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The Model

@ Suppose there is no latency period (71 = 0 a.s.) and that
AT ~ Exp(«a). Consider a SIR model with constant population size
equal to N. Let S(t) denote the number of susceptibles at time t, /(t)
the number of infectious, R(t) the number of “removed” (i.e. “healed
and immune").
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The Model

@ Suppose there is no latency period (71 = 0 a.s.) and that
AT ~ Exp(«a). Consider a SIR model with constant population size
equal to N. Let S(t) denote the number of susceptibles at time t, /(t)
the number of infectious, R(t) the number of “removed” (i.e. “healed
and immune").

@ Hence the following equations, with P;(t) and Px(t) two standard
mutually independent Poisson processes :

S(t) = S(0)— Py <5 /t S(s)l(s)ds) ,
() = +P1< / S(s > P2< /otl(s)ds>.
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The proportions

o Let us define sy(t) = S(t)/N, in(t) = I(t)/N. The equations for the
proportions of susceptibles and infectious are written

su(t) = sn(0) ~ P10 [ sate Jin(r)r )

in(®) = i)+ P (30 [ su(intr)ar) = e (o [Cin(rer)
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The proportions

o Let us define sy(t) = S(t)/N, in(t) = I(t)/N. The equations for the
proportions of susceptibles and infectious are written

su(t) = sn(0) ~ P10 [ sate Jin(r)r )

in(®) = i)+ P (30 [ su(intr)ar) = e (o [Cin(rer)

@ Define the two martingales My (t) = Pi(t) — t, Ma(t) = Pa(t) — t.
We have

su(t) = sw(0) — B/OtsN(r)iN(r)dr— %Ml <BN/OtsN(r)iN(r)dr> ,
iN(t):iN(O)—i—B/o sN(r)iN(r)dr—a/O in(r)dr

+am (n [ tsN(rwN(r)dr) ~ e (an [ t () )
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@ Consider the process
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@ Consider the process

Let Fr = o{sn(r),in(r), 0 <r <t}
e We have

{Mn(t), t >0} is a Fr—martingale which satisfies

E[Mpy(t)] =0, E [|MN(t)|2} _ %E/Ots,v(r)i,v(r)dr.
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Proof of the Lemma

@ For the martingale property, see the Notes. From this, E[M y(t)] = 0.
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Proof of the Lemma

@ For the martingale property, see the Notes. From this, E[Mp(t)] =
oletO=tg<t;<---<t,=t.

(Mn(t)]* = ZWN t) — Mu(ti-1)|?

+2 ) [Mn(t) = Mu(ti-2)]IMn(t) — Mu(t-1)]

1<i<j<n

E (|IMn(0)1?)7 = S"E (IMn(t) — Mu(tiz))
=1
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Proof of the Lemma

@ For the martingale property, see the Notes. From this, E[Mp(t)] =
oletO=tg<t;<---<t,=t.

(Mn(t)]* = ZWN t) — Mu(ti-1)|?

+2 ) [Mn(t) = Mu(ti-2)]IMn(t) — Mu(t-1)]

1<i<j<n
E (|Mn(t) ZE M (t) = Mu(ti-1)[?)

o When ‘t,' — t,',1| — 0,

n

D IMu(t) = Mu(ta)P = Y [AMp(r)?

i=1 0<r<t

= N2P, (ﬁN/OtsN(r)iN(r)dr>
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@ The above cv is a.s., by uniform integrability we can interchange E
and the limit.
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@ The above cv is a.s., by uniform integrability we can interchange E
and the limit.

@ Hence
E [win(0)] = 22y (o0 [ sulr)in(ryer

= f/E/o sn(r)in(r)dr.
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@ The above cv is a.s., by uniform integrability we can interchange E
and the limit.

@ Hence
E [\MN(t)\2] — N2EP, <5N/OtsN(r)iN(r)dr>
_ %E /OtsN(r)iN(r)dr.

e This implies that supg<;< 1 |[Mp(t)| — 0 in probability. In fcat this is
true a.s.
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@ The above cv is a.s., by uniform integrability we can interchange E
and the limit.

@ Hence
E [\MN(t)\2] — N2EP, <5N/OtsN(r)iN(r)dr>
_ %E /otsN(r)iN(r)dr.

e This implies that supg<;< 1 |[Mp(t)| — 0 in probability. In fcat this is
true a.s.

@ This follows from

Pl(Nt)

—t| =+ 0a.s.as N — oco.

0<t<T
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@ We prove the above results in three steps. Let P(t) be a rate A
Poisson process

n'P(n) ="t [P(i) - P(i - 1)]
i=1

— A a.s.as n— oo.
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@ We prove the above results in three steps. Let P(t) be a rate A
Poisson process

n~tP(n —n_lz[P)— (i —1)]
— X\ a.s.as n— oo.

@ Second step

£P(e) = 1 P([E]) + £ (1) - P([H])

[t P(e) = Al < [£71P([e]) = Al + £ P([e] + 1) — £ P([t]).
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@ We prove the above results in three steps. Let P(t) be a rate A
Poisson process

n~tP(n —n_IZ[P)— (i —1)]
— A a.s.as n— oo.

@ Second step

t7LP(t) = t71P([t]) + 7 1(P(t) — P([]))
[t P(e) = Al < [£71P([e]) = Al + £ P([e] + 1) — £ P([t]).

@ We have just proved that N=1P(Nt) — At a.s. for all t > 0. We have
a sequence of increasing functions which converges to a continuous
function, hence by the second Dini theorem, the convergence is
uniform.
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@ We have the Law of Large Numbers :

sup {[sn(t) —s(t)| + |in(t) — i(t)|} — 0 a.s., where
0<t<T

(s(t),i(t)) solves

ds

E(t) = —Bs(t)i(t), t >0,

di . .
a(t) = Bs(t)i(t) — «i(t), t > 0.
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@ We have the Law of Large Numbers :

0<SLtJET{|5N(t) —s(t)| + |in(t) —i(t)]} — 0 a.s., where

(1) = Bs(0)i(
Define x(1) = (5] ). xu(®) = ( Ngﬁ)’), Xu(t) = X(t) - Xn(t)
0= (i M) o F () = (192%,)

0< x,y,x,y <1,

/
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@ We have

Xn(t) = Xn() + | X)) = FOXW(P)dr + Ya(o)
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@ We have

Xn(t) = Xn() + | X)) = FOXW(P)dr + Ya(o)

o We have proved that supg<,<7 || Yn(t)|| = 0 a.s. as N — oo.
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@ We have

Xn(t) = Xn() + | X)) = FOXW(P)dr + Ya(o)

o We have proved that supg<,<7 || Yn(t)|| = 0 a.s. as N — oo.
o Let en(t) = supg<,< || Yn(r)|l. We have

IXn(I < IXn(0)] + C(a, B) /Ot IXn(r)lidr +en(t).
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@ We have

Xn(t) = Xn() + | X)) = FOXW(P)dr + Ya(o)

o We have proved that supg<,<7 || Yn(t)|| = 0 a.s. as N — oo.
o Let en(t) = supg<,< || Yn(r)|l. We have

t
[Xn() < [[Xn(0)]| + C(O@ﬁ)/o [Xn(r)lldr +en(t).
o It then follows from Gronwall's Lemma that

P IXn(NI < (IXn ()l +en(t)) exp (C(e, B)t)

hence the result, provided that .Xy(0) — 0.

Etienne Pardoux (AMU) CIMPA, Ziguinchor



