Spread of epidemics on random graphs

Viet Chi TRAN - Université Lille 1 - France

December 11, 2015

Course 2 : Convergence of a random individual-based model to Volz' equations

SIR on a configuration model graph

\star Configuration model (CM) : Bollobas (80), Molloy Reed (95), Durett (07), van der Hofstad (in prep.)
\star Description of an SIR epidemics spreading on a configuration model graph :

- Infinite system of denumberable equations, Ball and Neal (2008)).
- 5 ODEs, Volz (2008), Miller (2011).
- Recently: Barbour Reinert (2014), Janson Luczak Winridge (2014)
\star Individuals are separated into 3 classes :
- Susceptibles \mathcal{S}_{t}
- Infectious \mathcal{I}_{t}
- Removed \mathcal{R}_{t}

Stochastic model for a finite graph with N vertices

\star Only the edges between the \mathcal{I} and \mathcal{R} individuals are observed.
The degree of each individual is known.
\star To each / individual is associated an exponential random clock with rate α to determine its removal.
\star To each open edge (directed to \mathcal{S}), we associate a random exponential clock with rate β.
\star When it rings, the edge of an \mathcal{S} is chosen at random. We determine whether its remaining edges are linked with \mathcal{S}, \mathcal{I} or \mathcal{R}-type individuals.

Edge-based quantities

\star The idea of Volz is to use network-centric quantities (such as the number of edges from \mathcal{I} to \mathcal{S}) rather than node-centric quantities.
$\star \mathcal{S}_{t}, \mathcal{I}_{t}, \mathcal{R}_{t}, \mathcal{S}_{t}, I_{t}, R_{t}, d_{i}, d_{i}\left(\mathcal{S}_{t}\right) \ldots$ μ finite measure on \mathbb{N} and f bounded or >0 function: $\langle\mu, f\rangle=\sum_{k \in \mathbb{N}} f(k) \mu(k)$.

Edge-based quantities

\star The idea of Volz is to use network-centric quantities (such as the number of edges from \mathcal{I} to \mathcal{S}) rather than node-centric quantities.
$\star \mathcal{S}_{t}, \mathcal{I}_{t}, \mathcal{R}_{t}, S_{t}, I_{t}, R_{t}, d_{i}, d_{i}\left(\mathcal{S}_{t}\right) \ldots$
μ finite measure on \mathbb{N} and f bounded or >0 function:
$\langle\mu, f\rangle=\sum_{k \in \mathbb{N}} f(k) \mu(k)$.

* We introduce the following measures:

$$
\begin{array}{ll}
\mu_{t}^{\mathcal{S}}(d k)=\sum_{u \in \mathcal{S}_{t}} \delta_{d_{u}}(d k) & \mu_{t}^{S \mathcal{I}}(d k)=\sum_{u \in \mathcal{I}_{t}} \delta_{d_{u}\left(\mathcal{S}_{t}\right)}(d k) \\
\mu_{t}^{\mathcal{S} \mathcal{R}}(d k)=\sum_{u \in \mathcal{R}_{t}} \delta_{d_{u}\left(\mathcal{S}_{t}\right)}(d k)
\end{array}
$$

Edge-based quantities

* The idea of Volz is to use network-centric quantities (such as the number of edges from \mathcal{I} to \mathcal{S}) rather than node-centric quantities.
$\star \mathcal{S}_{t}, \mathcal{I}_{t}, \mathcal{R}_{t}, S_{t}, I_{t}, R_{t}, d_{i}, d_{i}\left(\mathcal{S}_{t}\right) \ldots$
μ finite measure on \mathbb{N} and f bounded or >0 function:
$\langle\mu, f\rangle=\sum_{k \in \mathbb{N}} f(k) \mu(k)$.
\star We introduce the following measures:

$$
\begin{array}{ll}
\mu_{t}^{\mathcal{S}}(d k)=\sum_{u \in \mathcal{S}_{t}} \delta_{d_{u}}(d k) & \mu_{t}^{\mathcal{S I}}(d k)=\sum_{u \in \mathcal{I}_{t}} \delta_{d_{u}\left(\mathcal{S}_{t}\right)}(d k) \\
\mu_{t}^{\mathcal{S}}(d k)=\sum_{u \in \mathcal{R}_{t}} \delta_{d_{u}\left(\mathcal{S}_{t}\right)}(d k)
\end{array}
$$

This sums up the evolution of the epidemic (but does not allow the reconstruction of the complicated graph on which the illness propagates).

$$
I_{t}=\operatorname{Card}\left(\mathcal{I}_{t}\right)=\left\langle\mu_{t}^{\mathcal{S}}, \mathbf{1}\right\rangle, \quad N_{t}^{\mathcal{S I}}=\left\langle\mu_{t}^{\mathcal{S I}}, k\right\rangle=\sum_{u \in \mathcal{I}_{t}} d_{u}\left(\mathcal{S}_{t}\right)
$$

Dynamics

\star Global force of infection: $\beta N_{t_{-}}^{S \mathcal{I}}$.
\star Choice of a given susceptible of degree $k: k / N_{t-}^{S}$.
So that the rate of infection of a given susceptible of degree k is:
$\beta k p_{t_{-}}^{\mathcal{T}}$.
\star The probability that its $k-1$ remaining edges are linked to \mathcal{I} or \mathcal{R} is:

$$
p(j, \ell, m \mid k-1, t)=\frac{\left(\begin{array}{c}
N_{t_{-}}^{j}-1
\end{array}\right)\binom{\ell}{N_{t_{-}}^{S \mathcal{R}}}\binom{m}{N_{t_{-}}^{S \mathcal{S}}}}{\binom{k-1}{N_{t_{-}-1}^{s}-1}} \mathbf{1}_{j+\ell+m=k-1} \mathbf{1}_{j<N_{t_{-}}^{S I}} \mathbf{1}_{\ell \leq N_{t_{-}}^{S \mathcal{R}}}
$$

Dynamics

\star Global force of infection: $\beta N_{t_{-}}^{S I}$.
\star Choice of a given susceptible of degree $k: k / N_{t_{-}}^{S}$.
So that the rate of infection of a given susceptible of degree k is:
$\beta k p_{t_{-}}^{\mathcal{T}}$.
\star The probability that its $k-1$ remaining edges are linked to \mathcal{I} or \mathcal{R} is:

$$
p(j, \ell, m \mid k-1, t)=\frac{\left(\begin{array}{c}
\stackrel{j}{N_{t_{-}}^{S \mathcal{I}}-1}
\end{array}\right)\binom{\ell}{N_{t_{-} \mathcal{R}}^{S}}\binom{m}{N_{t_{-}}^{S S}}}{\binom{k-1}{N_{t_{-}}^{S}-1}} \mathbf{1}_{j+\ell+m=k-1} \mathbf{1}_{j<N_{t_{-}}^{S \mathcal{I}}} \mathbf{1}_{\ell \leq N_{t_{-}}^{S \mathcal{R}}}
$$

\star To modify the degree distributions $\mu_{t_{-} \mathcal{S}}^{\mathcal{S}}$ (idem for $\mu_{t_{-}}^{\mathcal{S R}}$):
We draw a sequence $e=\left(e_{u}\right)_{u \in \mathcal{I}_{t_{-}}}$of integers.

- e_{u} is the number of edges to the infectious individual u at t_{-}.
- not all sequences are admissible.

The probability of drawing the sequence e is

$$
\rho_{U}\left(e \mid j, \mu_{T_{-}}^{S \mathcal{I}}\right)=\frac{\prod_{u \in \mathcal{I}_{t_{-}}}\binom{d_{u}}{e_{u}}}{\binom{N_{-}^{S I}}{j+1}} \mathbf{1}_{\left\{\sum e_{u}=j+1, \text { e is admissible }\right\}}
$$

Renormalization

\star We are interested in increasing the number of vertices N without rescaling the degree distribution. $\mu^{N, \mathcal{S}}, \mu^{N, \mathcal{S I}}, \mu^{N, \mathcal{S} \mathcal{R}}$.
\star We now consider $\mu^{(N), \mathcal{S}}, \mu^{(N), \mathcal{S I}}$ and $\mu^{(N), \mathcal{S R}}$ where for ex:

$$
\mu_{t}^{(N), \mathcal{S}}(d k)=\frac{1}{N} \mu_{t}^{N, \mathcal{S}}(d k) \quad \text { with } \quad \lim _{N \rightarrow+\infty} \mu_{0}^{(N), \mathcal{S}}=\bar{\mu}_{0}^{\mathcal{S}} \text { in } \mathcal{M}_{F}(\mathbb{N})
$$

(idem for $\mu_{0}^{(N), \mathcal{S I}}$ with $\bar{N}_{0}^{S \mathcal{I}}>\varepsilon$ and $\mu_{0}^{(N), \mathcal{S R}}$ with $\bar{N}_{0}^{\mathcal{S R}}>\varepsilon$)

Renormalization

\star We are interested in increasing the number of vertices N without rescaling the degree distribution.
$\mu^{N, \mathcal{S}}, \mu^{N, \mathcal{S I}}, \mu^{N, \mathcal{S R}}$.
\star We now consider $\mu^{(N), \mathcal{S}}, \mu^{(N), \mathcal{S I}}$ and $\mu^{(N), \mathcal{S R}}$ where for ex:

$$
\mu_{t}^{(N), \mathcal{S}}(d k)=\frac{1}{N} \mu_{t}^{N, \mathcal{S}}(d k) \quad \text { with } \quad \lim _{N \rightarrow+\infty} \mu_{0}^{(N), \mathcal{S}}=\bar{\mu}_{0}^{\mathcal{S}} \text { in } \mathcal{M}_{F}(\mathbb{N})
$$

(idem for $\mu_{0}^{(N), S \mathcal{I}}$ with $\bar{N}_{0}^{S I}>\varepsilon$ and $\mu_{0}^{(N), S \mathcal{R}}$ with $\bar{N}_{0}^{S \mathcal{R}}>\varepsilon$)
$\star 3$ SDE:
$\left\langle\mu_{t}^{(N), \mathcal{S I}}, f\right\rangle=\left\langle\mu_{0}^{(N), \mathcal{S I}}, f\right\rangle+A_{t}^{(N), \mathcal{S I}, f}+M_{t}^{(N), \mathcal{S I}, f}$,
where $M^{(N), S \mathcal{S I}, f}$ is a square integrable martingale started from 0 and with previsible quadratic variation in $1 / \mathrm{N}$.
$\underline{A_{t}^{(N), \mathcal{I S}, f}}:$

$$
\begin{aligned}
& A_{t}^{(N), \mathcal{I S}, f}=-\int_{0}^{t} \alpha\left\langle\mu_{s}^{(N), \mathcal{S I}}, f\right\rangle d s \\
& \quad+\int_{0}^{t} \sum_{k \in \mathbb{N}} \beta k p_{s}^{(N), \mathcal{I}} \mu_{s}^{(N), \mathcal{S}}(k) \sum_{j+\ell+1 \leq k} p_{s}^{N}(j, \ell, m \mid k-1, t) \\
& \quad \times \sum_{e \in \mathcal{U}} \rho_{U}\left(e \mid j+1, \mu_{s}^{n, \mathcal{S I}}\right)\left(f(m)+\sum_{u \in \mathcal{I}_{s}^{N}}\left(f\left(d_{u}-e_{u}\right)-f\left(d_{u}\right)\right)\right) d s,
\end{aligned}
$$

$$
\begin{aligned}
& A_{t}^{(N), \mathcal{I S}, f}=-\int_{0}^{t} \alpha\left\langle\mu_{s}^{(N), \mathcal{S I}}, f\right\rangle d s \\
& \quad+\int_{0}^{t} \sum_{k \in \mathbb{N}} \beta k p_{s}^{(N), \mathcal{I}} \mu_{s}^{(N), \mathcal{S}}(k) \sum_{j+\ell+1 \leq k} p_{s}^{N}(j, \ell, m \mid k-1, t) \\
& \quad \times \sum_{e \in \mathcal{U}} \rho_{U}\left(e \mid j+1, \mu_{s}^{n, \mathcal{S I}}\right)\left(f(m)+\sum_{u \in \mathcal{I}_{s}^{N}}\left(f\left(d_{u}-e_{u}\right)-f\left(d_{u}\right)\right)\right) d s
\end{aligned}
$$

Th: Under appropriate moment conditions,
$\left(\mu_{t}^{(N), \mathcal{S}}, \mu_{t}^{(N), \mathcal{S I}}, \mu_{t}^{(N), S \mathcal{S}}\right)_{t \in \mathbb{R}_{+}}$converge to a deterministic limit $\left(\bar{\mu}_{t}^{\mathcal{S}}, \bar{\mu}_{t}^{\mathcal{S} \mathcal{I}}, \bar{\mu}_{t}^{\mathcal{S R}}\right)_{t \in \mathbb{R}_{+}}$

$$
\begin{aligned}
& \left\langle\bar{\mu}_{t}^{\mathcal{S I}}, f\right\rangle=\left\langle\bar{\mu}_{0}^{\mathcal{S I}}, f\right\rangle-\int_{0}^{t} \alpha\left\langle\bar{\mu}_{s}^{\mathcal{S}}, f\right\rangle d s \\
& +\int_{0}^{t} \sum_{k \in \mathbb{N}^{*}} \beta k \bar{p}_{s}^{\prime} \sum_{j+\ell+m=k-1}\left(\binom{j, \ell, m}{k-1}\left(\bar{p}_{s}^{\mathcal{I}}\right)^{j}\left(\bar{p}_{s}^{\mathcal{R}}\right)^{\ell}\left(\bar{p}_{s}^{\mathcal{S}}\right)^{m}\right) \\
& \times\left(f(m)+(j+1) \sum_{k^{\prime} \in \mathbb{N}^{*}}\left(f\left(k^{\prime}-1\right)-f\left(k^{\prime}\right)\right) \frac{k^{\prime} \bar{\mu}_{s}^{\mathcal{S}}\left(k^{\prime}\right)}{\left\langle\bar{\mu}_{s}^{\mathcal{S}}, k\right\rangle}\right) \bar{\mu}_{s}^{\mathcal{S}}(k) d s
\end{aligned}
$$

Deterministic limit

\star Limit equations:

$$
\begin{aligned}
& \bar{\mu}_{t}^{\mathcal{S}}(k)=\bar{\mu}_{0}^{\mathcal{S}}(k) \theta_{t}^{k}, \quad \theta_{t}=e^{-\beta \int_{0}^{t} \bar{p}_{s}^{I} d s} \\
& \left\langle\bar{\mu}_{t}^{\mathcal{S I}}, f\right\rangle=\ldots \\
& \left\langle\bar{\mu}_{t}^{\mathcal{S R}}, f\right\rangle=\int_{0}^{t} \alpha\left\langle\bar{\mu}_{s}^{\mathcal{S I}}, f\right\rangle d s \\
& \quad+\int_{0}^{t} \sum_{k \in \mathbb{N}} \beta k \bar{p}_{s}^{\mathcal{I}}(k-1) \bar{p}_{s}^{\mathcal{R}} \sum_{k^{\prime} \in \mathbb{N}}\left(f\left(k^{\prime}-1\right)-f\left(k^{\prime}\right)\right) \frac{k^{\prime} \mu_{s}^{\mathcal{S R}}\left(k^{\prime}\right)}{\bar{N}_{s}^{\mathcal{R}}} \bar{\mu}_{s}^{\mathcal{S}}(k) d s
\end{aligned}
$$

\star This allows us to recover Volz'equations:

- Choosing $f \equiv 1$ gives \bar{S}_{t}, \bar{I}_{t},
- Choosing $f(k)=k$ gives $\bar{N}^{\mathcal{S}}, \bar{N}^{\mathcal{S I}}, \bar{N}^{\mathcal{S R}}$,
from which we can deduce $\bar{p}^{\mathcal{I}}=\bar{N}^{\mathcal{S I}} / \bar{N}^{\mathcal{S}} \ldots$

Volz'equations

Prop: let $g(z)=\sum_{k \in \mathbb{N}} \bar{\mu}_{0}^{\mathcal{S}}(k) z^{k}$ be the generating function of $\bar{\mu}_{0}^{\mathcal{S}}$.

$$
\begin{aligned}
& \theta_{t}=\exp \left(-\beta \int_{0}^{t} p_{s}^{\mathcal{I}} d s\right) \\
& \bar{S}_{t}=g\left(\theta_{t}\right), \quad \overline{\bar{I}}_{t}=\bar{I}_{0}+\int_{0}^{t}\left(\beta \bar{p}_{s}^{\mathcal{I}} \theta_{s} g^{\prime}\left(\theta_{s}\right)-\alpha \bar{I}_{s}\right) d s \\
& \bar{p}_{t}^{\mathcal{I}}=\frac{\bar{N}_{t}^{S \mathcal{I}}}{\bar{N}_{t}^{S}}=\bar{p}_{0}^{\mathcal{I}}+\int_{0}^{t}\left(\beta \bar{p}_{s}^{\mathcal{I}} \bar{p}_{s}^{\mathcal{S}} \theta_{s} \frac{g^{\prime \prime}\left(\theta_{s}\right)}{g^{\prime}\left(\theta_{s}\right)}-\beta \bar{p}_{s}^{\mathcal{I}}\left(1-\bar{p}_{s}^{\mathcal{I}}\right)-\alpha \bar{p}_{s}^{\mathcal{I}}\right) d s . \\
& \bar{p}_{t}^{S}=\frac{\bar{N}_{t}^{S \mathcal{S}}}{\bar{N}_{t}^{S}}=\bar{p}_{0}^{\mathcal{S}}+\int_{0}^{t} \beta \bar{p}_{s}^{\mathcal{I}} \bar{p}_{s}^{\mathcal{S}}\left(1-\theta_{s} \frac{g^{\prime \prime}\left(\theta_{s}\right)}{g^{\prime}\left(\theta_{s}\right)}\right) d s .
\end{aligned}
$$

Recall the limit for mixing models:

$$
\frac{d \bar{S}_{t}}{d t}=-\beta \bar{S}_{t} \bar{l}_{t}, \quad \frac{d \bar{l}_{t}}{d t}=\beta \bar{S}_{t} \bar{I}_{t}-\alpha \bar{I}_{t}
$$

Volz'equations

Prop: let $g(z)=\sum_{k \in \mathbb{N}} \bar{\mu}_{0}^{\mathcal{S}}(k) z^{k}$ be the generating function of $\bar{\mu}_{0}^{\mathcal{S}}$.

$$
\begin{aligned}
& \theta_{t}=\exp \left(-\beta \int_{0}^{t} p_{s}^{\mathcal{I}} d s\right) \\
& \bar{S}_{t}=g\left(\theta_{t}\right), \quad \overline{\bar{p}}_{t}=\bar{I}_{0}+\int_{0}^{t}\left(\beta \times \bar{N}_{s}^{\mathcal{S I}}-\alpha \bar{\alpha}_{s}\right) d s \\
& \bar{p}_{t}^{\mathcal{I}}=\frac{\bar{N}_{t}^{\mathcal{I}}}{\bar{N}_{t}^{S}}=\bar{p}_{0}^{\mathcal{I}}+\int_{0}^{t}\left(\beta \bar{p}_{s}^{\mathcal{I}} \bar{p}_{s}^{\mathcal{S}} \theta_{s} \frac{g^{\prime \prime}\left(\theta_{s}\right)}{g^{\prime}\left(\theta_{s}\right)}-\beta \bar{p}_{s}^{\mathcal{I}}\left(1-\bar{p}_{s}^{\mathcal{I}}\right)-\alpha \bar{p}_{s}^{\mathcal{I}}\right) d s . \\
& \bar{p}_{t}^{\mathcal{S}}=\frac{\bar{N}_{t}^{S \mathcal{S}}}{\bar{N}_{t}^{S}}=\bar{p}_{0}^{\mathcal{S}}+\int_{0}^{t} \beta \bar{p}_{s}^{\mathcal{I}} \bar{p}_{s}^{\mathcal{S}}\left(1-\theta_{s} \frac{g^{\prime \prime}\left(\theta_{s}\right)}{g^{\prime}\left(\theta_{s}\right)}\right) d s .
\end{aligned}
$$

Recall the limit for mixing models:

$$
\frac{d \bar{S}_{t}}{d t}=-\beta \bar{S}_{t} \bar{l}_{t}, \quad \frac{d \bar{l}_{t}}{d t}=\beta \bar{S}_{t} \bar{I}_{t}-\alpha \bar{I}_{t}
$$

Here:

$$
\frac{d \bar{S}_{t}}{d t}=g^{\prime}\left(\theta_{t}\right) \dot{\theta}_{t}=-\beta g^{\prime}\left(\theta_{t}\right) \theta_{t} \bar{p}_{t}^{\mathcal{I}}=-\beta \bar{N}_{t}^{\mathcal{S}} \bar{p}_{t}^{\mathcal{I}}=-\beta \bar{N}_{t}^{S \mathcal{I}}
$$

Sketch of the proof

Assumption: $\sup _{N \in \mathbb{N}^{*}}\left(\left\langle\mu_{0}^{(N), \mathcal{S}}, 1+k^{5}\right\rangle+\left\langle\mu_{0}^{(N), \mathcal{S I}}, 1+k^{5}\right\rangle\right)<+\infty$,

* Tightness: topology on $\mathcal{M}_{F}(\mathbb{N})$. Roelly's criterion. Aldous-Rebolledo criterion.

$$
\begin{aligned}
& \mathbb{P}\left(\left|A_{\tau_{N}}^{(N), \mathcal{S I}, f}-A_{\sigma_{N}}^{(N), \mathcal{S I}, f}\right|>\varepsilon\right) \leq \varepsilon \\
& \mathbb{P}\left(\left|\left\langle M^{(N), \mathcal{S I}, f}\right\rangle_{\tau_{N}}-\left\langle M^{(N), \mathcal{S I}, f}\right\rangle_{\sigma_{N}}\right|>\varepsilon\right) \leq \varepsilon .
\end{aligned}
$$

\star Convergence of the generators.

- The identification of the limit is OK on $[0, T]$ IF $T<\tau_{\varepsilon}^{N}$ where

$$
\tau_{\varepsilon}^{N}=\inf \left\{t \geq 0, N_{t}^{(N), S I}<\varepsilon\right\} .
$$

* Uniqueness:
- Gronwall's lemma gives that solutions of the limiting equation have same mass and same moments of order 1 and 2.
- Uniqueness of the generating function of $\bar{\mu}^{\mathcal{I S}}$ which solves a transport equation.

Degree distribution of the "initial condition"

Prop: For $\varepsilon>0$, when $N \rightarrow+\infty$, the degree distribution when after [εN] infections converges to:

$$
\frac{1}{1-\varepsilon} \sum_{k \geq 0} p_{k}\left(1-z^{\varepsilon}\right)^{k} \delta_{k}
$$

where z^{ε} is the solution of $1-\varepsilon=f(1-z), f$ being the generating function of the original degree distribution.

