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Recall (sN(t), iN(t)) and (s(t), i(t)). We write

sN(t) = s(t) +
1√
N
UN(t),

iN(t) = i(t) +
1√
N
VN(t).

If we replace sN , iN by the above right–hand sides, exploit the
(s(t), i(t)) equation to suppress the terms of order 1, and multiply the
resulting SDEs by

√
N, we get
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We get

UN(t) = −β
∫ t

0

(
s(r)VN(r) + i(r)UN(r) +

UN(r)VN(r)√
N

)
dr

− 1√
N
M1

(
βN

∫ t

0

(
s(r)i(r)+

s(r)VN(r)+i(r)UN(r)√
N

+
UN(r)VN(r)

N

)
dr

)
,

VN(t) = β

∫ t

0

(
s(r)VN(r) + i(r)UN(r) +

UN(r)VN(r)√
N

)
dr

+
1√
N
M1

(
βN

∫ t

0

(
s(r)i(r)+

s(r)VN(r)+i(r)UN(r)√
N

+
UN(r)VN(r)

N

))
− α

∫ t

0
VN(r)dr − 1√

N
M2

(
αN

∫ t

0

(
i(r) +

VN(r)√
N

)
dr

)
.

LetMN
1 (t) andMN

2 (t) be the two martingales in the above
equations.
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Let

[MN
2 ]t =

∑
0≤s≤t

|∆MN
2 (s)|2 =

1
N
P2

(
αN

∫ t

0

(
i(r) +

VN(r)√
N

)
dr

)
,

〈MN
2 〉t = α

∫ t

0

(
i(r) +

VN(r)√
N

)
dr ,

and similarly for [MN
1 ]t , 〈MN

1 〉t .
We have that |MN

1 (t)|2 − 〈MN
1 〉t and |MN

2 (t)|2 − 〈MN
2 〉t are

martingales.
It is plain that |UN(t)| ≤ 2

√
N, |VN(t)| ≤ 2

√
N. Hence

E[(MN
1 (t))2] ≤ 9βt, E[(MN

2 (t))2] ≤ 3αt,

E(|MN
1 (t)|) ≤ 3

√
βt, E(|MN

2 (t)|) ≤
√
3αt.
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We deduce from this and the above equations that

sup
N≥1, 0≤t≤T

E (|UN(t)|+ |VN(t)|) ≤ C1(α, β,T ),

sup
N≥1, 0≤t≤T

E
(
|UN(t)|2 + |VN(t)|2

)
≤ C2(α, β,T ).

Exploiting Doob’s inequality, we deduce that for all T > 0,

sup
N≥1

E

(
sup

0≤t≤T

[
|UN(t)|2 + |VN(t)|2

])
<∞.

We want to take the limit in

UN(t) = −β
∫ t

0

(
s(r)VN(r) + i(r)UN(r) +

UN(r)VN(r)√
N

)
dr−MN

1 (t),

VN(t) = β

∫ t

0

(
s(r)VN(r) + i(r)UN(r) +

UN(r)VN(r)√
N

)
dr

− α
∫ t

0
VN(r)dr +MN

1 (t)−MN
2 (t),
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where bothMN
1 (t) andMN

2 (t) are of the form N−1/2M(Nt +
√
NtN),

where tN ’s are random variables, with N−1/2E[tN ]→ 0 as N →∞.
We want to show

Proposition
Under the above assumptions,{

M(Nt +
√
NtN)√

N
, t ≥ 0

}
⇒ {B(t), t ≥ 0},

where B(t) is a standard Brownian motion.

Let us first prove the result in case tN is a deterministic sequence s.t.
N−1/2tN → 0 as N →∞.
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Proof of Proposition

We have to prove two things. As N →∞,
(1) N−1/2M(Nt)⇒ B(t),
(2) N−1/2[M(Nt +

√
NtN)−M(Nt)]→ 0 in probability.

Proof of (1). It follows from the usual CLT. Indeed

M(Nt)√
[Nt]

=
1√
[Nt]

[Nt]∑
i=1

[M(i)−M(i − 1)] +
M(Nt)−M([Nt])√

[Nt]
,

The r.v.’s M(i)−M(i − 1) are i.i.d. centered with variance 1, and the
last term above converges in probability to 0 as N →∞, hence

M(Nt)√
[Nt]

⇒ N (0, 1),

M(Nt)√
N

=

√
[Nt]√
N
× M(Nt)√

[Nt]

⇒ B(t),

where B(t) ' N (0, t).
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Proof of (2)

P

(∣∣∣∣∣M(Nt +
√
NtN)−M(Nt)√
N

∣∣∣∣∣ > ε

)
≤ 1

Nε2
Var

(
M(Nt +

√
NtN)−M(Nt)

)
=

√
N |tN |
Nε2

→ 0,

provided N−1/2tN → 0 as N →∞.
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The case tN random

Note that

P
(
|tN |√
N
> η

)
≤ 1
η

E|tN |√
N
.

We split the event{
|M(Nt +

√
NtN)−M(Nt)|√
N

> ε

}

into three pieces, intersecting with the three events (which constitute
a partition of Ω)

{
0 ≤ tN ≤ η

√
N
}
,
{
−η
√
N ≤ tN ≤ 0

}
and{

|tN |√
N
> η

}
.
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The probability of the first event is dominated by

P

(
sup

0≤s≤Nη

|M(Nt + s)−M(Nt)|√
N

> ε

)
≤ 4

Nε2
E
(
|M(N(t + η))−M(Nt)|2

)
≤ 4η
ε2
.

The probability of the second event is estimated analogously. As for
the third event, its proabbility is dominated by 1

η
E|tN |√

N
.

It remains to choose η = ε3/8 to deduce that

lim sup
N

P

(
|M(Nt +

√
NtN)−M(Nt)|√
N

> ε

)
≤ ε.
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Weak convergence

Moreover one can rather easily show that the sequence
{(UN(t),VN(t)), t ≥ 0} is tight as a process whose trajectories
belong to C ([0,+∞);R2). Hence along a subsequence

{(UN(t),VN(t)), t ≥ 0} ⇒ {(U(t),V (t)), t ≥ 0},
where the limit satisfies

U(t) = −β
∫ t

0
[s(r)V (r) + i(r)U(r)] dr +

√
β

∫ t

0

√
s(r)i(r)dB1(r),

V (t) = β

∫ t

0
[s(r)V (r) + i(r)U(r)] dr −

√
β

∫ t

0

√
s(r)i(r)dB1(r)

− α
∫ t

0
V (r)dr +

√
α

∫ t

0

√
i(r)dB2(r).

The process {(U(t),V (t)), t ≥ 0} is a Gaussian process of the
Ornstein–Uhlenbeck type.
The law of the limit is uniquely determined. Hence the whole sequence
converges.
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