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o Recall (sy(t),in(t)) and (s(t),i(t)). We write

SN(t) = S(t) + \/]-NUN(t),
in(t) =i(t) + \%VN(t).
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o Recall (sy(t),in(t)) and (s(t),i(t)). We write

1
sn(t) = s(t) + ——=Un(t),
(E) = s(6) + 7 Un ()
1
iy(t) = i(t) + — Vi (t).
in(e) = i(6) + V()
o If we replace sy, iy by the above right—hand sides, exploit the
(s(t),i(t)) equation to suppress the terms of order 1, and multiply the

resulting SDEs by v/N, we get
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o We get

on(e) =5 [ ( (WVale) + iy Untr) + ) )
—\%/\/h(ﬁN/o S(r)i(r) )\m Un(r ) Un(r) N(f)>dr>,
Vn(t) = /0 (s(r (r)y+i(r)Un(r) + (%N( ") dr
+i (

+\%Ml (5/\//0 (5( () + s(r)Vn(r 1W( r)Un(r ) Un r;VVN(r)>>
Ca (

[ vnterar ot (o [ (i + Y4 o).




nte) = =5 [ (SVto) + ) 0nte) + 2O g

A VN
B 1NM1<5/V/0 s(r)i(r)+s(r)VN( )\m( )UN(f)Jr Un(r)Vn (f))dr)
MW%KGMW%MWN sl yr

f&%@%FMM U(LJWM)WU(U)
- a/ot Vi(r)dr — \%Mz <aN/Ot <i(r) + V\%U dr) .

o Let MY(t) and MY (t) be the two martingales in the above
equations.
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o Let

ML= Y 1aME6)E = e (o [ (i + 20 o).

0<s<t

e =a [ (i) + 240 g,

and similarly for [MY];, (M),
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o Let

ML= Y 1aME6)E = e (o [ (i + 20 o).

0<s<t

Me=a t i(r Vilr) r
(Mz)e = /0(()+ m)d,
and similarly for [MY];, (M),

o We have that [MY ()2 — (M), and [MY ()2 — (MY, are

martingales.
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o Let

ML= Y 1aME6)E = e (o [ (i + 20 o).

0<s<t

e Vin(r)
MN - / ( + ) d )
< 2 >t o 0 I(r) \/N r
and similarly for [MY];, (M),
o We have that |MY(t)]2 — (MY); and MY (£)[2 — (ML), are
martingales.
o It is plain that |Un(t)| < 2V/N, |Vn(t)| < 2v/N. Hence

E[(MY(6))?] < 98¢, E[(MY(£))?] < 3at,
E(MY(6)]) < 3v/Bt, E(IMY(1)]) < V3at.
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@ We deduce from this and the above equations that

sup  E(|Un(t)] + [Vn(1)]) < G, 8, T),
N>1, 0<t<T

sup  E(JUn(t)]* +|Vn(1)?) < G, B, T).
N>1, 0<t<T

Etienne Pardoux (AMU) CIMPA, Ziguinchor 5/11



@ We deduce from this and the above equations that

sup  E(|Un(t)] + [Vn(1)]) < G, 8, T),
N>1, 0<t<T

sup  E(JUn(t)]* +|Vn(1)?) < G, B, T).
N>1, 0<t<T

@ Exploiting Doob's inequality, we deduce that for all T > 0,

supE< sup_[|Un(1)]* + \VN(t)|2]> =
N>1 \0<t<T
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@ We deduce from this and the above equations that

sup E(JUn(t)] + V(D)) < Gila, 5, T),

N>1, 0<t<T

sup  E(JUn(t)]* +|Vn(1)?) < G, B, T).
N>1, 0<t<T

@ Exploiting Doob's inequality, we deduce that for all T > 0,

sup E < sup_[|Un(1)]* + VN(t)ﬂ) =
N>1 \0<t<T

@ We want to take the limit in

_ _5/ ( () Un(r) + 2 (%N( )> dr—My'(t),
0 (s i(r)Un(r) + UN(%NU)> dr
a/o Vin(r)dr + MY (t) — M3 (¢),
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o where both MY (t) and MY(t) are of the form N=1/2M(Nt 4 v/Nty),
where ty's are random variables, with N=1/2E[ty] — 0 as N — 0.
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o where both MY (t) and MY(t) are of the form N=1/2M(Nt 4 v/Nty),
where ty's are random variables, with N=1/2E[ty] — 0 as N — 0.

@ We want to show

Proposition

Under the above assumptions,

M(Nt + V/Nty)
VN

where B(t) is a standard Brownian motion.

, t20} = {B(t), t > 0},
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o where both MY (t) and MY(t) are of the form N=1/2M(Nt 4 v/Nty),
where ty's are random variables, with N=1/2E[ty] — 0 as N — 0.

@ We want to show

Proposition

Under the above assumptions,

{I\/I(Nt+ V/Nty)

VN

where B(t) is a standard Brownian motion.

, tzo} = {B(t), t > 0},

@ Let us first prove the result in case ty is a deterministic sequence s.t.
N=Y2ty — 0as N — co.
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Proof of Proposition

@ We have to prove two things. As N — oo,
(1) N~Y2M(Nt) = B(t),
(2) N=Y2[M(Nt++/Nty) — M(Nt)] — 0 in probability.
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Proof of Proposition

@ We have to prove two things. As N — oo,

(1) N~Y2M(Nt) = B(t),

(2) N=Y2[M(Nt++/Nty) — M(Nt)] — 0 in probability.
@ Proof of (1). It follows from the usual CLT. Indeed

M(Nt) el

= 7 M)

M(Nt) — M([Nt])

VNt ’

- M@ —1)]+
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Proof of Proposition

@ We have to prove two things. As N — oo,

(1) N~Y2M(Nt) = B(t),

(2) N=Y2[M(Nt++/Nty) — M(Nt)] — 0 in probability.
@ Proof of (1). It follows from the usual CLT. Indeed

M(Nt) el M(Nt) — M([Nt])

mmz[ Vivg

@ The r.v.'s M(i) — M(i — 1) are i.i.d. centered with variance 1, and the
last term above converges in probability to 0 as N — oo, hence

M(Nt)
= N(0,1
NG (0,1),
M(Nt) [Nt] I\/I(Nt)
VN VN [Ne]

- M@ —1)]+
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Proof of (2)

)
< Nigv;ar (I\/I(Nt +v/Nty) — M(/vt))

B VN [ty
T Ne2
— 0,

. (‘ M(Nt +V/Nty) — M(Nt)

provided N=1/2¢y — 0 as N — cc.
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The case ty random

o Note that
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The case ty random

o Note that

@ We split the event

VN

into three pieces, intersecting with the three events (which constitute
a partition of Q) {0 <ty < nm} {—77\FN <ty < 0} and

(40}

{ IM(Nt + VNty) — M(Nt)| y 6}
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@ The probability of the first event is dominated by

IM(Nt + 5) — M(Nt)|
¥ OSSSUSpNn \/N >€>
< B (IM(N(E+ ) — M(NE?) < 2.
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@ The probability of the first event is dominated by

IM(Nt + s) — M(Nt)| ..
0<s<N77 \/N

< B (IM(N(E+ ) — M(NE?) < 2.

@ The probability of the second event is estimated analogously. As for

the third event, its proabbility is dominated by 71] \';ﬁ'
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@ The probability of the first event is dominated by

IM(Nt + s) — M(Nt)|
> €
0<s<N77

VN

E (IM(N(t + ) — M(Ne)P) < 2.

< —

Ns

@ The probability of the second event is estimated analogously. As for

the third event, its proabbility is dominated by 71] \';ﬁl

e It remains to choose 1 = £3/8 to deduce that

IM(Nt + v/ Nty) — M(Nt)|
< JN > 5) <e.

limsupP
N
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Weak convergence

@ Moreover one can rather easily show that the sequence
{(Un(t), Vn(t)), t > 0} is tight as a process whose trajectories
belong to C([0, 4+-00); R?). Hence along a subsequence

{(Un(t), Vn(2)), t =0} = {(U(1), V(t)), t >0},
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Weak convergence

@ Moreover one can rather easily show that the sequence
{(Un(t), Vn(t)), t > 0} is tight as a process whose trajectories
belong to C([0, 4+-00); R?). Hence along a subsequence

{(Un(t), Vn(2)), t =0} = {(U(1), V(t)), t >0},

@ where the limit satisfies

ue) =5 [ SOV + (U] dr + /5 / B ().
V=5 | SOV + (U] dr — /B / B (r)
_ a/t V(r)dr + ﬁ/t Vi(r)dBa(r).
0 0
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Weak convergence

@ Moreover one can rather easily show that the sequence
{(Un(t), Vn(t)), t > 0} is tight as a process whose trajectories
belong to C([0, 4+-00); R?). Hence along a subsequence

{(Un(t), Vn(2)), t =0} = {(U(1), V(t)), t >0},

@ where the limit satisfies

ue) =5 [ SOV + (U] dr + /5 / B ().
V=5 | SOV + (U] dr — /B / B (r)
_ a/t V(r)dr + ﬁ/t Vi(r)dBa(r).
0 0

@ The process {(U(t), V(t)), t > 0} is a Gaussian process of the
Ornstein—Uhlenbeck type.
The law of the limit is uniquely determined. Hence the whole sequence

converges.
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