# Central Limit Theorem 

Etienne Pardoux

Aix-Marseille Université

- Recall $\left(s_{N}(t), i_{N}(t)\right)$ and $(s(t), i(t))$. We write

$$
\begin{aligned}
& s_{N}(t)=s(t)+\frac{1}{\sqrt{N}} U_{N}(t) \\
& i_{N}(t)=i(t)+\frac{1}{\sqrt{N}} V_{N}(t)
\end{aligned}
$$

- Recall $\left(s_{N}(t), i_{N}(t)\right)$ and $(s(t), i(t))$. We write

$$
\begin{aligned}
& s_{N}(t)=s(t)+\frac{1}{\sqrt{N}} U_{N}(t) \\
& i_{N}(t)=i(t)+\frac{1}{\sqrt{N}} V_{N}(t)
\end{aligned}
$$

- If we replace $s_{N}, i_{N}$ by the above right-hand sides, exploit the $(s(t), i(t))$ equation to suppress the terms of order 1 , and multiply the resulting SDEs by $\sqrt{N}$, we get
- We get

$$
\begin{aligned}
& U_{N}(t)=-\beta \int_{0}^{t}\left(s(r) V_{N}(r)+i(r) U_{N}(r)+\frac{U_{N}(r) V_{N}(r)}{\sqrt{N}}\right) d r \\
& -\frac{1}{\sqrt{N}} M_{1}\left(\beta N \int_{0}^{t}\left(s(r) i(r)+\frac{s(r) V_{N}(r)+i(r) U_{N}(r)}{\sqrt{N}}+\frac{U_{N}(r) V_{N}(r)}{N}\right) d r\right), \\
& V_{N}(t)=\beta \int_{0}^{t}\left(s(r) V_{N}(r)+i(r) U_{N}(r)+\frac{U_{N}(r) V_{N}(r)}{\sqrt{N}}\right) d r \\
& +\frac{1}{\sqrt{N}} M_{1}\left(\beta N \int_{0}^{t}\left(s(r) i(r)+\frac{s(r) V_{N}(r)+i(r) U_{N}(r)}{\sqrt{N}}+\frac{U_{N}(r) V_{N}(r)}{N}\right)\right) \\
& -\alpha \int_{0}^{t} V_{N}(r) d r-\frac{1}{\sqrt{N}} M_{2}\left(\alpha N \int_{0}^{t}\left(i(r)+\frac{V_{N}(r)}{\sqrt{N}}\right) d r\right) .
\end{aligned}
$$

- We get

$$
\begin{aligned}
& U_{N}(t)=-\beta \int_{0}^{t}\left(s(r) V_{N}(r)+i(r) U_{N}(r)+\frac{U_{N}(r) V_{N}(r)}{\sqrt{N}}\right) d r \\
& -\frac{1}{\sqrt{N}} M_{1}\left(\beta N \int_{0}^{t}\left(s(r) i(r)+\frac{s(r) V_{N}(r)+i(r) U_{N}(r)}{\sqrt{N}}+\frac{U_{N}(r) V_{N}(r)}{N}\right) d r\right), \\
& V_{N}(t)=\beta \int_{0}^{t}\left(s(r) V_{N}(r)+i(r) U_{N}(r)+\frac{U_{N}(r) V_{N}(r)}{\sqrt{N}}\right) d r \\
& +\frac{1}{\sqrt{N}} M_{1}\left(\beta N \int_{0}^{t}\left(s(r) i(r)+\frac{s(r) V_{N}(r)+i(r) U_{N}(r)}{\sqrt{N}}+\frac{U_{N}(r) V_{N}(r)}{N}\right)\right) \\
& -\alpha \int_{0}^{t} V_{N}(r) d r-\frac{1}{\sqrt{N}} M_{2}\left(\alpha N \int_{0}^{t}\left(i(r)+\frac{V_{N}(r)}{\sqrt{N}}\right) d r\right) .
\end{aligned}
$$

- Let $\mathcal{M}_{1}^{N}(t)$ and $\mathcal{M}_{2}^{N}(t)$ be the two martingales in the above equations.
- Let

$$
\begin{aligned}
{\left[\mathcal{M}_{2}^{N}\right]_{t} } & =\sum_{0 \leq s \leq t}\left|\Delta \mathcal{M}_{2}^{N}(s)\right|^{2}=\frac{1}{N} P_{2}\left(\alpha N \int_{0}^{t}\left(i(r)+\frac{V_{N}(r)}{\sqrt{N}}\right) d r\right) \\
\left\langle\mathcal{M}_{2}^{N}\right\rangle_{t} & =\alpha \int_{0}^{t}\left(i(r)+\frac{V_{N}(r)}{\sqrt{N}}\right) d r,
\end{aligned}
$$

and similarly for $\left[\mathcal{M}_{1}^{N}\right]_{t},\left\langle\mathcal{M}_{1}^{N}\right\rangle_{t}$.

- Let

$$
\begin{aligned}
{\left[\mathcal{M}_{2}^{N}\right]_{t} } & =\sum_{0 \leq s \leq t}\left|\Delta \mathcal{M}_{2}^{N}(s)\right|^{2}=\frac{1}{N} P_{2}\left(\alpha N \int_{0}^{t}\left(i(r)+\frac{V_{N}(r)}{\sqrt{N}}\right) d r\right) \\
\left\langle\mathcal{M}_{2}^{N}\right\rangle_{t} & =\alpha \int_{0}^{t}\left(i(r)+\frac{V_{N}(r)}{\sqrt{N}}\right) d r,
\end{aligned}
$$

and similarly for $\left[\mathcal{M}_{1}^{N}\right]_{t},\left\langle\mathcal{M}_{1}^{N}\right\rangle_{t}$.

- We have that $\left|\mathcal{M}_{1}^{N}(t)\right|^{2}-\left\langle\mathcal{M}_{1}^{N}\right\rangle_{t}$ and $\left|\mathcal{M}_{2}^{N}(t)\right|^{2}-\left\langle\mathcal{M}_{2}^{N}\right\rangle_{t}$ are martingales.
- Let

$$
\begin{aligned}
{\left[\mathcal{M}_{2}^{N}\right]_{t} } & =\sum_{0 \leq s \leq t}\left|\Delta \mathcal{M}_{2}^{N}(s)\right|^{2}=\frac{1}{N} P_{2}\left(\alpha N \int_{0}^{t}\left(i(r)+\frac{V_{N}(r)}{\sqrt{N}}\right) d r\right) \\
\left\langle\mathcal{M}_{2}^{N}\right\rangle_{t} & =\alpha \int_{0}^{t}\left(i(r)+\frac{V_{N}(r)}{\sqrt{N}}\right) d r,
\end{aligned}
$$

and similarly for $\left[\mathcal{M}_{1}^{N}\right]_{t},\left\langle\mathcal{M}_{1}^{N}\right\rangle_{t}$.

- We have that $\left|\mathcal{M}_{1}^{N}(t)\right|^{2}-\left\langle\mathcal{M}_{1}^{N}\right\rangle_{t}$ and $\left|\mathcal{M}_{2}^{N}(t)\right|^{2}-\left\langle\mathcal{M}_{2}^{N}\right\rangle_{t}$ are martingales.
- It is plain that $\left|U_{N}(t)\right| \leq 2 \sqrt{N},\left|V_{N}(t)\right| \leq 2 \sqrt{N}$. Hence

$$
\begin{aligned}
\mathbb{E}\left[\left(\mathcal{M}_{1}^{N}(t)\right)^{2}\right] & \leq 9 \beta t, \mathbb{E}\left[\left(\mathcal{M}_{2}^{N}(t)\right)^{2}\right] \leq 3 \alpha t, \\
\mathbb{E}\left(\left|\mathcal{M}_{1}^{N}(t)\right|\right) & \leq 3 \sqrt{\beta t}, \mathbb{E}\left(\left|\mathcal{M}_{2}^{N}(t)\right|\right) \leq \sqrt{3 \alpha t}
\end{aligned}
$$

- We deduce from this and the above equations that

$$
\begin{aligned}
& \sup _{N \geq 1,0 \leq t \leq T} \mathbb{E}\left(\left|U_{N}(t)\right|+\left|V_{N}(t)\right|\right) \leq C_{1}(\alpha, \beta, T), \\
& \sup _{N \geq 1,0 \leq t \leq T} \mathbb{E}\left(\left|U_{N}(t)\right|^{2}+\left|V_{N}(t)\right|^{2}\right) \leq C_{2}(\alpha, \beta, T) .
\end{aligned}
$$

- We deduce from this and the above equations that

$$
\begin{aligned}
& \sup _{N \geq 1,0 \leq t \leq T} \mathbb{E}\left(\left|U_{N}(t)\right|+\left|V_{N}(t)\right|\right) \leq C_{1}(\alpha, \beta, T), \\
& \sup _{N \geq 1,0 \leq t \leq T} \mathbb{E}\left(\left|U_{N}(t)\right|^{2}+\left|V_{N}(t)\right|^{2}\right) \leq C_{2}(\alpha, \beta, T) .
\end{aligned}
$$

- Exploiting Doob's inequality, we deduce that for all $T>0$,

$$
\sup _{N \geq 1} \mathbb{E}\left(\sup _{0 \leq t \leq T}\left[\left|U_{N}(t)\right|^{2}+\left|V_{N}(t)\right|^{2}\right]\right)<\infty
$$

- We deduce from this and the above equations that

$$
\begin{aligned}
& \sup _{N \geq 1,0 \leq t \leq T} \mathbb{E}\left(\left|U_{N}(t)\right|+\left|V_{N}(t)\right|\right) \leq C_{1}(\alpha, \beta, T), \\
& \sup _{N \geq 1,0 \leq t \leq T} \mathbb{E}\left(\left|U_{N}(t)\right|^{2}+\left|V_{N}(t)\right|^{2}\right) \leq C_{2}(\alpha, \beta, T) .
\end{aligned}
$$

- Exploiting Doob's inequality, we deduce that for all $T>0$,

$$
\sup _{N \geq 1} \mathbb{E}\left(\sup _{0 \leq t \leq T}\left[\left|U_{N}(t)\right|^{2}+\left|V_{N}(t)\right|^{2}\right]\right)<\infty
$$

- We want to take the limit in

$$
\begin{aligned}
U_{N}(t)= & -\beta \int_{0}^{t}\left(s(r) V_{N}(r)+i(r) U_{N}(r)+\frac{U_{N}(r) V_{N}(r)}{\sqrt{N}}\right) d r-\mathcal{M}_{1}^{N}(t) \\
V_{N}(t)=\beta & \int_{0}^{t}\left(s(r) V_{N}(r)+i(r) U_{N}(r)+\frac{U_{N}(r) V_{N}(r)}{\sqrt{N}}\right) d r \\
& -\alpha \int_{0}^{t} V_{N}(r) d r+\mathcal{M}_{1}^{N}(t)-\mathcal{M}_{2}^{N}(t)
\end{aligned}
$$

- where both $\mathcal{M}_{1}^{N}(t)$ and $\mathcal{M}_{2}^{N}(t)$ are of the form $N^{-1 / 2} M\left(N t+\sqrt{N} t_{N}\right)$, where $t_{N}$ 's are random variables, with $N^{-1 / 2} \mathbb{E}\left[t_{N}\right] \rightarrow 0$ as $N \rightarrow \infty$.


Under the above assumptions,

- where both $\mathcal{M}_{1}^{N}(t)$ and $\mathcal{M}_{2}^{N}(t)$ are of the form $N^{-1 / 2} M\left(N t+\sqrt{N} t_{N}\right)$, where $t_{N}$ 's are random variables, with $N^{-1 / 2} \mathbb{E}\left[t_{N}\right] \rightarrow 0$ as $N \rightarrow \infty$.
- We want to show


## Proposition

Under the above assumptions,

$$
\left\{\frac{M\left(N t+\sqrt{N} t_{N}\right)}{\sqrt{N}}, t \geq 0\right\} \Rightarrow\{B(t), t \geq 0\}
$$

where $B(t)$ is a standard Brownian motion.

- where both $\mathcal{M}_{1}^{N}(t)$ and $\mathcal{M}_{2}^{N}(t)$ are of the form $N^{-1 / 2} M\left(N t+\sqrt{N} t_{N}\right)$, where $t_{N}$ 's are random variables, with $N^{-1 / 2} \mathbb{E}\left[t_{N}\right] \rightarrow 0$ as $N \rightarrow \infty$.
- We want to show


## Proposition

Under the above assumptions,

$$
\left\{\frac{M\left(N t+\sqrt{N} t_{N}\right)}{\sqrt{N}}, t \geq 0\right\} \Rightarrow\{B(t), t \geq 0\}
$$

where $B(t)$ is a standard Brownian motion.

- Let us first prove the result in case $t_{N}$ is a deterministic sequence s.t. $N^{-1 / 2} t_{N} \rightarrow 0$ as $N \rightarrow \infty$.


## Proof of Proposition

- We have to prove two things. As $N \rightarrow \infty$,
(1) $N^{-1 / 2} M(N t) \Rightarrow B(t)$,
(2) $N^{-1 / 2}\left[M\left(N t+\sqrt{N} t_{N}\right)-M(N t)\right] \rightarrow 0$ in probability.


## Proof of Proposition

- We have to prove two things. As $N \rightarrow \infty$,
(1) $N^{-1 / 2} M(N t) \Rightarrow B(t)$,
(2) $N^{-1 / 2}\left[M\left(N t+\sqrt{N} t_{N}\right)-M(N t)\right] \rightarrow 0$ in probability.
- Proof of (1). It follows from the usual CLT. Indeed

$$
\frac{M(N t)}{\sqrt{[N t]}}=\frac{1}{\sqrt{[N t]}} \sum_{i=1}^{[N t]}[M(i)-M(i-1)]+\frac{M(N t)-M([N t])}{\sqrt{[N t]}}
$$

## Proof of Proposition

- We have to prove two things. As $N \rightarrow \infty$,
(1) $N^{-1 / 2} M(N t) \Rightarrow B(t)$,
(2) $N^{-1 / 2}\left[M\left(N t+\sqrt{N} t_{N}\right)-M(N t)\right] \rightarrow 0$ in probability.
- Proof of (1). It follows from the usual CLT. Indeed

$$
\frac{M(N t)}{\sqrt{[N t]}}=\frac{1}{\sqrt{[N t]}} \sum_{i=1}^{[N t]}[M(i)-M(i-1)]+\frac{M(N t)-M([N t])}{\sqrt{[N t]}}
$$

- The r.v.'s $M(i)-M(i-1)$ are i.i.d. centered with variance 1 , and the last term above converges in probability to 0 as $N \rightarrow \infty$, hence

$$
\begin{aligned}
\frac{M(N t)}{\sqrt{[N t]}} & \Rightarrow \mathcal{N}(0,1) \\
\frac{M(N t)}{\sqrt{N}} & =\frac{\sqrt{[N t]}}{\sqrt{N}} \times \frac{M(N t)}{\sqrt{[N t]}} \\
& \Rightarrow B(t)
\end{aligned}
$$

where $B(t) \simeq \mathcal{N}(0, t)$.

## Proof of (2)

$$
\begin{aligned}
& \mathbb{P}\left(\left|\frac{M\left(N t+\sqrt{N} t_{N}\right)-M(N t)}{\sqrt{N}}\right|>\varepsilon\right) \\
& \quad \leq \frac{1}{N \varepsilon^{2}} \operatorname{Var}\left(M\left(N t+\sqrt{N} t_{N}\right)-M(N t)\right) \\
& \quad=\frac{\sqrt{N}\left|t_{N}\right|}{N \varepsilon^{2}} \\
& \quad \rightarrow 0
\end{aligned}
$$

provided $N^{-1 / 2} t_{N} \rightarrow 0$ as $N \rightarrow \infty$.

## The case $t_{N}$ random

- Note that

$$
\mathbb{P}\left(\frac{\left|t_{N}\right|}{\sqrt{N}}>\eta\right) \leq \frac{1}{\eta} \frac{\mathbb{E}\left|t_{N}\right|}{\sqrt{N}}
$$

- We split the event
into three pieces, intersecting with the three events (which constitute


## The case $t_{N}$ random

- Note that

$$
\mathbb{P}\left(\frac{\left|t_{N}\right|}{\sqrt{N}}>\eta\right) \leq \frac{1}{\eta} \frac{\mathbb{E}\left|t_{N}\right|}{\sqrt{N}}
$$

- We split the event

$$
\left\{\frac{\left|M\left(N t+\sqrt{N} t_{N}\right)-M(N t)\right|}{\sqrt{N}}>\varepsilon\right\}
$$

into three pieces, intersecting with the three events (which constitute a partition of $\Omega)\left\{0 \leq t_{N} \leq \eta \sqrt{N}\right\},\left\{-\eta \sqrt{N} \leq t_{N} \leq 0\right\}$ and $\left\{\frac{\left|t_{N}\right|}{\sqrt{N}}>\eta\right\}$.

- The probability of the first event is dominated by

$$
\begin{aligned}
& \mathbb{P}\left(\sup _{0 \leq s \leq N \eta} \frac{|M(N t+s)-M(N t)|}{\sqrt{N}}>\varepsilon\right) \\
& \quad \leq \frac{4}{N \varepsilon^{2}} \mathbb{E}\left(|M(N(t+\eta))-M(N t)|^{2}\right) \leq \frac{4 \eta}{\varepsilon^{2}}
\end{aligned}
$$

- The probability of the first event is dominated by

$$
\begin{aligned}
& \mathbb{P}\left(\sup _{0 \leq s \leq N \eta} \frac{|M(N t+s)-M(N t)|}{\sqrt{N}}>\varepsilon\right) \\
& \quad \leq \frac{4}{N \varepsilon^{2}} \mathbb{E}\left(|M(N(t+\eta))-M(N t)|^{2}\right) \leq \frac{4 \eta}{\varepsilon^{2}}
\end{aligned}
$$

- The probability of the second event is estimated analogously. As for the third event, its proabbility is dominated by $\frac{1}{\eta} \frac{\mathbb{E}\left|t_{N}\right|}{\sqrt{N}}$.
- The probability of the first event is dominated by

$$
\begin{aligned}
& \mathbb{P}\left(\sup _{0 \leq s \leq N \eta} \frac{|M(N t+s)-M(N t)|}{\sqrt{N}}>\varepsilon\right) \\
& \quad \leq \frac{4}{N \varepsilon^{2}} \mathbb{E}\left(|M(N(t+\eta))-M(N t)|^{2}\right) \leq \frac{4 \eta}{\varepsilon^{2}}
\end{aligned}
$$

- The probability of the second event is estimated analogously. As for the third event, its proabbility is dominated by $\frac{1 \mathbb{E}\left|t_{N}\right|}{\sqrt{N}}$.
- It remains to choose $\eta=\varepsilon^{3} / 8$ to deduce that

$$
\limsup _{N} \mathbb{P}\left(\frac{\left|M\left(N t+\sqrt{N} t_{N}\right)-M(N t)\right|}{\sqrt{N}}>\varepsilon\right) \leq \varepsilon
$$

## Weak convergence

- Moreover one can rather easily show that the sequence $\left\{\left(U_{N}(t), V_{N}(t)\right), t \geq 0\right\}$ is tight as a process whose trajectories belong to $C\left([0,+\infty) ; \mathbb{R}^{2}\right)$. Hence along a subsequence

$$
\left\{\left(U_{N}(t), V_{N}(t)\right), t \geq 0\right\} \Rightarrow\{(U(t), V(t)), t \geq 0\}
$$

## Weak convergence

- Moreover one can rather easily show that the sequence $\left\{\left(U_{N}(t), V_{N}(t)\right), t \geq 0\right\}$ is tight as a process whose trajectories belong to $C\left([0,+\infty) ; \mathbb{R}^{2}\right)$. Hence along a subsequence

$$
\left\{\left(U_{N}(t), V_{N}(t)\right), t \geq 0\right\} \Rightarrow\{(U(t), V(t)), t \geq 0\}
$$

- where the limit satisfies

$$
\begin{aligned}
& U(t)=-\beta \int_{0}^{t}[s(r) V(r)+i(r) U(r)] d r+\sqrt{\beta} \int_{0}^{t} \sqrt{s(r) i(r)} d B_{1}(r) \\
& V(t)=\beta \int_{0}^{t}[s(r) V(r)+i(r) U(r)] d r-\sqrt{\beta} \int_{0}^{t} \sqrt{s(r) i(r)} d B_{1}(r) \\
&-\alpha \int_{0}^{t} V(r) d r+\sqrt{\alpha} \int_{0}^{t} \sqrt{i(r)} d B_{2}(r)
\end{aligned}
$$

## Weak convergence

- Moreover one can rather easily show that the sequence $\left\{\left(U_{N}(t), V_{N}(t)\right), t \geq 0\right\}$ is tight as a process whose trajectories belong to $C\left([0,+\infty) ; \mathbb{R}^{2}\right)$. Hence along a subsequence

$$
\left\{\left(U_{N}(t), V_{N}(t)\right), t \geq 0\right\} \Rightarrow\{(U(t), V(t)), t \geq 0\}
$$

- where the limit satisfies

$$
\begin{aligned}
U(t)= & -\beta \int_{0}^{t}[s(r) V(r)+i(r) U(r)] d r+\sqrt{\beta} \int_{0}^{t} \sqrt{s(r) i(r)} d B_{1}(r) \\
V(t)= & \beta \int_{0}^{t}[s(r) V(r)+i(r) U(r)] d r-\sqrt{\beta} \int_{0}^{t} \sqrt{s(r) i(r)} d B_{1}(r) \\
& -\alpha \int_{0}^{t} V(r) d r+\sqrt{\alpha} \int_{0}^{t} \sqrt{i(r)} d B_{2}(r)
\end{aligned}
$$

- The process $\{(U(t), V(t)), t \geq 0\}$ is a Gaussian process of the Ornstein-Uhlenbeck type.
The law of the limit is uniquely determined. Hence the whole sequence converges.

