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Course 2 : Convergence of a random individual-based model to Volz’
equations



SIR on a configuration model graph

Configuration model (CM) : Bollobas (80), Molloy Reed (95),
Durett (07), van der Hofstad (in prep.)

% Description of an SIR epidemics spreading on a configuration
model graph :

» Infinite system of denumberable equations, Ball and Neal
(2008)).

» 5 ODEs, Volz (2008), Miller (2011).

» Recently: Barbour Reinert (2014), Janson Luczak Winridge
(2014)

Individuals are separated into 3 classes :
» Susceptibles S;

» Infectious Z;

» Removed R;



Stochastic model for a finite graph with N vertices
% Only the edges between the Z and R individuals are observed.
The degree of each individual is known.

% To each /individual is associated an exponential random clock with
rate « to determine its removal.

% To each open edge (directed to S), we associate a random
exponential clock with rate j.

When it rings, the edge of an S is chosen at random. We
determine whether its remaining edges are linked with S, Z or R-type
individuals.




Edge-based quantities
% The idea of Volz is to use network-centric quantities (such as the
number of edges from Z to S) rather than node-centric quantities.

* St, It, Rt, St, I, Ry, di, 0i(St)...
1 finite measure on N and f bounded or > 0 function:

(1 £) = > ke F(K) (k).
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Edge-based quantities
% The idea of Volz is to use network-centric quantities (such as the
number of edges from Z to S) rather than node-centric quantities.

* St, It, Rt, St, I, Ry, di, 0i(St)...
1 finite measure on N and f bounded or > 0 function:

(1 £) = > ke F(K) (k).

We introduce the following measures:

k)= dq,(dk) p (k) =) Sa,s(dk)
UES: ueZ;
pi ™ (dk) = Z Od,(s;) (k)
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This sums up the evolution of the epidemic (but does not allow the
reconstruction of the complicated graph on which the illness
propagates).

I =Card(Zy) = (uf™, 1), N7¥ = (uf% k) =) du(Sh)

uer;



Dynamics
* Global force of infection: SNSZ.

% Choice of a given susceptible of degree k: k/N; .
So that the rate of infection of a given susceptible of degree k is:

Bkpt .
The probability that its kK — 1 remaining edges are linkedto Z or R
is:
j L
| (st 1) () (25)
p(,¢, mk—1,t) = Viporm=rk—11jcnszcns=
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Dynamics
* Global force of infection: SNSZ.

%* Choice of a given susceptible of degree k: k/N? .
So that the rate of infection of a given susceptible of degree k is:

Bkpt .
The probability that its kK — 1 remaining edges are linkedto Z or R
is:
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% To modify the degree distributions p$Z (idem for $7):

We draw a sequence e = (ey)ucz, Of integers.
e ¢, is the number of edges to the infectious individual u at {_.
e not all sequences are admissible.

The probability of drawing the sequence e is

dy
(e| 3 SI) N HUEI{_ (e,_,) . . .
pulll),ut") = TNST, {Zes=j+1, € is admissible}

(j+1)



Renormalization

% We are interested in increasing the number of vertices N without

rescaling the degree distribution.
MN,S, MN,SI’ MN,SR_

* We now consider ;M-S ,(N)-ST and 1, (N).SR where for ex:
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Renormalization

% We are interested in increasing the number of vertices N without
rescaling the degree distribution.

NS ,N.ST , NSR
N N T

* We now consider ;M-S ,(N)-ST and 1, (N).SR where for ex:

1 . .
M5 (ak) =— M5 (dk)  with Jlim pVS = 15 in Mp(N)

N
(idem for {"V5% with N7 > = and u{"*® with N§™ > <)

% 3 SDE:

<MEN),SI§ fy — (MSN)’SI ) + Ag ) ST | M SIf

where M(N):SZ.1 is g square integrable martingale started from 0 and
with previsible quadratic variation in 1/N.
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N),ZS,f.
ANVZS T,

t
ASN),ISf 7/ a(,u(sN)’SI,ﬂds

/Zakd” (S S pNG, e mlk —1,1)

keN JHe+1<k

X ZPU (elj+1 Nn SI)(f(m) + Z (f(du —ey) — f(du))) ds,
ecU uezl
Th: Under appropriate moment conditions,

(NS (N-ST ISRy o converge to a deterministic limit

NN

(FST, 0 = (E§E,f) — /0 (ST s
LS SN (R EATEATERY

keN* jHe+m=k—1
/_I,SI /
x (Hm)+G+1) > (fK = 1)~ f(k/))w)gf(k)ds

k’eN*



Deterministic limit

% Limit equations:

i (k) = g (K)OF, 0y = e P JoPics

(st fy = ..

t
(SR ) = /0 o (ST, f)ds

+/0 S BkpE(k — 1)BR S (F(K = 1) — F(K')

keN k'eN

1’4 SR k' ~
)b VD as(yas
s

% This allows us to recover Volz'equations:

e Choosing f = 1 gives S;, T,

e Choosing f(k) = k gives NS, NST, NS®,
from which we can deduce p* = NST/NS...



Volz’equations

Prop: let 9(z) = > i fi5 (k)z" be the generating function of i .

t
0r:exp(76/0 pfds

Si=a@). =+ [ (BE0g(0) - al)as

NIST t 7
pr N - (ﬂﬁfﬁfﬂsg,(QS) ~ BPE( ~ PE) — bt ) ds

NS 0s)
=R - +/ 6P (1 —6591/((69:)))%.
Recall the limit for mixing models:
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dt



Volz’equations

Prop: let 9(z) = > i fi5 (k)z" be the generating function of i .

at—exp(ﬂ/otpsz ds)

t
Si=go). =T+ [ (5xRET - al)ds
0

NIST t 7
pr N - (ﬂﬁfﬁfﬂsg,(QS) ~ BPE( ~ PE) — bt ) ds

NS 0s)
_ (D)
Py ———po +/ BpEpE (1 0s (95))ds.
Recall the limit for mixing models:
ds - dl,
T;:_ﬁstlh *t—ﬁst/t
Here:
dS; S

i =9 (0)0: = —Bg (00)0BF = —BNBf = —BN;7.



Sketch of the proof

Assumption: supyy- ((uE)N)’S,1 + k) + (VST 1+ k5>) < +o00,

Tightness: topology on Mg(N). Roelly’s criterion.
Aldous-Rebolledo criterion.
N),SZ,f N),SZ,f
P(|AMN-SES - ANLSTE| . ) < ¢

P(‘<M(N)’Sz’f>TN _ <M(N),SIJ'>0N| > 5) <e.

% Convergence of the generators.
e The identification of the limitis OK on [0, T] IF T < 7V where

N =inf{t >0, NV < 2},

Uniqueness:
e Gronwall’s lemma gives that solutions of the limiting equation
have same mass and same moments of order 1 and 2.
« Uniqueness of the generating function of zZS which solves a
transport equation.



Degree distribution of the “initial condition”
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Prop: For e > 0, when N — +o0, the degree distribution when after
[eN] infections converges to:

1 -
71 . E pk(1 — Z”)k(Sk
k>0

where z¢ is the solution of 1 — ¢ = f(1 — Z), f being the generating
function of the original degree distribution.
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