
≤
∣∣∣∣E[φ1(Z1,N )φ2(Z2,N )

∣∣∣F0
]
− E

[ 〈
µN , φ1

〉 〈
µN , φ2

〉 ∣∣∣F0
]∣∣∣∣ (6.1)

+

∣∣∣∣E[ 〈µN , φ1

〉 〈
µN , φ2

〉 ∣∣∣F0
]
− E

[
〈µ, φ1〉 〈µ, φ2〉

∣∣∣F0
]∣∣∣∣. (6.2)

Using the conditional exchangeability, we have an upper bound for (6.1),∣∣∣∣E[φ1(Z1,N )φ2(Z2,N )|F0
]
− E

[ 〈
µN , φ1

〉 〈
µN , φ2

〉
|F0
]∣∣∣∣

=

∣∣∣∣∣ 1

N(N − 1)

N∑
i,j=1,i 6=j

E
[
φ1(Zi,N )φ2(Zj,N )|F0

]
− 1

N2

N∑
i,j=1

E
[
φ1(Zi,N )φ2(Zj,N )|F0

] ∣∣∣∣∣
≤

∣∣∣∣∣
(

1

N(N − 1)
− 1

N2

) N∑
i,j=1,i 6=j

E
[
φ1(Zi,N )φ2(Zj,N )|F0

]∣∣∣∣∣
+

∣∣∣∣∣ 1

N2

N∑
i=1

E
[
φ1(Zi,N )φ2(Zi,N )|F0

] ∣∣∣∣∣
≤ 1

N
‖φ1‖∞‖φ2‖∞ +

1

N
‖φ1‖∞‖φ2‖∞,

where the last quantity tends to 0 as N →∞.
Considering (6.2), we can prove that it converges to 0, using the point (iii) and the fact that

the function µ̃ 7→ 〈 µ̃, φ1〉〈µ̃, φ2〉 is continuous on P(Π).
�

6.3. Proof of Lemma 2.4.

Proof. The system of equation (1.3) is symmetric under any permutation of the individuals and
their individual noises. Hence, if ZNt :=

(
Z1
t , . . . , Z

N
t

)
is a strong solution of the system with ini-

tial condition
(
Z1

0 , . . . , Z
N
0

)
then Zσ,Nt :=

(
Z
σ(1),N
t , . . . , Z

σ(N),N
t

)
is also a strong solution of the

equation with initial condition
(
Z
σ(1)
0 , . . . , Z

σ(N)
0

)
with permuted individual noise. Moreover,

by the assumption that the initial laws of ZN0 and Zσ,N0 are equal, the conclusion follows using
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the weak uniqueness of solutions to the SDE system (1.3) with jumps. In fact, the standard
approach of [16, Theorem 9.1] applies to our particular case, since all the coefficients appearing
in the system (1.3) are regular enough.

�

6.4. Rate of convergence in the empirical law of large number: the conditionally
independence case.

Proposition 6.3. For any d ∈ N and q ∈ (2,∞), there exists a constant Cd,q such that the
following holds. For any P0-measurable random probability µ on Π satisfying

E

[∫
Rd
|z|qµ(dz)

]
= E

[
|Zi|q

]
<∞,

if conditionally upon F0, the Π-valued random variables (Zi)i≥1 are i.i.d. with conditional law

µ, and denoting the random empirical measure by µNZ = 1
N

∑N
i=1 δZi, we have

E
[
W1

(
µNZ , µ

)]
≤ Cd,qE [|Z1|q]1/q


N−1/2, d = 1,

N−1/2 logN, d = 2,

N−1/d, d ≥ 3.

Proof. For a given realization of the common noise, we rely first on a result by Fournier
Guillin [12, Theorem 1] (which is the best result so far after a long sequence of previous partial or
less accurate result) in the case of i.i.d. random variables with a given (deterministic) common
law µ. Applying it (with p = 1) in our special case4, it gives the following estimate conditionally
on F0,

P0 − a.s., E
[
W1

(
µNZ , µ

) ∣∣F0
]
≤ Cd,qE

[
|Z1|q

∣∣F0
]1/q

N−1/2 +N−(q−1)/q, d = 1,

N−1/2 logN +N−(q−1)/q, d = 2,

N−1/d +N−(q−1)/q, d ≥ 3.

First, we could remove all the second power of N involving q in the three cases since it is always
smaller that the first term when q > 2.

Taking then the expectation w.r.t. to P0 in the above inequality, and using (since q > 1) the
Jensen inequality on the q–th moment

E
[
E
[
|Z1|q

∣∣F0
]1/q] ≤ E [|Z1|q]1/q ,

we get the desired result. �
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