Poisson process

Etienne Pardoux

Aix-Marseille Université

• Let $\lambda > 0$ be given. A rate λ Poisson (counting) process is defined as

$$P_t = \sup\{k \ge 1, \ T_k \le t\},$$

where $0 = T_0 < T_1 < T_2 < \cdots < T_k < \cdots < \infty$, the r.v.'s $\{T_k - T_{k-1}, k \ge 1\}$ being independent and identically distributed, each following the law $\text{Exp}(\lambda)$.

We have

Proposition

For all $n \ge 1$, $0 < t_1 < t_2 < \cdots < t_n$, the r.v.'s $P_{t_1}, P_{t_2} - P_{t_1}, \ldots, P_{t_n} - P_{t_{n-1}}$ are independent, and for all $1 \le k \le n$, $P_{t_k} - P_{t_{k-1}} \sim Poi[\lambda(t_k - t_{k-1})].$

• Let $\lambda > 0$ be given. A rate λ Poisson (counting) process is defined as

$$P_t = \sup\{k \ge 1, \ T_k \le t\},$$

where $0 = T_0 < T_1 < T_2 < \cdots < T_k < \cdots < \infty$, the r.v.'s $\{T_k - T_{k-1}, k \ge 1\}$ being independent and identically distributed, each following the law $\text{Exp}(\lambda)$.

We have

Proposition

For all
$$n \ge 1$$
, $0 < t_1 < t_2 < \cdots < t_n$, the r.v.'s $P_{t_1}, P_{t_2} - P_{t_1}, \ldots, P_{t_n} - P_{t_{n-1}}$ are independent, and for all $1 \le k \le n$, $P_{t_k} - P_{t_{k-1}} \sim Poi[\lambda(t_k - t_{k-1})].$

We have

Lemma

For all $n \ge 1$, let U_n be a $B(n, p_n)$ random variable. If $np_n \to \lambda$ as $n \to \infty$, with $\lambda > 0$, then U_n converges in law towards $Poi(\lambda)$.

• To do :

Exercise

Let $\{P_t, t \ge 0\}$ be a rate λ Poisson process, and $\{T_k, k \ge 1\}$ the random points of this Poisson process, such that for all t > 0, $P_t = \sup\{k \ge 1, T_k \le t\}$. Let $0 . Suppose that each <math>T_k$ is selected with probability p, not selected with probability 1 - p, independently of the others. Let P'_t denote the number of selected points on the interval [0, t]. Then $\{P'_t, t \ge 0\}$ is a rate λp Poisson process.

We have

Lemma

For all $n \ge 1$, let U_n be a $B(n, p_n)$ random variable. If $np_n \to \lambda$ as $n \to \infty$, with $\lambda > 0$, then U_n converges in law towards $Poi(\lambda)$.

• To do :

Exercise

Let $\{P_t, t \ge 0\}$ be a rate λ Poisson process, and $\{T_k, k \ge 1\}$ the random points of this Poisson process, such that for all t > 0, $P_t = \sup\{k \ge 1, T_k \le t\}$. Let $0 . Suppose that each <math>T_k$ is selected with probability p, not selected with probability 1 - p, independently of the others. Let P'_t denote the number of selected points on the interval [0, t]. Then $\{P'_t, t \ge 0\}$ is a rate λp Poisson process.

- A Poisson process will be called standard if its rate is 1. If P is a standard Poisson process, then $\{P(\lambda t), t \ge 0\}$ is a rate λ Poisson process.
- A rate λ Poisson process (λ > 0) is a counting process {Q_t, t ≥ 0} such that Q_t − λt is a martingale.
- Let $\{P(t), t \ge 0\}$ be a standard Poisson process (i.e. with rate 1). Then $P(\lambda t) - \lambda t$ is martingale, and it is not hard to show that $\{P(\lambda t), t \ge 0\}$ is a rate λ Poisson process.

- A Poisson process will be called standard if its rate is 1. If P is a standard Poisson process, then $\{P(\lambda t), t \ge 0\}$ is a rate λ Poisson process.
- A rate λ Poisson process (λ > 0) is a counting process {Q_t, t ≥ 0} such that Q_t − λt is a martingale.
- Let $\{P(t), t \ge 0\}$ be a standard Poisson process (i.e. with rate 1). Then $P(\lambda t) - \lambda t$ is martingale, and it is not hard to show that $\{P(\lambda t), t \ge 0\}$ is a rate λ Poisson process.

- A Poisson process will be called standard if its rate is 1. If P is a standard Poisson process, then $\{P(\lambda t), t \ge 0\}$ is a rate λ Poisson process.
- A rate λ Poisson process (λ > 0) is a counting process {Q_t, t ≥ 0} such that Q_t − λt is a martingale.
- Let $\{P(t), t \ge 0\}$ be a standard Poisson process (i.e. with rate 1). Then $P(\lambda t) - \lambda t$ is martingale, and it is not hard to show that $\{P(\lambda t), t \ge 0\}$ is a rate λ Poisson process.

- Let now $\{\lambda(t), t \ge 0\}$ be a measurable and locally integrable \mathbb{R}_+ -valued function. Then the process $\{Q_t := P\left(\int_0^t \lambda(s)ds\right), t \ge 0\}$ is called a rate $\lambda(t)$ Poisson process. Clearly $M_t = Q_t \int_0^t \lambda(s)ds$ is a martingale, i.e. M_t is $\mathcal{F}_t = \sigma\{Q_s, 0 \le s \le t\}$ -measurable, and for $0 \le s < t$, $\mathbb{E}[M_t|\mathcal{F}_s] = M_s$.
- We now want to consider the case where λ is random. For that purpose, it is convenient to give an alternative definition of the above process Q_t.

- Let now $\{\lambda(t), t \ge 0\}$ be a measurable and locally integrable \mathbb{R}_+ -valued function. Then the process $\{Q_t := P\left(\int_0^t \lambda(s)ds\right), t \ge 0\}$ is called a rate $\lambda(t)$ Poisson process. Clearly $M_t = Q_t \int_0^t \lambda(s)ds$ is a martingale, i.e. M_t is $\mathcal{F}_t = \sigma\{Q_s, 0 \le s \le t\}$ -measurable, and for $0 \le s < t$, $\mathbb{E}[M_t|\mathcal{F}_s] = M_s$.
- We now want to consider the case where λ is random. For that purpose, it is convenient to give an alternative definition of the above process Q_t .

Poisson Random Measures

- Consider a standard Poisson random measure N on ℝ₂⁺, which is defined as follows. N is the counting process associated to a random cloud of points in ℝ₊². One way to construct that cloud of points is as follows. We can consider ℝ₊² = ∪_{i=1}[∞] A_i, where the A_i's are disjoints squares with Lebesgue measure 1.
- Let K_i, i ≥ 1 be i.i.d. Poisson r.v.'s with mean one. Let {X_jⁱ, j ≥ 1, i ≥ 1} be independent random points of ℝ²₊, which are such that for any i ≥ 1, the X_jⁱ's are uniformly distributed in A_i.
 Then

$$N(dx) = \sum_{i=1}^{\infty} \sum_{j=1}^{K_i} \delta_{X_j^i}(dx).$$

 $\lambda(t)$ denoting a positive valued measurable function, the above $\{Q_t, t \ge 0\}$ has the same law as

$$Q_t = \int_0^t \int_0^{\lambda(s)} N(ds, du).$$

Etienne Pardoux (AMU)

Poisson Random Measures

- Consider a standard Poisson random measure N on ℝ₂⁺, which is defined as follows. N is the counting process associated to a random cloud of points in ℝ₊². One way to construct that cloud of points is as follows. We can consider ℝ₊² = ∪_{i=1}[∞] A_i, where the A_i's are disjoints squares with Lebesgue measure 1.
- Let K_i, i ≥ 1 be i.i.d. Poisson r.v.'s with mean one. Let {X_jⁱ, j ≥ 1, i ≥ 1} be independent random points of ℝ²₊, which are such that for any i ≥ 1, the X_jⁱ's are uniformly distributed in A_i.
 Then

$$N(dx) = \sum_{i=1}^{\infty} \sum_{j=1}^{K_i} \delta_{X_j^i}(dx).$$

 $\lambda(t)$ denoting a positive valued measurable function, the above $\{Q_t, t \ge 0\}$ has the same law as

$$Q_t = \int_0^t \int_0^{\lambda(s)} N(ds, du).$$

Poisson Random Measures

- Consider a standard Poisson random measure N on ℝ₂⁺, which is defined as follows. N is the counting process associated to a random cloud of points in ℝ₊². One way to construct that cloud of points is as follows. We can consider ℝ₊² = ∪_{i=1}[∞] A_i, where the A_i's are disjoints squares with Lebesgue measure 1.
- Let K_i, i ≥ 1 be i.i.d. Poisson r.v.'s with mean one. Let {X_jⁱ, j ≥ 1, i ≥ 1} be independent random points of ℝ²₊, which are such that for any i ≥ 1, the X_jⁱ's are uniformly distributed in A_i.
 Then

$$N(dx) = \sum_{i=1}^{\infty} \sum_{j=1}^{K_i} \delta_{X_j^i}(dx).$$

 $\lambda(t)$ denoting a positive valued measurable function, the above $\{Q_t, t \ge 0\}$ has the same law as

$$Q_t = \int_0^t \int_0^{\lambda(s)} N(ds, du).$$

- Let now $\{\lambda(t), t \ge 0\}$ be an \mathbb{R}_+ -valued stochastic process, which is assumed to be predictable, in the following sense.
- Let for t ≥ 0 F_t = σ{N(A), A Borel subset of [0, t] × ℝ₊}, and consider the σ-algebra of subset of [0,∞) × Ω generated by the subsets of the form 1_{(s,t]}1_F, where 0 ≤ s < t and F ∈ F_s, which is called the predictable σ-algebra.
- We assume moreover that $\mathbb{E} \int_0^t \lambda(s) ds < \infty$ for all t > 0. We now define as above

$$Q_t = \int_0^t \int_0^{\lambda(s)} N(ds, du).$$

- Let now $\{\lambda(t), t \ge 0\}$ be an \mathbb{R}_+ -valued stochastic process, which is assumed to be predictable, in the following sense.
- Let for $t \ge 0$ $\mathcal{F}_t = \sigma\{N(A), A \text{ Borel subset of } [0, t] \times \mathbb{R}_+\}$, and consider the σ -algebra of subset of $[0, \infty) \times \Omega$ generated by the subsets of the form $\mathbf{1}_{(s,t]}\mathbf{1}_F$, where $0 \le s < t$ and $F \in \mathcal{F}_s$, which is called the predictable σ -algebra.
- We assume moreover that $\mathbb{E} \int_0^t \lambda(s) ds < \infty$ for all t > 0. We now define as above

$$Q_t = \int_0^t \int_0^{\lambda(s)} N(ds, du).$$

- Let now $\{\lambda(t), t \ge 0\}$ be an \mathbb{R}_+ -valued stochastic process, which is assumed to be predictable, in the following sense.
- Let for $t \ge 0$ $\mathcal{F}_t = \sigma\{N(A), A \text{ Borel subset of } [0, t] \times \mathbb{R}_+\}$, and consider the σ -algebra of subset of $[0, \infty) \times \Omega$ generated by the subsets of the form $\mathbf{1}_{(s,t]}\mathbf{1}_F$, where $0 \le s < t$ and $F \in \mathcal{F}_s$, which is called the predictable σ -algebra.
- We assume moreover that $\mathbb{E} \int_0^t \lambda(s) ds < \infty$ for all t > 0. We now define as above

$$Q_t = \int_0^t \int_0^{\lambda(s)} N(ds, du).$$

• We have

Lemma

$Q_t - \int_0^t \lambda(s) ds$ is a martingale.

• Indication of proof : For any $\delta > 0$, let

$$Q_t^{\delta} = \int_0^t \int_0^{\lambda(s-\delta)} N(ds, du),$$

where $\lambda(s) = 0$ for s < 0. It is not hard to show that $Q_t^{\delta} - \int_0^t \lambda(s - \delta) ds$ is a martingale which converges in $L^1(\Omega)$ to $Q_t - \int_0^t \lambda(s) ds$. The result follows.

• If we let $\sigma(t) = \inf\{r > 0, \int_0^r \lambda(s) ds > t\}$, we have that $P(t) := Q_{\sigma(t)}$ is a standard Poisson process, and it is plain that $Q_t = P\left(\int_0^t \lambda(s) ds\right)$.

• We have

Lemma

- $Q_t \int_0^t \lambda(s) ds$ is a martingale.
 - Indication of proof : For any $\delta > 0$, let

$$Q_t^{\delta} = \int_0^t \int_0^{\lambda(s-\delta)} N(ds, du),$$

where $\lambda(s) = 0$ for s < 0. It is not hard to show that $Q_t^{\delta} - \int_0^t \lambda(s - \delta) ds$ is a martingale which converges in $L^1(\Omega)$ to $Q_t - \int_0^t \lambda(s) ds$. The result follows.

• If we let $\sigma(t) = \inf\{r > 0, \int_0^r \lambda(s) ds > t\}$, we have that $P(t) := Q_{\sigma(t)}$ is a standard Poisson process, and it is plain that $Q_t = P\left(\int_0^t \lambda(s) ds\right)$.

• We have

Lemma

- $Q_t \int_0^t \lambda(s) ds$ is a martingale.
 - Indication of proof : For any $\delta > 0$, let

$$Q_t^{\delta} = \int_0^t \int_0^{\lambda(s-\delta)} N(ds, du),$$

where $\lambda(s) = 0$ for s < 0. It is not hard to show that $Q_t^{\delta} - \int_0^t \lambda(s - \delta) ds$ is a martingale which converges in $L^1(\Omega)$ to $Q_t - \int_0^t \lambda(s) ds$. The result follows.

• If we let $\sigma(t) = \inf\{r > 0, \int_0^r \lambda(s) ds > t\}$, we have that $P(t) := Q_{\sigma(t)}$ is a standard Poisson process, and it is plain that $Q_t = P\left(\int_0^t \lambda(s) ds\right)$.