LLN and CLT for the final size of the epidemic

Etienne Pardoux

Aix-Marseille Université

Final size 1

- Define, for $0 \leq w \leq N+1$,

$$
\mathcal{J}(w)=\frac{c p}{N} \sum_{i=0}^{[w]-1} \Delta T_{(i)}
$$

Recall that $i=0$ is the index of the initially infected individual, $\Delta T_{(i)}$ is the infectious period of individual whose resistance level is $Q_{(i)}$.

Final size 1

- Define, for $0 \leq w \leq N+1$,

$$
\mathcal{J}(w)=\frac{c p}{N} \sum_{i=0}^{[w]-1} \Delta T_{(i)}
$$

Recall that $i=0$ is the index of the initially infected individual, $\Delta T_{(i)}$ is the infectious period of individual whose resistance level is $Q_{(i)}$.

- $\mathcal{J}(w)$ is the infection pressure produced by the first [w] infected individuals (including number 0). For any integer k, \mathcal{J} is of course constant on the interval $[k, k+1)$.

Final size 1

- Define, for $0 \leq w \leq N+1$,

$$
\mathcal{J}(w)=\frac{c p}{N} \sum_{i=0}^{[w]-1} \Delta T_{(i)}
$$

Recall that $i=0$ is the index of the initially infected individual, $\Delta T_{(i)}$ is the infectious period of individual whose resistance level is $Q_{(i)}$.

- $\mathcal{J}(w)$ is the infection pressure produced by the first [w] infected individuals (including number 0). For any integer k, \mathcal{J} is of course constant on the interval $[k, k+1)$.
- Define for $v>0$,

$$
\mathcal{Q}(v)=\sum_{i=1}^{N} \mathbf{1}_{\left\{Q_{i} \leq v\right\}}
$$

Final size 2

- The total number of infected individuals in the epidemic is

$$
\begin{aligned}
Y & =\min \left\{k \geq 0 ; Q_{(k+1)}>\frac{p c}{N} \sum_{i=0}^{k} \Delta T_{i}\right\} \\
& =\min \left\{k \geq 0 ; Q_{(k+1)}>\mathcal{J}(k+1)\right\} \\
& =\min \{w \geq 0 ; \mathcal{Q}(\mathcal{J}(w+1))=w\}
\end{aligned}
$$

Final size 2

- The total number of infected individuals in the epidemic is

$$
\begin{aligned}
Y & =\min \left\{k \geq 0 ; Q_{(k+1)}>\frac{p c}{N} \sum_{i=0}^{k} \Delta T_{i}\right\} \\
& =\min \left\{k \geq 0 ; Q_{(k+1)}>\mathcal{J}(k+1)\right\} \\
& =\min \{w \geq 0 ; \mathcal{Q}(\mathcal{J}(w+1))=w\}
\end{aligned}
$$

- Suppose indeed that $Y=i$. Then

$$
\begin{aligned}
\mathcal{J}(j) & >Q_{(j)}, \quad \text { hence } \mathcal{Q}(\mathcal{J}(j)) \geq j, \quad \forall j \leq i, \\
\text { and } \mathcal{J}(i+1) & <Q_{(i+1)} \quad \text { hence } \mathcal{Q}(\mathcal{J}(i+1))<i+1
\end{aligned}
$$

Final size 2

- The total number of infected individuals in the epidemic is

$$
\begin{aligned}
Y & =\min \left\{k \geq 0 ; Q_{(k+1)}>\frac{p c}{N} \sum_{i=0}^{k} \Delta T_{i}\right\} \\
& =\min \left\{k \geq 0 ; Q_{(k+1)}>\mathcal{J}(k+1)\right\} \\
& =\min \{w \geq 0 ; \mathcal{Q}(\mathcal{J}(w+1))=w\}
\end{aligned}
$$

- Suppose indeed that $Y=i$. Then

$$
\begin{aligned}
\mathcal{J}(j) & >Q_{(j)}, \quad \text { hence } \mathcal{Q}(\mathcal{J}(j)) \geq j, \quad \forall j \leq i, \\
\text { and } \mathcal{J}(i+1) & <Q_{(i+1)} \quad \text { hence } \mathcal{Q}(\mathcal{J}(i+1))<i+1
\end{aligned}
$$

- In other words $Y=i$ iff i is the smallest integer such that

$$
\mathcal{Q}(\mathcal{J}(i+1))<i+1, \text { hence }=i
$$

LLN 1

- We now index \mathcal{J} and \mathcal{Q} by N, so that they become \mathcal{J}_{N} and \mathcal{Q}_{N}. We now define

$$
\begin{aligned}
\overline{\mathcal{J}}_{N}(w) & =\mathcal{J}_{N}\left(N_{w}\right) \\
\overline{\mathcal{Q}}_{N}(v) & =\frac{\mathcal{Q}_{N}(v)}{N}
\end{aligned}
$$

LLN 1

- We now index \mathcal{J} and \mathcal{Q} by N, so that they become \mathcal{J}_{N} and \mathcal{Q}_{N}. We now define

$$
\begin{aligned}
\overline{\mathcal{J}}_{N}(w) & =\mathcal{J}_{N}\left(N_{w}\right) \\
\overline{\mathcal{Q}}_{N}(v) & =\frac{\mathcal{Q}_{N}(v)}{N}
\end{aligned}
$$

- As $N \rightarrow \infty$,

$$
\begin{aligned}
\overline{\mathcal{J}}_{N}(w) & \rightarrow c p \mathbb{E}(\Delta T) w=R_{0} w, \quad \text { and } \\
\overline{\mathcal{Q}}_{N}(v) & \rightarrow 1-e^{-v} \text { a.s. }
\end{aligned}
$$

LLN 1

- We now index \mathcal{J} and \mathcal{Q} by N, so that they become \mathcal{J}_{N} and \mathcal{Q}_{N}. We now define

$$
\begin{aligned}
\overline{\mathcal{J}}_{N}(w) & =\mathcal{J}_{N}\left(N_{w}\right) \\
\overline{\mathcal{Q}}_{N}(v) & =\frac{\mathcal{Q}_{N}(v)}{N}
\end{aligned}
$$

- As $N \rightarrow \infty$,

$$
\begin{aligned}
\overline{\mathcal{J}}_{N}(w) & \rightarrow c p \mathbb{E}(\Delta T) w=R_{0} w, \quad \text { and } \\
\overline{\mathcal{Q}}_{N}(v) & \rightarrow 1-e^{-v} \text { a.s. }
\end{aligned}
$$

- Hence

$$
\overline{\mathcal{Q}}_{N} \circ \bar{J}_{N}(w) \rightarrow 1-e^{-R_{0} w} .
$$

LLN 2

- We have

$$
\begin{aligned}
\frac{Y_{N}}{N} & =\min \left\{\frac{w}{N} \geq 0 ; \mathcal{Q}_{N}\left(\mathcal{J}_{N}(w+1)\right)=w\right\} \\
& =\min \left\{s \geq 0 ; \frac{1}{N} \mathcal{Q}_{N}\left(\mathcal{J}_{N}\left(N\left(s+\frac{1}{N}\right)\right)\right)=s\right\} \\
& =\min \left\{s \geq 0 ; \overline{\mathcal{Q}}_{N}\left(\overline{\mathcal{J}}_{N}\left(s+\frac{1}{N}\right)\right)=s\right\}
\end{aligned}
$$

equation

LLN 2

- We have

$$
\begin{aligned}
\frac{Y_{N}}{N} & =\min \left\{\frac{w}{N} \geq 0 ; \mathcal{Q}_{N}\left(\mathcal{J}_{N}(w+1)\right)=w\right\} \\
& =\min \left\{s \geq 0 ; \frac{1}{N} \mathcal{Q}_{N}\left(\mathcal{J}_{N}\left(N\left(s+\frac{1}{N}\right)\right)\right)=s\right\} \\
& =\min \left\{s \geq 0 ; \overline{\mathcal{Q}}_{N}\left(\overline{\mathcal{J}}_{N}\left(s+\frac{1}{N}\right)\right)=s\right\}
\end{aligned}
$$

- Then Y_{N} / N converges a.s. towards the smallest positive solution of equation

$$
1-e^{-R_{0} x}=x
$$

LLN 2

- We have

$$
\begin{aligned}
\frac{Y_{N}}{N} & =\min \left\{\frac{w}{N} \geq 0 ; \mathcal{Q}_{N}\left(\mathcal{J}_{N}(w+1)\right)=w\right\} \\
& =\min \left\{s \geq 0 ; \frac{1}{N} \mathcal{Q}_{N}\left(\mathcal{J}_{N}\left(N\left(s+\frac{1}{N}\right)\right)\right)=s\right\} \\
& =\min \left\{s \geq 0 ; \overline{\mathcal{Q}}_{N}\left(\overline{\mathcal{J}}_{N}\left(s+\frac{1}{N}\right)\right)=s\right\}
\end{aligned}
$$

- Then Y_{N} / N converges a.s. towards the smallest positive solution of equation

$$
1-e^{-R_{0} x}=x
$$

- If $R_{0} \leq 1$, the unique solution of this equation is $x=0$.
- If $R_{0}>1$, there is another solution $x>0$.

This solution $0<x<1$ is the size (measured as the proportion of the total population) of a "significant " epidemic, if it goes off.

CLT 1

- From the classical CLT, as $N \rightarrow \infty$,

$$
\begin{aligned}
\sqrt{N}\left(\overline{\mathcal{J}}_{N}(w)-R_{0} w\right) & =\frac{p c \sqrt{w}}{\sqrt{N w}} \sum_{i=1}^{[N w]}\left[\Delta T_{i}-\mathbb{E}\left(\Delta T_{i}\right)\right] \\
& \Rightarrow A(w)
\end{aligned}
$$

where $A(w) \sim \mathcal{N}\left(0, p^{2} c^{2} \operatorname{Var}(\Delta T) w\right)$.

CLT 1

- From the classical CLT, as $N \rightarrow \infty$,

$$
\begin{aligned}
\sqrt{N}\left(\overline{\mathcal{J}}_{N}(w)-R_{0} w\right) & =\frac{p c \sqrt{w}}{\sqrt{N w}} \sum_{i=1}^{[N w]}\left[\Delta T_{i}-\mathbb{E}\left(\Delta T_{i}\right)\right] \\
& \Rightarrow A(w)
\end{aligned}
$$

where $A(w) \sim \mathcal{N}\left(0, p^{2} c^{2} \operatorname{Var}(\Delta T) w\right)$.

- One can in fact show that, as processes

$$
\left\{\sqrt{N}\left(\overline{\mathcal{J}}_{N}(w)-R_{0} w\right), 0 \leq w \leq 1\right\} \Rightarrow\{A(w), 0 \leq w \leq 1\}
$$

where $\{A(w), 0 \leq w \leq 1\}$ is a Brownian motion, with $\operatorname{Var}(A(w))=r^{2} R_{0}^{2} w$, where $r^{2}=(\mathbb{E} \Delta T)^{-2} \operatorname{Var}(\Delta T)$.

CLT 2

- Consider now $\overline{\mathcal{Q}}_{N}$.

$$
\begin{aligned}
B_{N}(v) & =\sqrt{N}\left(\overline{\mathcal{Q}}_{N}(v)-\left[1-e^{-v}\right]\right) \\
& =\frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left[\mathbf{1}_{\left\{Q_{i} \leq v\right\}}-\left(1-e^{-v}\right)\right] \\
& \Rightarrow B(v)
\end{aligned}
$$

where $B(v) \sim \mathcal{N}\left(0, e^{-v}\left(1-e^{-v}\right)\right)$.
according to the Kolmogorov-Smirnov theorem, towards a tim
changed Brownian bridge. In simpler words, $\{B(v), v \geq 0\}$ is
centered Gaussian process with continuous trajectories whose

CLT 2

- Consider now $\overline{\mathcal{Q}}_{N}$.

$$
\begin{aligned}
B_{N}(v) & =\sqrt{N}\left(\overline{\mathcal{Q}}_{N}(v)-\left[1-e^{-v}\right]\right) \\
& =\frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left[\mathbf{1}_{\left\{Q_{i} \leq v\right\}}-\left(1-e^{-v}\right)\right] \\
& \Rightarrow B(v)
\end{aligned}
$$

where $B(v) \sim \mathcal{N}\left(0, e^{-v}\left(1-e^{-v}\right)\right)$.

- according to the Kolmogorov-Smirnov theorem, towards a time changed Brownian bridge. In simpler words, $\{B(v), v \geq 0\}$ is a centered Gaussian process with continuous trajectories whose covariance is specified by the identity $\mathbb{E}[B(u) B(v)]=e^{-u v v}-e^{-(u+v)}$.

CLT 3

- Making use of the two above CLTs, we get

$$
\begin{aligned}
s= & 1-e^{-\bar{J}_{N}\left(s+N^{-1}\right)}+N^{-1 / 2} B_{N}\left(\overline{\mathcal{J}}_{N}\left(s+N^{-1}\right)\right) \\
= & 1-\exp \left(-R_{0}\left(s+N^{-1}\right)+N^{-1 / 2} A_{N}\left(s+N^{-1}\right)\right) \\
& +N^{-1 / 2} B_{N}\left(R_{0}\left(s+N^{-1}\right)+N^{-1 / 2} A_{N}\left(s+N^{-1}\right)\right) .
\end{aligned}
$$

CLT 3

- Making use of the two above CLTs, we get

$$
\begin{aligned}
s= & 1-e^{-\bar{J}_{N}\left(s+N^{-1}\right)}+N^{-1 / 2} B_{N}\left(\overline{\mathcal{J}}_{N}\left(s+N^{-1}\right)\right) \\
= & 1-\exp \left(-R_{0}\left(s+N^{-1}\right)+N^{-1 / 2} A_{N}\left(s+N^{-1}\right)\right) \\
& +N^{-1 / 2} B_{N}\left(R_{0}\left(s+N^{-1}\right)+N^{-1 / 2} A_{N}\left(s+N^{-1}\right)\right) .
\end{aligned}
$$

- Let $s=s^{*}+s_{N} N^{-1 / 2}+\circ\left(N^{-1 / 2}\right)$, where s^{*} satisfies $e^{-R_{0} s^{*}}=1-s^{*}$.

CLT 3

- Making use of the two above CLTs, we get

$$
\begin{aligned}
s= & 1-e^{-\bar{J}_{N}\left(s+N^{-1}\right)}+N^{-1 / 2} B_{N}\left(\overline{\mathcal{J}}_{N}\left(s+N^{-1}\right)\right) \\
= & 1-\exp \left(-R_{0}\left(s+N^{-1}\right)+N^{-1 / 2} A_{N}\left(s+N^{-1}\right)\right) \\
& +N^{-1 / 2} B_{N}\left(R_{0}\left(s+N^{-1}\right)+N^{-1 / 2} A_{N}\left(s+N^{-1}\right)\right) .
\end{aligned}
$$

- Let $s=s^{*}+s_{N} N^{-1 / 2}+\circ\left(N^{-1 / 2}\right)$, where s^{*} satisfies $e^{-R_{0} s^{*}}=1-s^{*}$.
- We obtain

$$
\begin{aligned}
& s^{*}+s_{N} N^{-1 / 2}+\circ\left(N^{-1 / 2}\right) \\
&= 1-\exp \left(-R_{0} s^{*}-R_{0} s_{N} N^{-1 / 2}-A_{N}\left(s^{*}\right) N^{-1 / 2}+\circ\left(N^{-1 / 2}\right)\right. \\
& \quad+N^{-1 / 2} B_{N}\left(R_{0} s^{*}\right)+o\left(N^{-1 / 2}\right) \\
&= 1-e^{-R_{0} s^{*}}+N^{-1 / 2} e^{-R_{0} s^{*}}\left(R_{0} s_{N}+A_{N}\left(s^{*}\right)\right) \\
&+N^{-1 / 2} B_{N}\left(R_{0} s^{*}\right)+\circ\left(N^{-1 / 2}\right) .
\end{aligned}
$$

CLT 4

- We simplfy the relation making use of $e^{-R_{0} s^{*}}=1-s^{*}$, and then multiply by $N^{1 / 2}$; We get

CLT 4

- We simplfy the relation making use of $e^{-R_{0} s^{*}}=1-s^{*}$, and then multiply by $N^{1 / 2}$; We get

$$
\left[1-\left(1-s^{*}\right) R_{0}\right] s_{N}=B_{N}\left(R_{0} s^{*}\right)+\left(1-s^{*}\right) A_{N}\left(s^{*}\right)
$$

- Finally Y_{N} follows asymptotically the distribution

CLT 4

- We simplfy the relation making use of $e^{-R_{0} s^{*}}=1-s^{*}$, and then multiply by $N^{1 / 2}$; We get
-

$$
\left[1-\left(1-s^{*}\right) R_{0}\right] s_{N}=B_{N}\left(R_{0} s^{*}\right)+\left(1-s^{*}\right) A_{N}\left(s^{*}\right)
$$

- Hence $s_{N} \Rightarrow$ 三, where

$$
\equiv \sim \mathcal{N}\left(0, \frac{s^{*}\left(1-s^{*}\right)}{\left(1-\left(1-s^{*}\right) R_{0}\right)^{2}}\left(1+r^{2}\left(1-s^{*}\right) R_{0}^{2}\right)\right) .
$$

CLT 4

- We simplfy the relation making use of $e^{-R_{0} s^{*}}=1-s^{*}$, and then multiply by $N^{1 / 2}$; We get

$$
\left[1-\left(1-s^{*}\right) R_{0}\right] s_{N}=B_{N}\left(R_{0} s^{*}\right)+\left(1-s^{*}\right) A_{N}\left(s^{*}\right)
$$

- Hence $s_{N} \Rightarrow$ 三, where

$$
\equiv \sim \mathcal{N}\left(0, \frac{s^{*}\left(1-s^{*}\right)}{\left(1-\left(1-s^{*}\right) R_{0}\right)^{2}}\left(1+r^{2}\left(1-s^{*}\right) R_{0}^{2}\right)\right) .
$$

- Finally Y_{N} follows asymptotically the distribution

$$
\mathcal{N}\left(N s^{*}, N \frac{s^{*}\left(1-s^{*}\right)}{\left(1-\left(1-s^{*}\right) R_{0}\right)^{2}}\left(1+r^{2}(1-s *) R_{0}^{2}\right)\right) .
$$

